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Abstract. Model design is not a linear, one-shot process. It proceeds through refinements and revisions. To
effectively supportdevelopers ingeneratingmodel refinements and revisions, it is desirable tohave someautomated
support to verify evolvable models. To address this problem, we recently proposed to adopt topological proofs,
which are slices of the original model that witness property satisfaction. We implemented TOrPEDO, a framework
that provides automated support for using topological proofs during model design. Our results showed that
topological proofs are significantly smaller than the original models, and that, in most of the cases, they allow
the property to be re-verified by relying only on a simple syntactic check. However, our results also show that
the procedure that computes topological proofs, which requires extracting unsatisfiable cores of LTL formulae, is
computationally expensive. For this reason, TOrPEDO currently handles models with a small dimension. With the
intent of providing practical and efficient support for flexiblemodel design andwider adoption of our framework,
in this paper, we propose an enhanced—re-engineered—version of TOrPEDO. The new version of TOrPEDO relies
on a novel procedure to extract topological proofs, which has so far represented the bottleneck of TOrPEDO
performances. We implemented our procedure within TOrPEDO by considering Partial Kripke Structures (PKSs)
and Linear-time Temporal Logic (LTL): two widely used formalisms to express models with uncertain parts and
their properties. To extract topological proofs, the new version of TOrPEDO converts the LTL formulae into an
SMT instance and reuses an existing SMT solver (e.g., Microsoft Z3) to compute an unsatisfiable core. Then, the
unsatisfiable core returned by the SMT solver is automatically processed to generate the topological proof. We
evaluated TOrPEDO by assessing (i) how does the size of the proofs generated by TOrPEDO compares to the size of
the models being analyzed; and (ii) how frequently the use of the topological proof returned by TOrPEDO avoids
re-executing the model checker. Our results show that TOrPEDO provides proofs that are smaller (≈ 60%) than
their respective initial models effectively supporting designers in creating model revisions. In a significant number
of cases (≈ 79%), the topological proofs returned by TOrPEDO enable assessing the property satisfaction without
re-running the model checker. We evaluated our new version of TOrPEDO by assessing (i) how it compares to the
previous one; and (ii) how useful it is in supporting the evaluation of alternative design choices of (small) model
instances in applied domains. The results show that the new version of TOrPEDO is significantly more efficient
than the previous one and can compute topological proofs for models with less than 40 states within two hours.
The topological proofs and counterexamples provided by TOrPEDO are useful to support the development of
alternative design choices of (small) model instances in applied domains.
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1. Introduction

One of the goals of formal methods is to provide automated verification tools that support designers in producing
models that satisfy a set of properties of interest. Designers benefit from automated support in two cases: (i) when
their models do not satisfy the properties of interest, and (ii) when they do satisfy such properties. While model
checkers provide support in the first case—by producing counterexamples that explain why properties are not
satisfied—theorem provers sustain the second case—by justifying why properties are satisfied. Theorem provers
usually rely on some form of deductive mechanism that, given a set of axioms, iteratively applies a set of rules
until a theorem is proved (e.g., [PPZ01, PZ01]). The proof consists of the sequence of deductive rules applied
to prove the theorem. Even for simple models, proving the theorem requires the use of a considerable number
of deductive rules, leading to complex proofs. This makes deductive proofs difficult to understand and hardly
relatable to the designer’s modeling choices. In addition, after the models are changed and model revisions are
created, deductive proofs do not provide effective support for the automated verification of the model revisions.

To tackle this problem, we recently proposed the novel notion of topological proof (TP) [MRB20], which
overcomes the complexity of deductive proofs and is designed to make proofs useful for the iterative verification
of model revisions. A topological proof is a slice of the original model that witnesses which part of the model
impacts the property satisfaction. Knowing which slice of the model impacts the property satisfaction can guide
designers in refining and revising their models as it helps to select the parts of the model to be changed (or
maintained). Furthermore, a topological proof can reduce the cost of formal verification. Indeed, in many cases,
after a model changes, it is possible to assess the satisfaction of a property by only verifying whether the new
version of the model preserves the topological proof, as opposed to re-executing the model checking procedure,
which—typically—is computationally more expensive.

In our previouswork [MRB20],we formally defined topological proofs by consideringPartialKripke Structures
(PKSs) [BG99] and Linear-time Temporal Logic (LTL) to respectively express the model and the properties of
interest. While it is possible to consider other modeling formalisms, we chose Partial Kripke Structures since (i)
they are used in requirement elicitation to reason about system behavior from different points of view [EC01,
BCE+06], and are a common theoretical reference language used in the formal method community for the
specification of uncertain models (e.g, [GJ03, BG99, GP09, BG00]); (ii) other modeling formalisms commonly
used in software development [FUMK06, Uch09], such as Modal Transition Systems [LT88] (MTSs), can be
converted into Partial Kripke Structures through a simple transformation [GJ03] making our solution easily
applicable to those models; and (iii) Kripke Structures (KSs) are particular instances of Partial Kripke Structures
that represent complete models. As such, our definitions can also be applied to models that do not contain
uncertain parts. We chose Linear-time Temporal Logic since it is a standard logic used to express properties that
should hold on Partial Kripke Structures.

To support the use of topological proofs during model design, we proposed TOrPEDO (TOpological Proof
drivEn Development framewOrk) [MRB20], a novel automated verification framework, that: (i) supports Partial
Kripke Structures and Linear-time Temporal Logic; (ii) allows performing analysis and verification in the context
of models in which “incompleteness” represents a conceptual uncertainty; (iii) guides refinements and revisions
through complementary outputs: counterexamples and proofs; and (iv) when the system is completely specified
allows understanding which changes impact or not the satisfaction of certain properties.

There exists two variants of TOrPEDO: TOrPEDO-MUP and TOrPEDO-SMT. TOrPEDO-MUP was developed in our
previous work [MRB20], TOrPEDO-SMT is part of the contribution of this work.

In our previous work, we implemented TOrPEDO using NuSMV [CCG+02], i.e., an efficient and widely known
model checker, and PLTL-MUP [SGT13], i.e., a tool that enables to compute a minimal subset of unsatisfiable
LTL formulae from an unsatisfiable set of LTL formulae. We identify this version of TOrPEDO as TOrPEDO-MUP
in the rest of the work. We evaluated TOrPEDO-MUP by considering a set of examples coming from literature
including both completely specified and partially specified models. We evaluated TOrPEDO-MUP by assessing how
the size of the proofs generated by TOrPEDO compares to the size of the models being analyzed (RQ1) and how
frequently the use of the topological proofs returned by TOrPEDO-MUP avoids re-executing the model checker
(RQ2). Our results show that topological proofs are ≈60% smaller than the original models and that in ≈79%
of the cases topological proofs allow assessing the property satisfaction without re-executing the model checker.
However, our results also show that the procedure that computes topological proofs is computationally expensive.
Specifically, the procedure to extract unsatisfiable cores of LTL formulae, which is used to compute topological
proofs, presents serious drawbacks. For this reason, TOrPEDO-MUP can currently handle only models of small
dimensions.
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Table 1. Natural language and LTL formulation of the requirements of the vacuum-cleaner robot
Textual Requirements LTL formulae
φ1: the robot is drawing dust (suck) only if it has reached the cleaning site. φ1 ≡ G(suck → reached)
φ2: the robot must be turned on before it can move. φ2 ≡ G((¬move)W on)
φ3: if the robot is on and stationary (¬move), it must be drawing dust (suck). φ3 ≡ G(((¬move) ∧ on) → suck)
φ4: the robot must move before it is allowed to draw dust (suck). φ4 ≡ ((¬suck)W(move ∧ (¬suck)))
G andW are the “globally" and “weak until" LTL operators

To provide a more practical and efficient support for flexible model design, in this paper we propose a
new version of TOrPEDO, hereon called TOrPEDO-SMT. TOrPEDO-SMT reduces the computational cost required to
compute topological proofs. It relies on a novel procedure to extract topological proofs. This procedure converts
LTL formulae into a Satisfiability Modulo Theories (SMT) problem instance. We reuse existing techniques to
convert LTL formulae into an SMT problem [SLJ+06]. Specifically, since our goal is to reduce the computational
cost of computing topological proofs, we implemented our translation by relying on a novel encoding [BKR15,
PKRB20] based on Bit-Vectors. According to the authors, such encoding provides significantly better results
when compared to other existing encodings. Then, TOrPEDO-SMT reuses an existing efficient SMT solver (e.g.,
Microsoft Z3 [DMB08]) to compute the unsatisfiable core of the SMT instance. Finally, the unsatisfiable core is
automatically analyzed to extract the topological proof, which is returned to the model designer.

We evaluated TOrPEDO-SMT by assessing how efficient it is in analyzing models and how it compares to
TOrPEDO-MUP (RQ3). TOrPEDO-SMT was able to compute topological proofs for models with less than 40 states
within twohours.Furthermore, the results showthat TOrPEDO-SMT is significantlymore efficient thanTOrPEDO-MUP.
Finally, we assessed how useful TOrPEDO-SMT is in supporting the evaluation of alternative design choices of
(small) model instances (RQ4). Our results show that the topological proofs and counterexamples provided by
TOrPEDO effectively supported the development of a model of a small gene regulatory network.

Organization. Section 2 discusses the background. Section 3 describes TOrPEDO. Sections 4 and 5 present the
theoretical results and the algorithms that support TOrPEDO. Section 6 evaluates the achieved results. Section 7
discusses related work. Section 8 presents our conclusions.

2. Running example and background notation

To illustrate TOrPEDO, we use the running example presented in Fig. 1 and Table 1; it contains a simple model
describing the behavior of a vacuum-cleaner robot that has to satisfy the requirements described in Table 1.
Section 2.1 introduces Partial Kripke Structures (PKS)—the modeling formalism considered in this work—and
describes how the model design proceeds through refinements and revisions. Section 2.2 describes Linear-time
Temporal Logic (LTL), the formalism used to express the properties of interest and its three-valued semantics.
Section 2.3 shows how to model-check the satisfaction of LTL properties on PKSs.

2.1. Partial Kripke structures

The model of the vacuum-cleaner robot is represented using a Partial Kripke Structure (PKS) in Fig. 1a. PKSs
are state machines that can be adopted when the values of given propositions on selected states is uncertain.
Definition 2.1 ([BG99],[Kri63]) A Partial Kripke Structure (PKS) M is a tuple 〈S ,R, S0,AP ,L〉, where: S is a
set of states; R ⊆ S × S is a left-total transition relation on S ; S0 is a set of initial states; AP is a set of atomic
propositions; L : S × AP → {	, ?,⊥} is a function that, for each state in S , associates a truth value to every
atomic proposition in AP . A Kripke Structure (KS)M is a PKS 〈S ,R,S0,AP ,L〉, where L : S ×AP → {	,⊥}.
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move = ⊥
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(a) PKS of a vacuum-cleaner robot.
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(b) Refined PKS of a vacuum-cleaner robot.

Fig. 1. Example models of a vacuum-cleaner robot

A PKS represents a system as a set of states and transitions between these states. The size |M | of a PKS
M � 〈S ,R,S0,AP ,L〉 is |AP | ∗ |S | + |R| + |S0|. We defined the size of the PKS as the sum of (a) the number
of atomic propositions assignments, that is obtained as the product between the cardinalities of the sets of the
atomic propositions and the states of the PKS; (b) the cardinality of the set of the transitions of the PKS; and
(c) the cardinality of the set of the initial states of the PKS. Our definition follows classical definitions used
for KS (e.g., [KG96]) and ensures that the size of the PKS increases with the number of the states, the atomic
propositions, and the transitions of the PKS

ThePKSof the vacuum-cleaner robot presented inFig. 1a is definedover twoatomic propositions representing
actions that a robot can perform: move, i.e., the agent travels to the cleaning site; suck, i.e., the agent is drawing
the dust, and two atomic propositions representing conditions that can trigger actions: on, true when the robot is
turned on; reached, true when the robot has reached the cleaning site. The state OFF represents the robot being
shut down, I DLE the robot being turned onw.r.t. a cleaning call, MOV I NG the robot reaching the cleaning site,
and CLE AN I NG the robot performing its duty. Each state is labeled with the actions move and suck and the
conditions on and reached. Let α and s be respectively an atomic proposition and a state. We use the notation:
α � 	 to indicate that α is true when the robot is in state s ; α � ⊥ to indicate that α is false when the robot is in
state s ; α �? to indicate that there is uncertainty on whether α is true or false when the robot is in state s .

