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Abstract. The current travel demand in railways requires the adoption of novel approaches and technologies
in order to increase network capacity. Virtual Coupling is considered one of the most innovative solutions to
increase railway capacity by drastically reducing train headway. The aim of this paper is to provide an approach
to investigate the potential of Virtual Coupling in railways by composing stochastic activity networks model
templates. The paper starts describing the Virtual Coupling paradigmwith a focus on standard European railway
traffic controllers. Based on stochastic activity network model templates, we provide an approach to perform
quantitative evaluation of capacity increase in reference Virtual Coupling scenarios. The approach can be used to
estimate system capacity over a modelled track portion, accounting for the scheduled service as well as possible
failures. Due to its modularity, the approach can be extended towards the inclusion of safety model components.
The contribution of this paper is a preliminary result of the PERFORMINGRAIL (PERformance-based Formal
modelling and Optimal tRaffic Management for movING-block RAILway signalling) project funded by the
European Shift2Rail Joint Undertaking.
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1. Introduction

The ever-higher speeds reached by current trains and the consequently reduced travel times attract an increasing
number of users and in turn, require increased capacities to the railway network. That is especially critical to
avoid bottlenecks in specific railway corridors wheremultiple lines converge. Railway operators are experimenting
with different techniques and solutions to reduce the spaces between two subsequent trains. Among the different
available and envisioned solutions to increase efficiency and capacity, cooperative driving seems an extremely
promising option for smarter railway transportation. Similar solutions have been successfully experimented in
the automotive sector showingmany advantages and opportunities in terms of accident reduction, due to reduced
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human control, and infrastructure utilization, due to reduced traffic congestion. The improvement of infrastruc-
ture utilization and the consequent increase in network capacity are also two primary objectives addressed by the
Shift2Rail Joint Undertaking (JU) for future railways [Shi15]. The European Shift2Rail Joint Undertaking (JU)
has been established in 2014 to manage and coordinate all rail-focused research and innovation activities funded
under the EU Horizon 2020 framework program. A possible solution to the aforementioned issues addressed in
Shift2Rail is the so-called Virtual Coupling that allows trains to run as they were physically joined due to the
considerable reduction of train headway.

Virtual Coupling offers a really innovative and somehow visionary scenario for future railways, although
several fundamental aspects have to be studied before it can be actually introduced in real systems.With reference
to the advantages of Virtual Coupling, it is rather intuitive that closer trains can have a great impact on network
capacity. On the other hand, the possible advantages of Virtual Coupling have to be analysed with respect to
specific topologies and lines to concretely measure the positive effects on network capacity.

A previous work published in reference [FMN+18] describes a solution to integrate Virtual Coupling in mod-
ern and future railway signalling systems, and proposes some directions for ground-breaking research with the
ultimate goal to enable safe train platooning. The work presented in this paper develops that research direction
and introduces a compositional model-based approach for the quantitative evaluation of network capacity in-
crease considering specific network topologies. The proposed approach is based on Stochastic Activity Networks
(SAN) [MMS85], which is a modeling formalism similar to Petri Nets. SANs allow engineers to use C-code in
their models. The proposed approach aims at modeling the service level over a given track portion, in order to
evaluate the real benefits of Virtual Coupling when used in specific scenarios. The main benefit of the proposed
approach is to provide engineers with an effective tool to evaluate the effects of virtual coupling in real-world
conditions (e.g., track configuration, traffic volumes, types of rolling stock).

The rest of the paper is organized as follows. Section 2 introduces the necessary background that includes the
concepts related to the train control systems and the basics on the SAN formalism. Section 3 introduces Virtual
Coupling as a novel operating mode for future railway controllers. Section 4 describes the details about the SAN
model, including the model of operating modes of the railway controller as well as an approach to represent
the service over a specific railway line. Section 5 describes the results of the analysis conducted over a simple
yet realistic case-study, which are useful to validate the model and to evaluate the benefits introduced by Virtual
Coupling. Section 6 discusses the related works, while Sect. 7 ends the paper by giving some closing remarks.

2. Background

In this section, we describe the background needed by a non-expert reader to understand how the reference
European railway control systems works, together with the basics on the SAN formalism that will be used to
build the models.

2.1. ERTMS/ETCS

TheEuropeanRail TrafficManagement System/EuropeanTrainControl System (ERTMS/ETCS) is the standard
for signalling and interoperability in modern European railways. ERTMS/ETCS ensures both technological
compatibility among trans-European railway networks and allows integration of the new signalling systems
within existing legacy interlocking systems. A reference architecture for ERTMS/ETCS systems consists of three
main subsystems: the onboard system is the core of the control activities located on the train, the line-side system
is responsible for providing geographical position information to the on-board subsystem, and the trackside
system is in charge of monitoring the movement and spacing of the trains. The ERTMS/ETCS specification
identifies three functional levels of growing complexity, named Level 1, Level 2 and Level 3. The specific level
depends on the equipment of the line and on how the information is transmitted between the onboard and the
line-side systems.

