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Abstract
Purpose The aims of this study were to (1) analyze the impact of an artificial intelligence (AI)-based computer system on 
the accuracy and agreement rate of board-certified orthopaedic surgeons (= senior readers) to detect X-ray features indicative 
of knee OA in comparison to unaided assessment and (2) compare the results to those of senior residents (= junior readers).
Methods One hundred and twenty-four unilateral knee X-rays from the OAI study were analyzed regarding Kellgren–Law-
rence grade, joint space narrowing (JSN), sclerosis and osteophyte OARSI grade by computerized methods. Images were 
rated for these parameters by three senior readers using two modalities: plain X-ray (unaided) and X-ray presented alongside 
reports from a computer-assisted detection system (aided). After exclusion of nine images with incomplete annotation, 
intraclass correlations between readers were calculated for both modalities among 115 images, and reader performance was 
compared to ground truth (OAI consensus). Accuracy, sensitivity and specificity were also calculated and the results were 
compared to those from a previous study on junior readers.
Results With the aided modality, senior reader agreement rates for KL grade (2.0-fold), sclerosis (1.42-fold), JSN (1.37-fold) 
and osteophyte OARSI grades (3.33-fold) improved significantly. Reader specificity and accuracy increased significantly 
for all features when using the aided modality compared to the gold standard. On the other hand, sensitivity only increased 
for OA diagnosis, whereas it decreased (without statistical significance) for all other features. With aided analysis, senior 
readers reached similar agreement and accuracy rates as junior readers, with both surpassing AI performance.
Conclusion The introduction of AI-based computer-aided assessment systems can increase the agreement rate and overall 
accuracy for knee OA diagnosis among board-certified orthopaedic surgeons. Thus, use of this software may improve the 
standard of care for knee OA detection and diagnosis in the future.
Level of evidence Level II.

Keywords Knee osteoarthritis · Artificial intelligence · Computer aided detection · Reader study

Introduction

Characterized by functional disability and chronic pain, knee 
osteoarthritis (OA) accounts for approximately one-fifth of 
the OA of all joints [1]. OA may be diagnosed clinically or 
radiologically, though symptoms may be present years prior 

to the first appearance of X-ray signs indicative of OA [2, 
3]. The most frequently used classification for knee OA is 
the Kellgren Lawrence (KL) scale, which differentiates five 
stages (0–4) of OA severity [4]. However, the KL scale is 
criticized for its assumption of linear OA progression [5] as 
well as its differing interpretations leading to aberrant clas-
sification of especially low-grade knee OA [6]. Therefore, 
Osteoarthritis Research Society International (OARSI) has 
developed an OA classification system based on an atlas 
with exemplary X-rays of distinct features [7].

While magnetic resonance imaging (MRI) has gained 
importance in the diagnosis of musculoskeletal patholo-
gies, the advantages of plain X-ray over MRI include their 
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prevalent availability and cost efficiency. However, early-
stage OA signs are invisible on plain X-rays, as cartilage 
degeneration cannot be directly assessed, and OA constitutes 
a three-dimensional problem [8]. This is reflected by fair to 
moderate interobserver reliability for knee OA assessment 
using X-rays alone, with measured quadratic kappa values 
between 0.56 and 0.67 [9–11]. To overcome these issues, 
different solutions, including novel quantitative grading 
methods and automatic knee X-ray assessment tools, have 
been proposed [6, 12–14]. Currently, artificial intelligence 
(AI) and deep learning are used in medical image classifica-
tion related to the musculoskeletal system [15–17].

In this study, the authors aimed to characterize two 
aspects of the impact of a novel, AI-based image annotation 
tool with regard to changes in the radiological judgement of 
knee OA [18]. First, we analyzed the intra- and interobserver 
reliability of board-certified orthopaedic surgeons (herein 
termed senior readers) regarding knee OA grade assessment 
using either AI-annotated or plain X-rays. Second, we com-
pared the outcome of senior readers to that of senior resi-
dents (termed junior readers) with aided analysis in terms 
of agreement rate and overall performance.