Model designproceeds though refinements and revisions.Wewill describe howmodel refinements and revisions
are used in incrementalmodel design inSect. 3.Refinements assign either a	or a⊥ value to anatomic proposition
α, in a state s , such that L(s, α) �?.

Definition 2.2 ([BG00]) LetM � 〈S ,R,S0,AP ,L〉 be a PKS. A refinement ofM is a PKSMrf � 〈S ,R,S0, AP ,
Lrf 〉 where Lrf is such that

• for all s ∈ S , α ∈ AP if L(s, α) � 	 → Lrf (s, α) � 	;
• for all s ∈ S , α ∈ AP if L(s, α) � ⊥ → Lrf (s, α) � ⊥.

We use the notation M � Mrf to indicate that Mrf is a refinement of M . For example, the PKS in Fig. 1b is
a refinement of the PKS in Fig. 1a, obtained by changing the value of the proposition reached into ⊥ in state
I DLE and the value of the proposition move into 	 in state CLE AN I NG.

Definition 2.3 ([BG00]) Let M be a PKS and let Mcomp be a KS. Then, Mcomp is a completion [BG00] of M if
and only ifMcomp is a refinement of M .

Intuitively, a completion of a PKS is a refinement of the PKS obtained by replacing all the uncertain values (?)
assigned to the atomic propositions by ⊥ or 	.

During a revision, a designer can add and remove states and transitions and/or change the values of the
atomic propositions in the states of the PKS.
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Definition 2.4 LetM � 〈S , R, S0, AP , L〉 andMrv � 〈Srv , Rrv , Srv ,0, APrv , Lrv 〉 be two PKSs. Then,Mrv is a
revision ofM if and only if AP ⊆ APrv .

This definition of revision requires themodelMrv to contain at least the same propositions ofM , i.e.,AP ⊆ APrv .
However, the definition does not force any relation between S , R, S0, L and Srv , Rrv , Srv ,0, Lrv , respectively.
Therefore, a revisionMrv can be obtained fromM by arbitrarily changing its initial states, states, and transitions.
Intuitively, this means that the only constraint the designer has to respect during a revision is not to remove
propositions from the set of atomic propositions. This condition is necessary to ensure that any property that can
be evaluated on M can also be evaluated on Mrv , i.e., every atomic proposition has a value in each of the states
of the PKS. Instead, the deactivation of a proposition can be simulated by associating its value to ⊥ in all the
states ofMrv .

Lemma 2.1 Let M � 〈S , R, S0, AP , L〉 be a PKS and let Mrf � 〈S , R, S0, AP , Lrf 〉 be a refinement of M .
Then, Mrf is a revision of M .

A refinement is a particular type of revision; for example, the PKS in Fig. 1b is an example of a revision of the
PKS in Fig. 1a.

Proof Sketch Since the PKSs M and Mrf share the atomic proposition set AP , the condition AP ⊆ APrv of
Definition 2.4 is satisfied. �

2.2. Linear-time temporal logic and three-valued semantics

The properties that the model of the vacuum-cleaner robot should satisfy are expressed in Linear-time Temporal
Logic (LTL) in Table 1.

LTL formulae combine atomic propositions with the Boolean connectors “and” (∧) and “not” (¬) and the
temporal modalities “next” (X ) and “until” (U).
Definition 2.5 ([Pnu77]) Given a set AP of atomic propositions (with p ∈ AP ), an LTL formula φ is formed
according to the following grammar:

φ � true | p | φ1 ∧ φ2 | ¬φ | X φ | φ1 U φ2 (1)

where φ1 and φ2 are LTL formulae.

The “or” (∨), “implication” (→) and “equivalence” (↔) Boolean operators are derived using the operators “and”
(∧) and “not” (¬). Furthermore, the temporal operators “eventually” (F), “globally” (G) and “weak until” (W),
are derived using the other temporal operators as usual. For example, φ1 W φ2 is defined using the “until” (U)
and the “globally” (G) operators as (φ1 U φ2) ∨ G φ1.

For KSs, we consider the classical LTL semantics [M |� φ] over infinite words, which associates to a model
M and a formula φ a truth value in the set {⊥,	} (see for example [BK08]). For PKS, instead, the three-valued
LTL semantics [BG99] [M |� φ] associates to a modelM and a formula φ a truth value in the set {⊥, ?,	}, being
based on the information ordering 	 > ? > ⊥. The three-valued LTL semantics is defined by considering paths
on the model M . A path π is an infinite sequence of states s0, s1, . . . such that, for all i ≥ 0, (si , si+1) ∈ R. We
use the notation π i to indicate the infinite sub-sequence of π that starts at position i , and Path(s) to indicate the
set of paths that start in the state s .

Definition 2.6 ([BG99]) LetM � 〈S ,R, S0,AP ,L〉 be a PKS, π � s0, s1, . . . be a path, and φ be an LTL formula.
Then, the three-valued semantics [(M , π ) |� φ] is defined inductively as follows:

[(M , π ) |� p] � L(s0, p)

[(M , π ) |� ¬ φ] � comp([(M , π ) |� φ])

[(M , π ) |� φ1 ∧φ2] � min([(M , π ) |� φ1], [(M , π ) |� φ2])

[(M , π ) |� X φ] � [(M , π1) |� φ]

[(M , π ) |� φ1 U φ2] � max
j≥0

(min({[(M , π i ) |� φ1]|i < j } ∪ {[(M , π j ) |� φ2]}))
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Let M � 〈S ,R, S0,AP ,L〉 be a PKS, and φ be an LTL formula. Then [M |� φ] � min({[(M , π ) |� φ] | π ∈
Path(s) and s ∈ S0}).

The comp operator maps	 to⊥,⊥ to	, and ? to ?. Theminimum and themaximum functions are defined by
considering the order 	 > ? > ⊥. The minimum and the maximum functions are extended to sets by considering
min(∅)=	 and max(∅)=⊥.

For example, consider the path OFF, I DLE, MOV I NGω of the PKS inFig. 1a,whereMOV I NGω indicates
that the state MOV I NG is entered infinitely often. The three-valued semantics associates to the LTL property
φ1 the value ?, since its satisfaction depends on the value assigned to the proposition reached in the states I DLE
and MOV I NG.

2.3. Model checking

Checking KSs with respect to LTL properties can be done by using classical model checking procedures. We
assume that the function Check returns a tuple 〈res, c〉, where res is the model checking result in {	,⊥} and c is
the counterexample if res � ⊥, else an empty sequence. Note that the model checking problem of a property φ
on a KSM can be reduced to the satisfiability problem of the LTL formula �M ∧ ¬φ, where �M represents the
behaviors of modelM . If �M ∧¬φ is satisfiable, then [M |� φ] � ⊥, otherwise [M |� φ] � 	.

Checking a PKS M with respect to an LTL property φ considering the three-valued semantics is done by
performing twice the classical model checking procedure for KSs [BG00], one considering an optimistic approx-
imation Mopt and one considering a pessimistic approximation Mpes . These two procedures consider the LTL
formula φneg � F(φ), where F transforms φ with the following steps: (i) negation of φ; (ii) conversion of ¬φ in
negation normal form;1 (iii) replacement of every subformula ¬α, where α is an atomic proposition, with a new
proposition α.

To create the optimistic and pessimistic approximations Mopt and Mpes , the PKS M � 〈S ,R,S0,AP ,L〉 is
first converted into its complement-closed versionMc � 〈S ,R,S0,APc,Lc〉 where the set of atomic propositions
APc � AP ∪ AP is such that AP � {α | α ∈ AP}. Atomic propositions in AP are called complement-closed
propositions. Function Lc is such that, for all s ∈ S and α ∈ AP , Lc(s, α) � L(s, α) and, for all s ∈ S and
α ∈ AP , Lc(s, α) � comp(L(s, α)). The complement-closed PKS of the vacuum-cleaner agent in Fig. 1a presents
eight propositional assignments in the state IDLE : move � ⊥, move � 	, suck � ⊥, suck � 	, on � 	,
on � ⊥, reached �?, and reached �?.

The two model checking runs for a PKS M � 〈S ,R,S0,AP ,L〉 are based respectively on an optimistic
(Mopt � 〈S ,R,S0,APc,Lopt 〉) and a pessimistic (Mpes � 〈S ,R,S0,APc,Lpes〉) approximation of M ’s related
complement-closed version Mc � 〈S ,R,S0,APc,Lc〉. Function Lpes (resp. Lopt ) is such that

• for all s ∈ S , α ∈ APc , and Lc(s, α) ∈ {	,⊥}, it holds that Lpes (s, α) � Lc(s, α) (resp. Lopt (s, α) � Lc(s, α)),
and

• for all s ∈ S , α ∈ APc , and Lc(s, α) �?, it holds that Lpes (s, α) � ⊥ (resp. Lopt (s, α) � 	).

Let A be a KS and φ be an LTL formula, A |�∗ φ is true if A does not contain any path that satisfies the
formula F(φ).

Theorem 2.1 ([BG99]) Let φ be an LTL formula, letM � 〈S ,R,S0,AP ,L〉 be a PKS, and letMpes andMopt be
the pessimistic and optimistic approximations of M ’s relative complement-closedMc . Then

[M |� φ] def�
⎧
⎨

⎩

	 if Mpes |�∗ φ

⊥ if Mopt �|�∗ φ

? otherwise
(2)

1 An LTL formula φ is in negation normal form if negations are applied only to atomic propositions. Conversion of an LTL formula into its
negation normal form can be achieved by pushing negations inward and replacing them with their duals—for details see [BK08].
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We call Check∗ the function that computes the result of the operator |�∗. Three-valued model checking tools
take as input the KS M and the LTL property φ, and return a tuple 〈res, c〉, where res is the model checking
result in {	, ?,⊥}, and c can be:

• an empty sequence (whenM satisfies φ),

• a definitive-counterexample (whenM violates φ), or

• a possible-counterexample (whenM possibly-satisfies φ).

Both counterexamples indicate behaviors that violate the properties of interest: definitive-counterexamples de-
pend on already performed design choices, possible-counterexamples are based also on uncertain actions and
conditions. Intuitively, in the construction of the optimistic completion Mopt , the algorithm “tries its best” to
build a KS which satisfies φ. If a violating behavior is found inMopt , then a definitive-counterexample is returned
since the property φ does not hold. The presence of a violating behavior in Mopt can be checked by verifying
whether �Mopt

∧ φneg is satisfiable, where �Mopt
represents the behaviors of model Mopt and φneg � F(φ). If

�Mopt
∧ φneg is satisfiable, then there exists a behavior that satisfies φneg , that is it violates φ. Therefore, such

behavior is a definitive counterexample. Viceversa, in the construction of the pessimistic completion Mpes , the
three-valued model checker “tries its best” to construct a KS that violates φ. If no violating behavior is found in
Mpes , thenM |� φ. The presence of a violating behavior inMpes can be checked by verifying whether�Mpes

∧φneg

is satisfiable, where �Mpes
represents the behaviors of model Mpes . If �Mpes

∧ φneg is not satisfiable, then it does
not exists any behavior that satisfies φneg , that is φ is satisfied. Otherwise, it could be the case where there exists
some completion in which φ holds and others in which it does not hold. In this case, the three-valued model
checker returns ?.

For example, the PKS represented in Fig. 1a possibly satisfies LTL property φ1. The path OFF, I DLE,
MOV I NGω is a possible-counterexample for this property.

While definitive and possible counterexamples provide information when the property of interest is violated,
or possible violated, they do not provide any information that explains why themodel satisfies or possibly satisfies
a property of interest. To tackle this problem, we propose TOrPEDO.