In Level 1, the movement authority (MA) and the corresponding information on the route are transmitted to
the train and displayed in the cabin to the driver (cab signalling) in a discontinuous way by means of electronic
beacons, named balises, placed between the rails.
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Fig. 1. Railway fixed block and moving block signalling

The task of the balises is to enable a self-localization of a train and to transmit dynamic information about
the status of the track ahead. Level 2 allows the management of train distancing through a central controller
named Radio Block Center (RBC). The RBC receives information about the status of the line and the trains
in order to send updated information to trains regarding their MA (i.e., distance ahead and maximum speed
profile). Each train can define its specific speed profile on the basis of its own weight and braking characteristics.
ERTMS/ETCS Level 2 is based on the usage of Global System forMobile Communications—Railway (GSM-R)
for both train-to-ground and ground-to-train communications. It uses fixed block signalling with trackside train
location equipment such as track circuits for safe train separation. ERTMS can be considered as the combination
of ETCS with GSM-R, hence from now on in this paper, we can refer to ERTMS only.

Level 3, which introduces the so-called moving block signalling, is still at an early stage of development,
also due to safety validation concerns. In Level 3, lineside equipment such as train detection devices based on
track circuits can be removed. It hence overcomes the concept of fixed block sections by introducing the concept
of moving block sections representing the actual distance between trains plus some safety margins. The main
advantage of Level 3 consists of reducing the distance between trains to the minimum.

Further development ofLevel 3,with the integration of newwireless communication technologies is supported
by the Innovation Program 2 (IP2) of the Shift2Rail Joint Undertaking [Shi15], which aims at a line capacity
increase by leveraging on moving block signalling. Such innovation has to ensure “continuity and backward
compatibility with the current signalling and supervision systems through ERTMS standards”. IP2 also opens
the possibility of introducing Virtual Coupling, considered as “a new way of operating trains” by creating multi-
train convoys. In Virtual Coupling, trains can be coupled and decoupled dynamically, according to the service
needs and in the respect of the safety requirements.

Virtual Coupling represents a further optimization of moving block signalling and hence it makes sense as
an add-on of ERTMS Level 3. As shown in Fig. 1, in ERTMS Level 2 (upper part), the train safe headways
are computed by the RBC on the basis of the occupation status of the track, i.e., MAs must include one or
more free block sections, in turn including one or more track circuits (fixed block); in ERTMS Level 3 (lower
part), RBC uses the position and integrity information reported by the train to compute MAs (moving block).
Virtual Coupling requires a highly dependable positioning and communication system due to the stricter time
requirements resulting from shorter headways, which also stresses the importance of research on new generation
communication and positioning systems.

The absence of trackside train detection equipment has several advantages but also poses some challenges
and risks that discourage railway operators to adopt ERTMS Level 3 [FvHAM17]. While virtual coupling could
be—in theory—implemented on any moving block signalling systems, when associated to ERTMS it can boost
Level 3 performance and therefore its possible adoption due to the full exploitation of line capacity. That is a huge
advantage in terms of flexibility and efficiency of railway transportation against other transport modes, especially
considering high traffic corridors that have currently reached their capacity limit. Furthermore, the ERTMS
standard specification includes a clear reference architecture, solid working principles, advancedAutomatic Train
Control functionalities and awell-structured language formessages, packets and variables, so that implementation
of Virtual Coupling over ERTMS appears more viable compared to completely new developments, as we will
explain in more details in the following sections. This is why someone referred to Virtual Coupling over ERTMS
as ERTMS Level 4 [Mea16].
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Fig. 2. SAN model—example

2.2. Stochastic Activity Networks

Stochastic Activity Networks (SANs) are a stochastic extension of Petri Nets, which has been introduced
to analyze concurrency, timeliness, fault tolerance, and degradable performance of complex computing sys-
tems [MMS85]. In the following, we suppose that the reader is acquainted with the basics of Petri Nets.

A SANmodel comprises four primitives which define its structural component: places, activities, input gates,
and output gates. Places are used to describe possible local system states as in Petri Nets. Activities are called
transitions in Petri Net terminology; they can be timed or instantaneous, and are used to describe events that can
modify the system state. Gates are introduced in SANs to allow for greater flexibility in defining enabling and
completion rules. Timed transitions model time-consuming activities whose completion induces a state change in
the system; instantaneous activities model logical conditions, or activities requiring a negligible amount of time
to be completed.

The expressive power of SANs is raised by the possibility to associate actions (called cases) with the activities
that may be taken upon the completion of an event, an output functionwith the output gates, an enabling predicate
and an input function with the input gates.

The temporal specification of SANs is stochastic, it is defined by associating an activity time distribution
function with each timed activity and a probability distribution with each set of cases. Hence, cases permit to
model the uncertainty about the next state assumed upon completion. Once activated in a specific marking,
timed activities can be restarted, either with the same or different distribution, according to what specified by the
associated reactivation function. The reward structures that relate the possible behaviors of the stochastic process
to specified performance variables quantify benefits associated with activity completions and number of tokens
in places. This means that the reward structure of a SAN allows for a variety of ways of defining different types
of performance (reward) variables.