Methods

Three board-certified orthopaedic surgeons (= senior read-
ers) from a single hospital rated X-ray images, and readings 
with and without AI aid were compared to a gold standard 
(OAI consensus). The findings of a similar previous study 
[19] involving senior residents (= junior readers) were used 
as a comparator for senior reader performance.

Data

In the present study, plain knee X-rays were acquired from a 
publicly available dataset by Osteoarthritis Initiative (OAI) 
[20]. From this dataset, 124 knee X-rays (size comparable 
to previous study in this field [21]) were semirandomly 
selected using a selection probability proportional to the 
frequency of KL grades across the visits baseline, as previ-
ously described [19]. Thereby, a uniform distribution of KL 
grades was ensured in the sample set. The images used in the 
present study and training data of the AI were drawn from 
OAI but segregated by the patient level to avoid biasing AI 
performance due to overfitting. Overfitting implies that an 
AI model has been trained in a way that the learned method-
ology is only applicable to the training set but not to another 
independent dataset [22]. A few additional images from the 
OAI dataset, outside of the study set, were randomly chosen 
for training of the readers on the user interface of the study’s 
annotation tool (see below).

Table 1 depicts the distribution of KL and OARSI grades 
of the final cohort (n = 115; 9 images with incomplete anno-
tation by readers excluded), as reported by consensus read-
ings of the OAI study (i.e. ground truth). Table 2 contains 
the patient demographics of the final cohort stratified by 
sex. All knee X-rays from the OAI study followed a “fixed 
flexion” protocol, with standing X-rays in posterior-anterior 
(PA) projection with feet externally rotated by 10° and knees 
flexed to 20–30° (until the knees and thighs touch the verti-
cal X-ray table anteriorly) [23–25].

Knee osteoarthritis labeling assistant

KOALA (Knee OsteoArthritis Labeling Assistant) is a soft-
ware providing both metric assessments of anterior–pos-
terior (AP) or PA knee X-rays and proposals for clinical 
OA grade. These proposals should aid clinicians in assess-
ing the degree of knee OA in adult patients or their risk of 
developing it. This is enabled by standardized quantitative 
measurements of morphological features (i.e. joint space 
width [JSW] and joint space area [JSA]) on AP or PA knee 
X-rays. The AI software subsequently provides numerical 
results together with graphical overlays on X-rays showing 
measurement points. Furthermore, OA severity is assessed 
with the AI software by proposing the following grades (the 
higher, the more severe) to the clinician/rater: maximum 
OARSI grade for sclerosis, joint space narrowing (JSN), 
osteophytes (each between 0 and 3), and KL grade (between 
0 and 4). Grading proposals as well as metric assessments 
are summarized in a report that can be viewed on any 
DICOM viewer workstation approved by the FDA.

The AI software applied in this study is based on several 
CNNs trained on large datasets of over 20,000 individual 
knee X-rays. It combines several low- and high-level mod-
ules, with the low-level modules being responsible for knee 
joint detection and landmarking. Subsequently, information 
is transferred to the high-level modules responsible for joint 
segmentation and measurement of KL, JSW, and OARSI 
grades, as previously described [19].

Table 1  Distribution of KL and OARSI grades in the study popula-
tion, as reported by the gold standard consensus readings of Osteoar-
thritis Initiative [20] (OAI; n = 115)

JSN joint space narrowing, KL Kellgren–Lawrence

KL grade OARSI grade

Osteophytes JSN Sclerosis

0 24 (20.9) 34 (29.6) 46 (40.0) 40 (34.8)
1 18 (15.7) 35 (30.4) 28 (24.3) 24 (20.9)
2 34 (29.5) 17 (14.8) 20 (17.4) 23 (20.0)
3 24 (20.9) 29 (25.2) 21 (18.3) 28 (24.3)
4 15 (13.0) N/A N/A N/A
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Labelling process

