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Abstract Osteoarthritis is the most common joint disease

and a major cause of disability. The knee is the large joint

most affected. While chronological age is the single most

important risk factor of osteoarthritis, the pathogenesis of

knee osteoarthritis in the young patient is predominantly

related to an unfavorable biomechanical environment at the

joint. This results in mechanical demand that exceeds the

ability of a joint to repair and maintain itself, predisposing

the articular cartilage to premature degeneration. This

review examines the available basic science, preclinical

and clinical evidence regarding several such unfavorable

biomechanical conditions about the knee: malalignment,

loss of meniscal tissue, cartilage defects and joint insta-

bility or laxity.

Level of evidence IV.

Keywords Cartilage � Malalignment � Meniscus �
Osteochondral defects � Joint instability � Pathology �
Etiology

Introduction

Osteoarthritis is the most common joint disease. It is char-

acterized by joint pain and dysfunction and, in advanced

stages, joint contractures, muscle atrophy and limb defor-

mity. The knee is the large joint most commonly affected.

The primary changes with osteoarthritis occur in the

articular cartilage, followed by associated changes in the

subchondral bone [25, 88]. Recently, more focus has been

placed on the subchondral bone as the primary cause of

symptomatic disease [60, 61, 93, 141]. Understanding of

changes early in the development of osteoarthritis (early

osteoarthritis) is important, since these changes could still

be reversible, and therefore, preventive treatment could be

initiated to halt or reverse further progression of the dis-

ease. This is especially true in the young patient.

The etiology of osteoarthritis is multifactorial and to

date not fully understood. Age is the major independent

risk factor of osteoarthritis; however, aging and osteoar-

thritis are inter-related, not inter-dependent [88]. Where

cartilage senescence is to some extent part of normal aging

and the relationship between aging and the development of

osteoarthritis is incompletely understood, it is becoming

apparent that aging changes in the musculoskeletal system

contribute to the development of osteoarthritis by working
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in conjunction with other factors, both intrinsic (e.g.,

alignment, overloading) and extrinsic (e.g., genetics) to the

joint [88]. In the young patient, the pathogenesis of knee

osteoarthritis is predominantly related to an unfavorable

biomechanical environment at the joint, which results in

mechanical demand that exceeds the ability of a joint to

repair and maintain itself, predisposing the articular carti-

lage to premature degeneration [26]. The pathophysiology

of the process by which joint degeneration leads to the

clinical syndrome of osteoarthritis remains poorly

understood.

In this review, the pathophysiological mechanisms by

which biomechanical conditions about the knee can lead to

the development of osteoarthritis are discussed (Table 2),

and the relation of distinct clinical conditions about the

knee (malalignment, loss of meniscal tissue, cartilage

defects and joint instability) and the development and

progression of clinical and/or radiographic osteoarthritis

are evaluated. In this review, first, normal cartilage struc-

ture and function, and histopathological changes with

normal aging are discussed. Then, cartilage loading and the

pathophysiological impact of overloading are reviewed.

The impact of trauma on cartilage is discussed separately.

Last, the relation and pathophysiological changes related to

distinct unfavorable biomechanical conditions about the

knee (malalignment, loss of meniscal tissue, cartilage

defects and joint instability) and clinical and/or radio-

graphic osteoarthritis are evaluated.

Cartilage structure, function and homeostasis

Normal structure and function

Articular cartilage consists primarily of extracellular

matrix with a sparse population of cells, lacking blood

vessels, lymphatic vessels and nerves [25, 28]. It has a low

level of metabolic activity, and there is little or no cell

division or cell death in normal adult articular cartilage,

although articular chondrocytes are in fact capable of cell

division [4, 25, 87, 88, 123]. The chondrocytes, making up

only about 1% of volume of adult human articular cartilage

[25], is the one cell type present in articular cartilage and,

therefore, is responsible for both the synthesis and the

breakdown of the cartilaginous matrix [25, 60, 87]. The

mechanisms that control the balance between synthesis and

degradation remain poorly understood, but cytokines with

anabolic and catabolic effects appear to have important

roles [25, 60].