3. The topological proof driven development framework

The TOpological Proof drivEnDevelopment framewOrk (TOrPEDO) is a development framework which supports
the use of topological proofs (TPs) during the model design. The TOrPEDO framework is illustrated in Fig. 2 and
carries out verification in four phases: initial design, analysis, revision, and re-check.

Initial design ( 1 ). The model M of the system is expressed using a PKS ( 1 ), which can be generated from
other languages (e.g., MTS), along with the property of interest φ, expressed using LTL ( 2 ).

Running example. The model in Fig. 1a contains an example of PKS with an initial design for the vacuum-
cleaner robot. Table 1 contains the properties of interests for this model.

Analysis ( 2 ). TOrPEDO provides automated analysis support, which includes the following elements:

(i) Informationaboutwhat iswrong in the currentmodeldesign.This information includes adefinitive-counterexample
( 3 ⊥-CE), which can be used to produce a revised version Mrv of M that satisfies or possibly satisfies the
property of interest.

(ii) Information about what is correct in the current design. This information includes definitive-topological
proofs ( 4 	-TP) that indicate a portion of the design that ensures satisfaction of the property.

(iii) Information about what could be wrong/correct in the current design, depending on how uncertainty is re-
moved. This information includes: a possible-counterexample ( 5 ?-CE) and a possible-topological proof ( 6
?-TP), indicating a portion of the design that ensures the possible satisfaction of the property of interest.
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Fig. 2. Phases of the TOrPEDO development framework. Continuous arrows represent inputs and outputs to phases. Numbers are used to
reference the image in the text

Table 2.Results provided by TOrPEDO for properties φ1, φ2, φ3 and φ4. 	, ⊥ and ? indicate that the property is satisfied, violated and possibly
satisfied.

φ1 ?

?-CE OFF , IDLE , (MOVING)ω .

?-TP

⎧
⎪⎨

⎪⎩

TPP: 〈CLEANING, reached , �〉 〈OFF , suck , ⊥〉, 〈IDLE , suck , ⊥〉, 〈MOVING, suck , ? 〉
TPT: 〈OFF , {OFF , IDLE}〉, 〈IDLE , {OFF , IDLE ,MOVING}〉,
〈MOVING, {MOVING,CLEANING}〉, 〈CLEANING, {CLEANING, IDLE}〉
TPI: 〈{OFF}〉

φ2 � �-TP

⎧
⎪⎨

⎪⎩

TPP: 〈MOVING, on, �〉, 〈CLEANING, on, �〉, 〈OFF ,move, ⊥ 〉, 〈IDLE ,move, ⊥〉
TPT: 〈OFF , {OFF , IDLE}〉, 〈IDLE , {OFF , IDLE ,MOVING}〉,
〈MOVING, {MOVING,CLEANING}〉, 〈CLEANING, {CLEANING, IDLE}〉
TPI: 〈{OFF}〉

φ3 ⊥ ⊥-CE OFF , IDLEω

φ4 ?

?-CE OFF , (IDLE , MOVING, CLEANING, IDLE , OFF )ω

?-TP

⎧
⎨

⎩

TPP: 〈OFF , suck , ⊥〉, 〈IDLE , suck , ⊥〉, 〈MOVING, suck , ? 〉, 〈MOVING,move, �〉
TPT: 〈OFF , {OFF , IDLE}〉, 〈IDLE , {OFF , IDLE ,MOVING}〉
TPI: 〈{OFF}〉

The automated analysis support relies on two components: themodel checker and the topological proof extrac-
tor. Themodel checker verifies whether a property is satisfied or violated by the currentmodel and is implemented
by reusing existing algorithms from the literature, such as the one presented in Sect. 2. The topological proof
extractor computes the topological proof and is discussed in Sect. 3.1.

In the following we will use the notation x -topological proofs or x -TP to respectively indicate definitive-
topological or possible-topological proofs.

Running example. The results returned by TOrPEDO for the different properties in our motivating exam-
ple are presented in Table 2. Property φ2 is satisfied, φ3 is not. In those cases, TOrPEDO returns respectively a
definitive-proof and a definitive-counterexample. Since φ1 and φ4 are possibly satisfied, in both cases a possible-
counterexample and a possible-topological proof are returned. For φ1, the possible-counterexample shows a run
that may violate the property of interest. The possible-topological proof for φ1 in Table 2 shows that if OFF
remains the only initial state (TPI), reached still holds in CLE AN I NG, and suck does not hold in OFF and
I DLE , while unknown in MOV I NG (TPP), property φ1 remains possibly satisfied. In addition, all transitions
must be preserved (TPT).2 Note that the proof highlights portions of the model that influence the property
satisfaction. For example, by inspecting the proof, the designer understands that she can change the value of the
proposition reached in all the states of the PKS, with the exception of the state CLE AN I NG, without making
the property violated.

2 The precise formal descriptions of x -topological proofs, TPI, TPT and TPT are presented in Sect. 4.
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Fig. 3. Components of the Topological Proof Extractor of TOrPEDO-MUP and TOrPEDO-SMT.

Revision ( 3 ). Revisions ( 8—see Definition 2.4) can be obtained by changing some parts of the model:
adding/removing states and transitions or by changing propositions labelling inside states, and are defined by
considering the TP ( 9 ).

Running example. The designer may want to propose a revision that still does not violate properties φ1, φ2,
and φ4. Thus, she changes the values of some atomic propositions: move becomes 	 in state CLE AN I NG and
reached becomes ⊥ in state I DLE . Fig. 1b contains the revision of the PKS in Fig. 1a obtained by applying
these changes. Since φ1, φ2, and φ4 were previously not violated, TOrPEDO performs the re-check phase for each
property.

Re-check ( 4 ). The automated verification tool provided by TOrPEDO checks whether all the changes in the
current model revision are compliant with the x -TPs ( 10 ), i.e., changes applied to the revised model do not
include parts that had to be preserved according to the x -topological proof. If a property of interest is (possibly)
satisfied in a previous model, and the revision of the model is compliant with the property x -TP, the designer
has the guarantee that the property is (possibly) satisfied in the revision. Thus, she can perform another model
revision round ( 7 ) or approve the current design ( 11 ). Otherwise, TOrPEDO re-executes the analysis ( 12 ).

Running example. In the vacuum-cleaner case, the revision in Fig. 1b passes the re-check and the designer
proceeds to a new revision phase.

3.1. Topological proof extractor

We present two implementations for the topological proof extractor component: our previous implementa-
tion [MRB20], which is based on PLTL-MUP [SGT13], and a novel SMT-based procedure, which is part of the
contribution of this work. The versions of TOrPEDO that use these two topological proof extractor components
are named TOrPEDO-MUP are TOrPEDO-SMT. In the rest of this work, we will use TOrPEDO-MUP and TOrPEDO-SMT
when referring to the specific solver used to extract topological proofs, TOrPEDO when indicating the general
method.

The topological proof extractor employed during the analysis phase takes as input a PKSM , its optimistic
or pessimistic approximation A and an LTL formula φneg � F(φ) (see Sect. 2.3) and returns a slice S of the KS.
Figure 3 conceptually describes the components of the topological proof extractor used in both TOrPEDO-MUP
and TOrPEDO-SMT: rectangular boxes with sharp corners represent the inputs and outputs of the topological
proof extractor; rectangular boxes with rounded corners represent software components. Their background
color indicates whether the components are part of TOrPEDO-MUP (i.e., gray), TOrPEDO-SMT (i.e., red), or both
(i.e., white). The labels on the arrows describe the type of inputs and outputs of each component.

The components implement the steps ofAlgorithm 1: TOrPEDO employs the Sys2LTL procedure to convert the
KSA and the LTL formula φneg into a setC of LTL clauses (Line 2). The set of LTL clausesC contains: i) clauses
CA encoding the behaviors of the model A and ii) the formula φneg . Since φ is satisfied, none of the behaviors of
the model satisfy φneg ; since the behaviors that violate the property cannot occur, some of the clauses in CA must
conflict with φneg . OurGetUC procedure detects such clauses and stores themwithin the set of conflicting clauses
Cuc (Line 3). Finally, the GetTP component maps the conflicting clauses within Cuc into the corresponding slice
S of the KS A (Line 4).
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Algorithm 1 Compute Topological Proofs.
1: function Ctp KS(M , A, φneg )
2: C � Sys2LTL(A, φneg )
3: Cuc � GetUC(C )
4: S � GetTP(M ,A,Cuc)
5: return S
6: end function

TOrPEDO-MUP and TOrPEDO-SMT differ in the implementation of the GetUC procedure. TOrPEDO-MUP imple-
ments it by using PLTL-MUP [SGT13],which returns the conflicting clauses (Cuc). TOrPEDO-SMT, instead, translates
the LTL clauses into a set of clauses P in propositional logic (PL), maintaining a map between each LTL clause
and the propositional logic clauses generated from it. Then, it exploits existing SMT-based solvers to compute
the conflicting propositional logic clauses (PC). Finally, it uses the previously built map to detect the LTL clauses
that generated the conflicting propositional logic clauses.

The two procedures are described in detail in Sects. 5.3 and 5.4. We evaluate TOrPEDO-MUP and TOrPEDO-SMT
in Sect. 6.

4. Topological proofs: a formal definition

In this section, we introduce the notion of topological proof. The pursued proof consists of a set of clauses that
specify certain topological properties ofM ; these represent the portion of the model that explains how it satisfies
(or possibly-satisfies) the imposed claim. Different kinds of clauses are defined next.

Definition 4.1 LetM � 〈S , R, S0, AP , L〉 be a PKS. A Topological Proof clause (TP-clause) γ for M is either:

• a Topological Proof Propositional clause (TPP-clause), i.e., a triad 〈s, α, v〉 where s ∈ S , α ∈ AP , and
v ∈ {	, ?,⊥};

• a Topological Proof Transitions-from-state clause (TPT-clause), i.e., a pair 〈s,T 〉, such that s ∈ S ,T ⊆ S ;
• a Topological Proof Initial-states clause (TPI-clause), i.e., an element 〈S0〉.
These clauses indicate topological properties of a PKS M . Informally, TPP-clauses constrain how states are

labeled (L), TPT-clauses constrain how states are connected (R), and TPI-clauses constrain the initial states of
the model (S0). For example, let us consider in Table 2 the proof obtained for property φ1:

• 〈CLE AN I NG, reached, 	〉 is a TPP-clause that constrains the atomic proposition reached to be labeled as
true (	) in the state CLE AN I NG;

• 〈OFF, {OFF, I DLE}〉 is a TPT-clause that constrains the transition from OFF to OFF and from OFF
to I DLE to not be removed; and

• 〈{OFF}〉 is a TPI-clause that constrains the state OFF to remain the initial state of the system.

We say that a state si is constrained by a TPP-clause 〈s, α, v〉 if s � si , by a TPT-clause 〈s,T 〉 if s � si or
si ∈ T , and by a TPI-clause 〈S0〉 if si ∈ S0.

We now define the notion of �-related PKS that is then used to formally define a topological proof.

Definition 4.2 Let M � 〈S ,R,S0,AP ,L〉 be a PKS and � be a set of TP-clauses for M . Then, a PKS �-related
to M is a PKSM�rel � 〈S�rel ,R�rel ,S�rel,0,AP�rel ,L�rel 〉, such that the following conditions hold:

i) AP ⊆ AP�rel ;

ii) for every TPP-clause 〈s, α, v〉 ∈ �, the condition s ∈ S�rel and v � L�rel (s, α) holds;
iii) for every TPT-clause 〈s,T 〉 ∈ �, the condition s ∈ S�rel , T ⊆ S�rel , and T � {si ∈ S�rel |(s, si ) ∈ R�rel }

holds;
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iv) for every TPI-clause 〈S0〉 ∈ �, the condition S0 � S�rel,0 holds.

Intuitively, a PKS�-related toM is a PKSM�rel that is compliant with the set of TP-clauses� forM . Specifically:

i) the atomic propositions in the set AP ofM are also included in the set AP�rel of M�rel ;
ii) the values of the atomic propositions in the TPP-clauses are not changed;
iii) the states ofM that are constrained by a TPT-clause are also part ofM�rel . The set of the outgoing transitions

T of a state s ofM that are part of a TPT-clause 〈s,T 〉 are also the outgoing transitions of s inM�rel . Note
that the states ofM that are not constrained by a TPT-clause are not necessarily states ofM�rel ; and

iv) the initial states of M that are in a TPI-clause are exactly the initial states ofM�rel .