The labelling process was divided into three steps (Fig. 1). 
First, three senior readers were trained on the structure of 
the AI software report, OARSI grading system [7], labelling 
process and platform used (i.e. Labelbox, a data labelling 
tool designed for machine learning procedures [26]. Sec-
ond, readers assessed—unaided (i.e. without AI annota-
tions)—124 plain knee X-rays and defined KL grade (0–4), 
osteophytes (0–3), sclerosis (0–3), and JSN (0–3) by com-
pleting a list. The readers were able to work remotely at their 
preferred time and allowed to interrupt and resume labelling 
at any time, without time restrictions for labelling individual 

images or the entire dataset. However, the time it took read-
ers to label each image, as well as the time of the entire 
labelling process, was ascertained. Third, after a minimum 
of 2 weeks after the second step had been completed, the 
same 124 knee X-rays were relabelled by the readers, with 
images provided at random order (to avoid creating observer 
bias; Fig. 1). At this point, however, each image was supple-
mented with the AI software’s report together with a binary 
score of whether OA was present on the X-ray.

As mentioned above, complete data by annotators for all 
modalities were not available for nine images; therefore, 
these were excluded from further analysis, resulting in a total 
subject count of 115 and a dropout rate of 7.3%.

Table 2  Population 
demographics of the individuals 
analyzed in this study (n = 115)

Total (n = 115; %) Female (n = 60; %) Male (n = 55; %)

Age groups
 45–49 years 5 (4.4) 0 (0.0) 5 (9.1)
 50–59 years 32 (27.8) 18 (30.0) 14 (25.5)
 60–69 years 36 (31.3) 22 (36.7) 14 (25.5)
 70–79 years 35 (30.4) 17 (28.3) 18 (32.7)
 80–89 years 7 (6.1) 3 (5.0) 4 (7.2)

Ethnicity
 Asian 1 (0.9) 0 (0.0) 1 (1.8)
 Black or African American 24 (20.8) 15 (25.0) 9 (16.4)
 Other Non-White 1 (0.9) 1 (1.7) 0 (0.0)
 White or Caucasian 89 (77.4) 44 (73.3) 45 (81.8)

BMI
 20–25 24 (20.9) 12 (20.0) 12 (21.8)
 25–30 45 (39.1) 20 (33.3) 25 (45.5)
 30–35 31 (27.0) 17 (28.3) 14 (25.5)
 35–40 15 (13.0) 11 (18.3) 4 (7.3)

Fig. 1  Flow chart of the study’s 
labelling process
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Statistical analysis

Agreement rates

A two-way random, single score model intraclass correla-
tion coefficient (ICC) was used to assess agreement rates 
between readers for items evaluated (i.e. presence of OA, 
osteophytes, sclerosis, KL grade, JSN) [27] when compared 
to the OAI consensus. As proposed by Shrout and Fleiss, 
95% confidence intervals (CIs) were calculated [27]. Stand-
ard errors of the mean were estimated for ICCs by resa-
mpling observations with 1000 bootstraps. Via the z score 
method, the statistical significance of the difference between 
the unaided and aided labelling was determined. A p value 
of < 0.01 was considered statistically significant.

Accuracy measures

The performance of the readers was assessed by accuracy, 
sensitivity and specificity. True positives (TP), true nega-
tives (TN), false-positives (FP) and false negatives (FN) 
were calculated for each measure of the readers against 
the readings from the OAI study. In particular, the abil-
ity to detect any abnormality (KL grade > 0) or OA (KL 
grade > 1), JSN (> 0), sclerosis (> 0) or severe sclerosis (> 1) 
and the presence of osteophytes (> 0) was assessed. Normal 
approximation to binomial proportional intervals was used 

to estimate standard errors as well as CIs for sensitivity, 
specificity, and accuracy.

Receiver operating characteristic curves

As the AI software used not only provides recommendations 
regarding the presence and severity of OA but also a confi-
dence score on the recommendation made, a receiver operat-
ing characteristic (ROC) curve was plotted to visualize the 
effect of the AI software’s application on reader performance 
with regard to changes in TP rates (TPR) and FP rates (FPR).