For articular cartilage to exert its normal function within

the joint, it needs to be elastic and have high tensile

strength. The unique mechanical properties of articular

cartilage depend on the extracellular matrix [25]. This

extracellular matrix consists of two components, tissue

fluid and the framework of structural macromolecules

consisting of type II collagen fibers, proteoglycans and

non-collagenous proteins and glycoproteins, all produced

in the appropriate amounts and assembled and organized

into a highly ordered molecular framework by the chon-

drocytes [25, 28]. The collagen matrix gives cartilage its

form and tensile strength [25]. Proteoglycans and non-

collagenous proteins bind to the collagenous network, help

stabilize the matrix macromolecular framework and help

chondrocytes bind to the macromolecules of the network

[25].

Osteoarthritis is disruption of homeostasis

Osteoarthritis results from failure of chondrocytes to

maintain the homeostasis between synthesis and degrada-

tion of these extracellular matrix components [4, 25, 26,

60, 88]. This disruption of homeostasis results in increased

water content and decreased proteoglycan content of the

extracellular matrix; and weakening of the collagen net-

work due to decreased synthesis of type II collagen and

increased breakdown of pre-existing collagen [25]. Fur-

thermore, there is increased apoptosis of chondrocytes. At

first, compensatory mechanisms, such as increased syn-

thesis of matrix molecules and proliferation of chondro-

cytes in the deeper layers of the cartilage, are able to

maintain the integrity of the articular cartilage, but even-

tually loss of chondrocytes and changes in extracellular

matrix predominate and osteoarthritic changes develop

[25, 28].

Aging and cartilage

Since there is little or no cell division or cell death in adult

articular cartilage, chondrocytes are thought to be long-

lived cells and, therefore, can accumulate age-related

changes over time [4, 25, 87, 88]. As a consequence, aging

profoundly alters chondrocyte function and matrix struc-

ture and functioning (Table 1).

There appears to be an age-related reduction in the

number of chondrocytes in articular cartilage, but the

extent of cell loss is debated [87]. Little data are available

about the occurrence of apoptosis in chondrocytes, with the

exemption of the finding of increased apoptosis in rat

cartilage with aging [2]. Telomere shortening, a classic

feature of cell senescence, has been observed in chondro-

cytes [87]. However, since cell turnover is so low, it seems

unlikely that these shortened telomeres represent replica-

tive senescence, which generally require more than 30–40

cell replication cycles [67, 88]. Telomere shortening can

also result from stress-induced senescence, which seems

the more likely mechanism in cartilage, with chronic
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inflammation and oxidative stress being offending factors

[44, 88] (Table 2).

There is increasing evidence that cell senescence can

result in phenotypical alteration of cells, called the senes-

cent secretory phenotype [32, 33]. This phenotype is

characterized by increased production of cytokines and

growth factors. Accumulation of cells expressing this

senescent secretory phenotype may contribute to tissue

aging, by stimulating matrix degradation en reducing

matrix synthesis and repair, and possibly even directly link

aging to joint degeneration [88].

Chondrocytes become less responsive to growth factors

with aging, thereby further reducing matrix synthesis and

repair. A decline in response to insulin-like growth factor-I

(IGF-I), possibly due to altered signaling, may, due to its

important autocrine effect on survival [86], also be impli-

cated in age-related cell death [88].

Age-related changes in size, structure and sulfation of

aggrecan, the molecules in cartilage matrix that hold water,

have been reported, changing the biophysical properties of

cartilage matrix and therefore reducing its resiliency and

tensile strength [15, 27, 51, 152].

Furthermore, articular cartilage has a relatively low

turn-over rate and is therefore susceptible to accumulation

of advanced glycation end-products, resulting from spon-

taneous nonenzymatic glycation of proteins [146, 147].

Increased collagen cross-linking due to modification of

collagen by AGE formation renders the cartilage more

brittle with increased fatigue failure [88]. A role in the

development of osteoarthritis has been suggested [47, 146].

There is increasing evidence that oxidative stress due to

chronic production of endogenous reactive oxygen species

(ROS or ‘‘free radicals’’) plays an important role in aging

and in the link between aging and osteoarthritis [87–89].

Increased levels of ROS can damage DNA, including

mitochondrial DNA, thereby affecting cell viability and

contributing to the disruption of extracellular matrix

homeostasis [45, 65]. Increased levels of ROS may also

contribute to the senescent secretory phenotype [157] and

the reduced sensitivity of chondrocytes to IGF-I [156].