Based on these observations, a topological proof is then defined as follows.

Definition 4.3 Let M � 〈S ,R,S0,AP ,L〉 be a PKS, let φ be an LTL property, let � be a set of TP-clauses for
M , and let x be a truth value in {	, ?}. A set of TP-clauses � is an x -topological proof (or x -TP) for φ in M if:
(i) [M |� φ] � x ; and (ii) every PKS M�rel �-related to M is such that [M�rel |� φ] ≥ x .

The operator ≥ assumes that values 	, ?,⊥ are ordered considering the classical information ordering 	 >
? > ⊥ among the truth values [BG99]. Intuitively, an x -topological proof forM ensures that every�-related PKS
M�rel toM satisfies the property φ “at least as much asM does”. We call 	-TP a definitive-topological proof and
?-TP a possible-topological proof. Intuitively, a definitive-topological proof for M ensures that every �-related
PKS M�rel to M satisfies the property φ. A possible-topological proof for M ensures that every �-related PKS
M�rel toM satisfies or possibly satisfies the property φ.

The size of an x -topological proof � is defined as |�| � ∑

c∈�

|c| where:

• |c| � 1 if c � 〈s, α, v〉;
• |c| � |T | if c � 〈s,T 〉; and
• |c| � |S0| if c � 〈S0〉.

Note that, for the PKS in Fig. 1a, Table 2 shows two ?-TPs for properties φ1 and φ4 (respectively of size 14 and
10), and one 	-TP for property φ2 (of size 14).

To introduce the core property of topological proofs, we first present the notion of �x -revision, a revision
of the model that follows the constraints imposed by the topological proof. Note that, differently from the
notion of �-relation, which is defined by considering an arbitrary set of TP-clauses, the notion of �x -revision is
defined by considering the topological proof, which is a set of TP-clauses that follows the conditions specified in
Definition 4.3.

Definition 4.4 LetM andM�rv be two PKSs, let φ be an LTL property, and let � be an x -TP for φ inM . Then,
M�rv is an �x -revision of M if M�rv is �-related to M .

The�x -revisionM�rv ofM is such thatM�rv is�-related toM ; this means that it is obtained by changing the
modelM while preserving the statements that are specified in the x -TP for φ. A revisionM�rv ofM is compliant
with the x -TP for a property φ in M if it is an �x -revision of M . Intuitively, a �x -revision of M is a PKS M�rv

obtained fromM by changing any topological aspect that does not impact on the set of TP-clauses�. Specifically,
models can be changed as follows:

1. any transition whose source state is not the source state of a transition included in the TPT-clauses can be
added or removed from the PKS;

2. any value of a proposition that is not constrained by a TPP-clause can be changed;
3. states can be added and removed if they are not constrained by any TPT-, TPP-, or TPI-clause;
4. initial states cannot be changed if � contains a TPI-clause.

For example, consider the topological proof for the property φ1 presented in Table 2. The PKS in Fig. 1a is
an �?-revision of the PKS in Fig. 1b since the values of the atomic propositions reached in I DLE and move in
CLE AN I NG are not constrained by any TPP-clause.

In the following, we claim and prove that, if M is a PKS that satisfies the property φ, then any �	-revision
of M also satisfies φ. In other words, if the model satisfies φ and it is revised in accordance with its topological
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proof, then �	-revisions of the model are generated and the revised model also satisfies φ. If M is a PKS that
possibly satisfies the property φ, then any�?-revision possibly satisfies or satisfies φ. This means that, if the model
possibly satisfies φ and is revised considering its topological proof, then �?-revisions of the model are generated
and these also satisfy/possibly-satisfy φ. Consequently, when the model is revised according to its topological
proof, there is no need to run the model checker to verify that φ is not satisfied on the revised model.

Theorem 4.1 Let M be a PKS, let φ be an LTL property such that [M |� φ] � 	, and let � be a 	-TP for φ in
M . Then every �	-revisionM�rv is such that [M�rv |� φ] � 	.
Let M be a PKS, let φ be an LTL property such that [M |� φ] �?, and let � be an ?-TP for φ in M . Then every
�?-revisionM�rv is such that [M�rv |� φ] ∈ {	, ?}.
Proof Sketch We prove the first statement of the Theorem; the proof of the second statement is obtained by
following the same steps.

The theorem assumes thatM�rv is an �	-revision ofM . If � is a 	-TP for φ inM , thenM�rv is �-related to
M (by Definition 4.4). Since � is a 	-TP for φ in M�rv and M�rv is �-related to M , then [M�rv |� φ] ≥ 	 (by
Definition 4.3). �

5. Automated support

This section describes the algorithms that support TOrPEDO. Section 5.1 describes how the model checker and the
topological proof extractor are integrated into the analysis phase ( 2 ) of TOrPEDO. Section 5.2 describes in detail
the steps of TOrPEDO used to compute topological proofs (Algorithm 1). Section 5.3 describes the implementation
used by TOrPEDO-MUP for computing topological proofs. Section 5.4 describes the implementation of the SMT-
based algorithmused by TOrPEDO-SMT for computing topological proofs. Section 5.5 presents the implementation
of the re-check ( 4 ) phase of TOrPEDO.

5.1. Analysis

To analyze a PKS M � 〈S ,R,S0,AP ,L〉 ( 1 ), TOrPEDO uses the three-valued model checking framework based
on Theorem 2.1. The model checking result is provided as output by the analysis phase of TOrPEDO, whose
behavior is described in Algorithm 2.

The algorithm returns a tuple 〈x , y〉, where x is the verification result and y is a set containing the counterex-
ample, the topological proof or both of them. The algorithm first checks whether the optimistic approximation
Mopt of the PKS M satisfies property φ ( 2 , Line 2). For computing Mopt our implementation follows the steps
described in Sect. 2.3: it first computes the complement-closed PKS by computing the set of complement-closed
atomic propositions and the function Lc , and then, it computes the optimistic approximation, by calculating
the functions Lopt . We used the NuSMV model checker for implementing the Check∗ procedure. If the optimistic
approximationMopt of the PKSM violates the property φ, the property is violated by the PKS and the definitive-
counterexample cd ( 3 , ⊥-CE) is returned (Line 3). Otherwise, the algorithm checks whether the pessimistic
approximation Mpes of the PKS M satisfies property φ (Line 5). As for the case of Mopt , for computing Mpes

our implementation follows the steps described in Sect. 2.3. If the PKS M satisfies property φ, the property is
satisfied and the value 	 is returned along with the definitive-topological proof ( 4 , 	-TP) computed by the
Ctp KS procedure applied on the pessimistic approximationMpes and the property φneg (Line 7). Otherwise, the
property is possibly satisfied and the value ? is returned along with the possible-counterexample cp ( 5 , ?-CE) and
the possible-topological proof ( 6 , ?-TP) computed by the Ctp KS procedure applied toMopt and φneg (Line 9).
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Algorithm 2 The analysis algorithm.
1: function Analyze(M , φ)
2: 〈resopt , cd 〉 = Check

∗(Mopt , φ)
3: if res �� ⊥ then return 〈⊥, {cd }〉
4: else
5: 〈respes , cp〉 = Check

∗(Mpes , φ)
6: if respes �� 	 then
7: return 〈	, {Ctp KS(M ,Mpes , φneg )}〉
8: else
9: return 〈?, {cp,Ctp KS(M ,Mopt , φneg )}〉

10: end if
11: end if
12: end function

Table 3. Rules to transform the KS in LTL formulae.
ci � ∨

s∈S0

p(s)

The KS is initially in one of its initial states.

CN � {G(¬p(s) ∨ X (
∨

(s,si )∈R
p(si ))) | s ∈ S }

If the KS is in state s in the current instant, in the next instant it is in one of the successors si of s.

CL	 � {G(¬p(s) ∨ α) | s ∈ S , α ∈ APc ,LA(s, α) � 	}
If the KS is in state s such that LA(s, α) � 	, the atomic proposition α is true.

CL⊥ � {G(¬p(s) ∨ ¬α) | s ∈ S , α ∈ APc ,LA(s, α) � ⊥}.
If the KS is in state s such that LA(s, α) � ⊥, the atomic proposition α is false.

CREG � {G(¬p(s) ∨ ¬p(si )) | s, si ∈ S and s �� si }
The KS is in at most one state at any time.

5.2. Extracting the topological proofs

The procedure Ctp KS (Compute Topological Proofs) to compute x -TPs detailed in Algorithm 1 takes as input a
PKSM , its optimistic/pessimistic approximation, i.e., here denoted generically as the KSA, and an LTL formula
φneg � F(φ)—satisfied in A (see Sect. 2). The three steps of the algorithm are described in the following.

5.2.1. Sys2LTL: Translating the KS and the property into an LTL formula

TheKSA� 〈S ,R,S0,APc,LA〉 and the LTL formula φneg are used to generate a set of clausesC � CA∪{φneg}.
The clauses in CA encode the KS. Specifically, CA � CK S ∪ CREG , where CK S � {ci } ∪ CN ∪ CL	 ∪ CL⊥. The
sets of clauses ci , CN , CL	 and CL⊥, CREG are defined as specified in Table 3. The initial clause ci specifies that
the KS is initially in one of its initial states. The next state clauses in CN specify that if in the current instant the
KS is in state s , in the next instant it is in one of the successors states si of s . The labeling clauses in CL	 specify
that if the KS is in state s such that LA(s, α) � 	, the atomic proposition α is true. The labeling clauses in CL⊥
specify that if the KS is in state s such that LA(s, α) � ⊥, the atomic proposition α is false. Finally, the regularity
clauses in CREG specify that the KS is in at most one state at any time. Note that the clauses in CA are defined on
the set of atomic propositions APS � APc ∪ {p(s)|s ∈ S }, i.e., APS includes an additional atomic proposition
p(s) for each state s , which is true when the KS is in state s . The LTL formula ψ to be analyzed to check for
conflicting clauses is defined as follows.

ψ �
∧

c∈C
c
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Table 4. Rules to extract the TP-clauses from the conflicting LTL clauses.
LTL clause TP clause Type LTL clause TP clause Type
ci � ∨

s∈S0

p(s) 〈S0〉 TPI G(¬p(s) ∨ ¬α) 〈s, α, comp(L(s, α))〉 TPP

G(¬p(s) ∨ X (
∨

(s,si )∈R
p(si ))) 〈s,T 〉 and T � {si |(s, si ) ∈ R} TPT G(¬p(s) ∨ α) 〈s, α, comp(L(s, α))〉 TPP

G(¬p(s) ∨ α) 〈s, α,L(s, α)〉 TPP G(¬p(s) ∨ ¬α) 〈s, α,L(s, α)〉 TPP

The problem of model checking the KS A and the LTL formula φneg is solved by checking the satisfiability
of ψ (see Sect. 2). The number of clauses of ψ is the number of clauses in CA, which is, in the worst case,
1 + |S | + |S | × |APc| + |S | × |S |, plus one, that is the clause generated from the formula φneg .

5.2.2. GetTP: extracting the topological clauses

As detailed in Sect. 3, the GetTP component takes the subset Cuc of the conflicting clauses as input. As we will
discuss in Sects. 5.3 and 5.4, Cuc � {Cuc,A ∪ {φneg}), where Cuc,A � Cuc,K S ∪ Cuc,REG such that Cuc,K S ⊆ CK S
andCuc,REG ⊆ CREG . Specifically, the setCuc,A contains the clauses regarding the KS (Cuc,K S andCuc,REG) that
made the formula ψ unsatisfiable. Since we are interested in clauses related to the KS that caused unsatisfiability,
we extract the topological proof �, whose topological proof clauses are obtained from the clauses in Cuc,K S as
specified in Table 4. Since the set of atomic propositions of A is APc � AP ∪ AP , in the table we use α for
propositions in AP and α for propositions in AP . The table contains for each LTL clause its corresponding
topological proof clause.

