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Abstract. Modelling is an essential activity in software engineering. It typically involves two meta-levels: one
includes meta-models that describe modelling languages, and the other contains models built by instantiating
those meta-models. Multi-level modelling generalizes this approach by allowing models to span an arbitrary
number of meta-levels. A scenario that profits from multi-level modelling is the definition of language families
that can be specialized (e.g., for different domains) by successive refinements at subsequent meta-levels, hence
promoting language reuse. This enables an open set of variability options given by all possible specializations
of the language family. However, multi-level modelling lacks the ability to express closed variability regarding
the availability of language primitives or the possibility to opt between alternative primitive realizations. This
limits the reuse opportunities of a language family. To improve this situation, we propose a novel combination
of product lines with multi-level modelling to cover both open and closed variability. Our proposal is backed by
a formal theory that guarantees correctness, enables top-down and bottom-up language variability design, and
is implemented atop the MetaDepth multi-level modelling tool.

Keywords: Meta-modelling,Multi-level modelling, Product lines, Domain-specific languages, Software language
engineering, MetaDepth.

1. Introduction

Modelling is intrinsic to most engineering disciplines. Within software engineering, it plays a pivotal role in
model-driven engineering (MDE) [Sch06]. This is a software construction paradigm where models are actively
used to describe, analyse, validate, verify, synthesize and maintain the application to be built, among other
activities [BCW17].

Models are built using modelling languages, which can be either general-purpose, like the UML [UML17], or
domain-specific languages (DSLs) tailored to a specific concern [KT08, VBD+13]. In MDE, the abstract syntax
of modelling languages is defined through a meta-model that describes the primitives that can be used in models
one meta-level below. This modelling approach, which is the standard nowadays, constrains engineers to confine
their models within one meta-level (the “model” level).
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Fig. 1. a Open language variability through instantiation. b Closed language variability through product lines.

Several researchers have observed that domain modelling can benefit from the use of more than one meta-
level [AK08, dLGS14, FAGdC18, Fra14, IGSS18, GPHS06, MRS+18]. This way of modelling—called multi-
level modelling [AK01] or deep meta-modelling [dLG10]—yields simpler models in scenarios that involve the
type-object pattern [AK08, dLGS14, MRB97]. Moreover, it permits defining language families (e.g., for pro-
cess modelling) that can be specialized to specific domains (e.g., software process modelling, industrial process
modelling) via instantiation at lower meta-levels [dLGC15]. Instantiation is an open variability mechanism that
permits the customization of a language by specializing its primitives for a domain, or adding new ones via
so-called linguistic extensions [dLG10]. As an illustration, Fig. 1a shows a tiny process modelling language that
defines the primitive TaskType, which is customized by instantiation in the lowermeta-level for the software process
modelling domain (Coding and Design). In turn, these two primitives could be instantiated in the meta-level below.
However, multi-level modelling lacks support for expressing optionality of language primitives or alternative
primitive realizations. This prevents wider language reuse and customization possibilities.

Software product lines (SPLs) encompass methods, tools and techniques to engineer collections of similar
software systems using a common means of production [NC02, PBL05]. SPLs support closed variability, where
a concrete software product is obtained by selecting among a finite set of available features (i.e., by setting a
configuration). SPL techniques have been applied to language engineering to define product lines of languages
representing a closed set of predefined language variants [GdLCS20, PAA+16,WHG+09]. As an example, Fig. 1b
shows a process modelling language product line with two configurable features: actors and initial tasks. Selecting
a configuration of features (in the figure, initial tasks but no actors) yields a language variant. Languages defined
via a product line permit configuring the language primitives and their realization, but cannot be specialized for
specific domains, because this requires from open variability mechanisms.

To improve current language reuse techniques, we propose combiningmulti-level modelling and product lines.
This allows the definition of highly configurable language families that profit from both open variability (as given
by instantiation) and closed variability (as given by configuration). This way, this paper makes the following
contributions: (i) a novel notion of multi-level model product line; (ii) a theory that enables deferring variability
resolution to lower meta-levels in a flexible way, guaranteeing the correctness of interleavings of instantiation and
configuration steps; (iii) techniques supporting both top-down and bottom-up variability design, based on the
possibility of advancing variability extension to both instantiation and configuration; and (iv) an implementation
of these ideas on top of the MetaDepth tool [dLG10].

This work builds on our FASE’20 article [dLG20], expanding it in three main ways, covering both usage and
design of language product lines. First, we complete the presented theory with required definitions and lemmas
for composition of specializations steps (Definition 3 and Lemma 1; Definition 9 and Lemma 2; Definition 12
and Lemma 3). Then, we expand the theory to calculate the fully configured language (i.e., a language definition
with no variability) that is equivalent to the language resulting from an arbitrary chain of language instantiations
and partial configurations, as shown by Theorem 5.3. This is an important result, which shows that, in order to
use a language family, users do not need to provide a full configuration before using the family. Instead, they
can directly use it by instantiation, while variability can be resolved at later steps providing partial configurations
as needed. The second main extension of this paper facilitates designing language product lines. In [dLG20], we
assumed that a language family needed to be constructed in a top-down way, where all variability is designed
up-front. This was due to the fact that the theory did not have a way to characterize extensions of the feature
models and the associated model product lines (instead, the theory only covered specializations). However, in
practice, product lines can be constructed both top-down and bottom-up [KC16]. Supporting these two options
in our setting requires enabling exploratory modelling, where the language is instantiated, possibly partially
specialized, and then new variants can be added, which the designer might like to include in the original language
definition. For this purpose, we introduce new notions of extension morphisms (Definitions 14 and 15), along
with compatibility conditions ensuring that variability extensions can be advanced to both instantiation and
specialization (Lemma 4, Theorem 5.4 and Corollary 1). Accordingly, we use the new concepts and the theory
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to describe flexible processes for using language families (Sect. 5.1), and for their top-down and bottom-up
construction (Sect. 5.2). As a third main extension, we have expanded the tool with new functionality to support
extension, and provide a walkthrough of its use for three activities: top-down creation of language families
(Sect. 6.1), use of language families (Sect. 6.2) and bottom-up extension of language families (Sect. 6.3). Finally,
we provide additional examples and explanations, as well as a more thorough comparison with related work.

The rest of this paper is organized as follows. Section 2 introduces multi-level modelling and identifies the
challenges tackled in this paper. Section3provides a light formalizationofmulti-levelmodelling,which is extended
with product line techniques in Sect. 4. Section 5 exploits the introduced concepts for: (a) the flexible use of
language families, by proving that variability configuration can be deferred to model instantiation; and (b) the
bottom-upand top-downconstructionof language families, by showing that variability extension canbe advanced
to both configuration and instantiation. Section 6 describes tool support. Section 7 discusses related research,
and Sect. 8 ends with the conclusions and future work. An appendix includes the proofs of the theorems and
lemmas in the paper.

2. Multi-level modelling: intuition and challenges

In this section, we first introduce the main concepts of multi-level modelling guided by an example (Sect. 2.1),
and then we discuss some challenges when applying multi-level modelling to language engineering (Sect. 2.2).

2.1. Multi-level modelling by example

Multi-level modelling supports the definition of models using multiple meta-levels [AK08, dLGS14]. To under-
stand its rationale, assumewewould like to create a language to define commerce information systems (a standard
example often used in the multi-level modelling literature [AK08, dLGS14]). The language should allow defining
product types (like books or food) which have a tax, as well as products of the defined types (likeOthello or banana)
which have a price. Moreover, some product types may need to define specific properties, like the number of pages
in books.

Figure 2a shows a solution for this scenario using two meta-levels. In this solution, the meta-model uses
the type-object pattern [MRB97] to emulate the typing relationship between Product and ProductType. In addition,
classes Attribute and Slot permit defining properties in ProductTypes and assigning them a value in Products (called
dynamic features pattern in [dLGS14]). The model in the bottommeta-level represents an information system for
Kiosks. It defines the product types Book and Food, as well as the products sold by a particular kiosk: the Othello
book and Bananas.

On reflection, one can realize that this solution emulates two meta-levels within one, as we convey with the
dashed line in Fig. 2a. Therefore, we show an alternative multi-level solution using three meta-levels in Fig. 2b.
The top level defines just ProductType, which is instantiated at the next level to create Book and Food product types,
which in turn are instantiated at the bottom level to create specific products. Hence, elements in this approach are
uniformly called clabjects [Atk97] across meta-levels (from the contraction of the words class and object), since
they are types for the elements in the level below, and instances of the elements in the level above. For example,
clabject Book is a type for Othello and an instance of ProductType. This multi-level solution leads to a simpler model
(with fewer elements) because a clabject suffices to represent both ProductType and Product.

Clabjects may need to control the properties of their instances beyond the next meta-level. For example, the
direct instances of ProductType need to have a tax, and the instances of its instances (which we call indirect instances)
have a price. This is possible by the use of a deep characterization mechanism called potency [Atk97, AK01]. The
potency is a natural number, or zero, which governs the instantiation depth of models, clabjects and features.
Fig. 2b depicts the potency after the “@” symbol, and the elements that do not declare potency take it from
their container. As an example, attribute ProductType.price takes its potency from ProductType, and this from the
Commerce model, which declares potency 2. When an element is instantiated, the instance receives the potency
of the element minus 1. Elements with potency 0 are pure instances and cannot be instantiated. For example,
attribute ProductType.tax with potency 1 is instantiated into Book.tax and Food.tax, which therefore have potency 0
and can receive values. Asmodel Commerce has potency 2, it can be instantiated at the two subsequent meta-levels.
The potency of a model is often called its level [AK08].

