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Abstract
Applications of artificial intelligence, specifically machine learning, are becoming increasingly popular in Orthopaedic 
Surgery, and medicine as a whole. This growing interest is shared by data scientists and physicians alike. However, there 
is an asymmetry of understanding of the developmental process and potential applications of machine learning. As new 
technology will undoubtedly affect clinical practice in the coming years, it is important for physicians to understand how 
these processes work. The purpose of this paper is to provide clarity and a general framework for building and assessing 
machine learning models.

Introduction

In the last decade, increasing access to powerful comput-
ers and larger data sources from electronic medical records, 
fitness trackers, genetic testing, and other pools have esca-
lated the practicality and utility of powerful machine learn-
ing algorithms [2, 26]. Recent studies have demonstrated 
the ability of complex algorithms to compliment, and even 
outperform physicians in some diagnostic tasks [11, 21]. The 
drastic increase in machine learning applications in ortho-
paedics has been well described, with almost 200 studies 
related to artificial intelligence in orthopaedics published 
between 2018 and 2021 [19].

The terms “artificial intelligence” and “machine learn-
ing” are often incorrectly used interchangeably [19]. Simply 
put, machine learning is a subset of artificial intelligence, in 
which algorithms learn from input data to make predictions 
and identify patterns. With this seemingly vague definition, 

it is often beneficial to break up the algorithms into a spec-
trum, between either fully human-guided or fully machine-
guided analyses [2]. An overview of machine learning and 
its applications in orthopaedic surgery was the subject of a 
previous study and will not be addressed in this work [16]. 
The purpose of this study is to provide an overview of the 
process of development and deployment of machine learning 
models for musculoskeletal health professionals. In addition, 
further studies will enable a deeper dive into the nuances 
of machine learning algorithms, common issues encoun-
tered, and costs associated with machine learning model 
maintenance.

Table 1 provides an overview of key terms discussed in 
this paper while Table 2 introduces some essential compo-
nents of machine learning model creation.

Problem identification

As with any scientific study, the first step in developing a 
machine learning model is to define a clinical problem and 
ask an appropriate question. Most often, the goal of this 
endeavor should not be solely to develop the model, but to 
successfully deploy the model and provide real-time value. 
It is important to consider not only what the problem is, 
but also why the problem needs to be solved. Researchers 
must have a firm understanding of what is currently being 
done for the problem, and why previously implemented solu-
tions have been insufficient. This will not only provide a 
reference for performance but may also provide insight on 
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whether the new model should target improvements in terms 
of accuracy, efficiency, cost, or another realm. In general, 
narrowly posed questions with discrete answers are more 
effectively addressed with available data compared to more 
general questions.

Once the clinical problem is defined and the question is 
proposed, a task must be provided to the computer. One must 
ask, “HOW will we answer this question?” It is imperative to 
be explicit at this stage. For example, the process of develop-
ing a model to predict which patients will tear their anterior 
cruciate ligament (ACL) graft is different from the process for 
predicting the time-to-failure of the ACL graft or identifying 
subgroups of patients that may be at increased risk of ACL 
graft tear. The framing of this task is dependent on a variety 

of questions. Will this model be supervised, meaning the goal 
is to predict labels based on labeled training data, or unsuper-
vised, where the goal is to identify structure or patterns in an 
unlabeled dataset? If the model is supervised, is it intending 
to classify and predict the labels of two or more categories, or 
anticipating the use of regression to predict continuous labels? 
If the data are unlabeled, is the objective to use unsupervised 
learning to cluster and identify distinct groups within the data, 
or reduce dimensions and detect lower level patterns and struc-
ture within the large dataset? The types of machine learning 
algorithms best suited for each question type is beyond the 
scope of this paper and will be discussed in upcoming papers 
(Fig. 1).

Table 1   Important definitions

Term Definition

Machine learning (ML) The process by which algorithms learn from input data to make predictions or identify patterns. ML 
exists on a spectrum between fully human-guided and fully machine-guided analyses

Training set The subset of the data (generally 70–80%) used to train the initial model(s)
Testing set The remaining subset of the data that the model is blind to; these data are used only to evaluate the 

final model and report performance metrics
Data splitting/sampling The process by which data are separated into training and testing sets; can be simple (random), 

stratified random (by outcome), or convenience (time-dependent)
Brier score The mean squared error calculation between predicted and expected values. Used to assess the 

performance of regression models. Ranges from 0 to infinity, where lower values indicate higher 
performance

Area under the curve (AUC) of the 
receiver operating characteristic (ROC) 
curve