Table 1 Aging changes in joint tissues and the contribution of aging to the development of osteoarthritis

Aging change Contribution to OA

Accumulation of cells exhibiting the senescent secretory phenotype Increased cytokine and MMP production stimulates matrix

degradation

Oxidative stress/damage Increased susceptibility to cell death and reduced matrix synthesis

Decreased levels of growth factors and decreased growth factor

responsiveness

Reduced matrix synthesis and repair

Increased AGE formation Brittle tissue with increased fatigue failure

Aging change Contribution to OA

Accumulation of cells exhibiting the senescent secretory phenotype Increased cytokine and MMP production stimulates matrix

degradation

Adapted with permission from: Shane and Loeser [123]

Table 2 Unfavorable biomechanical conditions about the knee joint and the mechanisms by which they result in relative overloading of the

articular cartilage

Unfavorable biomechanical

condition

Mechanism of relative cartilage overloading

Malalignment Abnormal load distribution due to shifting of the center of pressure of the tibiofemoral force, resulting in locally

increased stresses on the articular cartilage

Loss of meniscal tissue Alteration in load transmission, resulting in increased peak local stresses on the articular cartilage

(Partial) loss of secondary constraint to anteroposterior translation in unstable (i.e. anterior cruciate ligament-

deficient) knees

Cartilage lesions Increased stresses on the lesion rim of diameters greater than 10 mm

Increased exposure of subchondral bone leading to endplate stiffening and microcracks

Joint instability or ligament

laxity

Abnormal load distribution due to shifting of the center of pressure of the tibiofemoral force, resulting in locally

increased stresses on the articular cartilage

Increased translation between articular surfaces, resulting in increased shear stresses on the articular cartilage

Trauma Cartilage damage due to traumatic impact per se

Increased metabolic and oxidative stress of chondrocytes, resulting in accelerated chondrocyte senescence
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As stated earlier, the etiology of osteoarthritis is multi-

factorial and aging contributes, but does not directly cause

osteoarthritis. The various factors that contribute to the

development of osteoarthritis by working in conjunction

with aging changes are best understood in the way they

accelerate the above-discussed so-called ‘normal’ aging

changes: through mechanical damage of the cartilage,

through intrinsic modifications in components of the

extracellular matrix or of the chondrocytes, or through

alterations in cell–matrix interactions. Association of aging

and osteoarthritis involves all these elements [77].

Cartilage loading and overloading

Cartilage loading and overloading

Joint loading can induce a wide range of metabolic

responses in articular cartilage. The mechanisms by which

chondrocyte-mediated production of extracellular matrix

components responds to mechanical stimuli are only

beginning to be understood [25, 26]. There are multiple

regulatory pathways by which chondrocytes sense and

react to mechanical stimuli, including upstream signaling

pathways and mechanisms that may lead to direct changes

at the level of transcription, translation, posttranslational

modifications, and cell-mediated extracellular assembly

and degradation of matrix [25, 64, 139]. Also, there are

multiple pathways by which physical stimuli can alter not

only the rate of matrix production, but also the quality and

functionality of newly synthesized proteoglycans, colla-

gens, and other molecules [25].

Normal synovial joints can withstand repetitive loading

during normal activities for a lifetime without developing

osteoarthritis [26, 140]. However, mechanical demand that

exceeds the tolerance, that is, the ability to repair and

maintain itself, of the articular cartilage, plays an important

role in the development and progression of joint degener-

ation in all forms [25, 26]. Excessive mechanical surface

contact stress can directly damage articular cartilage and

subchondral bone and adversely alter chondrocyte function

[26]. In experimental setting, it has been shown that car-

tilage cannot survive more than 25 MPa of impulsive

contact stress. Since physiological peak contact stresses are

several fold less, there appears to be a built-in ‘safety’

factor [26]. The in vivo tolerance of human cartilage to

surface contact stress is not known, but an association

between high mechanical demand and degenerative chan-

ges of the hip joint has been observed. In addition, joint

apposition and engagement are important determinants of

cartilage damage following an impact event. Also, sub-

stantial acute micro-damage (e.g., micro-fractures, carti-

lage fissures, chondrocytes death, proteoglycan release) can

result from impact levels far below the level needed to

produce macroscopic fracture. This micro-damage may

progress to detectable compromise of the mechanical

integrity of the articular cartilage. Furthermore, loading

rate [53] and shear stress [11, 12] are important variables.

Many clinical conditions about the knee can result in

excessive mechanical demand or overloading of the either

intact or already damaged articular cartilage: diffusely, due

to obesity and high-impact sports; or, more focally, due to

uneven load distribution with joint malalignment, after loss

of meniscal tissue or at the edges of cartilage defects and

post-traumatic joint incongruities.

