
https://doi.org/10.1007/s00165-021-00557-0

Formal Aspects of Computing (2021) 33: 1115–1145
Formal Aspects

of Computing

Schema compliant consistency management via
triple graph grammars and integer linear
programming
Nils Weidmann1 and Anthony Anjorin2

1Paderborn University, Paderborn, Germany
2IAV GmbH Ingenieurgesellschaft Auto und Verkehr, Berlin, Germany

Abstract. In the field of Model-Driven Engineering, Triple Graph Grammars (TGGs) play an important role as
a rule-based means of implementing consistency management. From a declarative specification of a consistency
relation, several operations including forward and backward transformations, (concurrent) synchronisation, and
consistency checks can be automatically derived. For TGGs to be applicable in realistic application scenarios,
expressiveness in terms of supported language features is very important. A TGG tool is schema compliant if
it can take domain constraints, such as multiplicity constraints in a meta-model, into account when performing
consistency management tasks. To guarantee schema compliance, most TGG tools allow application conditions
to be attached as necessary to relevant rules. This strategy is problematic for at least two reasons: First, ensuring
compliance to a sufficiently expressive schema for all previously mentioned derived operations is still an open
challenge; to the best of our knowledge, all existing TGG tools only support a very restricted subset of application
conditions. Second, it is conceptually demanding for the user to indirectly specify domain constraints as applica-
tion conditions, especially because this has to be completely revisited every time the TGG or domain constraint
is changed. While domain constraints can in theory be automatically transformed to obtain the required set
of application conditions, this has only been successfully transferred to TGGs for a very limited subset of do-
main constraints. To address these limitations, this paper proposes a search-based strategy for achieving schema
compliance. We show that all correctness and completeness properties, previously proven in a setting without
domain constraints, still hold when schema compliance is to be additionally guaranteed. An implementation and
experimental evaluation are provided to support our claim of practical applicability.

Keywords: Model-driven engineering, Triple graph grammars, Integer linear programming, Graph constraints,
Application conditions

1. Introduction

Model transformation is an essential part of Model-Driven Engineering (MDE), as it is an essential means
of keeping semantically interrelated models consistent. This requires the consistent transformation of models
from one domain to another, the propagation of updates from one model to others, and the checking of all
involved models for intra- and inter-model consistency. All these tasks, which we denote collectively as con-
sistency management, are especially important in collaborative scenarios, where multiple (teams of) domain
experts model systems with domain-specific languages (DSLs) tailored to their particular problem domain.

Correspondence to: Nils Weidmann, e-mail: nils.weidmann@upb.de

The Author(s) © 2021

http://crossmark.crossref.org/dialog/?doi=10.1007/s00165-021-00557-0&domain=pdf

1116 N. Weidmann and A. Anjorin

There are numerous application areas for consistency management techniques, including the industry automa-
tion domain [AYL+18], the automotive domain [GHN10], and language editor development [BPD+14].

As a special case of model transformation, bidirectional transformation (bx) addresses the problems posed by
redundant implementations of the specified consistency relation for different operations: Instead of developing
andmaintaining separate transformations for forward and backward transformation, consistency checks, etc., all
or at least some operations are derived from the underlying consistency relation or from other operations. Diverse
approaches to bx have been proposed in different research communities, including functional programming,
databases, andMDE.As a representative in theMDEdomain, Triple GraphGrammars (TGGs) are a declarative
and rule-based approach to bx based on algebraic graph transformation [Sch94]. To be suitable for real-world use
cases, a transformation languagehas tobe sufficiently expressive; increasing expressivenesswhile still guaranteeing
all formal properties is an open challenge for ongoing research on TGGs [ALS15, WOR19]. In this paper, we
propose an approach with which the fulfilment of domain constraints by TGG-based consistency management
operations can be guaranteed. We shall denote this property in the rest of the paper as schema compliance.

Domain constraints can be formalised as graph constraints and include negative constraints, forbidding
certain situations, positive constraints, demanding certain patterns, and more general constraints enforcing im-
plications between graph patterns (cf. Ehrig et al. [EEPT06] for a general introduction to graph constraints).
A well-known example for domain constraints are multiplicity constraints specified in the metamodels of the
respective domains. Suppose that for an association, a multiplicity of m..n shall be respected. The upper bound
can be guaranteed by forbidding n+1 occurrences of the respective element. In turn, the lower bound of n can be
demanded with an implication constraint (as soon as such an association exists, there must be a match for n ele-
ments).While numerous TGG tools have been implemented [HLG+13], we are not aware of any tool that provides
direct and extensive support for schema compliance.Most TGG tools only allow the user to introduce constraints
indirectly, by attaching application conditions (ACs) to rules to restrict their applicability. This is challenging for
the user, especially for large TGGs, as all rulesmust be analysed carefully after every single change. There has been
a proposal to support schema compliance by automatically transforming domain constraints to ACs [AST12],
but only a very small subset ofNegative Application Conditions (NACs) (and consequently negative constraints),
is supported. Finally, the focus has been primarily on forward/backward transformation and synchronisation,
and less on other operations such as consistency checking or concurrent synchronisation [WFA20].

The approach presented in this paper builds upon seminal work on combining TGGs with Integer Linear
Programming (ILP) for consistency management. This hybrid strategy combines a generic and flexible prob-
lem definition with acceptable runtime behaviour for growing model sizes. Consistency is no longer seen as a
binary property: If perfect consistency cannot be achieved, an “optimal” partial solution is computed which,
e.g., maximises the number of consistently transformed elements. After proposing this strategy for consistency
checking [Leb16, LAS17] and providing proofs for correctness and completeness [Leb18], the approach was
generalised to cover unidirectional transformations [WALS19]. The primary advantage of this hybrid TGG- and
search-based consistency management approach is that all derived operations can be uniformly handled, differ-
ing only in which models are provided, and which are to be produced. Furthermore, all operations are flexible
enough to handle inconsistent input, computing a partial result instead of simply rejecting such input as invalid.
In a conference version of this paper [WA20], we extended the approach to support schema compliance (up to
implications of graph patterns) for the consistency checking operation.

In this paper, we now provide an extension of this formal framework (schema compliance also up to im-
plications), to cover forward and backward transformation, and correspondence link creation. We show that
correctness and completeness guarantees can still be provided for these additional operations, even though they
now create new elements as part of the consistency restoration process. Due to the flexibility of our search-based
approach, we take a further step towards fault-tolerant consistency management as all supported operations
terminate with a maximal partial solution that is contained in the language of the underlying TGG and respects
all posed domain constraints. Conventional TGG-based approaches often separate checking domain constraints
from the transformation, such that the user is forced to fix all constraint violations before the actual transforma-
tion task can be started.

Schema compliant consistency management via triple graph grammars and integer linear programming 1117

The rest of the paper is structured as follows:A running example is presented in Sect. 2,which is used to provide
an intuitive introduction to the approach based on a small backward transformation example in Sect. 3. After a
brief introduction to the foundations of algebraic graph transformation (Sect. 4), our approach is formalised in
Sect. 5, so that correctness and completeness can be shown in Sect. 6. An implementation in an actively developed
TGG tool is presented in Sect. 7, followed by an experimental runtime evaluation in Sect. 8. Our contribution
is compared with related work in Sect. 9, before Sect. 10 concludes the paper, and gives an outlook on possible
future work.

2. Running example

To demonstrate our approach, we consider a

Fig. 1. Triple of Metamodels

consistency relation between (simplified) ab-
stract syntax trees describing Java code
(source model) and its documentation (tar-
get model). The respective metamodels are
depicted in Fig. 2. As the root of the Java
metamodel, Classes can form an inheritance
hierarchy. Each class can have arbitrarily
many Methods and Fields, and each Method
can have a set of Parameters. The docu-
mentation metamodel, in contrast, consists
of Documents that can reference each other
via hyper-references. A document is struc-
tured as a set of Entries. To provide an
overview of important terms, a Glossary is
contained in the documentation model. It
consists of GlossaryEntries, which are re-
ferred to from documentation entries. The
correspondence relation is represented by a
third correspondence model, which is depicted in form of diamonds between source and target models. Classes
are associatedwith documents, whilemethods, their parameters, and fields are represented as entries in the respec-
tive document. The glossary and its entries do not have a corresponding structural element in the source model,
therefore they are not linked to a node of the correspondence model. Besides conformance to the metamodels
depicted in Fig. 2, we restrict the set of consistent triples for our running example by requiring three additional
graph constraints to be satisfied (Fig. 2):

• We forbid that there are two or more Glossaries in the documentation model with the constraint
NoTwoGlossaries. This is a negative constraint.

• Creating multiple links from an Entry to a GlossaryEntry is forbidden by the constraint NoDoubleLink.
• In the Javamodel, we enforce that every class be non-empty. To specify this, we use an implication constraint
expressing that each Class (premise) be connected to either a Method (Conclusion 1) or Field (Conclusion
2), forming the constraint NoEmptyClass.

• Implication constraints can bemore complex and affect multiple models.With a fourth constraint SameName-
SameGlossaryEntry, we ensure that methods of the same class with the same name (overloaded methods),
correspond to entries in the documentation model that point to a common glossary entry.

3. Main ideas

Before formalising our approach, an intuitive explanation of how a documentation model is transformed to the
Java domain is provided in this section. This “backward” transformation strategy is derived from declarative rules
and guarantees that the previously presented graph constraints (Fig. 2) are respected. As the TGG approach is
symmetric (source and target domains are interchangeable), the forward transformation works analogously.

1118 N. Weidmann and A. Anjorin

Fig. 2. Graph constraints for the TGG JavaToDoc

Introduction to TGGs: In order to define the consistency relation from which the backward transformation
rule is derived, a set of six declarative TGG rules is used, which is depicted in Fig. 3. Nodes and edges are either
coloured green (with a ++markup) or black (without any additional markup). Green elements are created when
applying the rule, whereas black elements are required as context, i.e., they need to be present in the model
in order to apply the rule. From here on, we omit the types of links to improve readability, as they can be
inferred uniquely using the metamodels. The rule ClassToDoc, for instance, does not require any context and
is therefore always applicable. It creates a class in the Java model and a document in the documentation model,
and links the two elements via a correspondence. In contrast, the rule SubClassToDoc creates a subclass of an
already existing class, along with a subtypes arrow. In the documentation model, a new document is created and
referenced from the document that corresponds to the superclass in the Java model. A correspondence link is
created between the new elements as well. The rules MethodToEntry and FieldToEntry are structurally similar
to the rule SubClassToDoc: Newmethods and fields are added to a class (which can be a subclass in an inheritance
hierarchy), while a corresponding entry is created in the document that corresponds to this class. For all four rules,
so-called “attribute conditions“1 are added in a textual syntax beneath the visual representation of the rule. These
conditions ensure that the names of the linked elements (classes and documents, methods and entries, fields and
entries) have the same name. The rule AddParameter does not create any element in the documentation model,
but adds a parameter to a method in the Java model and links it to the entry of the method. There are also rules
which only affect only the documentationmodel. AddGlossary creates a glossary node, AddGlossaryEntry adds
new entries to it. Finally, the rule LinkGlossaryEntry connects document entries and glossary entries, which
establishes the connection between the documents and the glossary.

The declarative rules define the language of a TGG, i.e., all triple graphs that can be generated with finitely
many rule applications, starting from an empty triple. While this procedure is directly used to generate consistent
models, the setting is different for other consistency management operations: For forward and backward trans-
formation, one of the models is given as input (and may not be changed during the transformation process). For
consistency checking, both source and target model are provided to the operation. Two variants are possible: Ei-
ther the consistency checker tries to complete the input to a consistent triple by creating suitable correspondence
links, denoted as correspondence creation (CC) in the following, or the correspondence model is provided as an
additional input and only needs to be checked, which we refer to as check only (CO) in the following.

