Skip to main content
Log in

Internal–external malalignment of the femoral component in kinematically aligned total knee arthroplasty increases tibial force imbalance but does not change laxities of the tibiofemoral joint

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

The purposes of this study were to quantify the increase in tibial force imbalance (i.e. magnitude of difference between medial and lateral tibial forces) and changes in laxities caused by  2° and 4° of internal–external (I–E) malalignment of the femoral component in kinematically aligned total knee arthroplasty. Because I–E malalignment would introduce the greatest changes to the articular surfaces near 90° of flexion, the hypotheses were that the tibial force imbalance would be significantly increased near 90° flexion and that primarily varus–valgus laxity would be affected near 90° flexion.

Methods

Kinematically aligned TKA was performed on ten human cadaveric knee specimens using disposable manual instruments without soft tissue release. One 3D-printed reference femoral component, with unmodified geometry, was aligned to restore the native distal and posterior femoral joint lines. Four 3D-printed femoral components, with modified geometry, introduced I–E malalignments of 2° and 4° from the reference component. Medial and lateral tibial forces were measured from 0° to 120° flexion using a custom tibial force sensor. Bidirectional laxities in four degrees of freedom were measured from 0° to 120° flexion using a custom load application system.

Results

Tibial force imbalance increased the greatest at 60° flexion where a regression analysis against the degree of I–E malalignment yielded sensitivities (i.e. slopes) of 30 N/° (medial tibial force > lateral tibial force) and 10 N/° (lateral tibial force > medial tibial force) for internal and external malalignments, respectively. Valgus laxity increased significantly with the 4° external component with the greatest increase of 1.5° occurring at 90° flexion (p < 0.0001).

Conclusion

With the tibial component correctly aligned, I–E malalignment of the femoral component caused significant increases in tibial force imbalance. Minimizing I–E malalignment lowers the increase in the tibial force imbalance. By keeping the resection thickness of each posterior femoral condyle to within ± 0.5 mm of the thickness of the respective posterior region of the femoral component, the increase in imbalance can be effectively limited to 38 N. Generally laxities were unaffected within the ± 4º range tested indicating that instability is not a clinical concern and that manual testing of laxities is not useful to detect I–E malalignment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Anouchi YS, Whiteside LA, Kaiser AD, Milliano MT (1993) The effects of axial rotational alignment of the femoral component on knee stability and patellar tracking in total knee arthroplasty demonstrated on autopsy specimens. Clin Orthop Relat Res 287:170–177

    Google Scholar 

  2. Athwal KK, Hunt NC, Davies AJ, Deehan DJ, Amis AA (2014) Clinical biomechanics of instability related to total knee arthroplasty. Clin Biomech 29(2):119–128

    Article  Google Scholar 

  3. Babazadeh S, Stoney JD, Lim K, Choong PFM (2009) The relevance of ligament balancing in total knee arthroplasty: how important is it? A systematic review of the literature. Orthop Rev 1(2):70–78

    Google Scholar 

  4. Bach JM, Hull ML (1995) A new load application system for in vitro study of ligamentous injuries to the human knee joint. J Biomech Eng 117(4):373–382

    Article  PubMed  CAS  Google Scholar 

  5. Bach JM, Hull ML, Patterson HA (1997) Direct measurement of strain in the posterolateral bundle of the anterior cruciate ligament. J Biomech 30(3):281–283

    Article  PubMed  CAS  Google Scholar 

  6. Barrack RL, Schrader T, Bertot AJ, Wolfe MW, Myers L (2001) Component rotation and anterior knee pain after total knee arthroplasty. Clin Orthop Relat Res 392:46–55

    Article  Google Scholar 

  7. Bäthis H, Perlick L, Tingart M, Perlick C, Lüring C, Grifka J (2005) Intraoperative cutting errors in total knee arthroplasty. Arch Orthop Trauma Surg 125(1):16–20

    Article  PubMed  Google Scholar 

  8. Berger RA, Crossett LS, Jacobs JJ, Rubash HE (1998) Malrotation causing patellofemoral complications after total knee arthroplasty. Clin Orthop Relat Res 356:144–153

    Article  Google Scholar 

  9. Blankevoort L, Huiskes R, De Lange A (1988) The envelope of passive knee joint motion. J Biomech 21(9):705–709, 711–720

    Article  PubMed  CAS  Google Scholar 

  10. Brar AS, Howell SM, Hull ML (2016) What are the bias, imprecision, and limits of agreement for finding the flexion–extension plane of the knee with five tibial reference lines? Knee 23(3):406–411