Post-traumatic osteoarthritis

Clinical experience shows that the development and pro-

gression of post-traumatic osteoarthritis is not necessary

due to rapid wear of an irregular articular surface alone

[97]. The relationship between residual osseous depression

of the joint surface and development of osteoarthritis is

very inconsistent. Even when joint congruity, alignment

and stability are adequately restored, the joint may

degenerate [96]. On the other hand, apparently normal

articular surfaces often degenerate following injuries as

well [96].

The mechanisms responsible for the development of

osteoarthritis following acute injury remain incompletely

understood. Experimental work has shown that both pulses

of acute energy and chronic mechanical overload damage

and cause or accelerate degeneration of this articular car-

tilage [24]. The theoretical goal of anatomically recon-

structing the joint is to decrease joint incongruity,

malalignment and instability, thereby avoiding, or at least

decreasing, focally elevated contact stresses, which are

thought to be in large part responsible for the development

of post-traumatic osteoarthritis. However, the in vivo tol-

erance of articular cartilage to both acutely or chronically

increased stress and the potential to repair and remodel

itself remain largely unknown [26, 96]. Cartilage metabo-

lism appears to be particularly sensitive to loading rate

[24], the effect of which to date has only sparsely been

taken into consideration in the experimental work on post-

traumatic osteoarthritis.

From experimental data, it is observed that certain pat-

terns of increased mechanical stress, in particular high

levels of shear stress, increase production of free oxygen

radicals and decrease synthesis of proteoglycans; and that

this increased oxidative stress on chondrocytes accelerates

chondrocyte senescence [97]. It is thus concluded that

chondrocyte senescence contributes to the risk of post-

traumatic articular cartilage degeneration by decreasing the

ability of the cells to maintain and repair the tissue [97].

This oxidative stress-related damage is in addition to
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damage due to chondrocyte senescence resulting from

increased metabolic stress resulting from the trauma impact

and following the repair response that was already taken

place [97]. Experimental studies suggest that, despite its

adverse effects on cartilage, a period of non-weight bearing

may also have its advantages in that it may be protective

against some types of chemically induced damage to

chondrocytes [19, 22]. In addition, there is increasing

evidence that biological interventions can decrease

mechanical stress-induced chondrocyte damage [26, 42,

43, 81].

An interesting and clinically important question is if,

and to what extent this mechanism of oxidative stress-

related chondrocyte senescence and resulting cartilage

degeneration also occurs with altered stress patterns in the

joint as seen with malalignment, loss of meniscal tissue,

cartilage defects and joint instability. Further studies are

needed to shed light on this issue.

Malalignment, loss of meniscal tissue, cartilage defects

and joint instability

Malalignment

In the normally aligned knee, the center of pressure of the

tibiofemoral force passes slightly through the medial side

of the knee during stance (average of 4–8 mm medial to the

knee joint center) [114], reaching an average peak force of

about 3 times body weight (BW) during walking and of

about 6 times BW during stair climbing [126, 134]. During

flexion, this center of pressure lies even more medial.

Varus or valgus malalignment of the lower extremity

results in an abnormal load distribution across the medial

and lateral tibiofemoral compartment [135]. For example, a

4–6% increase in varus alignment increases loading in the

medial compartment by up to 20% [135]. Since axial

malalignment increases the stress on the articular cartilage

and the subchondral bone, it has been suggested to play an

important role early in the development of early osteoar-

thritis [62]. Indeed, increased knee joint loads are present

in patients with knee osteoarthritis [13], and the interaction

between axial alignment and dynamic knee joint loading—

the loading of the knee joint during gait [8, 18]—is espe-

cially pronounced in patients with a high body mass [103].

However, studies examining the relationship between

malalignment and early knee osteoarthritis have produced

conflicting results.

A possible relationship between the incidence of early

osteoarthritic changes and axial malalignment is only

supported by limited evidence so far. The Multicenter

Osteoarthritis Study (MOST) radiographically identified

cartilage loss in early osteoarthritis in the same subregions

within the knee as subchondral bone attrition [106]. Sub-

chondral bone attrition, characterized by a flattening or

depression of the subchondral bone, therefore may indicate

an increased load transmitted through the articular carti-

lage. In patients with varus malalignment, subchondral

bone attrition was found in the medial compartment; and in

patients with valgus malalignment in the lateral compart-

ment. Brouwer et al. [21] reported an association between

valgus and varus alignment and the development of

radiographic osteoarthritis of the knee. This relationship

was more pronounced in obese patients, compared to the

non-obese. Further study of the relation between mala-

lignment, obesity and the development of early osteoar-

thritic changes is needed.