The elements inCuc,REG are not considered in the TP computation as, given anLTL clauseG(¬p(s) ∨ ¬p(si )),
either state s or si is constrained by other TP-clauses that will be preserved in the model revisions.

Lemma 5.1 LetA be a KS and let φneg be an LTL property. Let also ψ be the LTL formula computed in the step
Sys2LTL of the algorithm, where C � CA ∪ {φneg} and CA � CREG ∪CK S, and let ψuc be an unsatisfiable core,
where Cuc � Cuc,A ∪ {φneg} and Cuc,A � Cuc,REG ∪ Cuc,K S . Then, if G(¬p(s) ∨ ¬p(si )) ∈ Cuc,REG , either:

(i) there exists an LTL clause in Cuc,K S that constrains state s (or state si ); or
(ii) ψ ′

uc , such that C ′
uc � C ′

uc,A ∪ {φneg} and C ′
uc,A � Cuc,A \ {G(¬p(s) ∨ ¬p(si ))}, is an UC of ψuc .

Proof Sketch We indicate G(¬p(s) ∨ ¬p(si )) as τ (s, si ). Assume per absurdum that conditions (i) and (ii) are
violated, i.e., no LTL clause in Cuc,K S constrains state s or si (for condition (i)), and ψ ′

uc is not an unsatisfiable
core of ψuc (for condition (ii)). Since ψ ′

uc is not an unsatisfiable core of ψuc , the LTL formula ψ ′
uc where C ′

uc �
C ′

uc,A ∪ {φneg} is satisfiable. Since C ′
uc is satisfiable, Cuc must also be satisfiable since Cuc,A � C ′

uc,A ∪ {τ (s, si )}.
Indeed, since condition (i) is violated, it does not exist any LTL clause that constrains state s (or state si ) and, in
order to generate a contradiction, the added LTL clause must generate it using the LTL clauses obtained from
the LTL property φneg . This is a contradiction and proves our lemma. �

The Analyze procedure in Algorithm 2 obtains a TP ( 4 , 6 ) for a PKS by first computing the related
optimistic or pessimistic approximation (i.e., a KS) and then exploiting the computation of the TP for such
KS. In the following we prove that our procedure is correct, i.e., given a PKS M and a property φ such that
[M |� φ] � x it returns an x -topological proof for φ in M , that is every �-related PKS M�rel is such that
[M�rel |� φ] ≥ x .

Theorem 5.1 LetM be a PKS, let φ be an LTL property, and let x ∈ {	, ?} be an element such that [M |� φ] � x .
If the procedure Analyze, applied to the PKSM and the LTL property φ, returns a TP � for φ, this is an x -TP
for φ in M .

Proof Sketch Assume that the Analyze procedure returns the value 	 and a 	-TP for φ and the PKS M �
〈S ,R,S0,AP ,L〉. We show that every �-related PKS M�rel is such that [M�rel |� φ] ≥ x (Definition 4.3). If
Analyze returns the value 	, it must be that Mpes |�∗ φ by Lines 5 and 7 of Algorithm 2. Furthermore, by
Line 7, φneg � F(φ) and A � Mpes .

Let CA � CA ∪ {φneg} be the clauses of the LTL formula associated with A and φneg . Let us consider
the clauses CAuc � Cuc,A ∪ {φneg} of an an UC CA, where Cuc,A � Cuc,K S ∪ Cuc,REG , Cuc,K S ⊆ CK S and
Cuc,REG ⊆ CREG .

Let N � 〈SN ,RN ,S0,N ,APN ,LN 〉 be a PKS �-related to M . Let CB � CB ∪ {φneg} be the clauses of the
LTL formula associated with B � Npes and φneg .
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We show that Cuc,A ⊆ CB, i.e., the UC is also an UC for the LTL formula associated with the approximation
B of the PKS N .

As Cuc,A � Cuc,K S ∪ Cuc,REG this is equivalent to check (Cuc,K S ∪ Cuc,REG) ⊆ CB. By Lemma 5.2 we can
avoid considering Cuc,REG . By construction (see Line 2 of Algorithm 1) any clause c ∈ Cuc,K S belongs to one
rule among CN , CLpes,	, CLpes,⊥ or c � ci :

• if c � ci then, by the rules in Table 4, there is a TPI-clause {S0} ∈ �. By Definition 4.2, S0 � S0,N . Thus,
ci ∈ CB since N is �-related toM .

• if c ∈ CN then, by the rules in Table 4, there is a TPT-clause 〈s,T 〉 ∈ � where s ∈ S and T ⊆ R. By
Definition 4.2, T � {si ∈ SN |(s, si ) ∈ RN }. Thus, c ∈ CB since N is �-related to M .

• if c ∈ CLA,	 or c ∈ CLA,⊥, by rules in Table 4, there is a TPP-clause 〈s, α,L(s, α)〉 ∈ � where s ∈ S and
α ∈ AP . By Definition 4.2, LN (s, α) � L(s, α). Thus, c ∈ CB since N is �-related toM .

Since N is �-related to M , it has preserved the elements of �. Thus CA is also an UC of CB . It follows that
[N |� φ] � 	.

The proof from the case in which Analyze procedure returns the value ? and a ?-TP can be derived from the
first case. �

5.3. Computing the conflicting clauses in ψ with PLTL-MUP

We now describe the procedure used by TOrPEDO-MUP to extract the conflicting clauses of ψ . Recall that the set
of clauses of the LTL formula ψ encodes the KSA and the property φneg . As mentioned in Sect. 3.1, none of the
behaviors of A satisfies the property φneg since φneg encodes the behaviors that violate φ which is satisfied by A.
Therefore, ψ is unsatisfiable. The unsatisfiable core (UC) contains the set of conflicting clauses that lead to the
contradiction. TOrPEDO-MUP uses PLTL-MUP [SGT13] to extract the unsatisfiable core of ψ . PLTL-MUP exploits
Binary Decision Diagrams (BDDs) and a BDD-based theorem prover for LTL to compute the UC.

The functionψuc � GetUC(ψ) returns an unsatisfiable coreψuc � ∧

c∈Cuc

c ofψ . Specifically, it returns a subset

of clauses Cuc � Cuc,A ∪ {ψ}, where Cuc,A � Cuc,K S ∪ Cuc,REG such that Cuc,K S ⊆ CK S and Cuc,REG ⊆ CREG .

Lemma 5.2 LetA be a KS and let φneg be an LTL property. LetC � {CA ∪{φneg}) be the set of clauses generated
from the KS A and the LTL formula φneg , and ψ be the LTL formula computed in the step Sys2LTL of the
algorithm. Then, any unsatisfiable core ψuc of ψ is made by a subset of clauses Cuc � {Cuc,A ∪ {φneg}) such that
Cuc,A ⊆ CA.

Proof Sketch As the property φneg is satisfied by M , the LTL formula ψ is unsatisfiable (see Sect. 2). Since CA
encodes aKS,

∧

c∈CA
c is satisfiable. If φneg is satisfiable (i.e., it is not vacuously true or false), then the unsatisfiability

is caused by the contradiction of some of the clauses in CA and the property φneg , and as a consequence φneg

must be a part of the UC, Cuc,A is not empty, and Cuc,A ⊆ CA. �

After detecting the setCuc of conflicting LTL clauses, the procedure described in Sect. 5.2.2 is used to generate
the TP.

5.4. SMT-based extraction of topological proofs

This section describes the procedure to translate LTL clauses into propositional logic (PL) clauses (Sect. 5.4.1).
Then, it presents the procedure used to detect conflicts among the propositional logic clauses (Sect. 5.4.2), and
describes how the conflicting LTL clauses are extracted from the conflicting PL logic clauses (Sect. 5.4.3). Finally,
it discusses the correctness of our procedure (Sect. 5.4.4).
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5.4.1. LTL2PL: from linear time temporal logic to propositional logic

Recall that the LTL formula ψ—to be analyzed to check for conflicting clauses in C—is defined as follows.

ψ �
∧

c∈C
c

For translating the LTL formulaψ into PL we use the technique proposed by Schuppan et al. [SLJ+06], also used
in more recent works (e.g., [BKR15]). The technique is based on two observations:

1. an LTL formula ψ is satisfiable if there exists an infinite path that satisfies ψ ; and

2. the infinite paths that satisfy LTL formulae can be represented as π � s0, s1, . . . , sr−1, (sr , sr+1, . . . , sk )ω,
where (sr , sr+1, . . . , sk )ω indicates that, after state sk is left, the path restarts from sr . The infinite path is made
by two parts: the prefix, i.e., s0, s1, . . . , sr−1, and the ultimately periodic part sr , sr+1, . . . , sk .

Building on these two observations, the idea is to check the satisfiability of ψ by: i) generating a propositional
formula ϕ encoding all the possible ultimately periodic paths (up to length k ) that satisfy ψ and ii) checking for
the satisfiability of ϕ. If ϕ is satisfiable, there exists an ultimately periodic path that satisfiesψ . Therefore, the LTL
formula ψ is satisfiable. If ϕ is unsatisfiable and k is “big enough”, then ψ is unsatisfiable. In Sect. 5.4.4 we will
discuss the implications of the k selection on the correctness of our procedure.

The propositional formula ϕ is made by two parts, one encoding the infinite (ultimately periodic) paths, and
one encoding the semantics of the formula ψ . These two parts are described in the following.

Encoding the Infinite (ultimately periodic) Paths. The encoding introduces the following variables and PL
formulae, in which the symbols �i , with i ∈ 0, 1, . . . are used to identify each PL formula.

• A set of loop selector variables (l0, l1,. . . ,lk ). These are new fresh Boolean variables such that li is true if the
ultimately periodic part starts at position i . To enforce the fact that the ultimately periodic part starts from
one state, only one of the loop selector variables must be true. This is enforced by the following formula:

�0 ≡
∧

i∈{0,...,k}

⎛

⎝li ⇔
∧

j ��i,j∈{0,...,k}
¬lj

⎞

⎠ (3)

For each index i , the formula specifies that if li is true, all the other loop selector variables are false. Further-
more, we force one of the loop selector variables to be true by adding the following formula:

�1 ≡ l0 ∨ l1 ∨ . . . lk (4)

• A set of in loop variables (InLoop0, InLoop1,. . . ,InLoopk ). These are new fresh Boolean variables such that
InLoopi is true if the state si is in the ultimately periodic part. To enforce the correspondence between the
loop selector variables and the in loop variables, we add the following propositional formula.

�2 ≡
∧

i∈{0,...,k}
(InLoopi ⇔ (InLoopi−1 ∨ li )) (5)

This formula imposes that InLoopi is in the loop only if the ultimately periodic part starts at position i or it
starts in a previous position, i.e., InLoopi−1 is true.

• The variable LoopExists . It is true if and only if a loop has been found. To force this relation we add the
following formula.