    Article  PubMed  Google Scholar 

  11. Churchill DL, Incavo SJ, Johnson CC, Beynnon BD (2001) The influence of femoral rollback on patellofemoral contact loads in total knee arthroplasty. J Arthroplasty 16(7):909–918

    Article  PubMed  CAS  Google Scholar 

  12. Creaby MW, Wrigley TV, Lim BW, Hinman RS, Bryant AL, Bennell KL (2013) Self-reported knee joint instability is related to passive mechanical stiffness in medial knee osteoarthritis. BMC Musculoskelet Disord 14(1):326

    Article  PubMed  PubMed Central  Google Scholar 

  13. Crottet D, Maeder T, Fritschy D, Bleuler H, Nolte LP, Pappas IP (2005) Development of a force amplitude-and location-sensing device designed to improve the ligament balancing procedure in TKA. IEEE Trans Biomed Eng 52(9):1609–1611

    Article  PubMed  Google Scholar 

  14. Dalury DF, Pomeroy DL, Gorab RS, Adams MJ (2013) Why are total knee arthroplasties being revised? J Arthroplasty 28(8):120–121

    Article  PubMed  Google Scholar 

  15. Eagar P, Hull ML, Howell SM (2001) A method for quantifying the anterior load–displacement behavior of the human knee in both the low and high stiffness regions. J Biomech 34(12):1655–1660

    Article  PubMed  CAS  Google Scholar 

  16. Fehring TK, Odum S, Griffin WL, Mason JB, Nadaud M (2001) Early failures in total knee arthroplasty. Clin Orthop Relat Res 392:315–318

    Article  Google Scholar 

  17. Ghosh K, Blain A, Longstaff L, Rushton S, Amis A, Deehan D (2014) Can we define envelope of laxity during navigated knee arthroplasty? Knee Surg Sports Traumatol Arthrosc 22(8):1736–1743

    Article  PubMed  CAS  Google Scholar 

  18. Ghosh KM, Merican AM, Iranpour F, Deehan DJ, Amis AA (2010) The effect of femoral component rotation on the extensor retinaculum of the knee. J Orthop Res 28(9):1136–1141

    Article  PubMed  Google Scholar 

  19. Grood ES, Suntay WJ (1983) A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. J Biomech Eng 105(2):136–144

    Article  PubMed  CAS  Google Scholar 

  20. Gustke KA, Golladay GJ, Roche MW, Elson LC, Anderson CR (2014) A new method for defining balance: promising short-term clinical outcomes of sensor-guided TKA. J Arthroplasty 29(5):955–960

    Article  PubMed  Google Scholar 

  21. Heesterbeek PJC, Verdonschot N, Wymenga AB (2008) In vivo knee laxity in flexion and extension: A radiographic study in 30 older healthy subjects. Knee 15(1):45–49

    Article  PubMed  CAS  Google Scholar 

  22. Hohmann E, Tetsworth K (2016) Do manual cutting guides for total knee arthroplasty introduce systematic error? Int Orthop 40(2):277–284

    Article  PubMed  Google Scholar 

  23. Hollister AM, Jatana S, Singh AK, Sullivan WW, Lupichuk AG (1993) The axes of rotation of the knee. Clin Orthop Relat Res 290:259–268

    Google Scholar 

  24. Howell SM, Hull ML (2016) Kinematic alignment in total knee arthroplasty. In: Scott S (ed) Insall and scott surgery of the knee, 5th edn. Elsevier, Philadelphia

    Google Scholar 

  25. Howell SM, Papadopoulos S, Kuznik KT, Hull ML (2013) Accurate alignment and high function after kinematically aligned TKA performed with generic instruments. Knee Surg Sports Traumatol Arthrosc 21(10):2271–2280

    Article  PubMed  Google Scholar 

  26. Hunt NC, Ghosh KM, Blain AP, Athwal KK, Rushton SP, Amis AA, Longstaff LM, Deehan DJ (2014) How does laxity after single radius total knee arthroplasty compare with the native knee? J Orthop Res 32(9):1208–1213

    Article  PubMed  Google Scholar 

  27. Jacobs CA, Christensen CP, Karthikeyan T (2016) Greater medial compartment forces during total knee arthroplasty associated with improved patient satisfaction and ability to navigate stairs. J Arthroplasty 31(9 Suppl):87–90

    Article  PubMed  Google Scholar 

  28. Kaufman KR, Kovacevic N, Irby SE, Colwell CW (1996) Instrumented implant for measuring tibiofemoral forces. J Biomech 29(5):667–671

    Article  PubMed  CAS  Google Scholar 

  29. Kim TK, Chang CB, Kang YG, Chung BJ, Cho HJ, Seong SC (2010) Execution accuracy of bone resection and implant fixation in computer assisted minimally invasive total knee arthroplasty. Knee 17(1):23–28