Sometimes, it is not possible to foresee every possible property required by clabject instances several meta-
levels below—like the number of pages in books—orwemay need to introduce newprimitives at lower levels—like
a new clabject to model the authors of books.
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Fig. 2. Commerce example using a standard modelling and b multi-level modelling.
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To handle those cases, multi-level modelling supports linguistic extensions [dLGC15]. These are elements
(clabjects or features) with no ontological type, but with a linguistic type that corresponds to the meta-modelling
primitive used to create it (see Orthogonal ClassificationArchitecture in [AK02] for more details). As an example,
Book.numPages is a linguistic extensionmodelling a property specific to Bookbut not to other product types. Instead,
in the two-level solution in Fig. 2a, the properties of specific ProductTypes need to be explicitly modelled by classes
Attribute and Slot, leading to more complexity.

2.2. Improving reuse in multi-level modelling: some challenges
Multi-level modelling enables language reuse by supporting the definition of language families. For example,
Fig. 3 shows at the top a generic process modelling language that can be used to define process modelling
languages for different domains, like education, software engineering, or production engineering. The language
is designed to consider three levels. Level 2 at the top contains the language definition, consisting of primitives
(i.e., clabjects) to define task and gateway types. Level 1 contains language specializations for specific domains.
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The figure shows the case for the software engineering domain, which defines the task types Requirements and
Design, and two gateway types: ReqDep to transition from requirement tasks to either design or requirement tasks,
and DesignDep to declare dependencies between design tasks. Finally, level 0 contains domain-specific processes.
The one in the figure declares two requirements tasks, one design task and one gateway.

This example shows how instantiation permits customizing the language primitives offered at the top level
for particular domains, and how linguistic extensions (e.g., attribute Design.style at level 1 in Fig. 3) allow adding
domain-specific primitives and properties to language specializations. However, the following scenarios require
further facilities that enable a better fit for particular domains, increase language reuse and facilitate language
family engineering.

• Alternative realizations A language primitive may be realised in different ways, each more adequate than the
others depending on the domain. For example, in Fig. 3, dependencies between task types are modelled by
Gateway-Type. However, in domains that do not require distinguishing types of gateways or n-ary dependencies,
a simpler representationof dependencies as a binary reference between TaskTypes is enough (seeFig. 4a).Unfor-
tunately, multi-level modelling does not support this kind of variability, which enables alternative realizations
of available language primitives.

• Primitive excess Some offered language primitives may be unnecessary in simple domains. This can be con-
trolled by not instantiating the primitive. However, withdrawing the needless primitivesmay be a better option
because it simplifies the language usage and avoids some problematic situations. First, if the needless primitive
is an attribute (like initial in Fig. 4), then it becomes instantiated by force, polluting the model with unnecessary
information. Second, some mandatory primitives may not be needed in certain domains. For example, in
Fig. 4b, the language designer assumes that any TaskType (e.g., Requirements) will be performed by one ActorKind
(e.g., Analyst or DomainExpert). However, there may be domains that do not involve actors (e.g., if tasks are
automated), but the mandatory relation perfBy still forces having instances of ActorKind associated to instances
of TaskType.

• Deferred variability resolution and exploratory modellingThe decision about the inclusion or not of a primitive
may not be clear when the language is instantiated for a domain, but this can be determined later at lower
meta-levels. For example, in Fig. 4c, an engineer might hesitate whether, in addition to the expected task
duration (attribute duration), tasks should store their real duration as well (attribute rDuration with potency 2);
in such a case, the engineer may prefer deferring the decision to level 1 or 0, where the need becomes evident.
In general, resolving all variability in a language family at the top level may be hasty in some cases, since the
suitability of a primitive may be apparent only when a language has reached certain specificity (i.e., at lower
meta-levels). Moreover, enabling modelling before resolving every possible language variability option may
be good for exploratory purposes.

• Top-down and bottom-up variability design Language variability can be designed up-front, following a top-
down process. However, some language variants may emerge when working in a specific domain, making it
desirable to lift the discovered variant bottom-up [CdLG12] from a lower meta-level to the top one. Fig. 4d
shows an example. The left side shows a process modelling language that does not support actors (level 2),
but its refinement for software engineering requires software engineers—a kind of actor—so it defines the
linguistic extension SoftwareEngineer (level 1). Since other domains may need to support actors, SoftwareEngineer
could be lifted to the top level renamedmore generically to ActorKind, as the right side of Fig. 4d shows. ActorKind
would be optional as not every domain needs actors. This kind of bottom-up refactorings [dLG18] would
facilitate extending the definition and variability of language families upon emerging variants. Supporting
both top-down and bottom-up variability design would provide flexibility to language family creation and
evolution.
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To tackle these challenges, we incorporate variability into multi-level models taking ideas from SPLs. As a
first step, in the next section we formalize multi-level models.

3. A formal foundation for multi-level modelling

We start defining the structure of models equipped with deep characterization, which we call deep models. We
represent models at different meta-levels in a uniform way, in order to cope with an arbitrary number of meta-
levels. For simplicity of presentation, and because they are not essential to demonstrate our ideas, we omit
inheritance, cardinalities and integrity constraints in our formalization.

Def. 1 (Deep model). A deep model is a tupleM � 〈p,C ,S ,R, src, tar , pot〉, where:
• p ∈ N0 is called the model potency, or level.
• C ,S and R are disjoint sets of clabjects, slots and references, respectively.
• src : S ∪ R → C is a function assigning the owner clabject to slots and references.
• tar : R → C is a function assigning the target clabject to each reference.
• pot : C ∪ S ∪ R → N0 is a function assigning a potency to clabjects, slots and references s.t.:

1. ∀ e ∈ C ∪ S ∪ R • pot(e) ≤ p
2. ∀ s ∈ S ∪ R • pot(s) ≤ pot(src(s))
3. ∀ r ∈ R • pot(r ) ≤ pot(tar (r ))

In the previous definition, we assign a level p to deep models. Elements in a deep model have a potency via
function pot , which must satisfy three conditions: (1) the potency of an element should not be larger than the
model level, (2) the potency of slots and references should not be larger than the one of their container clabject,
and (3) the potency of references should not be larger than the one of the clabjects they point to. Please note that
we use the term slot to refer uniformly to attributes (or their instances) at any meta-level.

Example Figure 5 illustrates the rationale of the three well-formedness rules in Definition 1 concerning potency.
Specifically, each deep model violates one of the rules. Figure 5a depicts a deep model where the level (2) is lower
than the potency of its contained clabject (3). This would be problematic two levels below, where the indirect
instances of TaskType have potency 1 but cannot be instantiated because their container model has potency 0 and
hence is non-instantiable. Similarly, Fig. 5b shows a slot with higher potency (3) than its container clabject (2).
In this case, the indirect instances of the clabject with potency 0 will contain a slot rDuration with potency 1. The
slot would receive a value one level below, when it reaches potency 0, but this is not possible because its container
clabject cannot be instantiated further. Finally, in Fig. 5c, reference budgetwith potency 2 points to clabject Budget
with potency 1. As a consequence, the reference can only be instantiated at the next level regardless its potency
2, due to the lower potency of Budget.

Next, we define a general notion of mapping (a morphism) between deep models as a tuple of three (total)
functions between the sets of clabjects, slots and references. Each morphism has a depth (a natural number or
0) controlling the distance between the levels of the involved models. We use two particular types of mappings
to represent the type relation between deep models at adjacent meta-levels (when the morphism depth is 1), and
extensions of a deep model to add linguistic extensions (when the depth is 0).

Def. 2 (D-morphism, type and extension). Given two deep models Mi � 〈pi ,Ci , Si ,Ri , srci , tari , poti 〉 for i �
{0, 1}, a deep model morphism (D-morphism in short) m � 〈d ,mC ,mS ,mR〉 : M0 → M1 is a tuple made of a
number d ∈ N0 called depth, and three functions mC : C0 → C1, mS : S0 → S1 and mR : R0 → R1 s.t.:
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Fig. 6. Commutativity conditions for D-morphisms in Definition 2.

1. p0 + d � p1
2. ∀ e ∈ X0 • pot0(e) + d � pot1(mX (e)) (for X ∈ {C ,S ,R})
3. Each function mC ,mS ,mR commutes with functions srci and tari (see Fig. 6)

D-morphism tp � 〈d , tpC , tpS , tpR〉 : M0 → M1 is called type if d � 1, and is called indirect type if d > 1. M1 is
called the (indirect) model type of M0.
D-morphism ex � 〈d , exC , exS , exR〉 : M0 → M1 is called level-preserving if d � 0. A level-preserving D-
morphism ex is called extension if each exX (for X � {C ,S ,R}) is an inclusion. An extension is called identity
if each exX is surjective.

In Definition 2, condition 1 ensures that the D-morphism connects models of suitable levels (at a distance
of d levels), condition 2 checks that the potency of elements in M0 decreases according to the depth of the D-
morphism, and condition 3 ensures that the D-morphism is coherent with the source and target of slots and
references (just like in standard graph morphisms [EEPT06]). We use total functions to represent the type, which
ensures that each element in a deepmodel has a type. Linguistic extensions are not typed, but they aremodelled as
an extension D-morphism of a (typed) deep model into a larger model. This avoids resorting to partial functions
to represent the type, which would complicate the formalization [RdLG+14, WMR20]. Identity extensions map
isomorphic deep models.