In contrast, the correlation between the progression of

early osteoarthritic changes and axial malalignment has

been well established. Both conventional radiological

[21, 34, 102, 124] and MRI [38, 55] studies found that axial

malalignment is a potent risk factor for progression of early

osteoarthritic changes in patients with axial malalignment

[133]. Importantly, the articular cartilage loss [106] and

subchondral bone changes [107] may in turn increase

malalignment. Cicuttini et al. [38] reported that the degree

of varus knee angle was associated with a reduction in the

volume of both femoral and tibial articular cartilage in the

medial tibiofemoral compartment of the knee over a 1.9-

year follow-up period. Similar results were seen in the

lateral tibiofemoral compartment.

The rationale for high tibial osteotomy (HTO) is slowing

or preventing early osteoarthritic changes by restoring a

more favorable biomechanical situation, thereby reducing

local compartmental overload, via correction of malalign-

ment. Clinical experience supports this rationale [72];

however, the long-term effectiveness of HTO for treatment

of medial compartment osteoarthritis has not been experi-

mentally confirmed to date. Macroscopical (observations

made via arthroscopy) [59, 75, 151] and histological

(specimens obtained via punch biopsy) [5] improvements

following HTO for unicompartmental osteoarthritis have

been reported. However, Koshino et al. [79] showed that no

true articular cartilage regeneration occurred, but mere

regeneration with fibrocartilaginous tissue. Some authors

reported improved outcomes after HTO for medial com-

partment osteoarthritis of the knee if the malalignment was

over-corrected [75, 111, 112, 121, 136]. Birmingham et al.

[17] reported on an observational cohort study showing

clinically important changes in dynamic knee joint loading

and patient-reported measures of pain, function, and qual-

ity of life after 2 years after HTO for medial compartment

osteoarthritis. Shallberger et al. [120] reported a retro-

spective study showing slight progression of radiological

osteoarthritis an average of 16.5 years following HTO for

medial compartment osteoarthritis. Parker et al. reported on
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a small case series of 10 patients demonstrating improved

T1Gd relaxation times with delayed gadolinium-enhanced

magnetic resonance imaging of cartilage (dGEMRIC)

[155] at the medial compartment, which is reflective of

glycosaminoglycan content, without significant differences

in the lateral compartment, suggesting a potential for

articular cartilage recovery secondary to an improved

biomechanical environment [115].

In conclusion, malalignment seems to be associated with

increased occurrence of and faster progression of radio-

graphic osteoarthritic changes. The evidence regarding

high tibial osteotomy (HTO) preventing such changes by

restoring a more favorable biomechanical environment is

inconclusive, but promising results have been reported.

Further studies are needed to increase our understanding of

and justify this practice.

Loss of meniscal tissue

Any substantial loss of meniscal tissue from injury or iat-

rogenic meniscectomy permanently alters the biomechan-

ical and biological environment of the knee joint [82].

Subtotal or total meniscectomy increases the risk of sec-

ondary osteoarthritic changes by a factor 14 when com-

pared to matched controls [98, 118], eventually resulting in

radiographic changes in 30–70% of patients [6, 31, 119].

The role of concomitant cartilage damage related to the

trauma that resulted in meniscal injury in the first place, or

of iatrogenic damage related to the meniscectomy proce-

dures, has not been determined, but is likely to play a role

as well [142]. Worse outcomes have been reported in

younger patients, and especially those with associated

articular co-morbidities such as chondral damage, liga-

mentous instability, and malalignment [29, 94]. Even

though surgeons are cognizant of the deleterious conse-

quences of meniscal resection, meniscal preservation is not

possible in many cases. In some patients, meniscal allograft

transplantation can normalize the biomechanics, providing

excellent pain relief and improved function [144]. Several

studies have demonstrated potential chondroprotective

effects of the meniscal transplant, with slowing, but not

complete cessation of degeneration [132, 144]. It has to be

noted, however, that a slight mismatch or malposition of

the meniscal transplant may lead to peak loading and

cartilage degeneration [142]. This section will review the

biomechanical, pre-clinical and clinical data on the effects

of meniscectomy and meniscal transplantation.