An example of SAN is provided and described in the remainder of this Section. A complete definition and
discussion of SANs is given in [SM01].
SANs at a glance. Figure 2 shows the structure of a SAN. It includes: places, drawn as circles; instantaneous
transitions, drawn as solid bars; timed transitions, represented by hollow ovals; input and output gates, drawn as
triangles. Cases are drawn as small circles on one side of the associated activity.

Special places may be used, i.e., the extended places, which differ from standard places for the type of the
tokens they may contain. Tokens in the extended places may represent atomic variables, data structures or arrays
of primitive data types (i.e., short, int, long, float, double, bool and char).

The firing of timed activities is associated with general distributed random variables, such as Exponential,
Normal,Binomial, whose parameters can be numeric constant ormarking dependent; the probability distribution
associated with each case could be specified as numerical constant or a function, as well. If no cases are present,
the default is assumed with a probability equal to one.

Input and output gates can be used to control the “enabling” condition of an activity and to change the state
of the system when the activity “fires”. An activity is enabled when the predicates of all input gates connected to
the activity are evaluated as true, and each place connected to incoming arcs contains at least one token. When
an activity fires, the input and the output functions of input and output gates (respectively) are executed, while
tokens of connected places are updated as in the Petri Net firings.
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The tool used throughout the paper to edit andanalyze SANmodels isMöbius [CGK+09],which also supports
the compositional and hierarchical development of models. In Möbius all enabling predicates, input and output
functions, parameters, types, and variables are expressed by C++ statements.

InFig. 2 the timed activity Timed Activity1 is enabled by tokens in places Place1 and Place2; when it fires, a
new token is added in Place3. At the bottomof the figure, the instantaneous activity Instantaneous Activity1
is enabled by the predicate of the Input Gate1, which in turn is evaluated on the marking of Place2 and
Extended Place1. When the activity fires, two cases are possible. The first adds a token in Place3; the second
enables the execution of the output gate Output Gate1, which in turn updates the marking of Place4 and
Extended Place1 according to the output function associated with the activity.

3. Architecture and operating modes of future railways

As anticipated in the previous section, ERTMS Level 3 has the potential of increasing significantly the capacity
of railway lines. Thanks to moving block signalling, the MA is dynamically computed in a continuous way thus
enabling each train to move till the safe rear end of the preceding train. Such a potential represents the main
improvement with respect to ERTMS Level 2, where the MA granted to trains has the granularity of the fixed
block sections, with a length that can be several kilometres. Hence, ERTMS Level 3 allows more trains to run on
a single track in order to increase line capacity. In order to reach its maximum performance while keeping the
required level of safety, ERTMS Level 3 needs a dependable communication between the train and the RBC in
order to ensure prompt hazard detection and safety monitoring, especially regarding train position and integrity
status.

Virtual Coupling over ERTMS Level 3 represents a further optimization as long as each train safely receives
sufficient information about the preceding train from the RBC or from the train itself by means of train-to-train
communication channels, which is not yet standardized within ERTMS.

Train-to-train communication can be an essential mechanism to enable Virtual Coupling by reducing the
risk of missing or delayed vital messages. Based on the experience gained within the automotive research with
platooning of vehicles over highways [RG94], possible topologies for railway Virtual Coupling are: “fully con-
nected”, in which the RBC communicates with the entire platoon of trains, and each train, in turn, forwards some
information to its neighbours; “chain-like”, in which the RBC communicates with the first train of the platoon
that, in turn, forwards the messages to the following train like in multi-hop/mesh routing. The first solution offers
a higher availability with respect to temporary communication loss, either with the RBC or with the preceding
train, since there is a second channel through which a train could receive vital information. Moreover, such
solution can offer a backward compatibility with the existing control solutions, based on the communication
between RBC and trains. Therefore, our proposal is based on such topology.

As shown in Fig. 3, the evolution towards ERTMS Level 3 with Virtual Coupling is possible by having the
RBC evaluate position and integrity received by each train (green arrows) and compute theMAof the entire train
fleet (blue arrows). In addition, each train can communicate its speed, acceleration and position to the following
train (red arrows). The onboard unit can compute its own speed profile, according to the information received
by both the RBC and preceding train.

Regarding possible real-world implementation, we assume the presence of an additional “operating mode”
corresponding to Full Supervision with Virtual Coupling. The actual use of such operating mode is not essential
for the results of the simulations because it can be thought of as a status only (sort of virtual operating mode). In
fact, the ERTMS standard [UNI16] defines several operating modes for the onboard European Vital Computer
(EVC) according to different conditions affecting the status of the trackside and of the train itself, in order to
guarantee the required performance and safety levels. The main one is named Full Supervision (FS)mode, where
the complete supervision of each train is ensured when all trains and track data required are available. Currently,
in FS mode, the entire system is able to operate at maximum performance (i.e., train speed) and safety, thus also
ensuring the highest capacity. For degraded operational situations, operatingmodes are Shunting,On-Sight, Staff
Responsible, which rely much more on train drivers and offer limited maximum speed and thus a significantly
lower capacity with respect to FS mode. For the sake of modelling abstraction, we group all of them into a single
operating mode named Partial Supervision (PS).