1 While sophisticated definitions for attribute conditions in algebraic graph transformation [EEPT06] andTGGs [AVS12] have been presented
in previous work, we restrict ourselves to only comparing attribute values locally. As this restricts the applicability of the TGG rule and can
be directly attached to it, we do not handle attribute conditions separately.

Schema compliant consistency management via triple graph grammars and integer linear programming 1119

Fig. 3. TGG rules for JavaToDoc

Consistency management operations: The respective operational rules are derived from the declarative rules
by requiring the green (created) elements of the given domain as additional context, and marking them as
“translated” after applying the rule.Operational rules for MethodToEntryare depicted inFig. 4.Whenperforming
a forward transformation (FWD OPT) of a given Java model, the method m is required to exist before applying the
rule, and marked as translated as indicated by the symbol � → ��. The suffix “OPT” stands for optimisation-
based transformation, as opposed to conventional “greedy” strategies that successively (and irreversibly) apply
rules at collected matches and therefore often lack completeness guarantees. As it must be guaranteed that the
source model context is already translated (because it exists anyway as part of the input model), the class c is
required to bemarked already (��). Conversely, the corresponding entry e is markedwhen performing a backward
transformation (BWD OPT), provided that the document d is already marked. The two consistency checkers mark
elements of both Java and documentation model. The correspondence creation operation (CC), as the name
suggests, creates only correspondences between marked elements, whereas the check only operation (CO) marks
correspondence nodes as translated. For FWD OPT and BWD OPT, the attribute conditions are operationalised as
well: As one of the attribute values if fixed by the additional context node that needs to be marked, the respective
other value is assigned accordingly to respect the equality constraint.

Contribution:Thenoveltyof thepresentedapproach is the translationof the consistencymanagementproblem,
i.e., the completion of the given input model(s) to a consistent triple that is both contained in the language of
the TGG and satisfies all graph constraints, into an optimisation problem. In particular, we create an ILP that
maximises the number of marked elements via a suitable objective function, with linear constraints guaranteeing
language membership and graph constraint satisfaction. If it is possible to determine a solution that marks the
input instance completely, we can conclude that a consistent transformation result was found, or the consistency
check was successful, respectively. Otherwise, the operation yields a sub-triple with a maximum number of
marked elements that is contained in the TGG’s language and fulfils the specified constraints. Purely constraint-
based approaches often suffer from severe scalability problems as they operate on the level of model elements
and therefore involve numerous constraints that guarantee basic graph properties. Our approach, in contrast,
addresses this problem by operating on rule application level, i.e., combining graph pattern matching and ILP
in order to relate variables to entire matches and therefore significantly reducing the size of the constructed
optimisation problem.

1120 N. Weidmann and A. Anjorin

Fig. 4. Operational rules for MethodToEntry

Solution overview: To describe the solution process for a backward transformation and explain the construc-
tion of objective function and ILP constraints, we consider the example instance depicted in Fig. 5. In the
documentation model, the nodes and edges are annotated in blue with the rule applications (also denoted as “di-
rect derivations”) di that potentially mark the respective element. The elements of the correspondence and Java
model are depicted in grey (as they are not given as input but constructed during the transformation process) and
represent a superset of all possible results of rule applications. Each element of the source and correspondence
model is annotated with the rule application bywhich it is potentially created. Inmore detail, the rule applications
(d1) and (d2) transform the respective documents into classes with the ClassToDoc rule. (d3), in contrast, is an ap-
plication of SubClassToDoc andmarks the incoming edge of doc2 as well. The entries e4 and e5 are transformed
into methods by applying the rule MethodToEntry (d4, d5). The remaining rules only mark elements in the target
model: While d6 marks the glossary g6 by applying AddGlossary, d7 as an application of AddGlossaryEntry
marks ge7 and the connecting edge. Finally, d8 and d9 are applications of LinkGlossaryEntry and mark the
edges between the entries and ge7. To determine the optimal solution, all rule applications di are associated with
binary variables δi that are set to 1 if di is applied to form the solution graph (cf. Definition 5.6).

Furthermore, to encode the graph constraints into the optimisation problem, all possiblematches for premises
and conclusions are annotated to the involved elements. Negative constraints are hereby represented as graph
constraints with a premise but no conclusions, as this is semantics-preserving: As soon as the premise (i.e. the
negative constraint) can be matched, the constraint is violated. In the concrete example instance (Fig. 5), matches
for premises (pi) and conclusions (ci) are annotated in red to the elements which they involve. The premises p10
and p11 refer to the NoEmptyClass constraint, and c13 and c14 form the respective conclusions for p10. For p11,
no matches for conclusions are available, such that the constraint is violated as soon as the class c2 is created.
There is also one match each for the premise (p12) and conclusion (c15) of the SameNameSameGlossaryEntry
constraint. The matches pj and ck for premises and conclusions are associated with binary variables πj and γk
(cf. Definition 5.7). In contrast to the binary variables for rule applications (di), these variables cannot be freely
chosen and do not have any influence on the objective function. Their value assignment is rather dependent on
the choice of the binary variables for rule applications, and restricts the set of valid solutions. The construction
of the optimisation problem using these variables is presented in the following.

• Context for rules: Firstly, there must be ILP constraints that ensure that the application of a rule de-
pends on the application of all rules that provide context for it. In the example instance, the application
of SubClassToDoc (d2) depends on the application of ClassToDoc as c1, doc1 and their correspondence are
required as context elements. Implication constraints of the form di ⇒ (dj1 ∨· · ·∨djm)∧· · ·∧ (dk1 ∨· · ·∨dkn)
are thus created for all rule applications di with required context elements j , . . . , k , and rule applications
(dj1 , . . . , djm , . . . , dk1 , . . . dkn) that possibly mark these elements.

Schema compliant consistency management via triple graph grammars and integer linear programming 1121

Fig. 5. Inconsistent example instance with annotations for rule applications and constraint matches

• Exclusions for rules: It must be prohibited that an element is marked more than once, because it would not be
possible to create a single element multiple times with declarative rules. The only example here is the exclusion
of d2 and d3 being applied both, as theymark the common element doc2. For each element that can bemarked
by multiple rule applications di , . . . , dj , an exclusion constraint di ⊕ · · · ⊕ dj is created.

• Context for premises: Instead of influencing the objective function, graph constraints pose additional re-
strictions to the set of valid solutions, which means that they are translated into additional ILP constraints.
Matches for premises depend on rule applications which mark or create the elements that are involved in the
graph constraint. In this sense, the premise is fulfilled as soon as all context elements are marked (in the given
part of the model) or created (in the remainder of the triple). However, as soon as the context is provided com-
pletely, the premise is fulfilled. The implication constraint is thus in the opposite direction: Choosing a subset
of rule applications di , . . . , dj that is sufficient to create the context for a premise match pk implies that pk is
fulfilled. Taking a concrete example, the premise p13 for the graph constraint SameNameSameGlossaryEntry
depends on the rule applications d1, d4 and d5.

• Context for conclusions: Similar to premise constraints, it must also be reflected in the ILP under which
conditions a conclusion of a graph pattern holds. In order to conclude a match for ck , all involved nodes
and edges must be marked or created by at least one rule application each. This subset di , . . . , dj of rule
applications is implied by ck . In the concrete example, there are two matches (c13, c14) for the conclusion of
NoEmptyClass, which require the rules d1 and d4, and d1 and d5, respectively, to be applied.

• Implications for graph constraints: The semantics of premise and conclusion(s) is reflected in the implications
for graph constraints, which define that the presence of a premise match implies the existence of a correspond-
ing conclusion match. For negative constraints, there are no conclusions, such that a solution for the ILP
that fulfils this constraint cannot be valid. The class c1 fulfils the constraint NoEmptyClass as long as one of
the methods m3 and m4 are created, leading to an implication constraint p10 ⇒ c14 ∨ c15. The classes c2 and
c3, in contrast, do not have any fields or methods, such that the set of conclusions is empty. The respective
implication constraints thus forbid the creation of these two classes.

1122 N. Weidmann and A. Anjorin

• Objective function: As previously mentioned, the search for a consistent solution is driven by maximising the
number of marked elements. If it is possible to mark the input models entirely, they can be completed to a
triple that is contained in the TGG’s language and fulfils all graph constraints. To form the objective function,
a coefficient is computed for each binary variable di that reflects the number of elements that are potentially
marked by the rule application. The sum of binary variables di weighted with these coefficients is the goal
function to bemaximised. Variables associated with graph constraints need not be taken into account because
they do neither mark nor create elements.

All inputmodel elements in the example instance can bemarked setting d1 and d3 . . . d9 to 1 and d2 to 0, leading
to an objective function value of 12 equal to the total number of elements in the target model. This marking
would however violate the constraint NoEmptyClass in the source model, as c3 does not have any methods or
fields. We will now analyse how this graph constraint violation becomes apparent in the ILP: As d3 was chosen,
it creates the class c3, on which the premise p12 of the constraint NoEmptyClass can be matched, and as a result,
p12 must be set to 1 as well. This violates the constraint p12 ⇒ false therefore the value assignment does not lead
to a consistent transformation solution. The optimal solution, representing the maximal consistent sub-triple, is
achieved by leaving out d3, such that p12 can be set to 0 as well, resulting in an objective function value of 10.
This means, however, that the document doc2 and its incoming hyper-reference cannot be transformed unless
another entry is added to it in the target model.

4. Preliminary definitions

This section briefly revises the fundamentals of algebraic graph transformation which are relevant for this article.
Most definitions are adapted from Ehrig et al.[EEPT06], supplemented by the definition of schema compli-
ance [AST12]. In TGGs, both the involved models and the consistency relation between them are represented
in form of graphs. We therefore define graphs as objects and graph morphisms as arrows, which map nodes and
edges of one graph to those of another.

Definition 4.1 (Graph (Morphism)).
A graph G � (V ,E , src, trg) consists of a set V of nodes (vertices), a set E of edges, and two functions src, trg :
E → V that assign each edge a source and target node, respectively. The set elem(G) � V ∪E denotes the unionof
vertices and edges,whereby it holds thatV∩E � ∅.GivengraphsG � (V ,E , src, trg), G ′ � (V ′,E ′, src′, trg ′), a
graphmorphism f : G → G ′ consists of two functions fV : V → V ′ and fE : E → E ′ such that src ; fV � fE ; src′
and trg ; fV � fE ; trg ′. The ; operator denotes the composition of functions: f ; g(x) :� g(f (x)).

The definitions of graphs and graph arrows (Fig. 4.1) can be lifted in a straightforward manner to triple
graphs and triple morphisms. Besides the interchangeable source and target models, the correspondence relation
is represented in form of a graph as well, forming a triple graph. An example for such a triple graph (although
not compliant with the TGG as stated in Sect. 3) is depicted in Fig. 5. Here, the Java model is denoted as source
graph and the documentation model as the target graph, whereby this choice is just a question of design.

Definition 4.2 (Triple Graph (Morphism)).
A triple graphG � GS

γS← GC
γT→ GT consists of graphsGS ,GC ,GT and graph morphisms γS : GC → GS and

γT : GC → GT . elem(G) denotes the union elem(GS) ∪ elem(GC) ∪ elem(GT). A triple morphism f : G → G ′

with G ′ � G ′
S

γ ′
S← G ′

C

γ ′
T→ G ′

T , is a triple f � (fS , fC , fT) of graph morphisms where fX : GX → G ′
X ,

X ∈ {S ,C ,T }, γS ; fS � fC ; γ ′
S and γT ; fT = fC ; γ ′

T .

In this setting, we introduce typing by demanding a type (triple) morphism to a chosen type (triple) graph. In
the rule MethodToEntry in Fig. 3, e.g., class nodes andmethod nodes can be distinguished by typing information.
The language of a type (triple) graph TG is the set of (triple) graphs typed over TG .