�3 ≡ LoopExists ⇔ (l0 ∨ l1 ∨ . . . lk ) (6)
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Table 5. Propositional formulae added to the encoding to capture the LTL semantics.
ψj PL
p

∧
i∈{0,...,k}�p�i

¬ψ
∧

i∈{0,...,k}�¬ψ�i ⇔ ¬�ψ�i
X ψ

∧
i∈{0,...,k}�X ψ�i ⇔ �ψ�i+1

ψ1 ∧ ψ2
∧

i∈{0,...,k}�ψ1 ∧ ψ2�i ⇔ �ψ1�i ∧ �ψ2�i
ψ1 U ψ2

∧
i∈{0,...,k}�ψ1 U ψ2�i ⇔ (�ψ2�i ∨ (�ψ1�i ∧ �ψ1 U ψ2�i )) ∧ ∧

i∈{0,...,k} (LoopExists ⇒ (�ψ1 U ψ2�i ⇒ �F ψ2�i ))∧∧
i∈{0,...,k} (�F ψ2�i ⇔ (�F ψ2�i−1 ∨ (InLoopi ∧ F�ψ2�i )) ∧ �F ψ2�0 � ⊥

Encoding the Semantics of the Formulaψ . To force the ultimately periodic path to satisfy the LTL formula, we
need to encode how the formula is satisfied on the different states of the path. This should be specified according
to the semantics of the LTL formula. In the following, we describe how each LTL clause c ∈ C is translated
into a PL formula ϕc . Let ψ0, ψ1, . . . , ψh be the subformulae of a clause c of the LTL formula ψ . To represent
the LTL clause c in PL, we introduce a Boolean variable �ψj �i for each index i in 0, . . . , k + 1 and subformula
ψj of c. Each variable �ψj �i represents the value of a subformula ψj in the position i of the path. We consider
indexes from 0, . . . , k +1 since, to represent the ultimately periodic part of the path, we need to enforce that LTL
subformulae satisfied by the state sk+1 correspond to the LTL subformulae satisfied by the state sr , i.e., in the
first state of the ultimately periodic part of the path. We use the symbols ξi , with i ∈ 0, 1, . . . to identify each one
of the PL formulae. To enforce that the subformulae that hold in sk+1 are the same that hold in state sr , we add
the following formula:

ξ0 ≡
∧

i∈{0,...,k}

⎛

⎝
∧

j∈{0,...,h}

(
li ⇒ (�ψj �i ⇔ �ψj �k+1)

)

⎞

⎠ (7)

Then, we enforce the LTL semantics by using the standard fix-point encoding specified in Table 5. For every
subformula ψ0, ψ1, . . . , ψh of c, a PL formula (i.e., ξ1, ξ2, . . . , ξh+1) is created depending on the type of the
constructs used in the subformula (see the PL labelled column of Table 5). The encoding of p, ¬ψ , X ψ ,
and ψ1 ∧ ψ2 directly follows from the LTL semantics. For ψ1 U ψ2, the encoding specifies that �ψ1 U ψ2�i ⇔
(�ψ2�i ∨ (�ψ1�i ∧ �ψ1 U ψ2�i )) is true for every index i according to the semantics of the U temporal operator.
However, this formula is vacously satisfied when �ψ1�i ∧ �ψ1 U ψ2�i is true for every index i that belongs to the
ultimately periodic part, but ψ2 is never satisfied. To avoid this case, we need to ensure that ψ2 eventually occurs.
This is achieved by

1. the formula LoopExists ⇒ (�ψ1 U ψ2�k ⇒ �F ψ2�k ), specifying that whenever an ultimately periodic path is
present (LoopExists is true), if ψ1 U ψ2 is satisfied in position k , F ψ2 is also satisfied in position k ;

2. the formula
∧

i∈{0,...,k} (�F ψ2�i ⇔ (�F ψ2�i−1 ∨ (InLoopi ∧ �ψ2�i )), specifying that F ψ2 holds in a position
i of the loop (and therefore in position k ) if ψ2 holds in a previous position of the loop; and

3. the formula �F ψ2�0 � ⊥ forces F ψ2 to be initially false.

The final PL formula ϕc—that represents the LTL clause c—is obtained by combining the formula with the
conjunction Boolean operator, i.e., ϕc is defined as follows:

ϕc ≡ ξ0 ∧ ξ1 ∧ . . . ∧ ξh+1 (8)

Then, the satisfiability of ψ can be verified by checking the satisfiability of:

ϕ � �0 ∧ �1 ∧ �2 ∧ �3 ∧
∧

c∈C
ϕc

Note that, since our goal is to reduce the computational cost required to compute topological proofs, we
implemented the LTL2PL translation by relying on an encoding based on Bit-Vectors [BKR15]. According to
some recent result, this encoding provides significant benefits with respect to existing tools [BKR15, PKRB20].

5.4.2. GetUC: computing the unsatisfiable core of a PL formula

To check whether the formula ϕ is satisfiable and to extract its unsatisfiable core, we employ the Z3 Theorem
Prover [DMB08]; we selected this solver as it extracts unsatisfiable cores and it is an industry-strength tool,
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also awarded by ETAPS (Test of Time Award) [sig20] and ACM SIGPLAN (Programming Languages Software
Award) [eta20].

Given a formula and a set of clauses, a.k.a. assumptions, Z3 checks whether the formula is satisfiable and
identifies the clauses that are in contradiction. Specifically, given the PL formula ϕ and the set of PL clauses
ϕ1, ϕ2, . . . , ϕn , each one generated from an LTL clause ci ∈ C , Z3.unsat core checks whether ϕ is satisfiable,
and—in case it is not—it returns a subset � of the set of the PL clauses {ϕ1, ϕ2, . . . , ϕn } that lead to the contra-
diction.

� � Z3.unsat core(ϕ, ϕ1, ϕ2, . . . , ϕn ) (9)

For example, if ϕ is unsatisfiable, � might contain the PL clauses ϕ2 and ϕ3 generated from the LTL clauses c2
and c3 that are leading to the contradiction, i.e., � � {ϕ2, ϕ3}.

5.4.3. GetTP: mapping the conflicting propositional clauses to LTL

The function GetTP aims at identifying—from the set of the conflicting PL clauses �—the corresponding LTL
clauses. Recall that, as discussed in Sect. 5.4.1, each clause within the set of PL clauses {ϕ1, ϕ2, . . . , ϕn } processed
by Z3 is obtained from an LTL clause c ∈ C . Therefore, given the set of the conflicting PL clauses �, our
algorithm computes the setCuc of conflicting LTL clauses by adding toCuc—for each PL formulae ϕc in�—the
LTL clause c from which it was generated.

After detecting the setCuc of conflicting LTL clauses, the procedure described in Sect. 5.2.2 is used to generate
the TP.

5.4.4. Correctness

The unsatisfiable core� contains the set of PL clauses of {ϕ1, ϕ2, . . . , ϕn } that lead to a contradiction. As specified
in Sect. 5.4.1, each PL clause in {ϕ1, ϕ2, . . . , ϕn } corresponds to anLTL clause {c1, c2, . . . , cn } inC . The algorithm
extracts from � the subset Cuc of C containing the LTL clauses of C corresponding to the PL clauses leading
to the contradiction. The algorithm is correct if the LTL clauses in Cuc are contradicting.

The bounded encoding presented in Sect. 5.4.1 finds ultimately periodic paths (up to length k , a.k.a. bound)
that satisfy the formula ψ , but cannot prove their absence. To prove that such paths do not exist, it must be
shown that a path that satisfies the LTL formula ψ cannot be longer than a certain bound, a.k.a. completeness
threshold. Recall that, as for classical bounded model checking (BMC), the LTL formula ψ encodes the KS A
and the LTL formula φneg to be checked. Therefore, the completeness threshold can be identified by reusing
existing approaches from the literature (see for example [SLJ+06, CKOS04, KOS+11]). Therefore, if the value of k
is higher than the completeness threshold, there is formal guarantee that the LTL clauses inCuc are contradicting.
Vice versa, if k is lower than the completeness threshold, the clauses in Cuc may not be contradicting.

In practice, designers can initially choose a value for k that is reasonably large for the considered PKS and
property. Then, they can increase or decrease the value of k depending on (a) the efficiency of the analysis

component, and (b) how relevant is the soundness of the computed topological proofs for their application
domain.

5.5. Re-check

Let M � 〈S ,R,S0,AP ,L〉 be a PKS. The re-check algorithm verifies whether a revision M�rv of M is an
�-revision. Let � be an x -TP ( 10 ) for φ in M , and let M�rv � 〈S�rv ,R�rv ,S�rv ,0,AP�rv ,L�rv 〉 be a revision
of M ( 8 ). The re-check algorithm returns true if and only if the following holds:

• AP ⊆ AP�rv ;
• for every TPP-clause 〈s, α, v〉 ∈ �, s ∈ S�rv , v � L�rv (s, α);
• for every TPT-clause 〈s,T 〉 ∈ �, s ∈ S�rv , T ⊆ S�rv , T � {si ∈ S�rv |(s, si ) ∈ R�rv };
• for every TPI-clause 〈S0〉 ∈ �, S0 � S�rv ,0.

These conditions can be verified by a simple syntactic check on the PKS. For example, considering the x -TP for
the property φ2 presented in Table 2 of our vacuum-cleaner example, the re-check algorithm returns a true
value for the revision M�rv in Fig. 1b of the modelM in Fig. 1a.
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Lemma 5.3 Let M � 〈S ,R,S0,AP ,L〉 and M ′ � 〈S ′,R′, S ′
0, AP

′,L′〉 be two PKSs and let � be an x -TP. The
re-check algorithm returns true if and only if M ′ is �-related toM .

Proof Sketch For M ′ to be �-related to M , the conditions of Definition 4.2 should hold. Each one of these
conditions is a condition of the re-check algorithm. Thus, if M ′ is �-related to M , the re-check returns
true. Conversely, if re-check returns true, each condition of the algorithm is satisfied and, since each of
these conditions corresponds to a condition of Definition 4.2, M ′ is �-related toM . �

The reported Lemma allows us to prove the following Theorem.

Theorem 5.2 LetM be a PKS, let φ be a property, let � be an x -TP for φ inM where x ∈ {	, ?}, and letMrv be
a revision of M . The re-check algorithm returns true if and only if Mrv is an �x -revision ofM .

Proof Sketch By applying Lemma 5.3, the re-check algorithm returns true if and only ifMrv is�-related toM .
By Definition 4.4, since � is an x -TP, the re-check algorithm returns true if and only if Mrv is an �x -revision
of M . �

The analysis and re-check algorithms assume that the three-valued LTL semantics is considered. An al-
ternative semantics, called thorough LTL semantics [BG00], has been introduced to provide an evaluation of
formulae that better reflects the natural intuition. It has been demonstrated that the two semantics coincide in
the case of self-minimizing LTL formulae [GH05]. In this case, our results are correct also w.r.t. the thorough
semantics. Note that, as shown in [GH05], most practically useful LTL formulae are self-minimizing.

6. Evaluation

We implemented TOrPEDO as a Scala stand alone application andmade it available online [Tor20].We implemented
TOrPEDO-MUP and TOrPEDO-SMT by using NuSMV (v2.6.0) and Z3 (v4.4 build 2 rev 1). We evaluated how the
analysis helps in creating models revisions, how frequently running the re-check algorithm allows the user to
avoid the re-execution of the analysis algorithm from scratch. We also evaluated the efficiency of TOrPEDO and
how it supports the development of (small) models. Specifically, we considered the following research questions:

RQ1:How does the size of the proofs generated by the analysis algorithm of TOrPEDO-MUP compares to the
size of the models being analyzed? (Sect. 6.1)

RQ2: How frequently running the re-check algorithm of TOrPEDO-MUP allows to avoid the re-execution of
the analysis algorithm from scratch? (Sect. 6.2)

RQ3: How efficient is TOrPEDO in analyzing models and how does TOrPEDO-SMT compare to TOrPEDO-MUP?
(Sect. 6.3)

RQ4: How useful is TOrPEDO-SMT in supporting the designers in the model design on an example in the
genomic domain? (Sect. 6.4)

We used TOrPEDO-MUP for RQ1 and RQ2 since the analysis of the models considered for answering these
questions did not require the most efficient version of our tool. We used TOrPEDO-SMT for RQ3 and RQ4. We
run our experiments on a machine with processor Intel Core i5 3.2GHz and 32GB of memory.