D-morphisms can be composed by composing the three mappings and adding their depths, as the next
definition and lemma show. Composition of D-morphisms is necessary as a basis for the results of Sect. 5.

Def. 3 (D-morphism composition). Given two D-morphisms m1 � 〈d1,m1
C ,m1

S ,m2
R〉 : M0 → M1 and m2 �

〈d2,m2
C ,m2

S ,m2
R〉 : M1 → M2, the composed morphism m2 ◦ m1 : M0 → M2 is defined as 〈d1 + d2,m2

C ◦
m1

C ,m2
S ◦ m1

S ,m2
R ◦ m1

R〉.
Lemma 1 (D-morphism composition yields a D-morphism). Given two D-morphisms m1 � 〈d1,m1

C ,m1
S ,m2

R〉 :
M0 → M1 andm2 � 〈d2,m2

C ,m2
S ,m2

R〉 : M1 → M2, their compositionm2◦m1 : M0 → M2 is a validD-morphism.

Proof. By compositionality of functions over sets. See proof details in “Appendix”. �
Remark The composition of two (indirect) type D-morphisms is an indirect type D-morphism. The composition
of two level-preservingD-morphisms is level preserving, and it is an extension (resp. identity) if bothD-morphisms
are extensions (resp. identities).

A multi-level model is made of a root deep model, and a sequence of pairs of instantiations and extensions.
The length of this sequence is equal to the root model level. The extensions are allowed to be identity extensions.

Def. 4 (Multi-level model). Amulti-levelmodelMLM � 〈M ′
0,ML � 〈(M ′

i

tpi+1←− Mi+1
exi+1−→ M ′

i+1)〉i�0..p ′
0−1〉 ismade

of a deep model M ′
0 called the root, and a sequence ML of length p ′

0 (the level of M
′
0) of spans of D-morphisms,

where the left D-morphism is a type and the right D-morphism a (possibly identity) extension.

Example Figure 7 shows a multi-level model (a small excerpt of the one in Fig. 3) according to Definition 4.
Slots are represented as rounded nodes, instead of inside the owner clabject box. Figure 3 hides the slots with
potency bigger than 0 that are typed, like Design.duration at level 1, but such instances do exist and are explicitly
shown in Figure 7 (see slot duration’ in models M1 and M’1). The figure shows a clabject TaskType in the root model
M’0, its instance called Design in model M1, a subsequent extension that adds a style slot to Design (model M’1), an
instantiation of it (modelM2), and an identity extension (modelM’2).Whenever amodel does not include linguistic
extensions, like M2, we use the identity extension D-morphism. Since slot initial’ in model M’1 has potency 0, it is
not instantiated in the model with level 0 (M2). Finally, it would be possible to derive the (indirect) type of M2

with respect to M’0 by defining a construction akin to a pullback (in a category made of multi-level models and
D-morphisms) that yields the part of M2 typed by M1 [Lan71].
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Fig. 7.Multi-level model example, according to Definition 4.

Fig. 8. aFeaturemodel for the running exampleusing the feature diagramnotation.bFeaturemodel for the running exampleusingDefinition5.
c A partial configuration.

4. Multi-level model product lines

In order to solve the challenges identified in Sect. 2.2, we extend deep models with closed variability options by
borrowing concepts from product lines. We use feature models [KCH+90] to represent the allowed variability.

Def. 5 (Featuremodel).A featuremodelFM � 〈F ,�〉 consists of a setF of propositional variables called features,
and a satisfiable propositional formula � over the variables in F , specifying the valid feature configurations.

Example Figure 8 shows the feature model for the running example using (a) the standard feature diagram
notation [KCH+90], and (b) Definition 5. The feature model permits choosing if the process modelling language
will have primitives to define actors (feature actors, cf. Fig. 4b), initial tasks and their enactment at level 0 (features
initial and enactment, cf. Fig. 4c), as well as selecting whether gateways are to be represented either as references or
objects (features simple and object, cf. Fig. 4a). The feature model includes the mandatory features ProcessLanguage,
Gateways and Tasks as syntactic sugar to obtain a tree representation, but they are not needed in our formalization.

The selection of one option within the variability space offered by a feature model is done through a config-
uration. A configuration specifies sets of selected and discarded features, assigning the value true to the former
and false to the latter. To enhance flexibility of use, we also support partial configurations where some features
are not given any value (i.e., they are neither selected nor discarded). We will use partial configurations to allow
deferring the resolution of some variability options to lower meta-levels.

Def. 6 (Configuration). Given a feature model FM � 〈F ,�〉, a configuration of FM is a tuple C � 〈F+,F−〉
made of two disjoint sets F+ ⊆ F and F− ⊆ F , s.t. �[F+/true,F−/false] � false. C is total if F � F+ ∪ F−,
otherwise it is partial. The set of all configurations of FM is denoted by CFG(FM ).

Given two configurations Ci � 〈F+
i ,F−

i 〉 ∈ CFG(FM ) (for i � {0, 1}), C0 is smaller than or equal to C1,
written C0 ≤ C1, if F+

0 ⊆ F+
1 and F−

0 ⊆ F−
1 . Similarly, C0 < C1 if C0 ≤ C1 and either F+

0 ⊂ F+
1 or F−

0 ⊂ F−
1 .
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In the previous definition, F+ contains the selected features (i.e., those given the value true), F− the discarded
features (i.e., those given the value false), and F \ (F+ ∪F−) is the set of features whose value has not been set. A
configurationmustbe compatiblewith the featuremodel, soDefinition6demands that the formula�of the feature
model is not false after substituting the features in F+ by true and the features in F− by false. If the configuration
is total, then the condition entails that � must evaluate to true. The relation < between configurations defines a
partial orderwhere total configurations aremaximal elements, and the empty configuration (i.e., the configuration
that does not select or discard any feature) is the minimal element.

Remark We sometimes use the term invalid configuration for a tuple C � 〈F+,F−〉 with F+ ⊆ F and F− ⊆ F ,
s.t. �[F+/true,F−/false] ∼� false.

Example Figure 8c shows an example of configuration, which selects features ProcessLanguage, Gateways, Tasks
and initial; and discards the feature actors. Since features simple, object and enactment remain undefined, it is
a partial configuration. The result from substituting the selected and discarded features by their values in
the feature model formula is the following: �[{ProcessLanguage, Gateways, Tasks, initial}/true, {actors}/false] ∼�
(¬simple∧object) ∨ (simple∧¬object)).

Next, we assign a level to feature models, and potencies to features, in order to control the level at which
features should be assigned a truth value.

Def. 7 (Deep feature model). A deep feature model DFM � 〈l ,FM � 〈F ,�〉, pot〉 is made of a level l ∈ N0, a
feature model FM , and a function pot : F → N0 assigning a potency to each feature, s.t. ∀ f ∈ F • pot(f ) ≤ l .

Next,wedefineamappingbetweendeep featuremodels, calledF-morphism.Similar toD-morphisms (cf.Defi-
nition 2),F-morphismshave adepth that canbepositive or 0. In addition, they include a configuration, andamap-
ping for the features excluded fromthe configuration (i.e., thosewithout a value).This is necessary, sincewewant to
represent specialization relations between the two featuremodels [TBK09] bymeans of the (partial) configuration
of themorphism.We identify two special kinds of F-morphisms: one representing a type relationship between two
featuremodels (where themorphismdepth is 1 and the configuration empty), and theother expressing a specializa-
tion relationship between two feature models via a total or partial configuration (where the morphism depth is 0).

Def. 8 (F-morphism, type and specialization). Given two deep feature models DFMi � 〈li ,FMi , poti 〉 (for i �
{0, 1}), a deep feature model morphism (F-morphism in short) m � 〈d ,mF ,C 〉 : DFM0 → DFM1 is made of:

• a depth d ∈ N0 s.t. l0 + d � l1
• an injective set morphism mF : F0 → F1 s.t. ∀ f ∈ F0 • pot0(f ) + d � pot1(mF (f ))
• a configuration C � 〈F+

1 ,F−
1 〉 ∈ CFG(FM1) s.t.:

1. mF (F0) � F1 \ (F+
1 ∪ F−

1 )
2. �1[F+

1 /true,F−
1 /false] ∼� �0[F0/mF (F0)]

F-morphism tp is a type morphism if d � 1 and C � 〈∅,∅〉, and it is an indirect type morphism if d > 1 and
C � 〈∅,∅〉. F-morphism sp is a specialization if d � 0.

Definition 8 requires that the F-morphism depth fills the gap between the feature model levels, and between
the potencies of the mapped features. FM0 may have fewer features than FM1, in case the configurationC assigns
a value to the missing features with respect to FM1. In particular, the injectivity condition of mF and requiring
mF (F0) � F1\(F+

1 ∪F−
1 ) ensures that only the features left undefinedbyC aremapped fromFM0.Moreover,when

the configuration C assigns a value to some feature, the definition requires that the formula �1 after replacing
the features inC by their value true or false, is equivalent to�0 after replacing the features in F0 by their mapping
in F1. This corresponds to a (partial) evaluation of the formula �1 as a result of a feature model specialization.