Definition 4.3 (Typed Triple Graph (Morphism)).
Atyped triple graph (G, type) is a triple graphG togetherwitha triplemorphism type : G → TG to adistinguished
type triple graphTG .A typed triplemorphism f : Ĝ → Ĝ ′ is a triplemorphism f : G → G ′ with type � f ; type ′,
where Ĝ � (G, type), Ĝ ′ � (G ′, type ′). L(TG) :� {G | ∃ type : type(G) � TG} denotes the set of all triple
graphs of type TG .

Schema compliant consistency management via triple graph grammars and integer linear programming 1123

In the following, all (triple) graphs and (triple) morphisms are assumed to be typed unless explicitly stated
otherwise. Model transformations are expressed as applications of (triple) rules (cf. Fig. 3) , which are formalised
as (triple) graphmorphisms. The black elements of the rule form the left-hand side (L), whereas the union of black
and green elements makes up the right-hand side (R). The morphism r : L → R specifies how green elements are
added to the host graphG by applying the rule, such that a new (triple) graph is produced. Another requirement
is a morphism m, denoted as match, that maps the left-hand side of the rule to the host graph. (Triple) rules are
applied by constructing a pushout, which can be understood as a generalised union of (triple) graphs R and G
over a common sub-(triple)graph L:

Definition 4.4 (Triple Rule (Application)).

PO

r′

m′

r

m

A triple rule r : L → R is a monomorphic (injective) triple morphism. A direct

derivationG
r@m�⇒ G ′ via a triple rule r , is constructed as depicted to the right by building

a pushout over r and a triple monomorphism m : L → G called a match. A derivation

D : G ∗�⇒ Gn � G
r1@m1�⇒ G1

r2@m2�⇒ · · · rn@mn�⇒ Gn is a sequence of direct derivations.
We denote by D � {d1, . . . , dn} the underlying set of direct derivations included in D .

A set of rules can be considered as a grammar that is sufficient to define a language of triple graphs. This
language of a TGG can be produced by finitely many rule applications on the empty triple graph.

Definition 4.5 (Triple Graph Grammar (Language)).
A triple graph grammar TGG = (TG,R) consists of a type triple graph TG , and a finite setR of triple rules. The
triple graph language of TGG is defined as L(TGG) � {G∅} ∪ {G | ∃ D : G∅

∗�⇒ G}, where G∅ is the empty
triple graph.

It is clear at this point how the language of a TGG is formed via rule applications; We now define how to
restrict this set of valid triples further via graph constraints. Graph constraints pose conditions on a graph that
should hold independently of the TGG at hand. We shall handle graph constraints of the form gc � P → Ci ,
which are either satisfied trivially, if there does not exist a match for the premise P , or if there exists at least
one match for a conclusion Ci . Negative constraints are a special case of graph constraints for which the set of
conclusions is empty. Positive constraints are of the form G∅ → C . If the distinction is necessary, we refer to the
general form of graph constraints as implication constraints. For a more general treatment of graph constraints,
the reader is referred to Habel et al. [HP09, EEHP06].

Definition 4.6 (Graph Constraint).
A graph constraint is a pair gc � (p∅ : G∅ → P , {ci : P → Ci | i ∈ I }), for some index set I . P is referred
to as the premise and {Ci | i ∈ I } as the conclusions of the graph constraint gc. A triple graph G satisfies
gc, denoted by G |� gc, iff ∀ mp : P → G, ∃ i ∈ I ∃ mci : Ci → G, [mp � ci ; mci], where mp, (mci)i∈I are
monomorphisms.

With the help of graph constraints, we can define schema compliance as a second part of our consistency
requirement. A schema consists of a type triple graph TG and a set GC of graph constraints. In the running
example, the triple of metamodels in Fig. 2 together with the constraints in Fig. 2 form such a schema. A (triple)
graph complies to a schema if it is typed over TG and fulfils all graph constraints in GC.
Definition 4.7 (Schema Compliance).
A schema is a pair (TG,GC) of a type triple graph TG and a set GC of graph constraints. Let L(TG,GC) :�
{G ∈ L(TG) | ∀ gc ∈ GC, G |� gc} denote the set of all schema-compliant triple graphs.

5. Formalisation

Based on the fundamental definitions of Sect. 4, we now formalise further concepts to be able to show correctness
and completeness properties in Sect. 6, i.e., that consistency management operations terminate with a consistent
result if and only if it exists. The concepts and proofs combine ideas of seminal work on consistency management
with TGGs and ILP, so parts of the formalisation are adapted from these sources. Firstly, Leblebici et al. [LAS17,
Leb18] presented a correspondence creation approach (CC) and showed that correctness and completeness can be

1124 N. Weidmann and A. Anjorin

guaranteed posing a few restrictions on the TGG. The formal concepts and proofs were extended by Weidmann
et al. towards other consistency management operations on the one hand [WALS19], and graph constraints
for check only operations (CO) on the other hand [WA20]. An overview of the involved publications and their
novel contribution is provided in Fig. 5, whereby * denotes this article. In the following, we extend the hybrid
approach based on TGGs and ILP to be applicable in a setting with various consistency management operations.
In particular, the definition of consistent input and solution is extended to graph constraints (Definition 5.2), we
define how created and marked elements provide context for premise and conclusion patterns (Definition 5.5)
and, based on this redefinition, the ILP constraints for guaranteeing context are adapted in Definition 5.10.

Fig. 6. Overview of publications

Via TGGs, a language of (consistent) triples is defined.
It is composedof all graphs that canbe generated byapply-
ing triple rules, creating elements in each domain (source,
correspondence, and target) simultaneously.However, this
definition is not sufficient to specify e.g. forward and back-
ward transformations because parts of the triple are al-
ready given, such as the target model in Fig. 5. These parts
differ for all operations and can be combinations of the
source, target and correspondence graphs, which we de-
note as the starting triple graph.

Definition 5.1 (Starting Triple Graph).
For eachoperationop ∈ {CC, CO, FWD OPT, BWD OPT},
a starting triple graph G0 for a triple graph G is defined as:

Operation Starting Triple Graph (G0)
CC GS ← ∅ → GT

CO GS ← GC → GT � G
FWD OPT GS ← ∅ → ∅
BWD OPT ∅ ← ∅ → GT

The starting triple graph of an operation is a consistent input if it can be extended to a consistent solution
by applying the rules of the operation, i.e., a triple graph that is contained in the language of the TGG and is
compliant to the given schema. The documentation model of Fig. 5 is not a consistent input in this sense, as all
possible backward transformations result in triples that violate at least one of the constraints.

Definition 5.2 (Consistent Input and Consistent Solution).
Given a triple graph grammar TGG and a schema (TG,GC), a starting triple graph G0 � GS ← GC → GT is
said to be consistent input iff ∃ G ′ � G ′

S ← G ′
C → G ′

T ∈ L(TGG) ∩ L(TG,GC), such that:

Operation Conditions
CC GS � G ′

S ,GT � G ′
T

CO GS � G ′
S ,GC � G ′

C ,GT � G ′
T

FWD OPT GS � G ′
S

BWD OPT GT � G ′
T

G ′ is referred to as a consistent solution for G0 in each case.

To determine whether a triple graph is a member of the language of a TGG, one tries to produce this triple
graph by forming a derivation sequence starting with the empty triple graph (cf. Definition 4.5). However, the
different consistency management operations start with their starting triple graph instead. The declarative rules
must therefore be transformed to an operationalised form, meaning that the green (created) elements of the
declarative TGG rule are either marked (in the given input) or created (in the remainder of the triple). The
elements of the starting triple graph are denoted as markable elements, and the elements to be created by the
operation as created elements. In the example instance of Fig. 5, the markable elements are black, whereas the
created elements are grey.

Schema compliant consistency management via triple graph grammars and integer linear programming 1125

Fig. 7. Operational rules for FWD OPT, BWD OPT, CC and CO

Definition 5.3 (Markable Elements and Created Elements).
The sets mrkElem(G) and crtElem(G) are defined for a triple graph G � GS ← GC → GT as follows:

Operation mrkElem(G) crtElem(G)
CC elem(GS) ∪ elem(GT) elem(GC)
CO elem(G) ∅

FWD OPT elem(GS) elem(GC) ∪ elem(GT)
BWD OPT elem(GT) elem(GS) ∪ elem(GC)

Consequently, elem(G) = mrkElem(G) ∪ crtElem(G).

To formalise the rules that partly mark and create elements, we define them as operational rules derived from
declarative rules (Definition 5.4). Depending on the operation, the left-hand side CL of the operational rule can
be formed out of the left-hand side (L) of the declarative rule, and the starting triple graph for the right-hand
side (R0) via a pushout construction. The right-hand side CR of the operational rule is equal to the right-hand
side of the original rule. The elements that are added by the morphism cl : L → CL are denoted as marking
elements of the operational rule cr . In Fig. 4, operational rules for the MethodToEntry rule are depicted for all
four operations.

Definition 5.4 (Operational Rule and Marking Elements).
Given a triple rule r : L → R, let L0 and R0 be the starting triple graphs for L and R. The operational rule
cr : CL → CR for r is constructed as depicted in Fig. 7.CL is formed via pushout construction of L andR0 over
L0. It holds that CR � R, and cr : CL → CR is induced via the universal property of the pushout. An element
e ∈ mrkElem(CL) is a marking element of cr iff �e ′ ∈ mrkElem(L) with rS (e ′) � e or rC (e ′) � e or rT (e ′) � e.

Considering the elements of the host graph that are involved in an operational rule application, a partition
into four sets is possible: On the one hand, elements can bemarked or created by the rule application, depending
on whether they are contained in the starting triple graph. On the other hand, some elements are required as
context in both the operational and the original TGG rule. If such a context element is also part of the starting
triple graph, it must also be marked already, simulating the behaviour of the generative TGG specification. In
Fig. 5, elements which are annotated with � → �� are marked by the rule, whereas the �� annotation indicates
that they must be marked already. As for declarative rules, created elements have a ++mark-up and are coloured
green, and context elements are black and do not have any mark-up.

As graph constraints do not mark elements, only sets for the elements that are required to be marked or
created already in order to form premise and conclusion, respectively, are defined. It is assumed that the names
of elements in G and G’ are preserved by the rule application cr , such that they can be identified with each other.

1126 N. Weidmann and A. Anjorin

Definition 5.5 (Marked, Created and Required Elements).

For a direct derivation d : G
cr@cm�⇒ G ′ via an operational rule cr : CL → CR, the following sets are defined:

• crt(d) = crtElem(G’) \ crtElem(G)
• mrk(d) = {e ∈ elem(G) | ∃ e ′ ∈ elem(CL), cm(e ′) � e where e ′ is a marking element of cr}
• reqMrk(d) = {e ∈ mrkElem(G) | ∃ e ′ ∈ elem(CL), cm(e ′) � e where e ′ is not a marking element of cr}
• reqCrt(d) = {e ∈ crtElem(G) | ∃ e ′ ∈ elem(CL), cm(e ′) � e}

For a graph constraint gc � (P , {ci : P → Ci | i ∈ I }) and morphisms mp : P → G, (mci)i∈I : Ci → G , we
define:

• reqMrk(mp) = {e ∈ mrkElem(G) | ∃ e ′ ∈ elem(P),mp(e ′) � e}
• reqCrt(mp) = {e ∈ crtElem(G) | ∃ e ′ ∈ elem(P),mp(e ′) � e}
• reqMrk(mci) = {e ∈ mrkElem(G) | ∃ e ′ ∈ elem(Ci),mci (e

′) � e}, i ∈ I
• reqCrt(mci) = {e ∈ crtElem(G) | ∃ e ′ ∈ elem(Ci),mci (e

′) � e}, i ∈ I

In general, there are more rule application candidates that can be found by matching the operational rules
than are necessary to form a derivation sequence from the starting triple graph to a consistent solution. The
subset of necessary rule applications is therefore determined by transforming the graph problem into a search
problem to be solved by e.g. an ILP solver, in which each rule application candidate is associated to a binary
variable. Its value in the retrieved solution (0 or 1) indicates whether the candidate is considered for forming the
final derivation sequence. In Fig. 5, these constraints are shown on the top left (“context for rules”, “exclusion
for rules”) in the notation of propositional logic, as this is more intuitive for a first understanding.