994 F. Flammini et al.

Fig. 3. Communications needed for Virtual Coupling

Fig. 4. Operating modes relevant for Virtual Coupling

As mentioned above, in this paper we assume a further operating mode, named Full Supervision with Virtual
Coupling (FSVC), on top of the FS mode. This operating mode is reachable from the FS mode if the system
verifies all required operating conditions. The real operation can be as follows: when the system switches from FS
to FSVC, the RBC sends a custom ERTMS message (“coupling” command) to the EVCs, starting the coupling
procedure of vehicles in platoons; on receipt of such message, each EVC starts to exchange messages regarding
position, speed and acceleration as previously described; the RBC computes the MAs for the entire train convoy
and communicates them to the trains (see Fig. 3). In case of different routes, the RBC sends the “decoupling”
command to revert back the system in the FS operating mode in order to allow a specific control on MAs.
The switch from FSVC to FS might be started by a single EVC, e.g., in case of a temporary loss of a train-to-
train communication. In case of major failures, the system could switch directly to PS operating modes. The
resulting control state machine is depicted in Fig. 4, where the FSVC mode is highlighted in light blue, showing
its connections with the operating modes currently defined by the ERTMS standard.
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Fig. 5. SAN model for operating modes

4. The SAN model

In order to evaluate the actual advantages provided by Virtual Coupling in future railways, we built a SANmodel
with the aim of predicting the capacity increase on a specific railway track topology.

The model has been developed as a composition of reusable atomic SAN models. The rationale behind that
was the ambition of building model libraries representing specific railway sections, with their own topology and
operating conditions. The model library is a collection of basic models that can be manually composed according
to different configurations; the current version is publicly available onGitHub.1 It includes two classes of models:
railway control system and railway line. The first class aims at representing the RBC and, specifically, the ERTMS
operating modes. The second class represents the physical characteristics of the railroad, including switch points;
in addition, there are models representing the incoming train flow of the modeled track portion and models
representing the measurement terminal needed to evaluate the line capacity (i.e., endpoints of the modeled track
where to measure the number of arriving trains). To analyze a specific railway network, the global model can be
obtained by place superposition of atomic SAN models, i.e., by sharing state variables.

The modeling approach consists of splitting the considered line into a sequence of elementary track elements,
connected to each other. The introduction of these track elements is only a ploy to model the continuous running
of trains as discrete, but they are not related in any way to the track occupancy of trains (known as virtual block).
Moreover, the shorter is the track element, the higher is the accuracy of the model since the discrete movement is
closer to the continuous one. In the model, in fact, each train could occupy multiple elementary track elements
at a specific time instant, but it would not be possible for two different trains to occupy the same block. The
elementary track elements are connected by means of place superposition. Each train is identified by a non-zero
identification number, stored in the extended places of the model. The hypothesis is that the track element is
shorter than the minimum distance between two trains. The running of trains along the modeled line can be seen
as the movement of a sequence of numbers, each equal to the train id over those track elements.

In the following, we describe atomic SAN models by detailing their parameters as well as their possible
composition.

ERTMS operating modes. The transition between operating modes, as explained in the previous section, can be
modeled by the SAN model shown in Fig. 5. The three places of the SAN model represent the corresponding
operating modes that are: Partial Supervision (PS), Full Supervision (FS), and Full Supervision with Virtual
Coupling (FSVC). Stochastic transitions connect those places. The assumption is that these transitions represent
system failures (from higher to lower supervision modes) and corresponding restorations (or simply repairs),
therefore we used exponential probability distributions. The specific rates are parameters of the model; hence we
have four parameters named FS2FSVC, FSVC2FS, FS2PS, and REPAIR.

1 https://github.com/RobertoNardone/VC-model.

https://github.com/RobertoNardone/VC-model
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Fig. 6. SAN model for Line—straight

Fig. 7. SAN model for Line—point

The extended place ERTMSstate stores over its state variable (typed as short) the current ERTMS operating
mode, encoded with the values 1, 2 and 3. This place is used for enabling a simple communication of the operating
modes with the other submodels. The initialization code initialises the behaviour, putting a token in the place
representing the initial state of the system and encoding the corresponding value in the extended place. At last,
associatedwith the transitions, the different output gates update the value encoded in the extendedplace according
to the entered state.

Line—straight.The first track element represents a straight elementwith an incoming and an outgoing connection
(Fig. 6). Both are represented by extended places, named secIn and secOut, in order to encode in their state
variables the identification number of trains entering and crossing the track element. In fact, when a train portion
enters the straight track element, a non-zero id is written on the place secIn. This condition, together with the
absence of trains (i.e., tokens) inside the element, enables the immediate transition trainDistancing, which
executes the output gate trainDist, aimed at evaluating train separation. More specifically, the output gate
trainDist evaluates if the incoming train id is different from the last id, in which case it puts a token in place
waitForDistance, otherwise it puts a token in the place green. In the former case, the transition greenDelay
evaluates the correct train separation,whichdependsoncurrentoperatingmodeobtained fromplaceERTMSstate,
before putting a token in place green. In both cases, a token is put in place trainEntering. When the green
light is obtained, the modelled behavior is the one of a train running along the track element. The firing of the
transition step is given by a deterministic distribution function, its value being a model parameter.