Assesses a classification models’ ability to discriminate between positive and negative cases. The 
AUC considers the classifier as a whole (not just the optimized cut-off point). Ranges from 0 to 1, 
where higher values indicate higher performance

F1-Score A single metric that combines (through a harmonic mean) the precision and recall of a classifica-
tion model at an optimized cut-off point. Ranges from 0 to 1, where higher values indicate higher 
performance

k-fold cross validation Model validation technique used to assess how a model will perform on an independent/external 
dataset. The data are split into k (e.g., 10) subsets, and the model is trained on k-1 (e.g., 9) subsets 
and evaluated on 1 subset. This is repeated k times, and the error is averaged and reported as a 
single value

External validation The process of assessing a model’s generalizability by testing a model on independent, unseen data 
(e.g., patients from a different institution)

Table 2   Key takeaways

Building a successful machine learning model requires a clearly identified problem and a deliberate plan from the beginning.
A model’s performance will be limited by the quality and quantity of data used to train it. Care must be taken to collect or acquire high-quality 

data capable of representing the target population
It is important to consider the distribution of positive and negative cases within the data set. If there is low prevalence of positive cases, or they 

distributed in a time-dependent manner, simple random sampling may not yield reproducible results.
It is good practice to start with simple models and progress to more complicated models to reach the desired performance. A “good” model bal-

ances underfitting and overfitting.
It is important to have a plan for what happens once the model is evaluated internally. It is important for models to be validated externally before 

being used for clinical decision-making, and models should be monitored and retrained with new data continuously to maintain high-level 
performance.
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Data collection and analysis

The data acquisition stage of a project varies on the pro-
spective versus retrospective nature of the study. Which-
ever the case, emphasis must be placed on acquiring com-
plete, high-quality data through standardized processes. 
Most often, cohorts are identified with billing codes, and 
their demographic and clinical data are manually docu-
mented. However, researchers have recently demonstrated 
success in using machine learning to extract data from 
clinical documentation using a variety of techniques 
including natural language processing (NLP) [22, 23, 
27]. If the clinical and statistical roles within a project 
are split between members of the team (which is typical), 
communication at this stage is critical to ensure that suf-
ficient, usable, and clinically relevant data are available 
to accomplish the goal of the study. The usability of data 
can be thought of as the degree to which data are suffi-
ciently accurate, complete, relevant, and timely to allow 
for improved clinical decision-making [4].

Ideally, a large quantity of high-quality data should be 
available, however, this is rarely the case. While power 
analyses provide useful insight about the sample size 
needed for statistical analyses, there is no defined equation 
guiding the quantity of data needed to train an effective 
machine learning model. Overall, the goal is to expose the 
model to enough diverse training data points to represent 
the testing population. A closer look at the heterogeneity 
of the data are completed in the data exploration stage.

Splitting the data

It is important to split the available data into unique training 
and testing sets. Intuitively, the larger “training” set is used 
to train and tune the model and compare different models 
before selecting the most optimal model. The “testing” set 
is only to be used to test the final model; if the test data are 
seen at any time during the training of the model, the model 
will learn from the data it will be evaluated on, introduc-
ing bias and nullifying the results. In this sense, the model 
should be “blind” to the testing data until final evaluation is 
done to avoid the potential for significantly overestimating 
model performance.

There are no formal rules for how to split the data as it is 
dependent on the quality and quantity of the data available. 
Most commonly, data are split with 70–80% used for train-
ing, and the remaining 20–30% used for evaluation. Within 
the training set, a 10–20% subset is dedicated for the tun-
ing and validation of the model (discussed below). Simple 
random splitting is the most common approach to splitting, 
in which each sample has an equal probability of selection. 
This leads to low bias of the model performance, but can 
lead to high variance in complex, non-uniform datasets (e.g., 
unequal distribution of positive and negative cases - such as 
in rare diseases or conditions) [15, 20]. Other approaches 
include stratified random sampling, where samples from 
each cluster (label) are selected with uniform probability 
to better distribute positive and negative cases between the 
training and test sets, and convenience sampling, which is 
where the dataset is split into discrete time intervals before 

Fig. 1   Machine learning can be divided into supervised, unsupervised, and reinforcement learning. These three sub-fields each have their own 
applications
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sampling. The latter is helpful in time series to decrease 
recency bias and account for changes or trends over time 
[5, 20].