Definition 5.6 (Constraints for Derivations).
Given a starting triple graph G0, let D : G0

∗�⇒ Gn be a derivation via operational rules with the underlying set
D of direct derivations. For each direct derivation d1, . . . , dn ∈ D, respective binary variables δ1, . . . , δn ∈ {0, 1}
are defined. A linear constraint LC for D is a conjunction of linear inequalities which involve δ1, . . . , δn . A set
D′ ⊂ D fulfils LC, denoted as D′ � LC, iff LC is satisfied for variable assignments δi � 1 if di ∈ D′ and δi � 0 if
di �∈ D′, 1 ≤ i ≤ n.

Similar to rule applications,matches for graph constraints are also associated to binary variables to ensure that
the retrieved solution is schema compliant, i.e., respects all specified constraints. Thereby, matches for premises
and conclusions are separately encoded into constraints as they depend on different sets of rule applications. The
interdependencies between premises and conclusions are expressed by further constraints as well. In contrast
to the binary variables for rule applications, the value assignment cannot be chosen by the ILP solver. The
respective linear constraints, which encode interdependencies between rule applications and graph constraints,
are formulated in a way that any variable assignment that does not violate them leads to a schema compliant
solution. For the running example, the constraints for graph constraints are listed on the bottom left of Fig. 5
(“context for premises”, “context for conclusions”, “implications for graph constraints”).

Definition 5.7 (Constraints for Graph Constraints).
Let GC � {(P , {ci : P → Ci | i ∈ I })} be a set of graph constraints. Let P � ⋃

gc∈GC
{mp : P → G} be a set of

premises and C � ⋃

gc∈GC
{mci : Ci → G, i ∈ I } a set of conclusions. For each premise mp ∈ P , respective binary

variables π1 . . . πn , and for each conclusion mci ∈ C, respective binary variables γ1,1 . . . γ1,m1 . . . γn,1 . . . γn,mn

are defined. A linear constraint LC for GC is a conjunction of linear inequalities which involve π1 . . . πn and
γ1,1 . . . γ1,m1 . . . γn,1 . . . γn,mn

. A triple graph G fulfils LC, denoted as G � LC, iff LC is satisfied for any variable
assignment {π1 . . . πn} → {0, 1}, {γ1,1 . . . γ1,m1 . . . γn,1 . . . γn,mn

} → {0, 1}.
In the following, we will describe how to construct constraints that ensure that the chosen rule applications

form a valid derivation sequence from the starting triple graph to the solution.
As markings in operational rules correspond to the creation of elements in the original rules of the underlying

TGG, it must be prohibited that elements are markedmultiple times as this wouldmean that an element is created

Schema compliant consistency management via triple graph grammars and integer linear programming 1127

more than once. For each node and edge, a predicate mrkSum of type integer is defined that reflects the number
of markings per element by counting the rule applications that mark this element. In Fig. 5, mrkSum would be
2 for the document doc2, and 1 for all other elements of the target model.

Definition 5.8 (Sum of Alternative Markings for an Element).
Given a starting triple graph G0, let D : G0

∗�⇒ Gn be a derivation via operational rules with the underlying set
D of direct derivations. For each element e ∈ elem(G0), let E(e) � {d ∈ D | e ∈ mrk(d)}. The integer mrkSum(e)
denotes the sum of the associated variable assignments for each d ∈ E :

mrkSum(e) =
∑

di∈E(e)
δi

This is used in a linear constraint to ensure that elements are marked at most once. In Fig. 5, this is denoted
as “exclusions for rules”, whereby all non-trivial constraints are omitted for clarity.

Definition 5.9 (Constraint 1: Mark Elements at Most Once).
Given a starting triple graph G0, let D : G0

∗�⇒ Gn be a derivation via operational rules:

markedAtMostOnce(G0) =
∧

e∈elem(G0)
[mrkSum(e) ≤ 1]

With respect to this definition, the constraint is also fulfilled if there are elements that are not marked at all,
resulting in a mrkSum of 0. Consequently, there are valid solutions that cannot mark the input entirely. The
reason for the sum of marked elements not being strictly equal to 1 is the desired treatment of inconsistent input:
In this case, a consistent sub-triple is returned by the ILP solver.

Another constraint must ensure that an operational rule is applicable if and only if the respective declarative
rule would be applicable (in a setting in which the same derivation sequence is followed). This means that all
context elements of the starting triple graph must be marked, and context elements of the remaining part of the
triple must be created already. Similarly, as soon as all rule applications are chosen that create and mark the
respective contexts, the binary variables associated to premises and conclusions must be assigned accordingly.
In total, this guarantees that the respective TGG rule is applicable in the corresponding situation, and that the
marked and created parts of the graph are schema compliant up to that point. The constraints which form the
context predicate are listed on the left of Fig. 5), ordered by whether they refer to rule applications, premises or
conclusions.

Definition 5.10 (Constraint 2: Guarantee Context).
Given a starting triple graphG0 and a schema (TG,GC), letD : G0

∗�⇒ Gn be a derivation via operational rules
with the underlying set D of direct derivations. For each direct derivation d ∈ D, each morphism mp ∈ P and
each morphism mci ∈ C, the following constraints are defined:

context(d) =
∧

e∈req(d)
[δ ≤ mrkSum(e)] ∧ ∧

dj ∈D,[reqCrt(d)∩crt(dj)��∅]
[δ ≤ δj]

context(mp) =
∑

e∈reqMrk(mp)
[mrkSum(e) − 1] +

∑

dj ∈D,[reqCrt(mp)∩crt(dj)��∅]
[δj − 1] ≤ π − 1

context(mci) =
∧

e∈reqMrk(mci)
[γi ≤ mrkSum(e)] ∧ ∧

dj ∈D,[reqCrt(mci)∩crt(dj)��∅]
[γi ≤ δj], i ∈ I

context(D) =
∧

d∈D
context(d)

context(G) =
∧

mp∈P
context(mp) ∧ ∧

mci ∈C
context(mci)

For an intuitive understandingof these constraints, it is best to assume that the constraintmarkedAtMostOnce
(Definition 5.9) already holds, i.e., elements are marked by at most one derivation. For created elements, note
that the transformation process guarantees inherently that every created element is created by only one derivation
(see Definition 4.4). context(d) ensures that all marked elements required by d are indeed present (first part), and
that all created elements required by d are created in the final result (second part). context(mp) is an implication
of the form “mp matches” ⇒ π . The two summands in the left part of the inequality are both 0 exactly when all
required marked and created elements formp are present and are both negative otherwise. Demanding their sum

1128 N. Weidmann and A. Anjorin

to be ≤ π − 1 forces the solver to set π to 1 whenevermp matches. context(ci) is analogous to context(d), i.e., the
solver is not allowed to set any γi to 1 unlessmci matches. According to this constraint the solver has no reason to
set any γi to 1; this will only be enforced with Definition 5.11 that covers the relation betweenmps andmci s. This
last constraint type encodes the semantics of premise and conclusions of graph constraints (cf. Definition 4.6),
such that schema compliance can be guaranteed for the transformation result. As the binary variables π (premise)
and γi (conclusion) are set to 1 if the respective context is created or marked entirely, the potential matches can
be considered as actual matches. The constraint can be formulated independent of the concrete rule applications,
as their values influence the value assignment to all variables π and γi . For the running example, the respective
constraints are shown on the bottom left (“implications for graph constraints”).

Definition 5.11 (Constraint 3: Satisfy Graph Constraints).
Let (TG,GC � {(P , {ci : P → Ci | i ∈ I })}) be a schema. A linear constraint sat(G) expressing that G fulfils
all graph constraints of GC is defined as follows:

sat(G) � ∧

mp∈P
[π ≤ ∑

mci ∈C,mp�ci ; mci ,i∈I
γi]

Furthermore, there are constellations in which rule application candidates mutually provide context for each
other by marking or creating elements that are necessary to apply the respective other rule. In this manner, a
dependency cycle is formed, such that none of the involved rules can ever be applied first due to missing context
elements. There is no example for such a dependency cycle in the running example, though. To express a cyclic
dependency, a relation � among rule applications is introduced. Each subset {d1, . . . , dn } of rule applications
that does not contain a cycle can be sequenced over this relation in a proper order.

Definition 5.12 (Dependency Cycles).
LetD : G0

∗�⇒ Gn be a derivation via operational rules with the underlying setD of direct derivations. Relations
�,�M ,�C⊆ D × D between di , dj ∈ D are defined as follows:

di �M dj iff reqMrk(di) ∩ mrk(dj) �� ∅
di �C dj iff reqCrt(di) ∩ crt(dj) �� ∅
di � dj iff (di �M dj) ∨ (di �C dj)

A set cy ⊆ D with cy � {d1, . . . , dn } of direct derivations is a dependency cycle iff d1 � · · · � dn � d1.

The first relation (�M) holds if di requires an element to be marked and dj marks it. Likewise, the second
relation (�C) holds if di requires an element to be created and dj creates it. Combined with the other constraints
that ensure that elements are only created and marked by a single direct derivation, these two relations can be
combined to express that di depends on dj . Cycles in this combined relation must, therefore, be prohibited. The
following constraint forbids choosing all rule applications involved in a dependency cycle for the final solution,
such that it is always possible to arrange the chosen rule applications properly.

Definition 5.13 (Constraint 4: Forbid Dependency Cycles).
Given a starting triple graph G0, let D : G0

∗�⇒ Gn be a derivation via operational rules with the underlying set
D of direct derivations, and let CY be the set of all dependency cycles cy ∈ D. A linear constraint acyclic(D) is
defined as follows:

acyclic(D) =
∧

cy∈CY,cy�{d1,...,dn }

n∑

i�1
δi < n

Finally, we define the objective function to maximize the number of markings (bottom line of Fig. 5)), such
that a solution that entirely marks the input (and can therefore be completed to a triple contained in the TGG’s
language) is preferred over a solutionwith lessmarkings.As the solutionmust fulfil all ILP constraints, correctness
constraints and schema compliance according to Definition 4.7 can be guaranteed.

Definition 5.14 (Optimisation Problem).
Given a starting triple graph G0, a TGG (G, R) and a schema (TG,GC), let D : G0

∗�⇒ Gn be a derivation via
operational rules. The ILP to be optimised is constructed as follows:

max.
∑

d∈D
|mrk (d)| s.t. markedAtMostOnce(G0) ∧ context(D) ∧ context(Gn) ∧ acyclic(D) ∧ sat(Gn)

Schema compliant consistency management via triple graph grammars and integer linear programming 1129

6. Correctness and completeness

In the following, we show that the ILP-based solution strategy - posing some assumptions on the TGG in use
- always terminates, and yields a consistent solution with respect to Definition 5.2 iff such a solution exists.
Similar to the formalisation (Sect. 5), arguments from previous work [Leb18, WALS19, WA20] are combined
and extended. The main challenge here is to show that schema-compliance can still be guaranteed when further
elements are continuously added during match collection. In the following, let TGG � (G∅,R) and a schema
(TG,GC) be given for all definitions, lemmas and theorems.

As previously stated, the goal of the optimisation step is to determine a subset of rule applications that
forms a derivation sequence from the starting triple graph to a transformation result. We define a proper subset
of operational rule applications that can be arranged such that a (possibly incomplete) derivation sequence is
formed. The values assigned to the associated binary variables δi for each di ∈ D′ ⊆ D form a feasible solution
for the ILP, i.e., satisfy all defined constraints (Definition 5.9, 5.10, 5.13 and 5.11).