When the train is ready to exit the track element, a token is set in the place waitingTrain in order to wait until
the clearance from a preceding train (i.e., a zero value in place secOut). The output gate trainExiting moves
the train id from the place secIn to the place secOut and updates the place lastId with the train identifier.

Line—point. This element represents the SAN model of a switch point, or simply point. As depicted in Fig. 7,
this model shows two different incoming connections, named secIn1 and secIn2, and one outgoing connection,
named secOut. The behaviour of this model is similar to the one described above, with the only difference coming
from place green that is shared by the two tracks. Hence, when a train enters the track element from one of the
two incoming connections, it runs up to the end of this element. As in the previous model, the two values of
the deterministic distribution functions associated with the transitions step1 and step2 are to be considered as
model parameters.
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Fig. 8. SAN model for Injector terminal

Fig. 9. SAN model for Measurement terminal

Line—train injector. The atomic SAN model in Fig. 8 represents the incoming train flow entering the modelled
line portion. The transition arrivalTime represents the arrival of trains, which are buffered as tokens in the place
waitingTrains. When the extended place secOut is free from trains, the instantaneous transition newTrain fires
and the output gate EnteringTrain inserts a proper numeric identifier in the place.

The lower part of the model is useful for reproducing the last id in place secOut for a number of times equal
to the length of the train divided by the length of the modeled track element. By doing so, as explained above,
each train occupies different elements of the model at the same time, and its id is present in different places.

Line—measuring terminal. In order to evaluate the capacity of a line, we need a SANmodel which is able to count
the trains arrived at a specific terminal. This model has also to “consume” the numerical identifiers of the trains
to enable their movement along the line. This model is depicted in Fig. 9; it has an incoming connection, the
place secIn, connected by an input gate to the transition counting. The firing of this last transition, together
with the capability to store the id of the last train arrived in the place counter LastId, enables train counting.
Specifically, the value in the place counted provides at every instant of time the effective number of trains arrived
at the measurement terminal. Thus, the line capacity can be evaluated as the difference between the values stored
in the place counted at two distinct time instants, divided by the time interval.

Themodels described in this section canbe easily composedbyusing the joinoperator.Theplace superposition
allows to combine the track elements in sequence in order to model a specific railway line. An injector terminal
is needed at each entering point to model the train flow from that line, while a measuring terminal is needed
at each final track element. The place ERTMSstate of each model in the line also needs to be shared with the
corresponding place of the ERTMS model in order to have different train spacing and speed according to the
specific operating mode.
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Fig. 10. Graphical representation of case study 1

5. Capacity analysis

This section describes the capacity analysis we performed by using different case-studies and by varying input
parameters accordingly. The goal of the analysis is twofold: (1) to validate the proposed models and modelling
approach, and (2) to show how to evaluate the benefits of Virtual Coupling in specific railway scenarios based on
those models. SAN model evaluation has been performed by using the Möbius simulator [CGK+09], and more
specifically Möbius version 2.5 running on a notebook equipped with an Intel(R) Core (TM) i7-10510U CPU
@1.80GHz, with 16.0GB RAM and Windows 10 Pro OS.2 For all simulations, we set the confidence level to
0.95 and the relative confidence interval to 0.5%. After appropriate experimentation, we verified that these values
represent a good compromise between accuracy and simulation time: all the estimated values converged within
a maximum of 10.000 batches, with a maximum error of 0.5 every 100 trains. Moreover, for all the experiments
described in the following of this paper, we measured a maximum elapsed running time lower than 75 s on the
described notebook.

5.1. Straight Line

The first case study is depicted in Fig. 10 and represents a 2 km long straight line. The elementary track element
length is set to 200m, hence the linemodel is composed by 10 track elements. The connection points are numbered
from p100 to p110; as depicted in the figure, the train injector is connected to point p100, while the measurement
terminal is connected to p110.

We assume that the trains running on the line are composed by a FS E.402B locomotive [MCC02], which is
around 19.5 m long, with 19 coaches, for a total length of around 400 m. That means that each train occupies
3 track elements. Trains run at 90 km/h, so they need 8 s to cover each track element. In PS operating mode,
we assume a speed of 30 km/h, so a total of 24 s is needed to cover the track element. We assumed a minimum
distance of 200 m, which is exactly one track element, between two subsequent (virtually coupled) trains in FSVC
operatingmode, while a distance of 600m is realistic in FSmode. The final composedmodel inMöbius is depicted
in Fig. 11. It is made up of 10 submodels straight, each one representing a track element; a submodel entering
modeling the train injector at the point p100; a submodel measuringTerminal representing the measurement
terminal at the point p110; and a submodel ERTMSstates modelling the operational modes. The latter shares
the state variable ERTMSstate with all the other models, furthermore the input and the output connections of
each submodel is shared with the models of the preceding and following track element. Starting from the atomic
models described in the previous section, the creation of the joint model for this line is limited to the creation
of 12 shared variables among models. Graphically, the join operator is represented as a box to which the joint
models are connected. The creation of the shared variables is manually done, by the configuration popup window
associated with this box. Möbius allows to select places of the joint submodels to be superimposed, so providing
the actual connections (see bottom of Fig. 11).