Example Figure 9 shows two F-morphisms, with tp a type and sp a specialization. F-morphism tp : FM1 → FM2
relates two deep feature models FM1 and FM2, where the level and potencies of FM1 are one less than those in
FM2, and the formulae are the same modulo feature renaming. Specialization sp : FM0 → FM1 has depth 0 and
partial configuration C � 〈F+ � {object},F− � {simple}〉. Hence, the levels and potencies are maintained, but
the feature set F0 is decreased by removing from F1 the features that appear in C . According to condition 1 in
Definition 8, {Gateways} � {Gateways, simple, object} \ ({object}∪{simple}). According to condition 2 in the definition,
the formula �0 is equivalent to replacing object by true and simple by false in �1.
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Fig. 9. Examples of F-morphisms.

Fig. 10. Deep model PL example.

F-morphisms are composable by adding their depths and constructing the unionof the positive (resp. negative)
features in the configurations, as the next definition and lemma show. Composition of F-morphisms is necessary
as a basis for the results of Sect. 5.1.

Def. 9 (F-morphism composition). Given two F-morphisms m1 � 〈d1,m1
F ,C 1 � 〈F+

1 ,F−
1 〉〉 : DFM0 → DFM1

and m2 � 〈d2,m2
F ,C 2 � 〈F+

2 ,F−
2 〉〉 : DFM1 → DFM2, the composed morphism m2 ◦ m1 : DFM0 → DFM2 is

defined as 〈d1 + d2,m2
F ◦ m1

F , 〈m2
F (F

+
1 ) ∪ F+

2 ,m2
F (F

−
1 ) ∪ F−

2 〉〉.
Lemma 2 (F-morphism composition yields an F-morphism). Given two F-morphismsm1 � 〈d1,m1

F ,C 1〉 : DFM0

→ DFM1 and m2 � 〈d2,m2
F ,C 2〉 : DFM1 → DFM2, their composition m2 ◦ m1 : DFM0 → DFM2 is a valid

F-morphism.

Proof. By checking that the composition satisfies the five requisites for F-morphisms in Definition 8: correct
depth, injectivity, composed configuration being correct, and conditions 1 and 2. See proof details in “Appendix”.

�
Example In Fig. 9, the composition of sp with tp results in the F-morphism tp ◦ sp, which has depth 1 and
configurationC � 〈F+ � {object},F− � {simple}〉. This F-morphismmodels the combined action of instantiation
and variability specialization, but is neither a type nor a specialization according to Definition 8.

Finally, we are ready to characterize deep model product lines (PLs) as a deep model, a deep feature model
with the same level as the deepmodel, and amapping assigning presence conditions (PCs) to deepmodel elements.

Def. 10 (Deep model PL). A deep model PL DM � 〈M ,DFM , φ〉 is made of:

• A deep modelM and a deep feature model DFM with the same level (p � l ).
• A function φ : C ∪ S ∪R → B(F ) mapping each element inM to a non-false propositional formula over the
features in F , called presence condition (PC), s.t.:

1. ∀ s ∈ S ∪ R • φ(s) ⇒ φ(src(s))
2. ∀ r ∈ R • φ(r ) ⇒ φ(tar (r ))
3. ∀ e ∈ C ∪ S ∪ R, ∀ v ∈ Var(φ(e)) • pot(v ) ≤ pot(e)
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Fig. 11. Examples of PL-morphisms and deferred configuration.

In the previous definition, we use function Var to return all variables (i.e., all features) within a propositional
formula. Intuitively, given a configuration, we can derive a product (a deep model) of the PL by deleting the
model elements whose PC evaluates to false when substituting its variables by their value true or false. To avoid
dangling edges in product deep models, Definition 10 requires the PC of slots and references not to be weaker
than the PC of their owning clabject (condition 1), and the PC of references not to be weaker than the one of their
target clabject (condition 2). In addition, the variability of an element must be resolved in a level that contains
the element or an instance of it. To this aim, condition 3 requires the potency of an element not to be smaller
than the potency of the variables within its PC.
Example Figure 10 shows a deep model PL for process modelling languages. The left compartment contains the
deep feature model, the one to the right contains the deep model, and the PCs are represented between square
brackets close to the deepmodel elements they aremapped into. If an element does not specify a PC (like TaskType),
then its PC is assumed to be true. This deep model PL permits two alternative realizations for gateways: either
as the reference next if the feature simple is selected, or as the clabject GatewayType if the feature object is selected
instead. This variability needs to be resolved before instantiating the language for a specific domain, as features
simple and object have potency 0. The PL also offers the choice to add or not the primitive ActorKind to the language
bymeans of the feature actors; since this feature has potency 1, this decision can be taken either before specializing
the language or at level 1 to enable exploratory modelling. Finally, the PL allows selecting whether tasks can be
initial or hold enactment information. By condition 3 in Definition 10, feature initial in the feature model cannot have
potency 2 because the feature is used in the PC of attribute TaskType.initial, which has potency 1. The feature model
depicts features ProcessLanguage, Gateways and Tasks in colour and without a potency; this is so as these features
are mandatory (i.e., true in any valid configuration), and while the figure shows them to obtain a tree-like feature
model, the formalization of the example does not include them.

Next, we introduce mappings between deep model PLs (called PL-morphisms) as a tuple of morphisms
between their constituent deep models and deep feature models. As in the previous cases, we are interested in
type morphisms, linguistic extensions, and specializations of deep model PLs via a (partial) configuration.

Def. 11 (PL-morphism, type, extension, specialization). Given two deep model PLs DMi � 〈Mi , DFMi , φi 〉 (for
i � {0, 1}), a PL-morphism m � 〈mD ,mF 〉 consists of a D-morphism mD : M0 → M1 and an F-morphism
mF : DFM0 → DFM1 with configuration C � 〈F+

1 ,F−
1 〉, s.t.:

∀ e ∈ C0 ∪ S0 ∪ R0 • φ1(mD (e))[F+
1 /true,F−

1 /false] ∼� φ0(e)[F0/mF
F (F0)]

PL-morphism tp � 〈tpD , tpF 〉 is a type if both tpD and tpF are types.
PL-morphism ex � 〈exD , idF 〉 is an extension if exD is an extension and idF is an identity.
PL-morphism sp � 〈mD , spF 〉 is a specialization if spF is a specialization and mD is injective, level-preserving,
and satisfying ∀ e ∈ C1 ∪ S1 ∪ R1 • (φ1(e)[F+

1 /true, F−
1 /false] � false ⇔ ∃ e ′ ∈ C0 ∪ S0 ∪ R0 • mD (e ′) � e).

Remark There is no condition on the equality of depths of mD and mF , as M0 and DFM0 have the same level,
and in turn, the levels of M1 and DFM1 are equal. The condition for PL-morphisms demands that the PCs in
the deep model M0 are modified according to the selection of features in configuration C of mF . In addition,
in specialization PL-morphisms, M0 should contain just the elements whose PC is not false after substituting
the features in F+ by true, and the ones in F− by false. Therefore, the definition of specialization PL-morphism
requires that only the elements in M1 whose PC is not false after substituting the features by their values, are
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mapped from M0; while this mapping mD needs to be injective. Moreover, by Definition 10 of deep model PL,
no element in M0 can have a PC that is false.

Other kinds of PL-morphisms are possible, for example, adding features to a feature model in the same or
lower levels to increase its variability. We will introduce this possibility in Sect. 5.2.
Example Figure 11 shows fourPL-morphisms (tp, tp ′, sp, sp ′) anda function ex , which fails to be aPL-morphism.
Both tp and tp ′ are types: they relate models at adjacent levels, where one is an instance of (typed by) the other.
Types always have depth 1 and use the empty configurationC � 〈∅,∅〉 (cf. Definition 8), and so, a model element
and its instances have the same PC (see, e.g., ActorKind and its instances SoftEng and UIDsgner). Both sp and sp ′
are specialization PL-morphisms. This is so as they preserve levels and potencies, and map injectively the model
elements whose PCdoes not evaluate to falsewhen applying the configurationC . Actually, since the configuration
C of both PL-morphisms is total, the PC of the elements in DM3 and DM2 evaluates to true, and hence, these
models do not have more closed variability options to configure (i.e., they are final products of the PL).

The figure also shows a deep model DM4, which is an attempt to extend DM1 by a linguistic extension made
of the clabject Skill and its incoming reference exp. However, the result is not a valid deep model PL as the PC of
exp (true) is weaker than the PC of its owner clabject SoftEng (actors). This makes ex fail to be a PL-morphism.
DM4 can become a deep model PL by adding to exp and Skill the PC actors. In such a case, morphism ex (with
empty configuration) would become a PL-morphism.

Finally, we define PL-morphism composition, and show that it leads to a valid PL-morphism.

Def. 12 (PL-morphismcomposition).GivenPL-morphismsm1 � 〈mD
1 ,mF

1 〉 : DM0 → DM1 andm2 � 〈mD
2 ,mF

2 〉
: DM1 → DM2, the composition morphism m2 ◦ m1 : DM0 → DM2 is defined as 〈mD

2 ◦ mD
1 ,mF

2 ◦ mF
1 〉.

Lemma 3 (PL-morphism composition yields a PL-morphism). Given PL-morphisms m1 � 〈mD
1 ,mF

1 〉 : DM0 →
DM1 andm2 � 〈mD

2 ,mF
2 〉 : DM1 → DM2, their compositionm2 ◦m1 : DM0 → DM2 is a valid PL-morphism. If

m1 and m2 are specializations, so is m2 ◦ m1.

