Skip to main content
Log in

Concentration of synovial fluid biomarkers on the day of anterior cruciate ligament (ACL)-reconstruction predict size and depth of cartilage lesions on 5-year follow-up

  • KNEE
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

The current investigation evaluated the relationship between the synovial fluid cytokine microenvironment at the time of isolated anterior cruciate ligament (ACL) reconstruction and the presence of subsequent chondral wear and radiologic evidence of osteoarthritis (OA) on cartilage-specific MRI sequences at a minimum of 5-year follow-up.

Methods

Patients who underwent primary ACL reconstruction with no baseline concomitant cartilage or meniscal defects and had synovial fluid samples obtained at the time of surgery were retrospectively identified. Patients with a minimum of 5 years of postoperative follow-up were contacted and asked to complete patient-reported outcome (PRO) measures including Visual Analog Scale (VAS) for pain, Lysholm Scale, Knee Injury and Osteoarthritis Outcome Score (KOOS), and Tegner Activity Scale, along with postoperative magnetic resonance imaging (MRI). The concentration of ten biomarkers that have previously been suggested to play a role in cartilage degradation and inflammation in the joint space was measured. Linear regression controlling for age, sex, and body mass index (BMI) was performed to create a model using the synovial fluid concentrations at the time of surgery to predict postoperative semiquantitative cartilage lesion size and depth on MRI at a minimum of 5 years follow up.

Results

The patients were comprised of eight males (44.4%) and ten females (55.6%) with a mean age at the time of surgery of 30.8 ± 8.7 years (range 18.2–44.5 years). The mean follow-up time was 7.8 ± 1.5 years post-operatively (range 5.7–9.7 years). MCP-1, VEGF, and IL-1Ra were found to have significant associations with the presence of postoperative cartilage wear (p < 0.05). No correlations were demonstrated among the biomarker concentrations at the time of injury with PRO scores at final follow-up (NS).

Conclusion

Synovial fluid inflammatory biomarker concentrations at the time of injury can predict progression of early-stage post-traumatic osteoarthritis at a mean of almost 8 years post-operatively. Findings from this study may help identify treatment targets to alter the natural history of cartilage loss following anterior cruciate ligament injury.

Level of evidence

Level III, retrospective cohort study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ajuied A, Wong F, Smith C, Norris M, Earnshaw P, Back D et al (2014) Anterior cruciate ligament injury and radiologic progression of knee osteoarthritis: a systematic review and meta-analysis. Am J Sports Med 42:2242–2252

    Article  PubMed  Google Scholar 

  2. Appleton CT, Usmani SE, Pest MA, Pitelka V, Mort JS, Beier F (2015) Reduction in disease progression by inhibition of transforming growth factor alpha-CCL2 signaling in experimental posttraumatic osteoarthritis. Arthritis Rheum 67:2691–2701

    Article  Google Scholar 

  3. Bodkin SG, Werner BC, Slater LV, Hart JM (2020) Post-traumatic osteoarthritis diagnosed within 5 years following ACL reconstruction. Knee Surg Sports Traumatol Arthrosc ESSKA 28:790–796

    Article  Google Scholar 

  4. Briggs KK, Lysholm J, Tegner Y, Rodkey WG, Kocher MS, Steadman JR (2009) The reliability, validity, and responsiveness of the Lysholm score and Tegner activity scale for anterior cruciate ligament injuries of the knee: 25 years later. Am J Sports Med 37:890–897

    Article  PubMed  Google Scholar 

  5. Brophy RH, Wright RW, Matava MJ (2009) Cost analysis of converting from single-bundle to double-bundle anterior cruciate ligament reconstruction. Am J Sports Med 37:683–687

    Article  PubMed  Google Scholar 

  6. Brown TD, Johnston RC, Saltzman CL, Marsh JL, Buckwalter JA (2006) Posttraumatic osteoarthritis: a first estimate of incidence, prevalence, and burden of disease. J Orthop Trauma 20:739–744