Given the difficulty to compare evaluation results against real-world systems, since no Virtual Coupling
implementation is currently available, this case study has been used to support model validation. To that aim,
we considered a stable FSVC, FS, or PS operating mode for the entire simulated period and we enabled the
simulation logs produced by the Möbius simulator.

2 The Möbius project used in this paper as well as the evaluation output log files can be publicly accessed at https://github.com/
RobertoNardone/VC-model.

https://github.com/RobertoNardone/VC-model
https://github.com/RobertoNardone/VC-model
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Fig. 11. Composed SAN model for case study 1

Then, at each firing of transitions, the state of the places before and after the firing have been compared with
results obtained by an empirical evaluation, which has been manually executed.

We performed different capacity analysis by choosing reasonable values for the rates of transitions, thus
varying possible input parameters as described in the following paragraphs.

Capacity versus operating modes. The first analysis aims at evaluating the impact on line capacity of the transition
rates between operating modes. In the first experiment, we assume that the rates are those reported in Table 1
(please note that the table uses the notation x : y : z for incremental ranges from x to z with a step y). Variations
in the rate of the transition imply increased probabilities to be in a specific operating mode compared to another.
In particular, the highest (resp. lowest) value for the rate of transition FSVC2FS corresponds to a reduced (resp.
increased) probability to be in FSVC mode, and an increased (resp. reduced) probability to be in FS mode.

The plot in Fig. 12 reports simulation results for experiment 1. On the horizontal axis, the graph reports
the rate of the transition FSVC2FS varying from 1.0E−02 to 1.0E+00, while on the vertical axis it reports line
capacity in terms of trains/h. As expected, the maximum capacity can be obtained when FSVC2FS reaches its
minimum value. The theoretical maximum capacity in full supervision is depicted with the red line in the plot and
can be estimated at 75.0 trains/h, while the theoretical maximum capacity for the line using Virtual Coupling is
depicted with the green line in the plot and can be estimated at 150.0 trains/h. These values have been evaluated
by considering the system in a stable FS (resp. FSVC) mode, with no failures. Please, note that even if the distance
between trains reduces from 600 to 200 m, with the used parameters VC is capable of placing exactly one train
more every other train and the capacity of the line doubles.
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Table 1. Parameters for experiment 1 of case study 1
Transition Rate [h−1]
FS2FSVC 5.0E−02

(50E−03)
FSVC2FS 1.0E−02 : 3.0E−02 : 1.0E+00

(10E−03 : 30E−03 : 1000E−03)
FS2PS 1.0E−02

(10E−03)
REPAIR 2.0E−01

(200E−03)

Fig. 12. Impact of FSVC2FS rate on line capacity in case study 1

The analysis demonstrates that with a rate of the transition FSVC2FS equal to 1.0E−02 h−1 (five times
lower than the rate of the transition FS2FSVC), we can obtain 148.0 trains/h, that is very close to the theoretical
maximum. With a rate of FSVC2FS equal to 1.0E+00 h−1 the capacity is higher than the one obtained with full
supervision only. In that case, we obtained a line capacity of 93.5 trains/h,3 which is still higher than 75.0 trains/h
that is the maximum capacity in full supervision. Such a result would demonstrate a potential benefit of Virtual
Coupling in those reference—realistic—conditions.

In the second experiment, we kept the rate of transition FSVC2FS fixed, and only varied the rate of transition
FS2FSVC, as reported in Table 2. The corresponding results are plotted in Fig. 13. The results show a slight
capacity increase with the increase of the transition rate from full supervision to Virtual Coupling, but the effect
is not as evident as in the previous experiment. In fact, if we neglect some small fluctuations due to the confidence
interval of simulations, the estimated line capacity varies from 143.7 on the extreme left side of the graph to 146.9
on the extreme right.

From the analysis performed on the sample track, it emerged that the capacity impact of transitions between
operating modes is not symmetrical. In fact, the negative effect of increasing the rate of the transition FSVC2FS
has a much higher impact than the benefits of increasing the rate of the transition FS2FSVC. That means efforts
should be concentrated onminimizing the risk of switching from FSVC to FS rather than improving the enabling
conditions for FSVC.

3 Such a results includes the possibility of switching to partial supervision.
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Table 2. Parameters for experiment 2
Transition Rate [h−1]
FS2FSVC 1.0E−02 : 3.0E−02 : 1.0E+00

(10E−03 : 30E−03 : 1000E−03)
FSVC2FS 5.0E−02

(50E−03)
FS2PS 1.0E−02

(10E−03)
REPAIR 2.0E−01

(200E−03)

Fig. 13. Impact of FS2FSVC rate on line capacity in case study 1

Capacity versus train length. In this third experiment, the analysis aims to evaluate the impact of train length on
line capacity. We assumed the rates of transitions as reported in Table 3 and we varied the train length from 200
to 600 m.