Proof. For proving the first part of the lemma, we use Lemmas 1 and 2 (composition of D- and F-morphisms),
and then check the condition in Definition 11. For the second part, we check that the resulting morphism is
injective, level-preserving and that the co-domain keeps only the elements with non-false PC. See proof details in
“Appendix”. �

5. Engineering and using language families via multi-level model product lines

In this section, we apply and extend the theory presented so far to cover two scenarios in language family
engineering. The first one (Sect. 5.1) is its usage to represent a language family with variability that is specialized
via instantiation and (partial) configurations. The second one (Sect. 5.2) covers the creation process of a language
family with variability, which can be done either top-down (by working at the top-level to incrementally extend
the language variability) or bottom-up (by pulling up linguistic extensions and variability options to upper levels).

5.1. Usage of a language family

A deep model PL can be used as a language family with variability. Figure 12 illustrates this usage scenario. The
deep model with variability at the top describes a language family. This language is created by a language family
designer in step 1.While the figure depicts a language family with depth 3, our framework is general and supports
any depth.

Then, the figure depicts two scenarios to the left and right. In the branch (a) to the right, a DSL designer
(labelled DSL-1 designer) customizes the language family by giving a total configuration (step 2a). This resolves
all “closed” variability options offered by the language family definition before using the language. Then, theDSL
designer instantiates the language to create theDSL-1meta-model (step 3a), whichDSL-1 users can instantiate to
build models (step 4a). Compared with a standard software language engineering process, here the DSL designer
uses a language familymeta-model as a basis to createDSL-1, instead of using ameta-modelling language like the
OMG’s Meta-Object Facility [MOF16]. The advantage is that the language family meta-model contains relevant
primitives for the DSL scope (e.g., TaskType, ActorKind), which do not need to be invented anew, but specialized for
the domain via instantiation. Moreover, the language family meta-model can define services like transformations
or code generators, which can be reused for every DSL of the family [dLGC15].
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Fig. 12.Using a language familywith variability. Branch (a—right) resolves the closed variability options before language use. Branch (b—left)
defers variability resolution to lower levels.

The branch (b) to the left illustrates a more flexible usage scenario, where some “closed” variability options
are not resolved at the top level, but later at lower levels, including level 0. In this case, a DSL designer (labelled
DSL-2 designer) specializes the language family definition by providing a partial configuration (step 2b), and
then instantiates the resulting language to define the DSL-2 meta-model (step 3b). However, in this case, some
variability options remain open at level 1. Hence, the DSL users can specialize the language further according to
their needs (step 4b), and then use it to create models (step 5b). In the figure, some variability remains open at
level 0, meaning that the DSL users can create models with variability and resolve this variability later (step 6b).

We need to tackle two issues to properly realize both scenarios. The first one relates to derivation. Since our the-
orymodels configurations bymeans of specializationmorphisms, the question is whether for any (total or partial)
configuration, we can find a corresponding valid specializationmorphism. This enables steps 2a, 2b, 4b, and 6b in
Fig. 12. The second one pertains scenario (b). Since we want to allow deferring the variability resolution to lower
levels, the question is whether there is always an equivalent scenario (a) where all the variability is resolved in a first
step. If so, this entails that the expressiveness of a language family with variability is independent on how it is used.

We first tackle the issue concerning derivation. When the configuration C of a specialization PL-morphism
sp : DM0 → DM1 is total, DM0 is a product of DM1 with no variability options to choose from, being equivalent
to a deep model (without the PL part, cf. Definition 1). This is so as the feature model would be empty, and all
PCs of the model elements would be true. However, the question remains whether for any valid configuration C
of a deep model PLDM , we can find a deep model PLDM ′ and a specialization PL-morphism sp : DM ′ → DM
via C . This requires showing that any choice of feature configuration 〈F+,F−〉 produces a valid deep model PL
DM ′ as given by Definition 10. Theorem 5.1 captures this result.
Theorem 5.1 (Specialization morphisms for configurations) Given a deep model PL DM � 〈M ,DFM , φ〉 and
any configuration C of DFM , there is exactly one deep model PL DM ′, such that a specialization PL-morphism
sp : DM ′ → DM with configuration C exists.

Proof. We construct a deep model PL DM ′, where its modelM ′ has same level asM , and contains the elements
ofM with non-false PC. Similarly, the feature model ofDM ′ is restricted to the features that have not been set by
C (i.e., those remaining undefined) and the formula is the result of evaluating DFM ’s formula on configuration
C . Then, we prove that such deep model PL is valid according to Definition 10. Finally, we build a specialization
PL-morphism from DM ′ to DM , showing that it fulfils Definition 11 and is unique. See proof details in the
“Appendix”.

�
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Fig. 13. Deferred configuration: specialization can be advanced to instantiation.

We are now ready to characterize the process of derivation from a deep model PL via a configuration, using
specialization PL-morphisms and the results of Theorem 5.1.

Def. 13 (Derivation). Given a deep model PL DM � 〈M ,DFM � 〈l ,FM , pot〉, φ〉, the set of derivable deep
model PLs Der (DM ) � {DM ′ | ∃ sp : DM ′ → DM with configuration C ∈ CFG(FM )} is made of the set
of all deep models DM ′ s.t. there is a specialization PL-morphism sp : DM ′ → DM using any (total, partial)
configuration C of DFM . DM ′ is called a (total, partial) product of DM .

Next, we look into the second issue, which is the soundness of deferring the configuration of an element
after it is instantiated. The question is whether, in every situation that allows configuring an element after its
instantiation, we obtain the same result by resolving the element variability first and then instantiating. This result
is important as, regardless of the order in which configurations and instantiation are performed, we can calculate
the language that results from applying the configurations as the first step, by advancing the configuration steps
over the instantiations.

The next theorem captures the fact that if we can instantiate and then configure, then we obtain the same
result if we configure and then instantiate.

Theorem 5.2 (Specialization can be advanced to instantiation). Given three deep model PLs DMi � 〈Mi ,DFMi ,
φi 〉 (for i � {0, 1, 2}), a type PL-morphism tp : DM1 → DM0 and a specialization PL-morphism sp : DM2 →
DM1, there is a unique deep model PL DM3 ∈ Der (DM0), a specialization PL-morphism sp ′ : DM3 → DM0 and
a type PL-morphism tp ′ : DM2 → DM3 s.t. the diagram in Fig. 13 commutes.

Proof. Weuse Theorem 5.1 to construct a deepmodel PLDM3 and a specializationmorphism sp ′ : DM3 → DM0,
using the configuration of specializationmorphism sp. Then, awell-defined, unique type PL-morphism fromDM2
to DM3 can be constructed by restricting tp. See proof details in “Appendix”. �
Remark The converse is not true in general, that is, instantiation cannot always be advanced to specialization.
The reason is that type morphisms to features with potency 0 are disallowed, and so they must be configured first.

Example Figure 11 shows a deferred configuration. Deep model PL DM0 is instantiated into DM1, and then
specialized using the configuration C � 〈F+ � {},F− � {actors}〉 to yield DM2. As the figure shows, we obtain
the same result by first specializing DM0 using C , which yields DM3, and then instantiating DM3 into DM2.
Deep model PL DM3 is relevant since it corresponds to the fully-configured language (i.e., with no unresolved
variability) employed to build DM2.

Finally, we use Theorem 5.3 to ensure that, given any arbitrary chain of specializations (via partial configu-
rations) and instantiations, we can calculate the fully configured language by applying all configurations in one
step. This allows going from scenario (b) to scenario (a) in Fig. 12 by iterating the construction of Theorem 5.2
(cf. Fig. 13).

Theorem 5.3 (Equivalent fully configured language). Given a chain of PL-morphisms:

DM0
tp1← DM1

sp2←− DM2...
tpn← DMn

spn+1←− DMn+1

where each tpi is a unique type PL-morphism and each spi is a specialization PL-morphism, there is:

1. a unique deep model PL DMFC ∈ Der (DM0), called fully configured language, and
2. a specialization PL-morphism sp ′

0 : DMFC → DM0 with a configuration that selects and discards the same
features as the configurations of sp2, ..., spn+1,

such that DMn+1 is an (indirect) instance of DMFC .

Proof. This proof uses Theorem 5.2 to advance specialization to type PL-morphisms, and the fact that PL-
morphisms can be composed. See proof details in “Appendix”. �
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Fig. 14. Calculating the equivalent fully configured language of the exploratory modelling chain DM0 ← DM1 ← DM2 ← DM3 ← DM4.

Fig. 15. Creating a language family with variability. a Top-down approach. b Bottom-up approach.

Example Figure 14 shows an example of calculation of the equivalent fully configured language (DMFC ) of
the chain DM0 ← DM1 ← DM2 ← DM3 ← DM4. The diagram depicts a scenario where the language family
meta-model (DM0) is instantiated for the industrial process domain (DM1), and two instances of TaskType (Laminate
and Mill) and one of ActorKind (Operator) are defined. Subsequently, the designer decides to discard ActorKinds from
the language since both task types are automated. This is done by the specialization morphism sp2, where the
configuration sets feature actors to false, and the result is DM2. Then, this industrial process model language
descriptionDM2 is instantiated intoDM3. At this point, the modeller realizes that the real task duration (rDuration
attribute) is always the same as the expected task duration (duration attribute), since tasks are automated. Hence,
a specialization sp4 that sets feature enactment to false is performed, yielding model DM4. DM4 does not have any
variability options to configure.