Definition 6.1 (Proper Subset of Rule Applications).
Given a starting triple graph G0, let D : G0

∗�⇒ Gn be a derivation via operational rules with underlying set of
direct derivations D, and let D′ ⊆ D be a subset of direct derivations, such that D ′ : G0

∗�⇒ G ′.
We refer to D′ as a proper subset of D iff D′ � markedAtMostOnce(G0) ∧ context(D ′) ∧ context(G ′) ∧

acyclic(D ′) ∧ sat(G ′).

The first lemma (Lemma 6.1) states that such a proper subset exists if and only if there is a triple graph G ′
that is contained in the TGG’s language, fulfils all constraints and does not have more elements than the starting
triple graph in the given parts of the triple.

Lemma 6.1 (Consistent Portions of a Triple Graph).
Given a starting triple graph G0, let D : G0

∗�⇒ Gn be a derivation via operational rules with underlying set of
direct derivations D.

∃ proper subset D′ ⊆ D with D ′ : G0
∗�⇒ G ′ ⇐⇒ ∃ G ′ ∈ L(TGG) ∩ L(TG,GC) such that:

mrkElem(G ′) ⊆ mrkElem(G0)
mrkElem(G ′) � ⋃

d ′∈D′
mrk(d ′),

crtElem(G ′) � ⋃

d ′∈D′
crt(d ′).

Proof. (Sketch) The direct derivations d ∈ D′ of a proper subset can be sequenced over the � relation according
to Def. 5.12, which is equivalent to the existence of a derivation D ′ which forms a triple graph G ′ by being
applied on the starting triple graph G0. G ′ consists of all elements which are marked or created by any d ∈ D′.
G ′ ∈ L(TGG)∩L(TG,GC) holds byDefinition 6.1, guaranteeing languagemembership and schema compliance.

�
The sequential application of rules of a proper subset leads to a transformation result, of which the marked

and created elements form a triple that is member of the TGG’s language and that is schema-compliant. In
general, however, elements of the input can remain unmarked, which means that they were not (yet) consistently
transformed. Therefore, we denote proper subsets as maximal which involve a maximal number of markings. As
a proper subset fulfils all ILP constraints by definition, and maximising the number of marked elements is the
optimisation goal, a maximal proper subset will be returned by the ILP solver.

Definition 6.2 (Maximal Proper Subset of Rule Applications).
Given a starting triple graph G0, let D : G0

∗�⇒ Gn be a derivation via operational rules with underlying set of
direct derivations D. A proper subset D′ of D is maximal if there does not exist any other proper subset D′′ of D
with a greater objective function value (cf. Definition 5.14).

Accordingly, we denote the triple graph that results from sequentially applying rules of the maximal proper
subset on the starting triple graph as maximally marked.

Definition 6.3 (Maximally Marked Triple Graph).
Given a starting triple graph G0, let D : G0

∗�⇒ Gn be a derivation via operational rules with underlying set of

1130 N. Weidmann and A. Anjorin

direct derivations D. Let D′ be a maximal, proper subset of D. The triple graph G ′ identified with D′ according
to Lemma 6.1 is denoted as a maximally marked triple graph with respect to D .

InTheorem6.1, the correctness of the ILP-based transformation canbe shownusing the notionof amaximally
marked triple graph, i.e., if it is possible to mark each element of the starting triple graph G0 exactly once, the
resulting maximally marked triple graph is a consistent solution according to Definition 5.2.

Theorem 6.1 (Correctness).
Given a starting triple graph G0 and a derivation D : G0

∗�⇒ Gn for op ∈ {CC, CO, FWD OPT, BWD OPT},
and let D′ ⊆ D be a maximal proper subset of direct derivations, such that D ′ : G0

∗�⇒ G ′. It holds for a
maximally marked triple graph G ′ with respect to D:

⋃

d∈D′
mrk (d) = elem(G0) ⇒ G ′ is a consistent solution

Proof. (Sketch) ForG ′ being a consistent solution, (1)G ′ ∈ L(TGG) und (2)G ′ ∈ L(TG,GC) are required. The
premise of the theorem, i.e., the marked part of G ′ and the non-empty part of G0 are identical, states that it is
possible to entirely mark G0 by sequentially applying all direct derivations d ∈ D′, whereby D ′ of a maximal,
proper subset. By applying Lemma 6.1 with a maximal, proper subset, a triple graph G ′ can be produced that
fulfils both conditions. Therefore,G ′ is a consistent solution according to Definition 5.2, whileG0 is a consistent
input. �

For showing completeness, it remains to show the opposite direction, i.e., that the proposed strategy finds a
consistent solution if one exists. The main challenge is to guarantee that the set D of rule application candidates
is finite, such that the process always terminates, because ILP solving is known to be correct and complete as well.
Therefore, we have to demand that the underlying TGGbe progressive (cp. [GHL14] for bookkeepingmechanisms
for TGGs), whichmeans that each operational rule has tomark at least one element. It is possible that someTGGs
are progressive for only a few operations. In the running example (cf. Fig. 3), progressiveness is not fulfilled for
the forward transformation operation, as the rules AddGlossary, LinkGlossaryEntry and AddGlossaryEntry
only operate on the target model. Likewise, as the rule AddParameter does notmodify the target model, the TGG
is not progressive for the backward direction either. For practical implementations, the problem can be overcome
by applying heuristics, such as fixing an upper bound for applications of such rules.

Definition 6.4 (Progressive TGGs).
A TGG is progressive for an operation op ∈ {CC, CO, FWD OPT, BWD OPT} if each of its operational rules
for op has at least one marking element.

Although progressiveness of a TGG ensures that the number of markings strictly increases when following a
derivation sequence, it is still possible that new rule applications create new context elements which themselves
enable further rule applications, such that termination cannot be immediately guaranteed as elements of the
starting triple graph can be marked infinitely often (although only one of these markings can be finally chosen).
However, as soon as rule applications overlap in their markings and one of them depends on the created context
of another, the dependent rule application is superfluous as it implies and excludes the application of another rule
at the same time. Therefore, only essential rule applications (cf. Definition 6.5) should be considered for forming
a derivation sequence, meaning that (1) identical rule applications and (2) rule applications that are in conflict
with their create dependencies as described above (2) must be discarded. Note that in contrast to dependencies
via marked context (�M), create dependencies via �C are actual and not potential dependencies, as the rule
application that creates an element is unique.

Definition 6.5 (Essential and Superfluous Rule Applications).
Given a starting triple graph G0 and a derivation D : G0

∗�⇒ Gn with underlying set of direct derivations
D. Let �C

∗ ⊆ D × D be the transitive closure of the �C relation in Definition 5.12. A rule application dn+1 :

Gn
crn+1@cmn+1�⇒ Gn+1 with operational rule crn+1 is essential for D if:

1. �di ∈ D, di : Gi−1
cri@cmi�⇒ Gi such that crn+1 � cri and cmn+1 � cmi and

2. mrk(dn+1) ∩ ⋃

d ′∈D,dn+1�C∗ d ′
mrk(d ′) � ∅.

Schema compliant consistency management via triple graph grammars and integer linear programming 1131

Otherwise, dn+1 is superfluous for D .

Introducing some terminology for derivation sequences that purely consist of essential rule applications, such
derivations are denoted as final according to Definition 6.6.

Definition 6.6 (Final Derivations with Operational Rules).
Given a starting triple graph G0, let D : G0

∗�⇒ Gn be a derivation via operational rules with underlying set of
direct derivations D.

D is final if �dn+1 : dn+1 : Gn
crn+1@cmn+1�⇒ Gn+1 such that dn+1 is essential for D .

In Lemma 6.2, we show that for every operation op ∈ {CC, CO, FWD OPT, BWD OPT} and every starting
triple graph G0, there exists a final derivation, assuming that the underlying TGG is progressive, such that the
process of gathering rule application candidates terminates.

Lemma 6.2 (Existence of a Final Derivation).
Given a progressive TGG for an operation op ∈ {CC, CO, FWD OPT, BWD OPT} and a starting triple graph
G0, a final derivationD : G0

∗�⇒ Gn with operational rules for op exists for every starting triple graphG0 for op.

Proof. (Sketch) We show the set of essential rule applications according to Definition 6.5 is finite using two
arguments: First, the number of possible derivation sequences of some fixed length l is finite for each l ∈ N
Second, the length of a single derivation sequence consisting only of essential rule applications is also finite.

The first statement can be proven via induction over the length l of the derivation sequence. As all rule
applications are essential, they can be sequenced over the �C relation by using Condition (2) in Definition 6.5,
forming a derivation di �C · · · �C dj . For the induction step, let di �C · · · �C dj be a derivation sequence of
length l and let dk be the next derivation to be added. dk can only require context elements that are created by
any rule application in di . . . dj . According to the induction hypothesis, the number of such possible sequences
is finite, so is the number of created context elements, as each rule application can create only a finite number
of elements. As only distinct matches are considered (Condition (1) in Definition 6.5), the number of possible
sequences di �C · · · �C dj �C dk of length l + 1 must be finite.

To show that the second statement holds, we derive a contradiction from the assumption that derivation
sequence of infinite length consisting solely of essential rule applications can be constructed for a (finite) start-
ing triple graph. The set of essential rule applications can be partitioned into those with and without create
dependencies; we will show that both sets are finite. For the former, it can be stated that both the starting triple
graph G0 and the set R of TGG rules are finite. Along with Condition (1) of Definition 6.5 (uniqueness of rule
applications), it follows that the set of essential rule applications without create dependencies is finite as well.
The TGG is required to be progressive (Definition 6.4), therefore each rule application must mark at least one
element. Each element of the starting triple graph G0 can be marked infinitely often in theory, but Condition (2)
in Definition 6.5 prevents an essential rule application d from marking elements that are also marked by a rule
application d ′ if a context dependency d �C

∗ d ′ exists, stepwise and strictly reducing the set of elements that can
be marked by d . As the total number of markable elements in the starting triple graphG0 is finite, the constructed
derivation sequence of essential rule applications must be of finite length.

Combining the arguments for the finiteness of the length of the derivation sequence on the one hand and of
the number of sequences of a fixed length on the other hand, the number of essential rule applications must be
finite as well, contradicting the assumption and proving the second statement. �

Lemma 6.2 can now be used to show completeness, i.e., that the existence of a consistent solution also implies
that there is a final derivation of operational rules from the starting triple graph to this solution.

Theorem 6.2 (Completeness) .
Given a progressive TGG for an operation op ∈ {CC, CO, FWD OPT, BWD OPT}, and a starting triple graph
G0, a final derivation D : G0

∗�⇒ Gn for op, a maximal proper subset D′ ⊆ D and a maximally marked triple
graph G ′ with respect to D exist such that:

G ′ is a consistent solution ⇐⇒ ⋃

d∈D′
mrk (d) = elem(G0)

Proof. (Sketch) The implication in backward direction of the equivalence follows from Theorem 6.1, such that
only the implication in forward direction is to be shown.