    Article  PubMed  Google Scholar 

  30. Kretzer JP, Jakubowitz E, Sonntag R, Hofmann K, Heisel C, Thomsen M (2010) Effect of joint laxity on polyethylene wear in total knee replacement. J Biomech 43(6):1092–1096

    Article  PubMed  Google Scholar 

  31. Kwak SD, Ahmad CS, Gardner TR, Grelsamer RP, Henry JH, Blankevoort L, Ateshian GA, Mow VC (2000) Hamstrings and iliotibial band forces affect knee kinematics and contact pattern. J Orthop Res 18(1):101–108

    Article  PubMed  CAS  Google Scholar 

  32. Li G, Rudy TW, Sakane M, Kanamori A, Ma CB, Woo SL (1999) The importance of quadriceps and hamstring muscle loading on knee kinematics and in-situ forces in the ACL. J Biomech 32(4):395–400

    Article  PubMed  CAS  Google Scholar 

  33. Liau JJ, Cheng CK, Huang CH, Lo WH (2002) The effect of malalignment on stresses in polyethylene component of total knee prostheses–a finite element analysis. Clin Biomech (Bristol Avon) 17(2):140–146

    Article  Google Scholar 

  34. Lutzner J, Kirschner S, Gunther KP, Harman MK (2012) Patients with no functional improvement after total knee arthroplasty show different kinematics. Int Orthop 36(9):1841–1847

    Article  PubMed  PubMed Central  Google Scholar 

  35. Manning WA, Ghosh KM, Blain A, Longstaff L, Rushton SP, Deehan DJ (2017) Internal femoral component rotation adversely influences load transfer in total knee arthroplasty: a cadaveric navigated study using the Verasense device. Knee Surg Sports Traumatol Arthrosc. https://doi.org/10.1007/s00167-00017-04640-00165

    Article  PubMed  PubMed Central  Google Scholar 

  36. Markolf KL, Gorek JF, Kabo JM, Shapiro MS (1990) Direct measurement of resultant forces in the anterior cruciate ligament. An in vitro study performed with a new experimental technique. J Bone Joint Surg Am 72-A(4):557–567

    Article  Google Scholar 

  37. Markolf KL, Mensch JS, Amstutz HC (1976) Stiffness and laxity of the knee—the contributions of the supporting structures. J Bone Joint Surg Am 58-A(5):583–594

    Article  Google Scholar 

  38. Mayman D, Plaskos C, Kendoff D, Wernecke G, Pearle AD, Laskin R (2009) Ligament tension in the ACL-deficient knee: assessment of medial and lateral gaps. Clin Orthop Relat Res 467(6):1621–1628

    Article  PubMed  PubMed Central  Google Scholar 

  39. Meneghini RM, Ziemba-Davis MM, Lovro LR, Ireland PH, Damer BM (2016) Can intraoperative sensors determine the “target” ligament balance? early outcomes in total knee arthroplasty. J Arthroplasty 31(10):2181–2187

    Article  PubMed  Google Scholar 

  40. Merican AM, Ghosh KM, Deehan DJ, Amis AA (2009) The transpatellar approach for the knee in the laboratory. J Orthop Res 27(3):330–334

    Article  PubMed  Google Scholar 

  41. Miller MC, Berger RA, Petrella AJ, Karmas A, Rubash HE (2001) Optimizing femoral component rotation in total knee arthroplasty. Clin Orthop Relat Res 392:38–45

    Article  Google Scholar 

  42. Morris BA, D’Lima DD, Slamin J, Kovacevic N, Arms SW, Townsend CP, Colwell CW Jr (2001) e-Knee: evolution of the electronic knee prosthesis. Telemetry technology development. J Bone Joint Surg Am 83(Pt 1):62–66

    Article  PubMed  Google Scholar 

  43. Mueller JK, Wentorf FA, Moore RE (2014) Femoral and tibial insert downsizing increases the laxity envelope in TKA. Knee Surg Sports Traumatol Arthrosc 22(12):3003–3011

    Article  PubMed  PubMed Central  Google Scholar 

  44. Nam D, Lin KM, Howell SM, Hull ML (2014) Femoral bone and cartilage wear is predictable at 0 degrees and 90 degrees in the osteoarthritic knee treated with total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 22(12):2975–2981

    Article  PubMed  Google Scholar 

  45. Nedopil AJ, Howell SM, Hull ML (2016) Does malrotation of the tibial and femoral components compromise function in kinematically aligned total knee arthroplasty? Orthop Clin North Am 47(1):41–50