Results

Agreement between readers in unaided and aided 
labelling

Agreement rates for different measures (i.e. KL, presence 
of OA, JSN, sclerosis, osteophytes) between readers were 
calculated separately for unaided and aided labelling. Agree-
ment rates for senior readers improved with aided labelling 
for all scores assessed (Table 3, Fig. 2). In detail, agreement 
rates increased twofold, 1.37-fold, 1.42-fold, 1.59-fold and 
3.33-fold for KL grade, JSN, sclerosis, osteophytes and OA 
diagnosis, respectively (Table 3). When using the agreement 
classification proposed by Cicchetti [28], improvements 

Table 3  Agreement rates (ICCs) for junior and senior readers, by modality, together with the Cicchetti agreement classification [28]

The values for junior readers have already been published by Nehrer et al. [19]. Significant changes (defined as p value < 0.01) are highlighted in 
grey shading

Score Junior Senior

Unaided Aided Change 
(unaided-aided)

Unaided Aided Change 
(unaided–
aided)

KL
 ICC 0.67 (0.58–0.74) 0.82 (0.76–0.86)  × 1.22 0.39 (0.06–0.62) 0.78 (0.70–0.84)  × 2.0
 Cicchetti Good Excellent Poor Excellent

JSN
 ICC 0.71 (0.62–0.78) 0.76 (0.67–0.83)  × 1.07 0.54 (0.34–0.68) 0.74 (0.67–0.80)  × 1.37
 Cicchetti Good Excellent Fair Good

Sclerosis
 ICC 0.42 (0.30–0.53) 0.60 (0.50–0.69)  × 1.43 0.41 (0.16–0.60) 0.58 (0.46–0.68)  × 1.42
 Cicchetti Fair Good Fair Fair

Osteo-phytes
 ICC 0.55 (0.25–0.73) 0.75 (0.65–0.83)  × 1.36 0.46 (0.23–0.64) 0.73 (0.66–0.79)  × 1.59
 Cicchetti Fair Excellent Fair Good

OA
 ICC 0.43 (0.32–0.54) 0.60 (0.50–0.69)  × 1.40 0.18 (0.06–0.30) 0.60 (0.51–0.69)  × 3.33
 Cicchetti Fair Good Poor Good
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from unaided to aided labelling were observed for all meas-
ures, except for sclerosis (Table 3).

In general, agreement rates for KL grade, JSN, and OA 
diagnosis with unaided labelling were higher between junior 
readers than between senior readers (Table 3, Fig. 2). Nota-
bly, when using aided labelling, ICCs for the junior and sen-
ior readers were comparable. Consequently, less pronounced 
improvements in ICC from unaided to aided labelling were 
found with junior readers (Table 3).

Senior reader performance in unaided and aided labelling

The accuracy of senior readers significantly improved 
with aided labelling for all measures (Fig. 3). Sensitivity 
only increased for OA diagnosis (i.e. KL grade > 1) while 
decreasing—without statistical significance—for all other 
scores. On the other hand, all measures showed a significant 
increase in specificity, indicating a decrease in overdiagnosis 
upon AI-aided labelling compared to the OAI ground truth 
(Fig. 3, Table 4).

Individual reader performance

The effect of the AI software on senior reader performance 
was comparable to that of our previous findings for junior 
readers only [19]. A reduction in FPR was observed, with no 
or little effect on TPR. Notably, two readers showed simul-
taneously increased TPR and reduced FPR regarding the 
feature “presence of OA” (i.e. KL > 1). For the “presence of 
osteophytes”, increased TPR and decreased FPR was found 
for another reader (Fig. 4).

Discussion

The main finding of the study was improvement in the sen-
ior reader agreement rate with aided analysis for KL grade, 
diagnosis of OA, JSN, osteophytes and sclerosis assessed on 
knee X-rays. Furthermore, the specificity and accuracy for 
all features mentioned increased with the AI-aided modality. 
Notably, the agreement and accuracy rates achieved when 
using aided analysis were comparable between senior read-
ers and junior readers (from a different study).

Although over 100 commercially available AI applica-
tions similar to the tools investigated herein using CNNs 
are currently on the market, peer-reviewed literature on the 
impact of these systems on clinicians is scarce [18].