The plot in Fig. 14 reports the results of simulations for the experiment: capacity shows a trend slightly below
the maximum obtainable from FSVC, but significantly above the one associated with FS. That means the overall
capacity in realistic conditions is close to its theoretical maximum regardless of train length, and that result would
further support general adoption of Virtual Coupling. In general, as expected, the benefits of virtual coupling
decrease as train length increases, and the marginal benefit is lower for longer trains; however, longer trains also

Table 3. Parameters for experiment 3
Transition Rate [h−1]
FS2FSVC 5.0E−02

(50E−03)
FSVC2FS 5.0E−02

(50E−03)
FS2PS 1.0E−02

(10E−03)
REPAIR 2.0E−01 (200E−03)
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Fig. 14. Impact of train length on the line capacity in case study 1

Fig. 15. Graphical representation of case study 2

reduce the overall impact of falling back to FS from FSVC due to lesser couplings needed. This is why the blue
and red lines are closer when trains are longer.

5.2. Bottleneck Line

The second case study is depicted in Fig. 15 and represents a 2 km long line, where 3 tracks converge into a single
one, creating a bottleneck. This is a situation which is not uncommon in central Europe high-traffic corridors,
especially considering railway hubs such as Milan, Frankfurt or Brussels. As in previous case study, the length of
the elementary track element is set to 200 m, the line model is composed by 18 track elements. Specifically, the
two points connect p102 and p202 with p103, and p104, p304 with p105.
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Fig. 16. Composed SAN model for case study 2

For the sake of simplicity, we assume the same train types as in previous case study, with similar characteristics
in all the operating modes. The composed model in Möbius is depicted in Fig. 16. It is made up of 14 straight
submodels; 3 points submodels; 3 entering submodels, modeling the train injectors at p100, p200 and p300;
a measuringTerminal submodel, representing the measurement terminal at point p110; and a ERTMSstates
submodel, modelling operational modes. The effort to create this model resides in the definition of the 20 state
variables.

This specific case study demonstrates the flexibility of composable SANmodels in representing railway tracks
of increasing complexity, especially in presence of possible bottlenecks. As in previous example, we performed
different capacity analysis by varying input parameters.

Capacity versus operating modes. The first analysis aims at evaluating the impact on line capacity of the transition
rates between operating modes. In the first experiment, we assume the same rates reported in Table 1. Results
are plotted in Fig. 17. As expected, the trend is similar to the one obtained in the previous example, with the
difference that the range here is limited, varying from a minimum capacity of 129.7, with the highest rate of the
transition FSVC2FS, to a maximum one of 159.9. According to expectations, the results clearly show the benefits
of Virtual Coupling: a low rate of the transition FSVC2FS results in a high probability for the system to be in the
FSVCmode, corresponding to the highest capacity, close to the theoretical maximum; if the rate of that transition
increases, line capacity decreases due to the increased probability for the system to be in the FS mode. Overall,
results confirm that, even in the worst case, Virtual Coupling increases line capacity of around 9%.

A similar result is obtained when fixing the rate of transition FSVC2FS and varying the rate of transition
FS2FSVC, with parameters reported in Table 2. The graph in Fig. 18 shows a trend similar to the previous case
study, from a minimum capacity of 157.3 to a maximum of 159.8.
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Fig. 17. Impact of FSVC2FS rate on line capacity in case study 2

Fig. 18. Impact of FS2FSVC rate on line capacity in case study 2

Similarly to previous track configuration, the capacity impact of transitions between operating modes is not
symmetrical. In fact, the negative effect of increasing the rate of the transition FSVC2FS has a much higher
impact compared to the benefits of increasing the rate of the transition FS2FSVC. Such an effect relates to the
choice of parameters and to the fact that, after a failure and the consequent activation of the PSmodes, the system
is recovered eventually to the FSVCmode; hence, it is important to avoid the occurrence of failures leading to an
exit from this state.

Capacity versus train length. This analysis evaluates the impact of train length on line capacity, assuming the rates
reported in Table 3, and varying train length from 200 to 600 m. The plot in Fig. 19 confirms the trend of actual
capacity being slightly below its maximum in FSVC. The graph also suggests that train length has an even more
limited impact compared to case study 1, perhaps due to synchronization phenomena at the junction (reduced
probability of inter-train gaps with longer trains); however, that does not account for the possibly smoother and
more uniform distribution of trains from the incoming lines in case of shorter trains.



Compositional modeling of railway Virtual Coupling 1005

Fig. 19. Impact of train length on line capacity in case study 2

6. Related work

The work described in this paper progresses previous research aimed at performability evaluation of Virtual
Coupling in modern and future railway signalling systems. Specifically, the previous work reported in refer-
ence [DMDVF+20] provides a proof-of-concept of Virtual Coupling, and defines a coupling control algorithm
accounting for time-varying delays affecting the communication links. More specifically, the work in refer-
ence [FMN+18] evaluates a solution integrating Virtual Coupling within a specific operating mode using the
ERTMS/ETCS standard specification, and proposes some directions for new research with the goal to enable
efficient and safe train platooning. With respect to the previous works, in this paper we have introduced a model-
based approach for quantitative evaluation of capacity increase considering specific railway network topologies,
and a set of atomic models based on SAN [SM01], in order to build a library of reusable and composable models.
The SAN formalism is a powerful modeling language inspired by Petri Nets. SANs have been widely used for
performance and dependability evaluation; they have been applied to different domains and purposes, including
performability analysis.