    Article  PubMed  Google Scholar 

  46. Otani T, Whiteside LA, White SE (1993) Cutting errors in preparation of femoral components in total knee arthroplasty. J Arthroplasty 8(5):503–510

    Article  PubMed  CAS  Google Scholar 

  47. Roche M, Elson L, Anderson C (2014) Dynamic soft tissue balancing in total knee arthroplasty. Orthop Clin North Am 45(2):157–165

    Article  PubMed  Google Scholar 

  48. Romero J, Duronio JF, Sohrabi A, Alexander N, MacWilliams BA, Jones LC, Hungerford DS (2002) Varus and valgus flexion laxity of total knee alignment methods in loaded cadaveric knees. Clin Orthop Relat Res 394:243–253

    Article  Google Scholar 

  49. Roth JD, Howell SM, Hull ML (2015) Native knee laxities at 0°, 45°, and 90° of flexion and their relationship to the goal of the gap-balancing alignment method of total knee arthroplasty. J Bone Joint Surg Am 97-A(20):1678–1684

    Article  Google Scholar 

  50. Roth JD, Howell SM, Hull ML (2017) Characterization and correction of errors in computing contact location between curved articular surfaces: application to total knee arthroplasty. J Biomech Eng 139(6):061006

    Article  Google Scholar 

  51. Roth JD, Howell SM, Hull ML (2017) An improved tibial force sensor to compute contact forces and contact locations in vitro after total knee arthroplasty. J Biomech Eng 139(4):041001

    Article  Google Scholar 

  52. Roth JD, Hull ML, Howell SM (2015) The limits of passive motion are variable between and unrelated within normal tibiofemoral joints. J Orthop Res 33(11):1594–1602

    Article  PubMed  Google Scholar 

  53. Scuderi GR, Komistek RD, Dennis DA, Insall JN (2003) The impact of femoral component rotational alignment on condylar lift-off. Clin Orthop Relat Res 410:148–154

    Article  Google Scholar 

  54. Sharkey PF, Hozack WJ, Rothman RH, Shastri S, Jacoby SM (2002) Why are total knee arthroplasties failing today? Clin Orthop Relat Res 404:7–13

    Article  Google Scholar 

  55. Stoddard JE, Deehan DJ, Bull AM, McCaskie AW, Amis AA (2013) The kinematics and stability of single-radius versus multi-radius femoral components related to mid-range instability after TKA. J Orthop Res 31(1):53–58

    Article  PubMed  Google Scholar 

  56. Victor J, Labey L, Wong P, Innocenti B, Bellemans J (2010) The influence of muscle load on tibiofemoral knee kinematics. J Orthop Res 28(4):419–428

    PubMed  Google Scholar 

  57. Wang XN, Malik A, Bartel DL, Wickiewicz TL, Wright T (2014) Asymmetric varus and valgus stability of the anatomic cadaver knee and the load sharing between collateral ligaments and bearing surfaces. J Biomech Eng 136(8):081005–081001–081005–081006

    Article  Google Scholar 

  58. Ward SR, Eng CM, Smallwood LH, Lieber RL (2009) Are current measurements of lower extremity muscle architecture accurate? Clin Orthop Relat Res 467(4):1074–1082

    Article  PubMed  Google Scholar 

  59. Whiteside LA, Kasselt MR, Haynes DW (1987) Varus–valgus and rotational stability in rotationally unconstrained total knee arthroplasty. Clin Orthop Relat Res 219:147–157

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the National Science Foundation (Grant no. CBET-1067527) and Zimmer Biomet, Inc. (Grant no. CW874).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maury L. Hull.

Ethics declarations

Conflict of interest

J. D. Roth has a postdoctoral fellowship from Think Surgical, S. M. Howell is a paid consultant for Think Surgical and Medacta and receives royalties from Zimmer-Biomet. M. L. Hull receives research funding from Zimmer-Biomet.

Funding

The authors acknowledge the support of the National Science Foundation (Grant No. CBET-1067527) and support of Zimmer (Award No. CW88095).

Ethical approval

The cadaveric specimens were obtained through the UC Davis Donated Body Program and were approved for use by this program. The authors would like to thank individuals who donate their remains and tissues for the advancement of education and research.

Informed consent

N/A

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riley, J., Roth, J.D., Howell, S.M. et al. Internal–external malalignment of the femoral component in kinematically aligned total knee arthroplasty increases tibial force imbalance but does not change laxities of the tibiofemoral joint. Knee Surg Sports Traumatol Arthrosc 26, 1618–1628 (2018). https://doi.org/10.1007/s00167-017-4776-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-017-4776-3

Keywords

Navigation