Nevertheless, reliable and homogenous evaluation of 
radiological images is necessary to improve the care of 
knee OA patients by means of timely treatment planning 
[29]. This applies particularly to the early stages of knee 
OA, in which well-established radiographic assessment 
scores such as the KL scale are prone to imprecision, as the 
incipient tissue damage characteristic of early OA is barely 
visible on X-rays [30, 31]. However, in settings with both 
junior and senior readers [32], as well as senior readers alone 
[29], assessment differences regarding the severity of radio-
graphic knee OA features are found. Therefore, an AI-based 
tool supporting readers in decision-making may aid in the 
standardization of image evaluation.

In the current study, agreement rates for senior readers 
increased between 1.37-fold (for JSN) and 3.33-fold (for 
OA diagnosis) when utilizing AI software-aided labelling 
compared with unaided labelling. These observations are 
in line with a previous study on junior readers alone [19]. 

Fig. 2  Agreement rates between 
junior readers (blue) and senior 
readers (red) for the unaided 
(lighter) and aided (darker) 
modalities. Error bars denote 
standard errors of the ICC. Stars 
indicate statistically significant 
differences between the unaided 
and aided modalities, with a p 
value of < 0.01 considered sta-
tistically significant. JSN junior 
was the only nonsignificant 
result, with a p value of 0.125. 
Horizontal lines denote the 
thresholds separating poor, fair, 
good and excellent agreement, 
as defined by Cicchetti et al. 
[28]. The values for junior read-
ers already published by Nehrer 
et al. [19]. OA was defined as 
KL > 1. KL Kellgren–Lawrence, 
JSN joint space narrowing, SC 
sclerosis, OS osteophyte, OA 
osteoarthritis)
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Comparable to previous results from our group on junior 
readers [19], use of AI-enhanced X-rays appears to stand-
ardize knee OA assessment among senior readers. This is 
of particular importance considering that initial agreement 
rates between senior readers and the OAI ground truth were 
evidently lower than those found between junior readers 
and the OAI ground truth, especially regarding OA diag-
nosis and KL grade. This discrepancy may be explained by 

the fact that orthopaedic specialists rely on their long-term 
experience when evaluating images rather than adhering 
to given scoring system definitions, as enforced during the 
truthing of the OAI. In the field of musculoskeletal radiol-
ogy, comparable observations have been made by Peterlein 
et al. regarding developmental dysplasia of the hip assess-
ment by ultrasonography [33], with similar performance 
found between medical students and paediatric orthopaedic 

Fig. 3  Mean differences between senior reader AI software-aided 
and unaided labelling in sensitivity, specificity and accuracy for 
KL > 0, KL > 1, JSN > 0, sclerosis OARSI grade > 0, sclerosis OARSI 
grade > 1 and osteophyte OARSI grade > 0. Values to the right of the 

vertical line at 0 are improvements by the use of AI software. Error 
bars signify 95% confidence intervals. KL Kellgren–Lawrence, JSN 
joint space narrowing, SC sclerosis, OS osteophyte, OA osteoarthritis
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surgeons [33]. Notably, in the present study, the junior and 
senior readers achieved similar agreement rates with AI 
software-aided labelling. This implies that orthopaedic spe-
cialists may benefit to a greater extent from AI software 
than senior residents. One may argue that any improvement 
in agreement with aided labelling may be related to some 
kind of cognitive bias—or “anchoring effect” [34], a phe-
nomenon first observed in psychophysics [35]. It describes 
the situation in which a person’s decision is influenced to a 
considerable degree by a single, potentially irrelevant piece 
of information, i.e. the “anchor” [36]. As already outlined 
in our previous study [19], some facts eventually contradict 
this assumption. On the one hand, the readers had been spe-
cifically trained in assessment of X-ray features, and objec-
tive decision-making can be expected. On the other hand, 
improvements with aided labelling against the OAI consen-
sus as the ground truth were mainly caused by an increase 
in specificity, reducing FPR (and thus overdiagnosis) with 
respect to the OAI consensus. Furthermore, the senior read-
ers achieved better overall results regarding TPR and FPR 
with aided labelling compared to AI software alone. This 

implies a rather subordinate role of the “anchoring effect”, 
as the senior readers should have achieved results similar 
to the AI software unless they eminently relied on provided 
annotations.