6.1. Analysis support—RQ1

To answer RQ1, we checked how the size of the proofs generated by the analysis algorithm compares to the
size of the models being analyzed. The topological proofs represent constraints that, if satisfied, ensure that the
property is not violated (or possibly violated). As discussed in Sect. 4, to ensure that the property is not violated,
the designers should not modify the parts of the model constrained by the proofs while creating model revisions.
Therefore, the smaller the topological proofs are, the more useful they are, since more elements can be changed
during the model revisions. In addition, smaller proofs allow for easier inspection, and this makes it easier to
create revisions.
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Table 6. Properties considered in the evaluation
φ1: G(¬OFFHOOK ) ∨ (¬OFFHOOK U CONNECT ED)
φ2: ¬OFFHOOK W (¬OFFHOOK ∧ CONNECT ED)
φ3: G(CONNECT ED → ACT IV E)
φ4: G(OFFHOOK ∧ ACT IV E ∧ ¬CONNECT ED → X (ACT IV E))
φ5 G(CONNECT ED → X (ACT IV E))
ψ1: G(CONNECT ED → ACT IV E)
ψ2: G(CONNECT ED → X (ACT IV E))
ψ3: G(CONNECT ED) ∨ (CONNECT ED U ¬OFFHOOK )
ψ4: ¬CONNECT ED W (¬CONNECT ED ∧ OFFHOOK )
ψ5: G(CALLEE SEL → OFFHOOK )
η1: G((OFFHOOK ∧ CONNECT ED) → X (OFFHOOK ∨ ¬CONNECT ED))
η2: G(CONNECT ED) ∨ (CONNECT ED W ¬OFFHOOK )
η3: ¬CONNECT ED W (¬CONNECT ED ∧ OFFHOOK )
η4: G(CALLEE FREE ∨ L I N E SEL)
η5: G(X (OFFHOOK ) ∧ ¬CONNECT ED)

Table 7. Cardinalities |S |, |R|, |AP |, |?|, and |M | are those of the evaluated model M . |�p |x is the size of proof �p for a property p; x
indicates if �p is a 	-TP or a ?-TP. The column |�p |x also reports percentage of the ratio between the size of the proof and the size of the
model.
Model |S | |R| |AP | |?| |M | |�φ1 | |�φ2 | |�φ3 | |�φ4 | |�φ5 |
callee-1 5 15 3 7 31 7? (22%) 9? (29%) 21? (68%) 23? (74%) 23? (74%)
callee-2 5 15 3 4 31 7? (22%) 9? (29%) 21? (68%) 22	 (71%) ×
callee-3 5 15 3 2 31 7? (22%) 9? (29%) 21? (68%) 23	 (74%) ×
callee-4 5 15 3 0 31 × × 23	 (74%) 21	 (68%) ×
Model |S | |R| |AP | |?| |M | |�ψ1 | |�ψ2 | |�ψ3 | |�ψ4 | |�ψ5 |
caller-1 6 21 5 4 52 28? (54%) × 2	 (4%) 9? (17%) 28? (54%)
caller-2 7 22 5 4 58 30? (52%) × 2	 (4%) 9? (16%) 30? (52%)
caller-3 6 19 5 1 50 26	 (52%) 28	 (56%) 2	 (4%) 11	 (22%) 26	 (52%)
caller-4 6 21 5 0 52 28	 (54%) × 2	 (4%) 9	 (17%) 28	 (54%)
Model |S | |R| |AP | |?| |M | |�η1 | |�η2 | |�η3 | |�η4 | |�η5 |
caller-callee-1 6 30 6 30 61 37? (61%) 2	 (3%) 15? (25%) 37? (61%) ×
caller-callee-2 7 35 6 36 78 43? (55%) 2	 (3%) 18? (23%) 43? (55%) ×
caller-callee-3 7 45 6 38 88 53? (60%) 2	 (3%) 53? (60%) 53? (60%) 53? (60%)
caller-callee-4 6 12 4 0 42 × × × 19	 (45%) ×

The goal of this research question is to assess how useful the computed topological proofs are. The usefulness
is evaluated by comparing the size of the topological proofs to the size of the models being analyzed.

Dataset. We considered a set of 3 examples (callee, caller and caller-callee) proposed in the literature and used
to evaluate χChek [ECD+03]. For each of these examples, we consider the PKS representing the initial model,
indicated using the name of the model followed by the index 1, and three model revisions, each indicated using
the name of the model following an incremental index. For example, callee-1 indicates the initial PKS model
for the callee example, while callee-2, callee-3, and callee-4 are three consecutive revisions of callee-1. Therefore,
in our evaluation, we considered 12 PKS in total. Table 7 reports the cardinalities |S |, |R| and |AP | of the sets
of states, transitions, and atomic propositions of each considered PKS. The column with label |?| contains the
number of combinations made by a state s and an atomic propositions α such that L(s, α) �?. The number of
states, transitions, atomic propositions, and combinations of a state s and an atomic proposition α such that
L(s, α) �? is different across the different examples. This shows that our examples are sufficiently diverse to
enable us assessing how the size of the proofs generated by the analysis algorithm of TOrPEDO-MUP compares
to the size of the models.

We considered five properties for each example (see Table 6). These properties were inspired by the original
properties and based on the LTL property patterns [DAC99].3 These properties are sufficiently diverse to support
our experiments, since they use all the LTL operators.4 Therefore, they enable us to assess the topological proofs
computed starting from different LTL operators.

Methodology. We run the analysis component of TOrPEDO. We considered each of the 60 model-property
combinations of our dataset. For each model-property combination, we executed the analysis component of
TOrPEDO and we recorded its output (see Fig. 2).

3 The original properties used in the examples were specified inComputationTree Logic (CTL), which is currently not supported by TOrPEDO.
4 The weak until operator (W) is rewritten using the until operator (U) following the standard LTL rewriting rules.



TOrPEDO: witnessing model correctness with topological proofs 1059

Table 8. Results returned by the re-check component for the models and the properties of our benchmark.
Model φ1 φ2 φ3 φ4 φ5 Model ψ1 ψ2 ψ3 ψ4 ψ5 Model η1 η2 η3 η4 η5
callee-1 - - - - - caller-1 - - - - - caller-callee-1 - - - - -
callee-2 ✓ ✓ ✓ ✓ ✗ caller-2 ✓ - ✓ ✓ ✓ caller-callee-2 ✓ ✓ ✓ ✓ -
callee-3 ✓ ✓ ✓ ✓ - caller-3 ✓ - ✓ ✓ ✓ caller-callee-3 ✓ ✓ ✓ ✓ -
callee-4 ✗ ✗ ✓ ✓ - caller-4 ✓ ✗ ✓ ✓ ✓ caller-callee-4 ✗ ✗ ✗ ✓ ✗

For the cases in which TOrPEDO produced a topological proof, we also computed the size of the proof, as
defined in Sect. 4. We compared the size of the PKS model and the size of the proofs returned by TOrPEDO.

Results. Table 7 summarizes the obtained results. We show the total size |M | of the model, and the size |�p |
of the proofs. The column |�p |x also reports within rounded brackets the percentage of the ratio between the
size of the proof and the size of the model. Cells labeled with the symbol × indicate that a property was not
satisfied in that model and thus a proof was not produced by the analysis algorithm. The numbers indicating the
size of the proofs are tagged with a subscript that indicates whether the property is satisfied (x � 	) or possibly
satisfied (x �?). Proofs are ≈ 60% smaller than their respective initial models. Thus, we conclude that the proofs
are significantly more concise than the original model, thus, enabling a flexible design.

The answer to RQ1 is that, on the considered models, TOrPEDO provides proofs that are ≈ 60% smaller than
their respective initial models.

6.2. Re-check support—RQ2

To answer RQ2, we checked how the results output by the re-check algorithm were useful in producing PKSs
revisions.

Dataset. We considered the same dataset used for RQ1. We assumed that, for each example, the designer
produced revisions following the order specified in Table 8 (column Model), that is consecutive revisions are
identified using consecutive indexes labeling the name of the same example. For example, the model callee-3 is
a revision of the model callee-2 which, in turn, is a revision of the model callee-1. Since the design of callee-2
precedes the design of callee-3, we say that callee-2 is the previous model of callee-3. The other columns contain
the different properties that have been analyzed for each category.

Methodology. We run the re-check component of TOrPEDO on the models and the properties of our dataset.
We recorded the output of the re-check component. We assessed in how many cases the re-check component
allowed designers to avoid re-runnning the analysis.

Results. Table 8 reports our results. A cell contains ✓ if the re-check was passed by the considered revised
model, i.e., a true value was returned by the re-check algorithm, ✗ otherwise. For example, the ✓ symbol
associated by the model callee-2 and the property φ1 indicates that the re-check component confirmed that the
revision callee-2 of callee-1 is an �-revision of callee-1 by considering the topological proof � for φ1 in callee-1.
The dash symbol - is used when the model of the corresponding line is not a revision (i.e., the first model of each
category) or when the observed property was false in the previous model, i.e., an x -TP for the property was not
produced. For example, the model caller-1 is not a revision, since it is the first model proposed for the caller
example. Differently, the model caller-2 and the property ψ2 are associated with the symbol - since, as specified in
Table 7, the analysis component did not produce any topological proof of the property ψ2 in the model caller-1.
Therefore, the re-check could not be executed. We inspected the results produced by the re-check algorithm
to evaluate their benefit in verifying if revisions were violating the proofs. Table 8 shows that, in ≈ 21% (number
of cells labeled with the ✗ as a percentage of the number of cells labeled with symbols ✗ or ✓) of the cases, the
TOrPEDO re-check notified the designer that the proposed revision violated some of the clauses contained in the
�-proof, while in ≈ 79% (number of cells labeled with the ✓ as a percentage of the number of cells labeled with
symbols ✗ or✓) the re-check allowed designers to avoid re-runnning the analysis (and thus the model checker).

The answer to RQ2 is that, on the considered models, in ≈ 79% the re-check component allowed designers
to avoid re-runnning the analysis (and thus the model checker).
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Fig. 4. Comparison of the efficiency of TOrPEDO-MUP and TOrPEDO-SMT. For the property φ2, TOrPEDO-MUP provided a result only for the
model with 10 states in 2.1m

6.3. Efficiency—RQ3

To evaluate the efficiency of TOrPEDO we could not use the models of RQ1 and RQ2. Indeed, executing the
analysis and re-checkphases of TOrPEDO requires less than aminute for each property of eachmodel. Therefore,
analyzing the performances on these models does not provide significant practical results. For this reason, to
evaluate the efficiency of TOrPEDO we analyzed a set of randomly generated models with increasing size. The
analysis phase of TOrPEDO combines three-valued model checking and UCs computation. Three-valued model
checking is as expensive as classicalmodel checking [BG99], i.e., it is linear in the size of themodel and exponential
in the size of the property. UCs computation is FPSPACE complete [SHH12]. The re-check phase performs a
simple syntactic check; the complexity of the re-check algorithm is linear in the size of the model. Therefore,
we only analyze the efficiency of the analysis phase of TOrPEDO since the re-check requires negligible time
compared to the analysis.

Dataset. We generated a set of random models with an increasing number of states (i.e., 10, 20, 30, and 40).
The random models are generated from the grade crossing semaphore (GC) example ([BMS+17]) starting from
the GCmodel, and by iteratively duplicating the GC model and connecting the duplicated model with the initial
model with randomly generated transitions.We considered two properties φ1 and φ2 that are respectively satisfied
and possibly satisfied on the GC model and on the randomly generated models. Property φ1 specifies that red
lights up infinitely often (� � red). Property φ2 states that green lights up infinitely often (� � green).

Methodology. We run the analysis component of TOrPEDO-MUP and TOrPEDO-SMT tool by considering all
the eight combinations made by a randomly generated model and a property. Note that, in our experiments we
considered an extended version of PLTL-MUP, namely Hybrid, that improves the PLTL-MUP performances by
combining it with TRP++UC [SGT13]. We set two hours as timeout for each run. For TOrPEDO-SMT, for each
model and property, we set 86 as a value for the completeness bound k . We selected this value since it ensures the
correctness of the result, i.e., we set its value by considering to the size of the recurrence diameter (the longest
initialised loop-free path in the state graph) and the size of the Büchi automaton representing the negation of
the property [CKOS05]. We recorded the output of the analysis component and the time required to produce
the output result. Note that we did not report the time required by the model checker and the proof extraction
separately since the cost of executing the model checker is negligible compared to the cost of computing the
topological proof.