One good “use-case” example of stratified sampling is 
when the outcome of interest is imbalanced or rare in the 
dataset: such as in patients with graft tear after ACL recon-
struction. Since this occurrence is low (in this case, approxi-
mately 5–10%), when the data are split an approximately 
equal number of ACL graft tears in both the training and 
testing data sets is desirable. These situations often benefit 
from stratified random sampling instead of simple random 
splitting or sampling, which may lead to a disproportionate 
rate of graft tears in either the training or testing set.

Once the data are split, it can be helpful to think of the 
subsequent steps as a “pipeline.” A series of functions will 
be applied to the training data to prepare it for the model, 
and these will eventually be used on the testing set before 
evaluating the performance of the final model.

Data exploration and manipulation

Once the problem has been identified and framed, and the 
data have been split, the next step is to explore and under-
stand the data. Fundamentally, it is important to understand 
what data features, or predictors, are available, and whether 
these will allow for accurate predictions. As previously men-
tioned, data must be sufficiently heterogeneous, in that the 
spectrum of variations within the predictors of the training 
set closely represents what will be seen in the testing set and 
in the real-world. Implied in this is that the training set has 
a sufficient distribution of “positive” and “negative” cases 
or labels, which can be addressed through alterations in the 
splitting methods as mentioned above.

Subsequently, the data can be explored, looking for cor-
relations and redundancies within the features. For example, 
having a patient’s height, weight, and BMI as features could 
be redundant; it is not necessary to remove any predictors at 
this point, but it may prove important if the model is even-
tually found to overfit. It is also important to understand 
the number of data points, or instances available, as well as 
the amount of missingness from each instance. A number 
of machine learning models will not accept instances with 
significant missing features, and the researcher can decide to 
remove the instances with missing features or fill them using 
imputation. It is also important to characterize the types of 
data features available; common examples include categori-
cal, binary, and continuous variables. Different models will 
accept different classes of features, but it is at this point in 
the process one would transform features such as “Autograft 
BTB” or “Tibialis Allograft” into categorical numeric values 
(categorization or binning: example 0 or 1).

Other important transformations improve normalization 
or standardization of the features, as many models perform 
better with similar scales (ranges, minima, maxima) so their 
comparison or correlation is assessed with a similar magni-
tude in mind. Again, for efficiency and reproducibility, it is 
reasonable to add the imputations and transformations in this 
stage of the model building process into the pipeline men-
tioned in the previous step. Data exploration and manipula-
tion is largely the most investigative and time-consuming 
portion of the model creation process.

Model development and selection

The output defined in the problem identification stage is 
important, as the process required to develop a model that 
predicts an exact tumor size (regression) differs substantially 
from a model that classifies the tumor as “small,” medium,” 
or “large” (categorical: nominal or ordinal). With the data 
split, explored, and prepared, one can now start to build the 
models with the training set.

One tenet to be aware of at the onset is the bias-variance 
tradeoff. This idea describes that a model should balance 
underfitting and overfitting; it should be powerful enough 
to characterize the structure within the data without fitting/
recreating false patterns [3]. Models with near 100% accu-
racy are often excellent at predicting the outcome of interest 
in the training data, but perform much more poorly with the 
testing data or during external validation with outside data 
sources. This is likely because they lack the generalizabil-
ity to be accurate when data differs from the data provided 
in training sets as is often the case in testing sets. This is 
the most common problem encountered by novice machine 
learning practitioners.

Considering the delicate bias-variance tradeoff, it is com-
mon to start with simple models (using simpler or more 
easily understood algorithms) before progressing along the 
spectrum. If the initial model is underperforming (underfit-
ting), one can either (1) select a more powerful model (i.e. 
support vector machines, random forests, neural networks), 
or (2) provide different features/data to the model. If the 
model is overfitting, options include (1) simplifying the 
model, or (2) provide more data along with other options 
(such as stopping model training early) which are outside 
the scope of this study [10].

To assess for model fit or performance, quantitative eval-
uations are used based on the type of model selected and the 
question to be answered. While there are a variety of perfor-
mance parameters, for regression models, root mean squared 
error or Brier score are often used to quantify performance 
and compare models [6]. Notably, these scores provide a 
single value from 0 up to infinity, so there remains utility in 
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reporting R2 or adjusted-R2 values for interpretability and 
to characterize the amount of variance in the predicted out-
come that is accounted for by the features provided to the 
model [7].

For classification problems or problems assessing cat-
egorical variables, the area under (AUC) the receiver operat-
ing characteristic (ROC) curve is often used [9]. This value 
characterizes the classifier as a whole (at all cut-off points), 
and may be adversely affected by skewed data, which is why 
the F1-score is commonly used as it evaluates the classi-
fier’s performance at an optimized cut-off point [12]. These 
metrics incorporate elements of the model’s accuracy, sensi-
tivity (recall), specificity, and precision (positive predictive 
value), which can be selectively optimized depending on the 
goal of the model (e.g., to maximize true positives and/or 
minimize false negatives).