Meniscectomy

Initially described as vestigial, non-functional tissue, the

menisci have since been found to play a vital role in load

transmission in the knee. They transmit 50% and 70% of

the medial and lateral compartment load, respectively,

with the knee in extension [122]. This increases to almost

85% when the knee is flexed to 90� [3]. The menisci also

serve as an important secondary restraint to antero-pos-

terior joint translation in unstable knees, that is, knees with

deficient anterior cruciate ligament [83, 84]. Biomechan-

ical studies have demonstrated significant alteration in

load transmission with meniscal deficiency or mismatch

[142]. Removal of the central 1/3 of the meniscus results

in a 10% decrease of contact area and 65% increase in

peak local contact stresses, while total meniscectomy leads

to a 75% decrease in contact area and 235% increase in

peak local contact stress [14, 113]. While frank loss of

tissue has logical consequences, even a radial tear with

otherwise intact tissue reduces or negates meniscal func-

tion: a radial tear to within 3 mm of the capsule has the

same biomechanical effect as removal of the entire central

meniscus up to a 3-mm peripheral remnant [74]. Based on

this in vitro study, the meniscus remnant is seen as

functional if more than 5 mm wide, and as deficient if less

than 3 mm remain undisturbed along the circumferential

hoop fibers. Animal experiments have elaborated on these

biomechanical theories, demonstrating degenerative

changes proportional to the amount of meniscus removed

[39].

Biomechanical and animal models of meniscal repair

demonstrated near-normal load transmission [14, 109],

providing a rationale for meniscal repair when possible.

The same study, however, pointed out the challenges posed

by radial tears, which even after successful healing dem-

onstrated decreased contact area [109].

Clinical data reflect the biomechanical changes

observed experimentally. Radiographic changes in the

knee joint after meniscectomy were noticed as early as

1939; however, Fairbank was the first to describe in 1948 a

consistent pattern of ridge formation, femoral flattening

and joint space narrowing in 107 patients that had under-

gone open, most likely complete meniscectomy [54].

Jackson in 1968 reviewed 577 meniscectomized knees,

demonstrating increasing numbers of patients with

degenerative changes and osteoarthritic symptoms with

longer follow-up, reaching 67 and 33%, respectively, at

30 years follow-up [73]. These findings were confirmed

subsequently by multiple authors, supporting Fairbank’s

theory that meniscectomy predisposes the knee to osteo-

arthritis, especially when concomitant injuries or abnor-

malities are present, such as instability or malalignment

[29, 94, 98, 117–119]. Relatively few experimental studies

on this subject have been performed in vivo besides

Voloshin et al. [148] who were able to demonstrate a 20%

reduction in the shock absorption capacity of the knee after

meniscectomy.
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Meniscal transplantation

Biomechanical studies have demonstrated improved con-

tact area and peak stresses with meniscal transplantation,

ranging from near normal to normal [7, 113, 145]. Fur-

thermore, due to its function as a secondary stabilizer,

meniscal transplantation can reduce tibial translation and

strain on the ACL to near-normal [128]. Fixation technique

[35] and positioning [78, 149], as well as sizing of the

meniscal transplant, appear to have important impact on

the effectiveness and biomechanical result. Experimental

studies of meniscal transplantation in animals have dem-

onstrated a chondroprotective effect. Even though degen-

erative changes were not completely avoided, they were

reduced in comparison to meniscectomized controls [1, 9,

40, 132].

Clinical information is limited to date. Chondroprotec-

tive effects of meniscal transplantation were reported with

a lower incidence of osteoarthritis seen in transplanted

patients than expected from other natural history studies.

Verdonk et al. [144] demonstrated no progression of

chondral damage in 40% of patients, and progression by

only 1 grade in an additional 35% in an average 12-year

follow-up study. Overall, patients without malalignment, or

with correction through osteotomy, fared better [144]. The

optimal fixation techniques and implant positioning remain

open issues.

In conclusion, the changes in biomechanical and bio-

logical environment of the knee joint following loss of

meniscal tissue, either traumatic or following meniscec-

tomy, and the deleterious consequences of those changes

on the articular cartilage are well known. There seems to be

a rationale for meniscus repair to restore the optimal bio-

mechanical environment whenever possible, however

clinical evidence is limited. The same is true regarding the

use of meniscal transplantation.

Cartilage defects

Cartilage lesions are best divided according to their depth

into partial-thickness and full-thickens defects. A some-

what distinct category are osteochondral lesions. Accord-

ing to recent studies, partial and full-thickness lesions can

progress and even regress from one into another [37, 105].