1132 N. Weidmann and A. Anjorin

Fig. 8.Workflow for ILP-based consistency management with constraints

To derive a contradiction, we assume that G ′ is a consistent solution for the given input triple G0, but G ′
contains unmarked elements. AsG ′ is consistent,G ′ ∈ L(TGG) andG ′ ∈ L(TG,GC) hold. FromG ′ ∈ L(TGG)
and the decomposition and composition theorem forTGGsandoperational rules [EEE+07, Leb18], if follows that
there exists a derivation sequenceD ′ : G0

∗�⇒ G ′ via operational rules that entirely marksG0. From Lemma 6.2,
it follows that a final derivationD ′′ exists. AsD ′ andD ′′ are not equal, andD ′′ is the final derivation for which the
number of markings is maximised according to the optimisation objective (Definition 5.14), there must be at least
one superfluous rule application in D ′. This contradicts the assumption G ′ ∈ L(TGG) because superfluous rule
applications lead to multiple markings on at least one element, i.e., G ′ cannot be produced using the respective
set of declarative rule applications corresponding to D ′. �

7. Implementation

To show that our formal framework is also applicable in practice, it was implemented as part of the Java-based
Eclipse plug-in eMoflon::Neo.2 Unlike most existing MDE tools, eMoflon::Neo is not based on the Eclipse
Modelling Framework (EMF) but uses the graph database Neo4J3 for model querying and persistence. The basic
workflow for ILP-based consistency management with constraints is depicted in Fig. 8 as an extension of the
process without constraints (cf. [WALS19]).

FromthedeclarativeTGGrules, operational rules arederived for theaforementioned consistencymanagement
tasks (A). Subsequently, candidates for possible rule applications are determined by graph pattern matching on
the input models (B). In eMoflon::Neo, the graph database Neo4j4 is used to store models and metamodels, such
that pattern matching is done by means of generated graph queries. Depending on the operation, the pattern
matching step is an iterative process: While one query is sufficient for the CO operation, as operational rules
do not create any new elements in this case, multiple iterations are necessary for the other operations to find all
rule application candidates. For applying rules, database queries are generated which add new nodes and edges
to the graph. The application of all rules from the superset of potential candidates results in “superset models”
similar to the example instance of Fig. 5 (C). At this point, the pattern matching step for negative constraints
and implication constraints can be performed (D), taking all elements of the input models into account, as well
as all elements which were created in the previous step. As a result, a superset of matches for constraint patterns
is created, whereby the validity of each match clearly depends on the choice of rule applications.

2 github.com/eMoflon/emoflon-neo
3 neo4j.com
4 https://neo4j.com/

github.com/eMoflon/emoflon-neo
neo4j.com
https://neo4j.com/

Schema compliant consistency management via triple graph grammars and integer linear programming 1133

JavaToDoc # new # rule # created
elements applications elements

ClazzToDoc 3 1 3
SubClazzToDoc 5 1 5
MethodToEntry 5 4 20
AddParameter 3 4 12
FieldToEntry 5 4 20
AddGlossary 1 0 0
LinkGlossaryEntry 1 4 4
AddGlossaryEntry 2 4 8

FamiliesToPersons # new # rule # created
elements applications elements

FamiliesToPersons 3 1 3
MotherToFemale 7 1 7
- w/o new Family 5 2 10
FatherToMale 7 1 7
- w/o new Family 5 2 10
DaughterToFemale 7 1 7
- w/o new Family 5 2 10
SonToMale 7 1 7
- w/o new Family 5 2 10

Table 1. JavaToDoc: Composition of rule applications for themodel
generation

Table 2. FamiliesToPersons: Composition of rule applications for
the model generation

Based on the sets of potential rule applications and constraint matches, the ILP can be constructed (E). It
consists of an objective function that maximises the number of marked elements and constraints that guarantee
language membership and schema compliance. The optimal solution is found by an external solver that is con-
nected to eMoflon::Neo via a generic interface. We used the Gurobi optimizer5 for our experiments, while an
adapter for SAT4J6 is also implemented. Based on the optimisation solution, the set of actual rule applications
can be determined (F). Elements that are marked or created by the chosen rule applications form the output mod-
els, whereas - in case of inconsistent inputs - elements that remain unmarked are returned to the user separately
(G). Finally, elements that were created by rule applications that are not contained in the optimum solution are
deleted, as they contribute neither to the input nor to the result of the operation.

8. Experimental evaluation

In an experimental evaluation we analyse the impact of graph constraints on runtime performance using the
example TGG introduced in Sect. 5. In contrast to previous experiments [WA20], all four ILP-based consistency
management operations are taken into account. We investigate the scalability of the respective operations for
growingmodel sizeswith andwithout taking graph constraints into accountwith the following researchquestions:

(RQ1) By which factor does the number of variables increase for the different operations when introducing
graph constraints to the ILP?

(RQ2) How does the runtime performance relate to model size (number of nodes and edges) for consistency
management operations with and without graph constraints?

(RQ3) How is the runtime distributed between the different steps, i.e., pattern matching, rule application, ILP
construction, and ILP solving?

(RQ4) Do the operations show different scalability characteristics with and without graph constraints?

Setup:As an example TGG, we took the JavatoDoc TGG as presented in Fig. 3 along with the constraints as
shown in Fig. 2. Furthermore, the bx benchmark example FamiliesToPersons7 was used, extended by additional
negative and implication constraints. An overview of themetamodel, the TGG rules and constraints can be found
in the appendix (Sect. A).

As inputs for the consideredoperations, synthetic testmodelswere createdwith themodel generationoperation
of eMoflon::Neo, which applies a given number of rules randomly, starting with an empty triple. The generated
triples had overall model sizes from 720 to 36,000 elements, i.e., nodes and edges. To create models of realistic
shape, rule applications were composed with a fixed ratio as shown in Tables 1 and 2. To keep the ratio equal for
all model sizes, the number of rule applications was increased with a scaling factor. A factor of 10, for instance,
was needed for triples with 720 elements, and a factor of 500 for 36,000 elements.

5 https://www.gurobi.com/
6 http://sat4j.org/
7 http://bx-community.wikidot.com/examples:familytopersons

https://www.gurobi.com/
http://sat4j.org/
http://bx-community.wikidot.com/examples:familytopersons

1134 N. Weidmann and A. Anjorin

As a result, the models are guaranteed to be contained in the TGG, but likely violate each of the posed
constraints several times. This is desirable, as the impact of taking graph constraints into account on the runtime
performance is to be analysed, also for instances with many constraint violations at different points.

Each operation was run on these models (1) without graph constraints, (2) only with negative constraints, and
(3) both with negative and implication constraints. Due to the nature of the operations, the entire triple was only
given as input to the CO operation; the other operations received the respective parts of the triple. The JavaToDoc
TGG is not progressive (cf. Definition 6.4) for FWD OPT, such that the rules AddGlossary, AddGlossaryEntry
and LinkGlossaryEntry were omitted for this operation. Similarly, the rule AddParameter was omitted for
BWD OPT. For the FamiliesToPersons TGG, no adaptions were necessary. To reduce the effect of outliers, each
configuration was repeated 5 times, and the median was taken as runtime result. Furthermore, the number of
binary variables in the ILP was tracked to get an indication for the problem size. The executions took place on a
standard notebook with an Intel Core i7 (1.80 GHz), 16GB RAM, and Windows 10 64-bit as operating system.
As a prerequisite for eMoflon::Neo, an installation of Eclipse IDE for Java andDSLDevelopers, version 2021-03
(4.19.0) with Java Development Kit (JDK) version 13 was used. 4GB RAM were allocated to the JVM running
the tests, while 8GB were allocated to the graph database Neo4j (version 3.5.8). Gurobi 8.1.1 was used to solve
the ILP.

Results:8 The overall runtime needed for performing the operations on generated models of different sizes is
depicted in Figs. 9, 10, 11, and 12, respectively. Note that both axes have a logarithmic scale, making it possible
to depict the measurements for small and large model sizes in one diagram. It can be observed that the consumed
runtime depends much more on the particular operation than on whether negative constraints are taken into
consideration. For all operations, a slightly super-linear increase of runtime can be observed, independent of the
consideration of negative constraints. When executing CO and BWD OPT for the JavaToDoc example, however, a
substantial difference can be observed when taking implication constraints into account as well. An explanation
could be that the CO operation is quite cheap in general as all relevant rule application candidates can be collected
in parallel in a single step, as no new (context) elements are generated during the operation. However, when the
operation must handle implication constraints, the constructed ILP gets more complex, which can be observed
when considering the increased share of the ILP solving step (Fig. 25). As Entry nodes of the documentation
model can be transformed to either Method or Field nodes in the Java model, various possibilities exist for
BWD OPT to transform the target model. This could result in an exploding number of premise matches for the
SameNameSameGlossaryEntry constraint (cf. Fig. 2), leading to a large runtime consumption of the operation.

The number of binary variables moderately correlates with the runtime consumption for both TGGs all op-
erations, reflecting the additional time effort for pattern matching and ILP solving (Figs. 13, 14, 15, 16). Larger
differences can only be observed for the FamiliesToPersons example for the operations CC and FWD OPT with
implication constraints, where the increase in the number of binary variables does not affect the runtime con-
sumption to the same extent. Gurobi’s loggermessages indicated that it was possible for the solver to substantially
reduce the optimisation problem at an early stage, such that pattern matching remained the most costly step for
CC (cf. Fig. 30) and still played an important role for the overall runtime performance of FWD OPT (cf. Fig. 36).
Figures 20–43, which were moved to the appendix for better readability, depict the runtime consumptions of the
different phases, namely pattern matching, rule application, ILP construction and ILP solving, for both example
TGGs and each of the four consistency management operations. For all operations, ILP solving has a major
impact on the runtime performance when handling implication constraints, whereas pattern matching appears to
be the most time-consuming step otherwise. Applying the rule candidates to the model triple is expensive for all
operations except CO, as for this operation, all parts of the triple are given as input and elements need not be cre-
ated. The time needed for ILP construction is almost negligible, while showing similar scalability characteristics
as the solving step.

In total, for negative graph constraints, both the number of variables and the runtime consumption increase
by a small factor that remains roughly the same for all model sizes This can be explained with the additional
variables as described in Definition 5.7. For implication constraints, both measures substantially increase for
most operations and both examples. The root cause is probably the additional complexity which is induced by
handling premise and conclusion patterns separately, adding more complexity to the constructed ILP problem.

8 https://bit.ly/35RAeaz, https://bit.ly/3u5oXgs

https://bit.ly/35RAeaz
https://bit.ly/3u5oXgs

Schema compliant consistency management via triple graph grammars and integer linear programming 1135

Fig. 9. Runtime: CO Fig. 10. Runtime: CC

Fig. 11. Runtime: FWD OPT Fig. 12. Runtime: BWD OPT: CC

Fig. 13. Number of variables: CO Fig. 14. Number of variables: CC

Summary: Revisiting our research questions, the number of additional binary variables increases moderately
for all consistencymanagement operationswhen adding negative constraints, whereas implication constraints can
have a large impact on this measure (RQ1). The time required for each of the steps increases slightly super-linear,
whereby there a noticeably larger increase was observable for CO and BWD OPT for the JavaToDoc example after
adding implication constraints.

1136 N. Weidmann and A. Anjorin

Fig. 15. Number of variables: FWD OPT Fig. 16. Number of variables: Number of variables: BWD OPT

Depending on the TGGand operation, this can become problematic for largemodel sizes (RQ2). The runtime
consumption is dominated by the pattern matching and rule application steps in settings without implication
constraints, whereas ILP solving is of major importance otherwise. Efforts for the ILP construction step can
almost be neglected, though (RQ3). The runtime performance is muchmore dependent on the concrete operation
than on whether negative constraints are considered, which might also differ depending on the characteristics
of the TGG in use. Implication constraints, however, add more complexity to the ILP, whereby the extent again
differs between the operations and TGG examples at hand. (RQ4).

Threats to validity: The runtime measurements were conducted only for two TGG, with eight and nine
comparably small rules. Also the used graph constraints are composed of rather small patterns. The example
models were small- or medium-sized and generated randomly, such that they are not necessarily comparable to
realistic use cases. The observed remarkably different runtime measurements for the two TGGs and the four
operations indicate that the performance depends on the used TGG, making further tests with other benchmark
examples crucial. Our results only hold for Neo4j as graph pattern matcher, and Gurobi as ILP solver. Previous
experiments [WA20] have indicated, however, that these two solvers are very well-suited for their respective tasks.