    Article  PubMed  Google Scholar 

  7. Carlevaro MF, Cermelli S, Cancedda R, Descalzi Cancedda F (2000) Vascular endothelial growth factor (VEGF) in cartilage neovascularization and chondrocyte differentiation: auto-paracrine role during endochondral bone formation. J Cell Sci 113(Pt 1):59–69

    Article  CAS  PubMed  Google Scholar 

  8. Chou CH, Lee MT, Song IW, Lu LS, Shen HC, Lee CH et al (2015) Insights into osteoarthritis progression revealed by analyses of both knee tibiofemoral compartments. Osteoarthr Cartil 23:571–580

    Article  Google Scholar 

  9. Clair AJ, Kingery MT, Anil U, Kenny L, Kirsch T, Strauss EJ (2019) Alterations in synovial fluid biomarker levels in knees with meniscal injury as compared with asymptomatic contralateral knees. Am J Sports Med 47:847–856

    Article  PubMed  Google Scholar 

  10. Cohen J (2013) Statistical power analysis for the behavioral sciences. Routledge, New York

    Book  Google Scholar 

  11. Colak C, Polster JM, Obuchowski NA, Jones MH, Strnad G, Gyftopoulos S et al (2020) Comparison of clinical and semiquantitative cartilage grading systems in predicting outcomes after arthroscopic partial meniscectomy. Am J Roentgenol 215:441–447

    Article  Google Scholar 

  12. Corrado A, Neve A, Cantatore FP (2013) Expression of vascular endothelial growth factor in normal, osteoarthritic and osteoporotic osteoblasts. Clin Exp Med 13:81–84

    Article  CAS  PubMed  Google Scholar 

  13. Cuellar VG, Cuellar JM, Golish SR, Yeomans DC, Scuderi GJ (2010) Cytokine profiling in acute anterior cruciate ligament injury. Arthroscopy 26:1296–1301

    Article  PubMed  Google Scholar 

  14. Cuellar VG, Cuellar JM, Kirsch T, Strauss EJ (2016) Correlation of synovial fluid biomarkers with cartilage pathology and associated outcomes in knee arthroscopy. Arthroscopy 32:475–485

    Article  PubMed  Google Scholar 

  15. Daniel DM, Stone ML, Dobson BE, Fithian DC, Rossman DJ, Kaufman KR (1994) Fate of the ACL-injured patient. A prospective outcome study. Am J Sports Med 22:632–644

    Article  CAS  PubMed  Google Scholar 

  16. Deshmane SL, Kremlev S, Amini S, Sawaya BE (2009) Monocyte chemoattractant protein-1 (MCP-1): an overview. J Interferon Cytokine Res 29:313–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ding J, Niu X, Su Y, Li X (2017) Expression of synovial fluid biomarkers in patients with knee osteoarthritis and meniscus injury. Exp Ther Med 14:1609–1613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ellman MB, An HS, Muddasani P, Im HJ (2008) Biological impact of the fibroblast growth factor family on articular cartilage and intervertebral disc homeostasis. Gene 420:82–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Faul F, Erdfelder E, Lang AG, Buchner A (2007) G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39:175–191

    Article  PubMed  Google Scholar 

  20. Goldring MB, Tsuchimochi K, Ijiri K (2006) The control of chondrogenesis. J Cell Biochem 97:33–44

    Article  CAS  PubMed  Google Scholar 

  21. Hamilton JL, Nagao M, Levine BR, Chen D, Olsen BR, Im H-J (2016) Targeting VEGF and its receptors for the treatment of osteoarthritis and associated pain. J Bone Miner Res 31:911–924

    Article  PubMed  Google Scholar 

  22. Hoff P, Buttgereit F, Burmester G-R, Jakstadt M, Gaber T, Andreas K et al (2013) Osteoarthritis synovial fluid activates pro-inflammatory cytokines in primary human chondrocytes. Int Orthop 37:145–151

    Article  PubMed  Google Scholar 

  23. Höher J, Münster A, Klein J, Eypasch E, Tiling T (1995) Validation and application of a subjective knee questionnaire. Knee Surg Sports Traumatol Arthrosc 3:26–33