Regarding railway research, in the last years, a considerable effort has been spent in Europe to bring ground-
breaking innovations in railways. The Shift2Rail Joint Undertaking was established under Horizon 2020 to foster
coordination of research and innovation in the rail sector. Shift2Rail (S2R) has devoted an entire pillar of its pro-
gramme (i.e., IP2, advancedTrafficManagement andControl System) to enhance capacity and reliability through
improvedmanagement of signalling and supervision systems.One important step in this direction is to increase rail
capacity by introducingmoving block signalling at the third level of ERTMS/ETCS togetherwith themore vision-
ary idea of Virtual Coupling, as investigated by the recent S2R research projects, fromX2Rail-1 to X2Rail-5, AS-
TRail,MOVINGRail, PERFORMINGRAIL.4 AlthoughERTMSL3 has beenwidely investigated and expected
to be operational in the near future, Virtual Coupling is considered by the International Union of Railways (UIC)
still far away from technical maturity.5 Recent reports from S2R projects and international railway organizations
or professional institutions have introduced virtual coupling related concepts (e.g., [Shi15,Mea16]), but only a few
works in the scientific literature address the challenges posed by virtually coupled trains. As of the time of writing,
we were able to find 35 scientific papers, of whichmore than a half published in the years 2019 and 2020. Themost
recent works address virtual coupling operational scenarios [AQG20, QWG20], control approaches [SLY+20], co-
ordination control models [LWZW19], collision avoidance and mitigation approaches [CWM21, CXL20]. Some
of those works focus on the technologies required for implementation (e.g., [Goi16, FLFCC17]), in particular
Vehicle to Vehicle (V2V) communications [ULdPM16, GMB+18], but just a few pioneering studies exist ad-

4 S2R projects page: https://projects.shift2rail.org/.
5 www.railway-energy.org/static/Virtually_coupled_trains_86.php.

https://projects.shift2rail.org/
www.railway-energy.org/static/Virtually_coupled_trains_86.php
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dressing the evaluation of qualitative and quantitative aspects of Virtual Coupling. In reference [LLS15], the
authors investigate the usage and expected performance of 5G technology for train-to-train communications
in coupling/de-coupling and platooning scenarios, while the simulation described in [Sch17] is meant to study
the expected capacity increase. These papers present some preliminary results, in particular in reference [Sch17],
Virtual Coupling operational scenarios at low speed (e.g., in the proximity of a station) are simulated referring
to an existing high-speed line in Japan.

In particular, the work presented in this paper takes advantage of some features of SANs which allow for a
modular, compositional approach very suitable for the specific goal of developing models of railway lines.

7. Conclusions and future work

This paper deals with the problem of evaluating the capacity increase of future railways, where train spacing
constraints can be reduced thanks to the adoption of ERTMS Level 3. With a particular reference to Virtual
Coupling, we developed a compositional approach based on SANmodelswhich allows engineers to simulate train
traffic along a line and thus evaluate the subsequent capacity increase. The approach represents amean for railway
engineers to evaluate the capacity increase in specific scenarios, according to different operating conditions and
traffic flows.

The SAN modeling formalism allowed us to start to build a library with basic templates to be composed
into more complex models in order to get useful insights about Virtual Coupling scenarios. We obtained some
preliminary results by evaluating thosemodels on reference case studies in order tomeasure the expected capacity
increase of Virtual Coupling. However, rather than discussing some specific results, our research focused on
providing a general tool to build and compose models with an expressive power such to represent all performance
and dependability aspects of interest for the analysis of railway Virtual Coupling in real-world scenarios.

The research described in this paper has been partly funded by the EU Shift2Rail PERFORMINGRAIL
project. Coherently with PERFORMINGRAIL project objectives, future work will be aimed at extending the
models in order to enable safety evaluation ofmoving block signalling andVirtual Coupling within future railway
technologies. Furthermore, we will make an effort to develop a modeling environment which can be actually
used by railway engineers in industry. That would leverage aspects such as multi-paradigm modeling (including
abstraction, metamodeling and multiformalism), domain specific languages (including specific profiles of the
Unified Modeling Language) together with model-to-model transformations [MFM+14]. The overall approach
would be such to hide the complexity of low-level modeling artefacts—such as the SAN used in this paper—to
the end users, who will be dealing with “bricks” coming from composable model libraries. That would allow
us to achieve a trade-off between ease of use, expressive power and solving efficiency. Moreover, we plan to
strengthen model validation by leveraging results obtained from additional models or diverse parallel modeling.
Extensions to reliability, safety and security modeling based on (semi)formal methods are also planned as future
developments [FFG14, Fla12].
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