As the pool of readers in the current study consisted of 
three board-certified orthopaedic surgeons, one may argue 
that generalizability was impaired. To overcome this issue, a 
specific ICC was calculated including the readers as random 
effects. Consequently, the pool of readers was treated as a 
sample of a larger pool, enabling better generalization of the 
results obtained.

Limitations of the study include the drop-out rate of 7.3% 
and the limited sample size of the 115 images ultimately 
analyzed. Furthermore, the number of readers involved 
might have biased the results obtained. Another potential 
source of bias was the 2-week interval chosen between the 
two assessments, which might have led to “memory bias” 
[37, 38]. Nevertheless, the effect of this bias is controversial 
in the literature, with studies on the presence of both strong 
[38] and weak [37] “memory bias” in imaging studies at 
two time points.

Moreover, AI might have been overfitted to the OAI 
dataset, eventually leading to a less pronounced difference 
between the senior and junior readers for varying datasets 
due to lower performance of the AI. Additionally, it can-
not be ruled out that AI software itself sometimes classifies 
X-rays incorrectly, and aided image analysis would present 
readers with inaccurate information. Furthermore, the dis-
crepant finding of better performance for senior residents 
compared to board-certified orthopaedic surgeons can only 
be explained by the hypothesis that experienced readers tend 
to analyze images in a less-structured and faster manner, 
relying on their long-term experience, but that less experi-
enced readers are more likely to adhere to presented image 
classification systems.

In conclusion, use of AI-based KOALA software leads to 
improvement in the radiological judgement of senior ortho-
paedic surgeons with regard to X-ray features indicative of 
knee OA and KL grade, as measured by the agreement rate 
and overall accuracy in comparison to the ground truth. 
Moreover, the agreement and accuracy rates of senior read-
ers were comparable to those of junior readers with aided 
analysis. Consequently, standard of care may be improved 
by the additional application of AI-based software in the 
radiological evaluation of knee OA.

Table 4  Accuracy, sensitivity and specificity of senior readers with 
unaided and aided modalities. The increase from unaided to aided 
labelling is highlighted in green, and the decrease is highlighted in 
red

Modality Accuracy Sensitivity Specificity

KL (> 0)
 Unaided 0.80 (0.76–0.84) 0.97 (0.95–0.99) 0.10 (0.03–0.18)
 Aided 0.86 (0.82 – 0.89) 0.97 (0.94–0.99) 0.40 (0.29–0.52)

JSN (> 0)
 Unaided 0.65 (0.60 – 0.70) 0.97 (0.95–0.99) 0.11 (0.06–0.17)
 Aided 0.76 (0.72–0.80) 0.97 (0.95–0.99) 0.41 (0.32 – 0.49)

Sclerosis (> 0)
 Unaided 0.54 (0.49–0.59) 0.97 (0.95–0.99) 0.11 (0.07–0.15)
 Aided 0.60 (0.55–0.65) 0.97 (0.94–0.99) 0.24 (0.18–0.30)

Severe sclerosis (> 1)
 Unaided 0.72 (0.67–0.76) 0.80 (0.73–0.88) 0.68 (0.62–0.74)
 Aided 0.88 (0.84–0.91) 0.77 (0.68–0.84) 0.92 (0.89–0.96)

Osteophytes (> 0)
 Unaided 0.76 (0.71–0.80) 0.84 (0.79–0.88) 0.50 (0.39–0.61)
 Aided 0.84 (0.80–0.88) 0.88 (0.83–0.91) 0.73 (0.63–0.82)

OA (KL > 1)
 Unaided 0.76 (0.72–0.81) 0.83 (0.77–0.87) 0.65 (0.58–0.73)
 Aided 0.82 (0.78–0.85) 0.78 (0.73–0.83) 0.88 (0.82–0.93)
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