9. Related work

Building upon prior approaches on combining TGGs and ILP [Leb16, LAS17, Leb18, WALS19, WA20], our
contribution extends this line of work by formalising graph constraints for (unidirectional) transformation and
consistency checking without given correspondences. For the latter, Leblebici et al. initially formalised a hybrid
approach of combining consistency checks based on TGGs with ILP as a Search-Based Software En- gineering
(SBSE)]technique [Leb16, LAS17], and subsequently proved correctness and completeness [Leb18]. Both the
formalisation and the proof of formal properties were generalised for the remaining consistency management
operations [WALS19], before graph constraints were introduced to the formal and practical framework, but only
supporting consistency checks with given correspondence links [WA20]. Our novel extension guarantees schema
compliance for the other ILP-based operations derived from a given TGG and a set of graph constraints.

OCL Integration for Model Transformations: Numerous approaches to model transformation that take ad-
ditional constraints into account have presented already, partly addressing the issue of constraints for multiple
domains. Cuadrado et al. translate constraints of the target model to the source model, such that the result
of a forward transformation is guaranteed to satisfy all posed constraints [CGdL+17]. The approach was im-
plemented in the anATLyser tool and applied to real-world model instances. The Object Constraint Language
(OCL) is used to define constraints, while the transformation is specified using Atlas Transformation Language
(ATL). Compared to our approach, the supported constraints are more expressive, whereas the transforma-
tion is unidirectional. The focus is rather set on forward and backward transformations than on supporting
a wide range of operations with the same consistency definition. Cabot et al. generate OCL invariants from
TGG rules and Query/View/Transformation-Relation (QVT-R) specifications to verify and validate model trans-
formations [CCGdL10]. Both the metamodel and the derived invariants can be used to check whether models
are well-formed, which resembles the notion of consistency used in this paper. However, the transformation is
decoupled from checking the invariants, whereas our approach integrates both tasks into a uniform algorithm.

Schema compliant consistency management via triple graph grammars and integer linear programming 1137

Application Conditions for TGGs: To the best of our knowledge, all existing TGG-based approaches ensure
schema compliance indirectly by equipping TGG rules with semantically equivalent ACs. Originating from
algebraic graph transformation, Ehrig et al. introduced NACs to TGG and proved correctness and completeness
for unidirectional model transformation [EHS09]. The formal framework was extended by Golas et al. [GEH11]
towards general ACs for TGGs , which reach the expressive power of implication constraints. However, the
approach is restricted to the declarative specification of TGGs, enabling the rule-based generation of models
that adhere to ACs, whereas an operationalisation is left to future work. In neither of the approaches, the
formalisation is at this point backed up by an implementation that could showwhether the concepts are applicable
in practice. This open challenge was subsequently addressed by Klar et al. [KLKS10], while restricting the class
of supported NACs to NACs that are only used to guarantee schema compliance. A translation algorithm with
polynomial runtime was presented that proves this class of NACs to be efficiently supported in practice, whereby
correctness and completeness of this strategy can still be guaranteed. The semantic equivalence to negative
constraints together with a TGG was shown by Anjorin et al. [AST12] by proposing a constructive algorithm
for generating such NACs from negative constraints. While the formalisation and implementation was initially
restricted to (unidirectional)model transformation, Leblebici et al. [LAF+17] showed evidence that these concepts
can be efficiently transferred to (incremental) model synchronisation. Hildebrandt et al. propose a static analysis
technique for integrating OCL constraints with TGGs [HLBG12]. The approach is implemented as an extension
to the TGG-based model transformation tool MoTE. Transformation and constraint checks are decoupled,
and only a subset of the OCL is covered, such that the expressiveness of the supported constraints is equal to
those in our approach. Overall, these approaches either support only a subset of ACs or are restricted to a single
operation. General ACs, for instance, are only specified for declarative TGG rules, and consistency checks remain
totally unaddressed in this regard. Furthermore, all NACs are required to be “domain separable”, i.e., restrict
the applicability of a rule either for the source or the target model. In contrast, our approach can handle general
graph constraints that are also allowed to range over multiple domains including the correspondence model (cf.
Fig. 2).

Constraint-based approaches: There are also purely constraint-based approaches that encode both model
structure and consistency relation into constraints and can easily handle schema compliance. The JTL frame-
work supports several consistency management operations by deriving constraints from the input models and
computing a valid solution via answer set programming [EPT18]. The core.logic9 of Clojure is used in Fun-
nyQT [Hor17] to perform consistency management operations. The transformation engine Echo is able to derive
constraints from metamodels that are enriched with OCL constraints, before handing them over to the Alloy
solver [MC13]. The high degree of flexibility of constraint-based approaches, and their potential to support more
expressive constraints, such as nested graph constraints, however, comes at the price of scalability, leading to
insufficient runtime performance for models of realistic sizes [ABW+19]. Our hybrid approach uses the flexibility
of constraint solvers while scaling comparably well [WALS19], as constraints are formed on the level of rule
applications, keeping the size of the optimisation problem manageable. In recent work on integrating constraints
into algebraic graph transformation [KSTZ20], Kosiol et al. propose to consider consistency as a continuous
measure rather than a binary decision. While our approach uses the number of elements in the maximal con-
sistent sub-triple to measure consistency, the authors consider the ratio between all occurrences of a constraint
pattern in the model and the number of violations of this constraint. It is shown that graph transformation rules
can be classified as consistency sustaining or improving, which means that their application has a non-negative
or positive effect on the model consistency. Semeráth and Varró developed a strategy for checking constraints for
partial models, i.e., models that involve uncertainty. An early detection of potential or guaranteed violations of
well-formedness constraints is implemented via graph pattern matching on the partial model [SV17]. Similarly,
different solvers were used to generate consistent models, for which it can be guaranteed that structural and
attribute constraints are respected [SBL+20, BSV20, MSBV20]. Both approaches are restricted to intra-model
consistency, and the results are not directly transferable to a bidirectional scenario, though.

Search-basedSoftware-Engineering:Linear programming techniques have been combinedwith patternmatch-
ing by Callow and Kalawski [CK13] in a hybrid model transformation approach. However, the Mixed Integer
Linear Programming (MILP)-based optimisation aims rather at model compliance than at maximising the num-
ber of translated elements, and is tailored to unidirectional transformations instead of taking multiple operations

9 https://github.com/clojure/core.logic

https://github.com/clojure/core.logic

1138 N. Weidmann and A. Anjorin

into account. Xiong et al. solve model synchronisation and consistency management tasks using the Haskell-
based language Beanbag [XHZ+09] and compare it to a QVT-R-based synchroniser. While the approach was
proven to be correct, the completeness of the transformation is still an open issue. Furthermore, both constraints
and correspondences are only implicitly considered. There are also various constraint-based approaches that use
evolutionary algorithms or other bio-inspired meta-heuristics and could also handle schema compliance. OCL
constraints are combined with graph pattern matching in the tool MOMoT [FTW16] to perform model trans-
formation based on evolutionary algorithms. Design Space Exploration (DSE) as a multi-objective optimisation
technique is used by Denil et al. [DJVV14] in combination with the T-core transformation framework [SVL15].
Kessentini et al. combine an example-based model transformation approach with Particle Swarm Optimisation
(PSO) as a search technique is used in the tool MOTOE [KSB08]. Only about half of the test models were cor-
rectly transformed in a case study dealing with the translation of Unified Modeling Language (UML) diagrams
into relational databases, though. While heuristic search techniques scale well even for large models sizes, formal
properties such as correctness and completeness cannot be proven because the optimality of the returned solution
cannot be guaranteed.

10. Conclusion and future work

This paper extends seminal work on ILP-based consistency management with graph constraints. For different
consistency management operations, we formalised the handling of domain constraints to guarantee schema
compliance, in addition to consistency with respect to the underlying TGG. The approach was implemented in
the TGG tool eMoflon for all operations. An experimental evaluation indicated that the introduction of negative
constraints does not have a severe impact on the runtime performance, such that small and medium-sized models
can be sufficiently handled in real-world applications. Following these promising results, we plan to integrate
graph constraints into concurrent synchronisation scenarios. While the formal framework is sufficiently mature
and general enough for our purposes, the evaluation clearly suggests that further research is needed on the
practical implementation. Further performance tests with benchmark examples and other (industrial) use cases
can give insights as to whether the test results are generalisable, and which effect the size of the metamodels, the
number and size of TGG rules and other characteristics have on the runtime performance. Finally, we plan to
generate graph constraints directly from metamodels, such that the handling of, e.g., multiplicity constraints can
be fully automated in the practical framework.

Funding Open Access funding enabled and organized by Projekt DEAL.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and
indicate if changes were made. The images or other third party material in this article are included in the article’s
Creative Commons licence, unless indicated otherwise in a credit line to thematerial. If material is not included in
the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds
the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

A. Appendix

In the following, the metamodel (Fig. 17), TGG rules (Figs. 3, 18) and constraints (Fig. 19) of the benchmark
example FamiliesToPersons are briefly introduced. In Figs. 20–43, the detailed performancemeasurements for the
different operations, TGGs, and constraint types are presented, with distinct time measurements for the phases
of the ILP-based consistency management work-flow.

The FamiliesToPersons example makes use of the rule refinement feature of TGGs [ASLS14]. Rules with
abstract types (e.g. Person in the target model) can be refined with concrete types to avoid multiple definitions
of structurally equivalent rules. In Fig. 18, the two abstract rules at the bottom are refined to concrete rules as
stated in Fig. 3. The rule MotherToFemale refines FamilyMemberToPerson with a mother edge pointing from
the Family to the FamilyMember and a Female person in the target model. Its version without creating a new
Family refines the rule MemberOfExistingFamilyToPerson, respectively.

http://creativecommons.org/licenses/by/4.0/

Schema compliant consistency management via triple graph grammars and integer linear programming 1139

Fig. 17. FamiliesToPersons: Triple metamodel

Table 3. FamiliesToPersons: Rule refinement
FamiliesToPersons Family → Person

FamilyMember
MotherToFemale mother Female
MotherOfExistingFamilyToFemale mother Female
FatherToMale father Male
FatherOfExistingFamilyToMale father Male
DaughterToFemale daughters Female
DaughterOfExistingFamilyToFemale daughters Female
SonToMale sons Male
SonOfExistingFamilyToMale sons Male

Fig. 18. FamiliesToPersons: TGG rules

1140 N. Weidmann and A. Anjorin

Fig. 19. FamiliesToPersons: Constraints

Fig. 20. FamiliesToPersons: CO without constraints Fig. 21. JavaToDoc: CO without constraints

Fig. 22. FamiliesToPersons: CO with negative constraints Fig. 23. JavaToDoc: CO with negative constraints

Schema compliant consistency management via triple graph grammars and integer linear programming 1141

Fig. 24. FamiliesToPersons: CO with implications constraints Fig. 25. JavaToDoc: CO with implications constraints

Fig. 26. FamiliesToPersons: CC without constraints Fig. 27. JavaToDoc: CC without constraints

Fig. 28. FamiliesToPersons: CC with negative constraints Fig. 29. JavaToDoc: CC with negative constraints

1142 N. Weidmann and A. Anjorin

Fig. 30. FamiliesToPersons: CC with implications constraints Fig. 31. JavaToDoc: CC with implications constraints

Fig. 32. FamiliesToPersons: FWD OPT without constraints Fig. 33. JavaToDoc: FWD OPT without constraints

Fig. 34. FamiliesToPersons: FWD OPT with negative constraints Fig. 35. JavaToDoc: FWD OPT with negative constraints

Schema compliant consistency management via triple graph grammars and integer linear programming 1143

Fig. 36. FamiliesToPersons: FWD OPT with implications con-
straints

Fig. 37. JavaToDoc: FWD OPT with implications constraints

Fig. 38. FamiliesToPersons: BWD OPT without constraints Fig. 39. JavaToDoc: BWD OPT without constraints