Partial-thickness lesions are considered less symptomatic,

and there is little evidence for their progression onto

osteoarthritis [23, 49, 99]. Full-thickness chondral and

osteochondral lesions frequently cause symptoms, and they

are generally believed to predispose to premature osteoar-

thritis [20, 23, 68, 69]. The cause of the pain in these

patients is probably multifactorial and derived mainly from

the subchondral bone and peri-articular tissues, although a

local rise in intraosseous pressure may play an important

role as well [93, 141]. Early focal lesions seen in aging

exhibit molecular changes in the extracellular matrix sim-

ilar to those observed in osteoarthritis [129]. Moreover, the

cartilage from the edge of debrided articular defects was

inferior to that from a standard donor site when used for

autologous chondrocyte cultivation [95]. Focal chondral

and osteochondral lesions are common, and they were

encountered in about 20% of knee arthroscopies [41, 70],

but also in about 40% of knee MRI’s in healthy subjects

without a family history of knee osteoarthritis [50]. Not all

of these lesions were related to trauma, and a significant

proportion of them were asymptomatic. The scientific

evidence on which lesions and under what circumstances in

the knee would progress to osteoarthritis is limited. An in

vitro study on human cadaveric material determined the

influence of osteochondral defect size on defect rim stress

concentration, peak rim stress, and load redistribution to

adjacent cartilage over the weight-bearing area of the

medial and lateral femoral condyles [66]. Rim stress con-

centration was demonstrated for osteochondral defects

10 mm and greater in size. The structural changes in the

subchondral endplate might be a precursor for lesion’s

degenerative progression. As defect size increases, more

surface area of exposed subchondral bone is contacted by

the opposing articular surface, causing endplate stiffening

and microcracks. An in vitro study on bovine condyles

established that a critical defect area for the subchondral

endplate contact was over 1.61 cm2 for lateral condyle and

1.99 cm2 for medial condyle [57, 66]. Critical defect size is

defined as the defect size above which no spontaneous

healing occurs. Although the term does not take into

account the most important factor of lesion healing

response, depth, it is still widely used. The reported critical

size defects in animals (given in volumes to allow rough

inter-species comparison) range from 18 mm3 in dogs to

142 mm3 in horses [36]. Various animal models have

helped us to understand the biology of cartilage repair.

However, due to the anatomical and biomechanical dif-

ferences, the animal models cannot give evidence on the

natural history of cartilage defects in humans [10, 125].

Classical long-term osteochondritis dissecans studies

have demonstrated knee joint dysfunction and high prev-

alence of osteoarthritic change after fragment removal [68,

85]. On the contrary, the presence of solitary traumatic

lesions did not cause a significant clinical deterioration, nor

did their presence significantly influence mid-term follow-

up outcome after anterior cruciate ligament reconstruction

[71, 154]. Widuchowsky et al. [153] reported no differ-

ences in clinical assessment or radiographic osteoarthritic

changes between knees with untreated focal cartilage

lesions compared to the health controlateral knee. All the

studies above bear the limitation of a small defect size from

1.5 to 4.0 cm2 [48, 116]. On the other hand, patients with
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arthroscopically diagnosed deep cartilage injuries may

show improvement in knee function over time, but the

function remained substantially inferior to normal [92]. In

addition, non-invasive population MRI studies have dem-

onstrated a significant increase of tibiofemoral cartilage

loss over 2 years when solitary lesions were present [50].

All these clinical studies focused on solitary lesions within

the healthy normal cartilage. However, in the setting of

osteoarthritis, Davis-Tuck et al. en Ciccutini et al. clearly

showed progressive enlargement over time on MRI

[37, 46].

The most pertinent unanswered issue is if our cartilage

defect repair strategies stop or slow down the development

or progression of osteoarthritic changes at all. At present, a

well-documented prospective follow-up over 10 years for

the treatment of cartilage defects is available only on the

classical autologous chondrocyte implantation (ACI)

technique. The repair tissue did not develop the unique

mechanical properties of native hyaline cartilage, leaving

the rim of the defect exposed to increased stresses. More-

over, the increased synovial markers, which were shown to

persist in spite of successful ACI, are indicative of

continuing cartilage degeneration [101, 116, 143]. Other

treatment options include microfracturing [100], polymer-

based autologous chondrocyte grafts [80] and resurfacing

the defect with a contoured articular prosthesis [16].