    Article  PubMed  Google Scholar 

  24. Kaplan DJ, Cuellar VG, Jazrawi LM, Strauss EJ (2017) Biomarker changes in anterior cruciate ligament-deficient knees compared with healthy controls. Arthroscopy 33:1053–1061

    Article  PubMed  Google Scholar 

  25. Kessler MA, Behrend H, Henz S, Stutz G, Rukavina A, Kuster MS (2008) Function, osteoarthritis and activity after ACL-rupture: 11 years follow-up results of conservative versus reconstructive treatment. Knee Surg Sports Traumatol Arthrosc 16:442–448

    Article  CAS  PubMed  Google Scholar 

  26. Lohmander LS, Ostenberg A, Englund M, Roos H (2004) High prevalence of knee osteoarthritis, pain, and functional limitations in female soccer players twelve years after anterior cruciate ligament injury. Arthritis Rheum 50:3145–3152

    Article  CAS  PubMed  Google Scholar 

  27. Mabey T, Honsawek S, Saetan N, Poovorawan Y, Tanavalee A, Yuktanandana P (2014) Angiogenic cytokine expression profiles in plasma and synovial fluid of primary knee osteoarthritis. Int Orthop 38:1885–1892

    Article  PubMed  Google Scholar 

  28. Marks PH, Donaldson ML (2005) Inflammatory cytokine profiles associated with chondral damage in the anterior cruciate ligament-deficient knee. Arthroscopy 21:1342–1347

    Article  PubMed  Google Scholar 

  29. Markus DH, Berlinberg EJ, Strauss EJ (2021) Current state of synovial fluid biomarkers in sports medicine. JBJS Rev 9:12–14

    Article  Google Scholar 

  30. Meulenbelt I (2012) Osteoarthritis year 2011 in review: genetics. Osteoarthr Cartil 20:218–222

    Article  CAS  Google Scholar 

  31. Nagao M, Hamilton JL, Kc R, Berendsen AD, Duan X, Cheong CW et al (2017) Vascular endothelial growth factor in cartilage development and osteoarthritis. Sci Rep 7:13027

    Article  PubMed  PubMed Central  Google Scholar 

  32. Øiestad BE, Engebretsen L, Storheim K, Risberg MA (2009) Knee osteoarthritis after anterior cruciate ligament injury: a systematic review. Am J Sports Med 37:1434–1443

    Article  PubMed  Google Scholar 

  33. Pfander D, Kortje D, Zimmermann R, Weseloh G, Kirsch T, Gesslein M et al (2001) Vascular endothelial growth factor in articular cartilage of healthy and osteoarthritic human knee joints. Ann Rheum Dis 60:1070–1073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Raghu H, Lepus CM, Wang Q, Wong HH, Lingampalli N, Oliviero F et al (2017) CCL2/CCR2, but not CCL5/CCR5, mediates monocyte recruitment, inflammation and cartilage destruction in osteoarthritis. Ann Rheum Dis 76:914–922

    Article  CAS  PubMed  Google Scholar 

  35. Ries C (2014) Cytokine functions of TIMP-1. Cell Mol Life Sci 71:659–672

    Article  CAS  PubMed  Google Scholar 

  36. Roos EM, Roos HP, Lohmander LS, Ekdahl C, Beynnon BD (1998) Knee injury and osteoarthritis outcome score (KOOS)—development of a self-administered outcome measure. J Orthop Sports Phys Ther 28:88–96

    Article  CAS  PubMed  Google Scholar 

  37. Roos H, Adalberth T, Dahlberg L, Lohmander LS (1995) Osteoarthritis of the knee after injury to the anterior cruciate ligament or meniscus: the influence of time and age. Osteoarthr Cartil 3:261–267

    Article  CAS  Google Scholar 

  38. Rothrauff BB, Jorge A, de Sa D, Kay J, Fu FH, Musahl V (2020) Anatomic ACL reconstruction reduces risk of post-traumatic osteoarthritis: a systematic review with minimum 10-year follow-up. Knee Surg Sports Traumatol Arthrosc 28:1072–1084