Now,we useTheorem5.3 to calculate the equivalent fully configured language (DMFC ) in the figure. This is the
indirect deep model type that results from doing all the specializations before any instantiation, and corresponds
to the language definition without variability needed to create DM4. First, we use Theorem 5.2 to build DMFC1.
This is the deepmodel type ofDM4 without variability options at level 1. Then, we use the compositionmorphism
sp2 ◦ sp ′

4 to iterate the same construction to yield DMFC . Finally, we compose tp ′
1 ◦ tp ′

3 to obtain an indirect type
morphism DM4 → DMFC .

For clarity, note that models DM1, DM2 and DMFC1 explicitly show the attributes rDuration and/or duration,
but these are normally hidden in practical tools.
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Fig. 16. Correct (a) and incorrect (b) EF-morphisms.

5.2. Engineering a language family with open and closed variability

In this subsection, we turn our attention at how language families are constructed with our approach, based on
the notion of extension. As it is common in standard practice of SPLs [KC16], we anticipate two processes called
top-down and bottom-up, as depicted in Fig. 15.

In the top-down approach, shown in branch (a) to the right of the figure, the variability options are defined
up-front together with the language meta-model. This requires support for extension to increase both the feature
model and the meta-model of the language family (step with label 2a). For this purpose, we will define a new kind
of morphism between deep model PLs to represent such extensions.

In the bottom-up approach, shown in branch (b) to the left of the figure, concrete language instantiations at low
levels guide the creation or extension of the language family definition at the top level. For example, the language
family designermay instantiate a draft version of the language familymeta-model for exploratorymodelling (step
2b), and then realize that the given domain requires adding linguistic extensions to the instance or extending the
featuremodel with additional variability options (step 3b). If such extensions are deemed general, a lifting process
can promote them one level up, in the figure from level 1 to level 2 (step 4b). This way, the original language family
definition becomes extended. Moreover, if the designer specializes the language family via a configuration before
performing the extension at level 1, then we need to advance the extension to the specialization to incorporate the
new variability to the top level. For this purpose, we will have to characterize compatibility conditions between
extension and specialization. While the proposed bottom-up techniques may enable the creation of a language
family from scratch out of a set of existing individual sample languages, wewill tackle this scenario in future work.

In the remainder of this section, we first introduce extension morphisms to enable increasing the variability
of deep model PLs. Then, we define mechanisms to advance extension to specialization and to instantiation
in order to enable the bottom-up construction of deep model PLs. We start by defining extension morphisms
(EF-morphisms) between deep feature models. Since we aim for interleaving specializations and extensions, we
allow featuremodel extensions only if they preserve all (partial) configurations of the featuremodel. Definition 14
formalizes this intuition.

Def. 14 (EF-morphism). Given two deep feature models DFMi � 〈li ,FMi � 〈Fi ,�i 〉, poti 〉 (for i � {0, 1})
with the same level, a variability extension deep feature model morphism (EF-morphism in short), written
DFM0

me�⇒ DFM1, is an injective set morphism me : F0 → F1 such that:

1. ∀ f ∈ F0 • pot0(f ) � pot1(me (f ))
2. ∀ C0 � 〈F+

0 ,F−
0 〉 ∈ CFG(FM0), ∃ C1 � 〈F+

1 ,F−
1 〉 ∈ CFG(FM1) • me (F+

0 ) ⊆ F+
1 ∧ me (F−

0 ) ⊆ F−
1 ∧

∀ C0 � 〈F+
0 ,F−

0 〉 �∈ CFG(FM0), � ∃ C1 � 〈F+
1 ,F−

1 〉 ∈ CFG(FM1) • me (F+
0 ) ⊆ F+

1 ∧ me (F−
0 ) ⊆ F−

1

Condition 1 in the definition preserves the potencies. Condition 2 ensures that any (partial) configuration
〈F+

0 ,F−
0 〉 of FM0 can be extended to a (partial) configuration of FM1 by expanding the sets F+

0 and F−
0 . Hence,

modulo feature renaming by me , we have C0 ≤ C1. In addition, condition 2 prevents extending invalid configu-
rations of FM0 to valid configurations of FM1.

Example Figure 16 shows two examples of allowed and disallowed extensions of deep feature models. In Fig. 16a
the deep feature model DFM0 is extended with a new optional feature called enactment. Morphism m1 is a valid
extension, since any non-valid configuration in DFM0 cannot be extended to a valid one in DFM1, and any valid
configuration in DFM0 can be extended to a valid one in DFM1. However, morphism m2 in Fig. 16b is not a
valid EF-morphism. In this case, the extension attempt adds an optional feature called enactment and makes the
existing feature initial mandatory. This is not a valid EF-morphism since configurations of DFM2 making initial
false (〈F+ � {},F− � {initial}〉) are valid, but cannot be extended to valid configurations of DFM3.
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Fig. 17. Advancing extension to specialization/typing (left). Commuting square (right).

Fig. 18. Examples of advancing EF-morphisms to F-morphisms. a Advancing through a specialization F-morphism. b Advancing through
a type F-morphism.

Remark We cannot use the F-morphisms fromDefinition 8 to represent extensions, since F-morphisms include a
(partial) configuration modelling a specialization. For example, in the EF-morphismm1 in Fig. 16a, this implies
being able to assign a true or false value to feature enactment, which is not possible because the feature does not
exist in DFM0. Moreover, condition 1 in Definition 8 of F-morphisms requires DFM0 and DFM1 to have the
same feature set, and condition 2 requires they have equivalent formula modulo their partial evaluation using
the morphism configuration.

Next, we need to check that EF-morphisms can be advanced to specialization (to enable advancing variability
extensions to configurations) and to type F-morphisms (to allow lifting variability extensions to upper levels).
Lemma 4 formalizes this.

Lemma 4 (EF-morphisms can be advanced to F-morphisms). Given an F-morphism m � 〈d ,mF ,C 〉 : DFM0 →
DFM1 and an EF-morphism DFM0

me�⇒ DFM ext , there is a deep feature model DFM ext
0 , an F-morphism

m ′ � 〈d ,m ′
F ,C 〉 : DFM ext → DFM ext

0 , and an EF-morphism DFM1
m ′

e�⇒ DFM ext
0 s.t. m ′

e ◦ mF � m ′
F ◦ me as

Fig. 17 shows.

Proof. We first construct the deep feature model DFM ext
0 by the union of features of DFM1 and DFM ext , and

the disjunction of their formulae. Then, morphismsm ′ andm ′
e are built and shown to commute. See proof details

in “Appendix”. �
Example Figure 18a shows an example of advancing an EF-morphism (me in the figure) to a specialization F-
morphism (m in the figure). F-morphismm models a specialization ofDFM1 that assigns false to feature final. The
EF-morphismme models the addition of an optional feature enactment toDFM0. In this setting, we can construct
a deep feature model DFM ext

0 by merging DFM1 and DFM ext . We obtain an extension EF-morphismm ′
e which

models the addition of feature enactment toDFM1, and a specializationmorphismm ′ that assigns the value false to
feature final. Overall, we have been able to advance the extension over the configuration: inDFM1

m←− DFM0
me�⇒

DFM ext , we configure DFM1 and then extend the variability; while in DFM1
m ′

e�⇒ DFM ext
0

m ′←− DFM ext , we
first extend DFM1 and then configure.

The advancement of extensions through type F-morphisms is also possible. Figure 18b shows an example,
where the potency of feature enactment in DFM ext

0 is obtained by adding the depth of morphism t to the potency
of the feature in DFM ext .
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Fig. 19. Example of EPL-morphism.

Fig. 20. Advancing extension to specialization/typing (left). Commuting square (right).

Remark Technically, DFM ext
0 is not unique because there are many equivalent formulae � modelling the same

feature model.

Now, we use EF-morphisms to define extensions of deep model PLs. For this purpose, we define EPL-
morphisms. Unlike PL-morphisms inDefinition 11, EPL-morphisms permit making the PC of elements stronger,
which is useful to allow thePCof existing elements touse thenew features addedbyadeep featuremodel extension.
Definition 15 captures this new type of morphism.

Def. 15 (EPL-morphism). Given two deep model PLs DMi � 〈Mi , DFMi , φi 〉 (for i � {0, 1}) with same level,
an extension PL-morphism (EPL-morphism in short) m � 〈mD ,me〉, written DM0

m�⇒ DM1, is made of a
D-morphism mD : M0 → M1 and an EF-morphism DFM0

me�⇒ DFM1 s.t. ∀ e ∈ C0 ∪ S0 ∪ R0 • φ1(mD (e)) ⇒
φ0(e)[F0/me (F0)].

Example Figure 19 shows an exampleEPL-morphismm. On the one hand, its constituent EF-morphism expands
the feature model with an additional optional feature enactment. On the other, its D-morphism adds a new
attribute rDuration to clabject TaskType. The PC of attribute initial is refined to initial∧enactment, which the condition
in Definition 15 allows since initial∧enactment⇒ initial. The new attribute rDuration is assigned a PC, which is also
allowed since the attribute is not mapped from DM0.

Remark We cannot use standard PL-morphisms to represent EPL-morphisms, as only the former but not the
latter include a configuration. In the example of Fig. 19, the configuration could assign the value false to enactment
to emulate thatDM0 does not define attribute rDuration, but this attribute could define any PC (e.g., enactment∨initial)
that may not evaluate to false. Moreover, the PC of initial in DFM1 is initial∧enactment, which does not evaluate to
initial when substituting enactment by false.

We are ready to enunciate the main results of this subsection. First, Theorem 5.4 states that EPL-morphisms
can be advanced to (both type and specialization) PL-morphisms under certain conditions. Then, Corollary 1
states that these conditions are enough for type PL-morphisms, while specialization PL-morphisms require an
additional condition guaranteeing the compatibility of the extension with the configuration chosen for the spe-
cialization.