Fig. 40. FamiliesToPersons: BWD OPT with negative constraints Fig. 41. JavaToDoc: BWD OPT with negative constraints

1144 N. Weidmann and A. Anjorin

Fig. 42. FamiliesToPersons: BWD OPT with implications con-
straints

Fig. 43. JavaToDoc: BWD OPT with implications constraints

References

[AST12] Anjorin A, Schürr A, Taentzer G (2012a) Construction of integrity preserving triple graph grammars. In: Ehrig H, Engels G,
Kreowski H-J, Rozenberg G (eds) ICGT 2012. Springer, Berlin

[AVS12] Anjorin A, Varró G, Schürr A (2012b) Complex attribute manipulation in tggs with constraint-based programming techniques.
Electron Commun Eur Assoc Softw Sci Technol 49

[ASLS14] Anjorin A, Saller K, Lochau M, Schürr A (2014) Modularizing triple graph grammars using rule refinement. In: Gnesi S,
Rensink A (eds) FASE 2014. Springer, Berlin

[ALS15] Anjorin A, Leblebici E, Schürr A (2015) 20 years of triple graph grammars: a roadmap for future research. ECEASST, 73:1–20.
[AYL+18] Anjorin A, Yigitbas E, Leblebici E, Schürr A, Lauder M, Witte M (2018) Description languages for consistency management

scenarios based on examples from the industry automation domain. Art Sci Eng Program 2(3):7
[ABW+19] Anjorin A, Buchmann T, Westfechtel B, Diskin Z, Ko H-S, Eramo R, Hinkel G, Samimi-Dehkordi L, Zündorf A (2019)

Benchmarking bidirectional transformations: theory, implementation, application, and assessment. In: Software and systems
modeling

[BPD+14] Blouin D, Plantec A, Dissaux P, Singhoff F, Diguet J-P (2014) Synchronization of models of rich languages with triple graph
grammars: an experience report. In: Di Ruscio D, Varró D (eds) Theory and practice of model transformations—7th interna-
tional conference, ICMT@STAF 2014, York, UK, July 21–22, 2014. Proceedings, vol 8568. Springer, pp 106–121

[BSV20] Babikian AA, Semeráth O, Varró D (2020) Automated generation of consistent graph models with first-order logic theorem
provers. In: Wehrheim H, Cabot J (eds) Fundamental approaches to software engineering—23rd international conference,
FASE 2020, held as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020, Dublin, Ireland,
April 25–30, 2020, Proceedings, volume 12076 of Lecture Notes in Computer Science. Springer, pp 441–461

[CCGdL10] Cabot J, Clarisó R, Guerra E, de Lara J (2010) Verification and validation of declarative model-to-model transformations
through invariants. J Syst Softw 83(2):283–302

[CGdL+17] Cuadrado JS, Guerra E, de Lara J, Clarisó R, Cabot J (2017) Translating target to source constraints in model-to-model trans-
formations. In: 20th ACM/IEEE international conference on Model Driven Engineering Languages and Systems, MODELS
2017, Austin, TX, USA, September 17–22, 2017. IEEE Computer Society, pp 12–22

[CK13] CallowG,KalawskyR (2013) A satisficing bi-directionalmodel transformation engine usingmixed integer linear programming.
J Obj Technol 12(1):1:1–43

[DJVV14] Denil J, JukssM,VerbruggeC,VangheluweH (2014) Search-basedmodel optimization usingmodel transformations. In:Amyot
D, Fonseca i Casas P, Mussbacher G (eds) SAM 2014. Springer, Cham

[EEPT06] Ehrig H, Ehrig K, Prange U, Taentzer G (2006a) Fundamentals of algebraic graph transformation. Springer, Berlin
[EEHP06] Ehrig H, Ehrig K, Habel A, Pennemann K-H (2006b) Theory of constraints and application conditions: from graphs to

high-level structures. Fundam Inform 74(1):135–166
[EEE+07] Ehrig H, Ehrig K, Ermel C, Hermann F, Taentzer G (2007) Information preserving bidirectional model transformations. In:

Dwyer MB, Lopes A (eds) FASE 2007. Springer
[EHS09] Ehrig H, Hermann F, Sartorius C (2009) Completeness and correctness of model transformations based on triple graph

grammars with negative application conditions. ECEASST 18
[EPT18] EramoR, Pierantonio A, Tucci M (2018) Enhancing the JTL tool for bidirectional transformations. In: Marr S, Sartor JB (eds)

Programming 2018, Nice, France, April 9–12, 2018. ACM
[FTW16] Fleck M, Troya J, Wimmer M (2016) Search-based model transformations with MOMoT. In: Van Gorp P, Engels G (eds)

ICMT 2016. Springer, Cham
[GEH11] Golas U, Ehrig H, Hermann F(2011) Formal specification of model transformations by triple graph grammars with application

conditions. ECEASST 39
[GHN10] Giese H, Hildebrandt S, Neumann S (2010) Model synchronization at work: keeping sysml and AUTOSARmodels consistent.

In: Engels G, Lewerentz C, Schäfer W, Schürr A, Westfechtel B (eds) Graph transformations and model-driven engineering—
essays dedicated to Manfred Nagl on the occasion of his 65th birthday, vol 5765. Springer, pp 555–579

Schema compliant consistency management via triple graph grammars and integer linear programming 1145

[GHL14] Giese H, Hildebrandt S, Lambers L (2014) Bridging the gap between formal semantics and implementation of triple graph
grammars—ensuring conformance of relational model transformation specifications and implementations. Softw Syst Model
13(1):273–299

[HLBG12] Hildebrandt S, Lambers L, Becker B, Giese H (2012) Integration of triple graph grammars and constraints. Electron Commun
Eur Assoc Softw Sci Technol 54

[HLG+13] Hildebrandt S, Lambers L, Giese H, Rieke J, Greenyer J, Schäfer W, Lauder M, Anjorin A, Schürr A (2013) A survey of triple
graph grammar tools. Electron Commun Eur Assoc Softw Sci Technol 57

[Hor17] Horn T (2017) Solving the TTC families to persons case with FunnyQT. In: Garcı́a-Domı́nguez A, Hinkel G, Krikava F (eds)
TTC 2017, vol 2026. CEUR-WS.org

[HP09] Habel A, Pennemann K-H (2009) Correctness of high-level transformation systems relative to nested conditions. Math Struct
Comput Sci 19(2):245–296

[KLKS10] Klar F, LauderM, Königs A, Schürr A (2010) Extended triple graph grammars with efficient and compatible graph translators.
Springer, Berlin, pp 141–174

[KSB08] Kessentini M, Sahraoui H, Boukadoum M (2008) Model transformation as an optimization problem. In: Czarnecki K, Ober
I, Bruel J-M, Uhl A, Völter M (eds) MoDELS 2008. Springer, Berlin

[KSTZ20] Kosiol J, Strüber D, Taentzer G, Zschaler S (2020) Graph consistency as a graduated property—consistency-sustaining and -
improving graph transformations. In: Gadducci F, Kehrer T (eds) Graph transformation—13th international conference, ICGT
2020, Bergen, Norway, June 25–26, 2020, Proceedings, vol 12150. Springer, pp 239–256

[Leb16] Leblebici E (2016) Towards a graph grammar-based approach to inter-model consistency checks with traceability support. In:
Anjorin A, Gibbons J (eds) Bx 2016. CEUR-WS.org

[Leb18] Leblebici E (2018) Inter-model consistency checking and restoration with triple graph grammars. Ph.D. thesis, Darmstadt
University of Technology, Germany

[LAS17] Leblebici E,AnjorinA, SchürrA (2017a) Inter-model consistency checking using triple graph grammars and linear optimization
techniques. In: Huisman M, Rubin J (eds) FASE 2017. Springer, Berlin

[LAF+17] Leblebici E, Anjorin A, Fritsche L, Varró G, Schürr A (2017) Leveraging incremental pattern matching techniques for model
synchronisation. In: de Lara J, Plump D (eds) ICGT 2017, Marburg, Germany, July 18–19, 2017, Proceedings

[MC13] Macedo N, Cunha A (2013) Implementing QVT-R bidirectional model transformations using alloy. In: Cortellessa V, Varró D
(eds) FASE 2013. Springer, Berlin

[MSBV20] Marussy K, Semeráth O, Babikian AA, Varró D (2020) A specification language for consistent model generation based on
partial models. J Obj Technol 19(3):3:1–22

[NGdSO19] Nierstrasz O, Gray J, Oliveira BCdS (eds) SLE 2019, Athens, Greece, October 20–22, 2019, Proceedings. ACM
[SBL+20] Semeráth O, Babikian AA, Li A, Marussy K, Varró D (2020) Automated generation of consistent models with structural and

attribute constraints. In: Syriani E, Sahraoui HA, de Lara J, Abrahão S (eds) MoDELS ’20: ACM/IEEE 23rd international
conference on Model Driven Engineering Languages and Systems, Virtual Event, Canada, 18–23 October, 2020. ACM, pp
187–199

[Sch94] Schürr A (1994) Specification of graph translators with triple graph grammars. In: Mayr EW, Schmidt G, Tinhofer G (eds)
Graph-theoretic concepts in computer science, 20th international workshop, WG ’94, Herrsching, Germany, June 16–18, 1994,
Proceedings, vol 903. Springer, pp 151–163

[SV17] Semeráth O, Varró D (2017) Graph constraint evaluation over partial models by constraint rewriting. In: Guerra E, van den
Brand M (eds) Theory and practice of model transformation—10th international conference, ICMT@STAF 2017, Marburg,
Germany, July 17–18, 2017, Proceedings, vol 10374. Springer, pp 138–154

[SVL15] Syriani E, Vangheluwe H, Lashomb B (2015) T-Core: a framework for custom-built model transformation engines. Softw Syst
Model 14(3):1215–1243

[WA20] Weidmann N, Anjorin A (2020) Schema compliant consistency management via triple graph grammars and integer linear
programming. In:WehrheimH,Cabot J (eds) Fundamental approaches to software engineering—23rd international conference,
FASE 2020, Dublin, Ireland, April 25–30, 2020, Proceedings, vol 12076. Springer, pp 315–334

[WOR19] WeidmannN,OppermannR,Robrecht P (2019a) A feature-based classification of triple graph grammar variants. In: Nierstrasz
et al. [NGdSO19], pp 1–14

[WALS19] Weidmann N, Anjorin A, Leblebici E, Schürr A (2019b) Consistency management via a combination of triple graph grammars
and linear programming. In: Nierstrasz et al. [NGdSO19], pp 29–41

[WFA20] Weidmann N, Fritsche L, Anjorin A (2020) A search-based and fault-tolerant approach to concurrent model synchronisation.
In: SLE 2020. Association for Computing Machinery, New York, pp 56–71

[XHZ+09] Xiong Y, Hu Z, Zhao H, Song H, Takeichi M,Mei H (2009) Supporting automatic model inconsistency fixing. In: van Vliet H,
IssarnyV (eds) Proceedings of the 7th jointmeeting of the European Software Engineering Conference and theACMSIGSOFT
international symposium on foundations of software engineering, 2009, Amsterdam, The Netherlands, August 24–28, 2009.
ACM, pp 315–324

Received 22 November 2020
Accepted in revised form 12 July 2021 by Jordi Cabot, Heike Wehrheim and Eerke Boiten
Published online 24 August 2021

	Schema compliant consistency management via triple graph grammars and integer linear programming
	Abstract
	1 Introduction
	2 Running example
	3 Main ideas
	4 Preliminary definitions
	5 Formalisation
	6 Correctness and completeness
	7 Implementation
	8 Experimental evaluation
	9 Related work
	10 Conclusion and future work
	A Appendix
	References