    Article  PubMed  Google Scholar 

  39. Saetan N, Honsawek S, Tanavalee A, Yuktanandana P, Meknavin S, Ngarmukos S et al (2014) Relationship of plasma and synovial fluid vascular endothelial growth factor with radiographic severity in primary knee osteoarthritis. Int Orthop 38:1099–1104

    Article  PubMed  Google Scholar 

  40. Sandell LJ, Aigner T (2001) Articular cartilage and changes in arthritis. An introduction: cell biology of osteoarthritis. Arthritis Res 3:107–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Schmal H, Mehlhorn A, Stoffel F, Kostler W, Sudkamp NP, Niemeyer P (2009) In vivo quantification of intraarticular cytokines in knees during natural and surgically induced cartilage repair. Cytotherapy 11:1065–1075

    Article  CAS  PubMed  Google Scholar 

  42. Sun JH, Yang B, Donnelly DF, Ma C, LaMotte RH (2006) MCP-1 enhances excitability of nociceptive neurons in chronically compressed dorsal root ganglia. J Neurophysiol 96:2189–2199

    Article  CAS  PubMed  Google Scholar 

  43. Svoboda SJ, Harvey TM, Owens BD, Brechue WF, Tarwater PM, Cameron KL (2013) Changes in serum biomarkers of cartilage turnover after anterior cruciate ligament injury. Am J Sports Med 41:2108–2116

    Article  PubMed  Google Scholar 

  44. Takano S, Uchida K, Inoue G, Matsumoto T, Aikawa J, Iwase D et al (2018) Vascular endothelial growth factor expression and their action in the synovial membranes of patients with painful knee osteoarthritis. BMC Musculoskelet Disord 19:204

    Article  PubMed  PubMed Central  Google Scholar 

  45. Walsh DA, McWilliams DF, Turley MJ, Dixon MR, Franses RE, Mapp PI et al (2010) Angiogenesis and nerve growth factor at the osteochondral junction in rheumatoid arthritis and osteoarthritis. Rheumatology 49:1852–1861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. White FA, Sun J, Waters SM, Ma C, Ren D, Ripsch M et al (2005) Excitatory monocyte chemoattractant protein-1 signaling is up-regulated in sensory neurons after chronic compression of the dorsal root ganglion. Proc Natl Acad Sci U S A 102:14092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wu JJ, Lark MW, Chun LE, Eyre DR (1991) Sites of stromelysin cleavage in collagen types II, IX, X, and XI of cartilage. J Biol Chem 266:5625–5628

    Article  CAS  PubMed  Google Scholar 

  48. Xu Y-k, Ke Y, Wang B, Lin J-h (2015) The role of MCP-1-CCR2 ligand-receptor axis in chondrocyte degradation and disease progress in knee osteoarthritis. Biol Res 48:64–64

    Article  PubMed  PubMed Central  Google Scholar 

  49. Yoshihara Y, Nakamura H, Obata K, Yamada H, Hayakawa T, Fujikawa K et al (2000) Matrix metalloproteinases and tissue inhibitors of metalloproteinases in synovial fluids from patients with rheumatoid arthritis or osteoarthritis. Ann Rheum Dis 59:455–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Funding for this study was received from Arthroscopy Association of North America, Rosemont, IL, USA (Grant no. SOM01-15-C-39000-NYUPG-115854).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danielle H. Markus.

Ethics declarations

Conflict of interest

The author(s) declare that they have no competing interests.

Ethical approval

IRB Protocol # 19-01449.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Markus, D.H., Hurley, E.T., Mojica, E.S. et al. Concentration of synovial fluid biomarkers on the day of anterior cruciate ligament (ACL)-reconstruction predict size and depth of cartilage lesions on 5-year follow-up. Knee Surg Sports Traumatol Arthrosc 31, 1753–1760 (2023). https://doi.org/10.1007/s00167-022-07045-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-022-07045-9

Keywords

Navigation