Theorem 5.4 (EPL-morphisms can be advanced to PL-morphisms) Let m � 〈mD ,mF 〉 : DM0 → DM1 be a
PL-morphism and me � 〈mD

e ,me〉 : DM0 → DM ext an EPL-morphism, such that:

1. ∀ ei , ej ∈ C0 ∪ S0 ∪ R0 • mD (ei ) � mD (ej ) ⇒ φext (mD
e (ei )) � φext (mD

e (ej ))
2. ∀ e ∈ C0 • φext (mD

e (e)) � φ0(e)[F0/me (F0)].

We can build a deep model PL DM ext
0 , a PL-morphism m ′ � 〈m ′D ,m ′F 〉 : DM ext → DM ext

0 and an EPL-

morphism DM1
m ′e�⇒ DM ext

0 with m ′e � 〈m ′D
e ,m ′

e〉 s.t. m ′
e ◦ mF � m ′F ◦ me and m ′D

e ◦ mD � m ′D ◦ mD
e as

Fig. 20 shows.
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Fig. 21. Examples of advancing EPL-morphisms to PL-morphisms. a Advancing through a type PL-morphism. b Advancing through a
specialization PL-morphism.

Proof. We first construct the deep model PL DM ext
0 , where the model part is built by a construction similar to a

pushout in graphs, and the deep feature model is built as in the proof of Lemma 4. Then, the morphismsm ′ and
m ′

e are constructed and shown to commute. See proof details in “Appendix”. �
In the previous theorem, condition 1 requires that the elements inDM0 that aremapped to the same element in

DM1 have the same PC inDM ext . In addition, condition 2 forbids that the extension modifies the PC of clabjects
to avoid dangling references and slots when advancing the extension morphism.

Corollary 1 (Preservation of type and specialization PL-morphisms). Letm � 〈mD ,mF 〉 : DM0 → DM1 be a PL-
morphism and me � 〈mD

e ,mF
e 〉 : DM0 → DM ext an EPL-morphism satisfying the conditions of Theorem 5.4,

and let m ′ be the advanced PL-morphism. Then:

1. If m is a type PL-morphism, so is m ′.
2. If m is a specialization, and ∀ e ∈ C ext ∪ S ext ∪ Rext • φext (e)[F+/true,F−/false] � false, then m ′ is a

specialization.

Proof. Regarding 1) by constructionm ′ andm have same depth, and so ifm is type, so ism ′. For 2) in addition,
we need to check injectivity, and the condition on the PCs as per Definition 11. See details in “Appendix”. �
Example Figure 21 illustrates the advancement of EPL-morphisms to PL-morphisms. In particular, Fig. 21a
shows an example of extension that is advanced to instantiation. We start from a situation where DM1 has been
instantiated into DM0, which has two instances of TaskType, and next, DM0 has been extended into DM ext by
adding a new feature enactment and a linguistic extension rDuration to both task types. Then, by using Theorem 5.4,
we build model DM ext

0 and morphisms tp ′ and m ′. This means that we can first extend DM1 (via m ′) to yield
DM ext

0 and then instantiateDM ext
0 (via tp ′) to yieldDM ext . However, not anyDM ext permits this advancement,
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as the condition of Theorem 5.4 states. For example, should we assign the PC enactment∧initial to Laminate.rDuration,
we would not obtain a correct type PL-morphism m ′. This is so as Laminate.rDuration and Mill.rDuration are both
mapped to the same clabject TaskType.rDuration in DM ext

0 , but they would have different PCs.
Figure 21b shows that Theorem 5.4 can also be applied to advancing extension to specialization. In the

figure, we start from a situation where DM1 has been specialized via the PL-morphism sp with configuration
C � 〈F+ � {},F− � {initial}〉 to yield DM0, and then, DM0 has been extended via the EPL-morphism
m to yield DM ext . DM ext contains an extra feature enactment and a linguistic extension rDuration. We can use
Theorem 5.4 to obtain DM ext

0 and morphisms m ′ and sp ′. This way, we can first extend DM1 (via m ′) and then
specialize it (via sp ′). The PC of rDuration inDM ext satisfies the condition of Corollary 1, since enactment[initial/false]
= enactment � false. Should the PC be enactment∧initial, then sp ′ would not be a proper specialization. This is so as
enactment∧initial[initial/false] = false, and so the field TaskType.rDuration should not be present in DM ext . In this case,
the extension would collide with the specialization, precluding the advancement.

6. Tool support
We have implemented the notions presented so far atopMetaDepth [dLG10]. This is a textual multi-level mod-
elling tool which supports an arbitrary number of meta-levels and deep characterization through potency. It
integrates the Epsilon family of languages for model management [PKR+09], which permits defining code gen-
erators and model transformations for multi-level models.

MetaDepthwas used to define language families viamulti-levelmodelling in [dLGC15], but it did not support
thedefinitionof closed sets of variability optionsbymeansofPLs.For thiswork,wehave extended the tool to allow
creating deep feature models and multi-level models with PCs, specializing deep model PLs via configurations,
extending themwith new features, and advancing those extensions to instantiations. The extended tool is available
at http://metadepth.org/pls, together with examples of use.

In the following we showcase the use of the tool for three different activities: top-down creation of language
families (Sect. 6.1), use of language families (Sect. 6.2) and bottom-up extension of language families (Sect. 6.3).
Overall, these activities cover the scenarios explained in Sects. 5.1 and 5.2.

6.1. Top-down creation of language families

MetaDepth has a uniform textual syntax to specifymodels at anymeta-level, similar to theUMLHuman-Usable
Textual Notation [OMG04]. In addition, the tool supports the specification of domain-specific textual syntaxes
for deep language families [dLGC15]. While the approach fosters a textual approach to modelling, the tool is
able to produce read-only graphical views with the models being built, which may help in their comprehension.

Listing 1 specifies the deep model in the right part of Fig. 10, using MetaDepth’s syntax. First, line 1 states
the name of the deep feature model (defined in Listing 2) associated to the deep model. Then, line 2 declares a
deep model with level 2, named ProcessModel. This contains three clabjects: TaskType (lines 3–13), ActorKind (lines
15–16) and GatewayType (lines 18–22). PCs are specified as @Presence annotations. This is possible as, similar to
Java [CdL16],MetaDepth permits defining annotation types by providing their syntax, parameters, and the kind
of elements they can annotate (models, clabjects or fields) [CdL18]. This definition is a meta-model, and so, when
annotations are parsed, they are transformed into a model conforming to such meta-model. The model with
the parsed annotations contains references to the annotated model (e.g., ProcessModel in this case). Representing
annotations asmodels, allowswell-formedness checking of the specific annotationswith respect to their definition
(i.e., the annotation values are not just uninterpreted strings).

http://metadepth.org/pls
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1 @Variability(model="ProcessOptions")
2 Model ProcessModel@2 {
3 Node TaskType {
4 @Presence(condition="initial")
5 initial@1 : boolean = false;
6 duration : int;
7 @Presence(condition="enactment")
8 rDuration : int;
9 @Presence(condition="simple")

10 next : TaskType;
11 @Presence(condition="actors")
12 perfBy : ActorKind;
13 }
14
15 @Presence(condition="actors")
16 Node ActorKind;
17
18 @Presence(condition="object")
19 Node GatewayType {
20 src : TaskType[∗];
21 tar : TaskType[∗];
22 }
23 }

Listing 1: Deep model PL.

Regarding the PC of fields, for usability reasons, our implementation internally conjoins the PC of fields with
the PC of their owner clabject. For example, the PC of reference Gateway.src is object, because the PC of Gateway
is object. This guarantees that condition 1 in Definition 10 is satisfied, while conditions 2 and 3 are checked
by constraints. Finally, please note that, while the condition parameter of the Presence annotation is a String, we
internally check that it is a well formed boolean formula, which uses the features of the feature model identified
in the Variability annotation of the model.

We have created a meta-model for deep feature models, and designed a domain-specific textual syntax for it,
similar to the FAMILIAR tool [ACLF13]. Listing 2 shows theMetaDepth definition of the deep feature model
in Fig. 10 (but we changed the potency of features simple and object to 1). Line 1 declares a feature model called
ProcessOptions with level 2. Line 2 declares the root feature ProcessLanguage, and its children features Gateways,
Tasks and actors. Children features can specify a potency after the “@” symbol, and be declared optional using the
“?” symbol. Line 3 declares the children of Gateways, which are alternative as specified by the keyword alt. Line 4
declares the children of Tasks, which are optional.

1 FeatureModel ProcessOptions@2 {
2 ProcessLanguage : Gateways Tasks actors?@1;
3 alt Gateways : simple@1 object@1;
4 Tasks : initial?@1 enactment?@2;
5 }

Listing 2: Deep feature model.

Figure 22 shows the internal representation of a deep model PL in MetaDepth. The PC annotations are
automatically converted into an annotationmodel, which is also linked to the deep feature model (ProcessOptions).
Such feature model is generated from the textual concrete syntax shown in Listing 2.

6.2. Using language families

To use a deep model with PCs, like the one in Listing 1, it needs to be instantiated. Annotations in MetaDepth
can attach actions to be triggered upon certain modelling events, like instantiation or value assignment. These
actions are defined via a meta-object protocol (MOP) [CdL18, KR91]. This way, we have defined a MOP with
actions for the PC annotations, to help instantiating deep model PLs. Specifically, when an element of a deep
model with variability is instantiated (like ProcessModel in Listing 1), its PC is copied to the instance. Moreover, a
constraint forbids instantiating a deep model PL if the associated deep feature model has features with potency
0.
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Fig. 22. Internal MetaDepth representation of a deep model PL.