These are commonly used in conjunction with k-fold 
cross validation, in which the training set is randomly 
divided into k “folds,” or subsets, where k is usually ten. 
From here, the model is trained on nine of the folds, and 
evaluated on one fold; the result is ten evaluations of the 
model’s performance (Fig. 2). From here, small tweaks to 
model parameters can be explored with, and the desired 
models can be used in subsequent stages.

Model tuning and validation

The tuning and validation stage is continuous with the pre-
vious training and model selection stage. It is normal to go 
between the two when exploring and deciding which models 
to select. While small changes to the model parameters were 
made in the previous step, more discreet approaches to tun-
ing model hyperparameters are made once the most promis-
ing models are identified. Simply defined, hyperparameters 

are actually parameters of the machine learning algorithm 
itself, instead of parameters related to the data. These hyper-
parameters essentially dictate how the model learns from 
the data based on its programming and associated math-
ematical results [8]. While it is possible to manually alter 
the hyperparameters and re-assess performance, there are 
more efficient ways to optimize the model, including grid 
and random searches which automate this process, often 
trying tens or hundreds of possibilities in an automated 
manner [10]. Before proceeding to the evaluation stage, it 
is often beneficial to take a closer look at the errors your 
model of choice is making. This allows assessment of the 
feature importance, a quantitative measure of the individual 
predictor’s impact. Small changes at this stage may improve 
(or worsen) the final evaluation, and since this is still largely 
a manual process, it is important to carefully assess why the 
model is good at predicting certain outcomes and poor at 
predicting others. Before proceeding to model evaluation 
using the testing data, there should be a reasonable level of 
confidence that the model is capable of completing the task 
as intended.

Model evaluation

After making the above changes to the model, the most 
straightforward stage of the process is to evaluate the model 
using the dedicated testing set. For this, the testing set needs 
to be prepared and transformed exactly as the training set 
(following the pipeline mentioned above). The features are 
input into the model, and predictions are generated. The 
metrics described above can be used to assess the model’s 
performance/quantify the error per the discretion of the team 
creating the model and the task at hand. For instance, in 
a classification problem, although accuracy is commonly 
used (percent of predictions that are correct), it may be more 
desirable to maximize sensitivity instead, accepting false 
positives if the objective is to analyze a diagnostic test where 
one does not want to miss any true positives [1, 25].

Model deployment and monitoring

The final step in the model building process is the deploy-
ment and monitoring of the model. This step is highly 
dependent on the purpose of the model. If the model was 
built for research purposes, it can be published and shared 
on online repositories if future collaboration is desired. This 
is especially important for models used in clinical decision-
making, to prevent ill-informed predictions or prematurely 
made decisions. Traditionally, research has been focused on 
maximizing internal validity in the development of insti-
tution-based models and data repositories [24]. However, 

Fig. 2   K-fold cross validation is used to divide the training data into 
k “folds” or subsets. The model performance is an average of the per-
formance on all the subsets. In the figure below, we have used k = 5 
for a fivefold cross-validation
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this failure to account for external validity (generalizability) 
can lead to models underperforming at outside institutions, 
potentially due to variations in data collection, documenta-
tion, or baseline patient characteristics. When such models 
are used in real-time to affect a patient’s care, external vali-
dation is critical and should be highly emphasized, and there 
is a growing trend in this direction within the orthopaedic 
literature [13, 14, 17, 18].

If the model was built for business purposes or task 
automation, it can be launched using web and cloud ser-
vices. Whichever the case, if high performance is desired 
after the point of deployment, it is important to regularly 
assess the model, and update it with new training data. This 
requires a team to monitor the incoming data, incorporate 
these data into the model, and at times create a new model 
that can maintain or exceed previous model performance 
to optimize the result of the model or the task of interest. 
A flowchart summarizing the workflow in this editorial is 
shown in Fig. 3.

Conclusion

This editorial presents an overview of the process required 
to build a machine learning model. The primary stages 
involve problem identification, data collection and explo-
ration, data splitting, model development, model valida-
tion, model evaluation, model deployment, and model 

maintenance. While an in-depth tutorial on how to pro-
gram models for a specific application is beyond the scope, 
the goal of this review is to provide the structure for how 
clinicians can think about the stepwise process behind 
machine learning methodology and associated model 
creation.
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