Clinical data with sufficient long-term follow-up are for

these modalities not yet available.

In conclusion, cartilage defects, depending on size and

location, may give rise to increased stresses at the rim of

the defect, thereby locally overloading the cartilage and

predisposing to osteoarthritic changes. To date, our

understanding of the natural history of cartilage defects and

the evidence regarding the optimal treatment strategy

remain incompletely understood. Restoring the biome-

chanical environment to near normal seems of paramount

importance,

Joint instability or laxity

Joint laxity and instability have long been considered to be

a strong contributor to the development of post-traumatic

osteoarthritis [58, 90, 91, 150]. Nonetheless, the definition

of instability remains nebulous. Burstein and Wright

defined stability as ‘‘the ability of a joint to maintain an

appropriate functional position throughout its range of

motion’’ [30]. A joint is then stable if, when moving

through a normal range of motion, it can carry the required

functional loads without pain, while produce joint contact

forces of normal intensity on its articular cartilage surfaces

[30]. Joint laxity and instability shift the centrally located

primary load bearing area to a more peripheral location,

resulting in overloading of part of the articular cartilage.

There is a change in both static and dynamic loading, with

increased stresses through the articular cartilage [138].

Also, as stated earlier, chondrocytes are particularly sen-

sitive to loading rate [26].

The anterior cruciate ligament (ACL) is the knee liga-

ment most common disrupted [58]. Isolated ACL lesions

are uncommon; frequently there is associated injury to

other ligamentous structures, the menisci, the articular

cartilage or the subchondral plate. Those probably have a

major contribution to, but are also by themselves associated

with the early development of osteoarthritis [90]. In par-

ticular, associated meniscus injury even further compro-

mises joint stability [110]. As stated earlier, the menisci are

important secondary constraints to antero-posterior joint

translation in unstable, that is, anterior cruciate ligament-

deficient knees [52, 104, 127].

Experimental data from rabbit and canine models sug-

gest a correlation with degenerative cartilage changes and

joint instability, with no threshold being evident [63, 137].

Also in humans, joint instability has long been empirically

recognized as a leading risk factor for the development of

osteoarthritis. However, there is insufficient evidence that

anterior cruciate ligament reconstruction or meniscus

repair halt or prevent the development of osteoarthritis in

the long term [90]. Even after adequate ACL reconstruc-

tion, 50 to [80% of injured knees show radiographic

osteoarthritic changes at 9 years or more follow-up

[91, 131]. Even though ACL reconstruction may to large

extent restore antero-posterior stability about the knee,

there is evidence that excessive tibial rotation still persists

during activities that are more demanding that walking

[130]. Even small persisting instability (micro-instability)

may lead to supra-physiological cartilage loading and

gradual degeneration [137]. This seems even more so,

when ACL reconstruction also allows return to participa-

tion in sports, which is usually already associated with

high-impact loading by itself [56, 90].

Favorable long-term follow-up outcomes in terms of

symptoms, function and radiographic appearance have

been reported following non-operative treatment of ante-

rior cruciate ligament injury based on neuromuscular knee

rehabilitation [108]. Untreated ACL injuries lead to chronic

anterior joint instability; this anterior instability has been

shown to be associated with an increasing occurrence of

posterior meniscal tears when the instability becomes more

chronic [52, 76].

In conclusion, joint instability or laxity seems to play an

important role in the development of early osteoarthritis.

However, the theoretical advantage of reconstructing joint

stability on prevention of the development of osteoarthritis

in the long-term has to date not been clearly demonstrated

by means of methodologically sound studies with suffi-

ciently long-term follow-up. Those studies are clearly
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needed to improve our understanding of and justify our

practice regarding ligamentous injury, ACL rupture in

particular, about the knee.

Conclusions

Malalignment, loss of meniscal tissue, cartilage defects and

joint instability all seem to be strongly correlated to

osteoarthritis in one way or the other. It is important to

realize that there are many other etiologies that can cause

osteoarthritis, some of which also via mechanically

induced pathophysiological changes to the articular carti-

lage, subchondral bone and other possibly other joint tis-

sues such as, but not limited to, obesity, high-impact sports

or labor and neuromuscular dysfunction. Ongoing research

efforts will gradually clarify the response of cartilage to

mechanical loading and oxidative stress, be it following

trauma or related to joint overloading, thereby hopefully

allowing us to intercept earlier in the pathophysiological

process of osteoarthritis and decreasing the burden of

osteoarthritis on society.
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