Results. Our results are reported in Fig. 4. The x-axis reports the number of states of each randommodel. The
y-axis reports the time required by TOrPEDO-MUP and TOrPEDO-SMT for each run that finished within the timeout.
TOrPEDO-MUPwas not able to finish within the timeout for models above 20 states. For property φ1, TOrPEDO-MUP
was able to process models with 10 and 20 states. For these models, the differences between the time required
by TOrPEDO-MUP and the time required by TOrPEDO-SMT are approximately 3min and 36min, respectively. For
property φ2, TOrPEDO-MUP was able to process only models with 10 states. For this model, the difference between
the time required by TOrPEDO-MUP and the time required by TOrPEDO-SMT is approximately 2min. TOrPEDO-SMT
was able to finish within the timeout for any model containing up to 40 states. The propositional logic formulae
generated by TOrPEDO-SMT had approximately 1000 propositional logic operators. For the cases in which both
TOrPEDO-MUP and TOrPEDO-SMT finishedwithin the timeout, they required on average 15m and 1.4m, respectively.
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The answer toRQ3 is that, on the consideredmodels, TOrPEDO-SMT can verify within the timeoutmodels which
are double in size w.r.t. those which could be verified by TOrPEDO-MUP within the timeout. For the cases in
which both the versions of our tool finished within the timeout, TOrPEDO-MUP and TOrPEDO-SMT required on
average 15m and 1.4m, Therefore, TOrPEDO-SMT is significantly more efficient than TOrPEDO-MUP.

6.4. Usefulness—RQ4

To assess how useful TOrPEDO is in supporting the evaluation of design choices, we considered a (small) model
example from the genomic domain, related to Gene Regulatory Networks (GRNs). GRNs are collections of
molecular regulators, interactingwith each other and governing the gene expression levels ofmRNAand proteins.
Typically, GRNs are represented using nodes (genes) connected by edges (inhibition/activation actions); edges
may be weighted or unweighted using some coefficient (e.g., inferred using the Banjo method [YSW+04]). GRNs
are deduced from gene expression [Alu05] or ChIP-seq experiments data [SPM19] and are used to understand
fundamental biological processes in the cell, as well as the pathogenesis of some diseases [ESDHK14, LXZW12],
using genomic data integrated from several sources [BCMC21].

Verifying whether GRNs meet certain properties is a widely recognized problem [JCL+09]. The correctness
of the inferred networks may be performed manually (by comparison with public database, e.g., KEGG [KG00]
and GO [ABB+00]) or automatically (e.g., by using symbolic model checking techniques [GKD+15, MDKG15]).
We evaluated how TOrPEDO supports designers in establishing appropriate models of GRNs.

The MAPK Example. We considered a small network of the MAPK pathway5, inspired by [GKD+15] and
translated it into a PKS. Each of the six encompassed genes is represented by one proposition (i.e., Msg5,
Fus3, Ste7, Far1, Ste11, and Dig1/2). The proposition is true if the gene is activated, false otherwise. Each
configuration of the network describes the status of all the genes (activated/deactivated) and is represented as a
state in the PKS. In total, we have 64 (26) states that represent all possible statuses of the genes. Transitions among
PKS states encode how the status of the genes can change according to the behavior specified by the regulatory
network. As initially the network can be in any configuration, all states of the PKS are initial states.

We considered two LTL properties that MAPK pathway should satisfy (i.e., φ1 and φ2) and one (φ3) that it
should not satisfy. These properties are inspired by the CTL specifications provided in [GKD+15] and abstracted
fromKEGG’s pathways characteristics [KG00], and then discussed with domain experts. Property φ1 � Fus3 →
X (¬Dig1/2) is expressing that if Fus3 is activated, Dig1/2 will be inhibited immediately in the next step (i.e.,
Fus3 is a direct inhibitor of Dig1/2). Property φ2 � G(Msg5 ∨ Fus3) → F(¬Ste11) means that if globally
either Msg5 or Fus3 is activated, finally Ste11 will be inhibited. Finally, property φ3 � G(Ste7 → F(Fus3))
is checking whether or not Ste7’s activation will finally inhibit or promote the transcription of Fus3 cell cycle
regulatory gene.

Methodology. As the initial model, we considered a version of the PKS having multiple uncertainty points,
specifically: on Dig1/2 in two different states, on Ste11 in one state, and on Msg5 in another state. For the three
observed properties, we simulated an incremental model design by running TOrPEDO on the initial model and we
assess how useful are the artifacts produced by TOrPEDO to guide the model design. We articulate the timeline of
experiments in Table 9.

5 The MAPK pathway is a set of chained proteins communicating a signal from a receptor on the cell surface to the DNA stored in the cell
nucleus.
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Table 9. LTL formulas checked on the 64 states (P)KS representing a sub-network of MAPK pathway.
Property Initial Model Revision 1 Revision 2 Revision 3 Revision 4
φ1 analysis = 	 re-check = 	 re-check = 	 analysis = 	 analysis = 	
φ2 analysis = ? re-check = ? re-check = ? analysis = 	 analysis = 	
φ3 analysis = ⊥ re-check = ⊥ re-check = ⊥ analysis = ⊥ analysis = 	

• Step 1, First, we run the analysis phase on the model against all three requirements, obtaining results 	
for φ1, ? for φ2 and ⊥ for φ3.

• Step 2. We then inspected the topological proofs generated for φ1 and φ2 and, after consulting with domain
experts, we proposed a first revision of the model that did not conflict with the listed clauses: namely, we
assigned Msg5 � ⊥ in states not shown in the proof. After this revision, it was sufficient to run the re-check
procedure, to confirm the previous verification results.

• Step 3. Similarly, by inspecting again the topological proofs, we proposed a second change in the model,
producing a second revision that included new transitions among given states. In particular, adding new
transitions allows us to envision a wider set of changes of configurations between the states of the GRN. In
other words, we allowed additional gene activations and inhibitions with respect to the initially considered
set. As this change does not involve any part of the model that is mentioned in the topological proof, we could
again confirm the previous results with a simple syntactic re-check of TOrPEDO.

• Step 4, With the purpose of satisfying property φ2, we produced a Revision 3 which included refinements
of the Ste11 proposition to the value ⊥. Such change impacted clauses specified in the topological proof. As
such, we had to re-execute the analysis phase and obtained, in conclusion, that also property φ2 was satisfied
by the third revised instance of the model.

• Step 5. Finally, we also inspected the counterexample obtained by running TOrPEDO on the third revised
model against φ3 and, by changing the truth value of a number of propositions in the model we produced a
Revision 4. We run the analysis phase and obtained a 	 result also for the last property.

Results. This exemplifying iterative design process demonstrated that we were able to evaluate three properties
on five different models (an initial one, plus four different revisions). We evaluated each of these properties by
only running the analysis three times, while using a simple syntactic check twice. The topological proofs provide
useful information to identify the parts of the models to be changed. They effectively enabled us to identify the
portions of the model that influenced the satisfaction of the properties of interest. This information was useful
for designing the model revisions. For example, in Step 2 we changed the value of a proposition. Since this
proposition was not involved in any of the clauses of the topological proof, we could safely change its value.
The re-check component was only executed for confirmation. Similarly, in Step 3 we applied another change
to the model, this time by adding new transitions among given states. As for the previous step, our change did
not involve any part of the model that was mentioned in the topological proof. Again, we verified our change
by running the re-check component. In these two cases, the re-check phase confirmed that the revisions were
compliant with the topological proofs and avoided re-executing the model checker.

Our experiment showed that the information contained in the topological proof was useful in our model
design as it effectively guided us during the creation of the model revisions of a (small) model example from the
genomic domain, related to Gene Regulatory Networks (GRNs).

The answer to RQ4 is that the topological proofs and counterexamples provided by TOrPEDO effectively sup-
ported the development of a (P)KS representing a gene regulatory network.

7. Related work

Partial knowledge has been considered in requirement analysis and elicitation [MSG17, LKMU08, CSV+19], in
novel robotic planners [MGPT18], software models [UBC09, UABD+13, FSC12, AGC12,MSCG18,MSCG19],
and testing [DHKN14, Tre99, vdBRT04, CBGS18, CGS20]. Several researchers analyzed the model checking
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problem for partially specified systems [MSG16, CDEG04], considering both three-valued [LT88, GHJ01, BG99,
BG00, GP11] and multi-valued [GC03a, BG04] semantics. Other works apply model checking to incremental
program development [HJMS03, BHJM07, JHC19]. However, all these model checking approaches do not pro-
vide an explanation on why a property is satisfied, by means of a certificate or proof. Although several works have
tackled this problem [BMS+17, TC02, PZ01, PPZ01, GRT18, DN17], differently from this work, they mostly
aim to automate proof reproducibility.

Tao and Li [TL17] propose a theoretical solution to model repair: the problem of finding the minimum set
of states in a KS which makes a formula satisfiable. However, the problem is different from the one addressed in
this paper. Furthermore, the framework is only theoretical and based on complete systems.

Approaches were proposed in the literature to provide explanations by using different artifacts. For example,
other works commonly use a different notion of witnesses: a path of the model that satisfies (or possibly satisfies)
a property of interest [TG19, BCC+99, HLSU02, Nam01, TGNB20]. In our work, we proposed topological
proofs, a new type of witnesses that is significantly different from the one presented in the literature. Other works
(e.g., [GC03b, SG03]) studied how to enrich counterexamples with additional information in a way that allows
better understanding the property violation. Work has also been done to generate abstractions of the counterex-
amples that are easier to understand (e.g., [EMA10]). Alur et al. [AMT13] analyzed the problem of synthesizing a
controller that satisfies a given specification.When the specification is not realizable, a counter-strategy is returned
as a witness. Pencolé et al. [PSMTM17] analyzed model consistency, i.e., the problem of checking whether the
system run-time behaviour is consistent with a formal specification. Bernasconi et al. [BMS+17] proposed an ap-
proach that combines model checking and deductive proofs in a multi-valued context. The notion of topological
proof proposed in this work is substantially different from the notion of deductive proof.

The works on vacuity checking (e.g., [FKSFV08, MS20, SDGC10]) are also related to our work. Specifically,
a property φ is vacuously satisfied on a modelM if it has a subformula φ′ that does not affect the satisfaction of φ
inM . Other works (e.g., [PQ13, RLF+13, SDGC10]) studied how to understand why a property is unsatisfiable.
These problems are different from the one considered in this paper, where the goal is to provide a slice of the
original model that preserves the (possible) satisfaction of the property.

8. Conclusions

We have proposed TOrPEDO, an integrated framework that supports the iterative creation of model revisions.
The framework provides a guide for the designer who wishes to preserve slices of her model that contribute to
satisfying fundamental requirements while other parts of the model are modified. For these purposes, the notion
of topological proof has been formally and algorithmically described. This corresponds to a set of constraints
that, if kept when changing the proposed model, ensure that the behavior of the model w.r.t. the property of
interest is preserved. Our Lemmas and Theorems prove the soundness of our framework, i.e., how it preserves
correctness in the case of PKS and LTL. The proposed framework can be used as a baseline for other FM
frameworks, and can be extended by considering other modeling formalisms that can be mapped onto PKSs.

We presented two implementations of TOrPEDO, namely TOrPEDO-MUP and TOrPEDO-SMT. TOrPEDO-MUP is
our initial implementation [MRB20] of TOrPEDO that uses PLTL-MUP to extract topological proofs.With the intent
of providing practical and efficient support for flexible model design and wider adoption of our framework, in
this work, we proposed TOrPEDO-SMT. TOrPEDO-SMT uses SMT techniques to extract topological proofs.

TOrPEDOwas evaluated by showing the effectiveness of the analysis and re-check algorithms included in the
framework.Results showed thatproofs are smaller than theoriginalmodels, and canbeverified inmost of the cases
using a simple syntactic check. Additionally, we analyzed the efficiency of TOrPEDO and compared TOrPEDO-MUP
with TOrPEDO-SMT. Our results show that TOrPEDO produces a topological proof within two hours for models
with less than 40 states. Furthermore, our results show that TOrPEDO-SMT is more efficient than TOrPEDO-MUP.
Note that, the analysis phase of TOrPEDO combines three-valued model checking and existing tools for the
UCs computation. Therefore, its scalability improves as the performance of these frameworks enhances. Finally,
we assessed how useful is TOrPEDO in supporting the evaluation of alternative design choices of (small) model
instances in applied domains. Our results show that the topological proofs and counterexamples provided by
TOrPEDO effectively supported the development of a model of a gene regulatory network.
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