Listing 3 displays a small instance of the deep model PL of Listing 1, as would be created by a modeller. Line
1 declares the model type (ProcessModel) and the model name (SoftwarePM). Then, the model declares two instances
of TaskType called Requirements and Design. The former sets the value of field initial to true, while the latter sets it
to false and declares a linguistic extension called description. Please note that, this model has potency 1, since the
type has potency 2. This potency does not need to be explicitly specified, but it is calculated by the tool.

1 ProcessModel SoftwarePM {
2 TaskType Requirements{
3 initial = true;
4 }
5
6 TaskType Design {
7 initial = false;
8 description : String;
9 }

10 }

Listing 3: Using a deep model PL.

As mentioned, the MOP we have created for variability handling inserts the required PC annotations in the
model as needed. Listing 4 shows the model with such annotations included (cf. lines 1, 4 and 8). This process is
totally transparent to the modeller, who can recover such annotated model when it is displayed onMetaDepth’s
console by using command dump.

1 @Variability(model= "ProcessOptions")
2 ProcessModel SoftwarePM {
3 TaskType Requirements {
4 @Presence(condition= "initial")
5 initial=true;
6 }
7 TaskType Design {
8 @Presence(condition= "initial")
9 initial=false;

10 description:String;
11 }
12 }

Listing 4: Generated PC annotations.

In addition to instantiation, the user of the language family needs to configure the language. For this purpose,
we have created a command called config to specialize a deep model PL via a configuration (see Listing 5). When
the command is executed, the PCs attached to model elements are evaluated (partially if the configuration is
partial), and they are removed if their value is false. The applied configuration (i.e., the boolean values assigned
to the features) is stored in the deep feature model itself (cf. model ProcessOptions in Fig. 22).

1 config ProcessModel with { !initial, object }

Listing 5: Feature configuration.

The config command—when used without the with argument—can also be used to obtain the current configu-
ration of a deep model PL. Overall, this simple example language already admits 16 total configurations, which
can be succinctly represented as a PL, increasing its reuse possibilities.
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Applying the configuration of Listing 5 eliminates the initial and next fields of TaskType in Listing 1, which are
therefore eliminated from the instance models, like the one in Listing 4. Please note that by setting object to true,
we are implicitly setting simple to false, since they are alternative features. Overall, the resulting deep model PL is
shown in Listing 6.

1 @Variability(model="ProcessOptions")
2 Model ProcessModel@2 {
3 Node TaskType {
4 duration : int;
5 @Presence(condition="enactment")
6 rDuration : int;
7 @Presence(condition="actors")
8 perfBy : ActorKind;
9 }

10
11 @Presence(condition="actors")
12 Node ActorKind;
13
14 Node GatewayType {
15 src : TaskType[∗];
16 tar : TaskType[∗];
17 }
18 }
19 @Variability(model= "ProcessOptions")
20 ProcessModel SoftwarePM {
21 TaskType Requirements;
22 TaskType Design {
23 description:String;
24 }
25 }

Listing 6: Deep model PL after partial configuration.

6.3. Bottom-up extension of language families

As described in Sect. 6.3, another scenario of interest is the bottom-up creation of language families. In this
scenario, extensions to both the feature model and the model are done at lower meta-levels, and then promoted
to the top-level. For this purpose, we have created a command add feat, which adds features to the feature model.
Listing 7 shows an example, which adds an optional feature named details, with potency 2, under the Tasks feature.
The command updates the feature model, checking that the extension is possible according to Definition 14.

1 add opt feat details@2 under Tasks

Listing 7: Extending the feature model.

Then, the new features can be used within the PC formulae of the model elements. For example, we can use
the introduced details optional feature to tag modelling elements that are useful to provide detailed insights of the
different tasks of specific software process models, as Listing 8 depicts.

1 @Variability(model= "ProcessOptions")
2 ProcessModel SoftwarePM {
3 TaskType Requirements;
4 TaskType Design {
5 @Presence(condition="details")
6 description:String;
7 }
8 @Presence(condition="details")
9 Node Issue {

10 comments : String;
11 dsgnTasks : Design[∗];
12 reqTasks : Requirements[∗];
13 }
14 }

Listing 8: Extending a model PL at level 1.
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In the listing, we have added the PC details to Design.description, and to clabject Issue. The latter is a linguistic
extension that allows attaching comments to design or requirements tasks at the level below. At this point, the
designermay realize that such an extensionmight be useful for other domains beyond software processmodelling.
Hence, we have created a command called promote to advance such extensions to instantiation, pulling them up
to the upper meta-level. This process checks the pre-conditions in Theorem 5.4, required for the advancement
to become possible. Listing 9 displays the resulting top-level model. In this model, field TaskType.description (line
10) was created, together with a new clabject IssueType (lines 17–20). The latter serves as a type for clabject Issue
in Listing 8, and where field IssueType.tasks is the type for both Issue.dsgnTasks and Issue.reqTasks. Technically, the
command promote uses two types of multi-level refactorings [dLG18]: createClabjectType and createFeatureType. The
former creates a clabject type at the upper meta-level for a clabject linguistic extension, while the latter creates a
field type at the upper meta-level for a field linguistic extension. Please note that we follow a naming convention
for introduced clabject types (the name of the lower-level clabject followed by “Type”), while names of introduced
reference types (like IssueType.tasks) need to be given by the modeller.

1 @Variability(model="ProcessOptions")
2 Model ProcessModel@2 {
3 Node TaskType {
4 duration : int;
5 @Presence(condition="enactment")
6 rDuration : int;
7 @Presence(condition="actors")
8 perfBy : ActorKind;
9 @Presence(condition="details")

10 description : String;
11 }
12
13 @Presence(condition="actors")
14 Node ActorKind;
15
16 Node GatewayType {
17 src : TaskType[∗];
18 tar : TaskType[∗];
19 }
20
21 @Presence(condition="details")
22 Node IssueType {
23 comments : String;
24 tasks : TaskType[∗];
25 }
26 }

Listing 9: Extended deep model PL.
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7. Related work

Next,we reviewrelated research coming from languageproduct lines (Sect. 7.1), variability inmulti-levelmodelling
(Sect. 7.2) and software product lines (Sect. 7.3).

7.1. Language product lines

Some researchers have proposed increasing the reusability of modelling languages by incorporating SPL tech-
niques (see [MGD+16] for a survey). For example, in [WHG+09], DSL meta-models can be configured using a
feature model. In [PAA+16], the authors propose featured model types: meta-models whose elements have PCs,
and with operations that are offered depending of the chosen variant. In [GdLCS20], meta-models can have vari-
ability, and their instantiability is analysed at thePL level.However, all theseworksonly consider closed variability,
while our work also supports open variability through instantiation (since we consider multi-level models).

In [BPRW20], the authors propose a framework—basedonMontiCore [KRV10] and theprinciples of concern-
oriented language development [CKM+18]—for defining language families with support for both open and closed
variability. The framework relies on language components encapsulating syntax (through a grammar) and seman-
tics (via code generators). Closed variability is achieved via a feature configuration that selects the components to
be composed to form a language. For open variability, the composed languagemay contain extension points (e.g.,
expressing the need for an expression language) that other components need to satisfy, and parameters that can
be assigned values. Other approaches follow similar ideas. For example, language definitions are modularized via
roles in [WTZ09], while Melange [DCB+15] and Neverlang [VC15] also support modularization. In the first case,
this is done via an algebra of operators for extending, restricting, and assembling separate language artefacts. In
the second, by providing syntax definitionswith placeholders, andmodules thatmay implement language features.

Similar to the previous approaches, the closed variability in our approach is also achieved by configuring
a feature model. However, instead of relying on required interfaces, extension points, or roles, we enable open
variability via instantiation and linguistic extensions. We believe that both styles for open variability are com-
plementary and suited for different scenarios. Our notion of open variability via refinement is better suited to
specialize a generic language (e.g., a process modelling language) to specific domains (e.g., software process mod-
elling, industrial process modelling). Instead, open variability via replacement of components is better suited to
express alternative realizations for a concept (e.g., different types of expression languages).

The previous approaches [BPRW20, WTZ09, DCB+15, VC15] also consider the language semantics.
MetaDepth is integrated with the Epsilon family of languages [PKR+09], which have been extended to work in a
multi-level setting [dLGC15]. However, making these languages aware of variability via PLs is up to future work.
Our plan in this aspect is to build on the ideas reported in [dLGCS18].

7.2. Multi-level modelling: variability and formalization

A plethora of multi-level modelling approaches and tools have emerged recently, like DeepTelos [JN16],
FMMLx [Fra14], Melanee [AG16], MultEcore [MRS+18], MLT [FAGdC18], OMLM [IGSS18] and TOTEM
[JdL20]. Some of them are based on deep characterization through potency [AG16, Fra14, IGSS18, MRS+18,
JdL20], while others rely on powertypes [FAGdC18] or most-general instances [JN16]. None of them support
variability based on feature models as we describe here. However, there have been some attempts to improve
multi-level modelling with SPL techniques, which we describe next.

Reinhartz-Berger and collaborators [RSC15] present a preliminary proposal to support the configuration of
classes with optional attributes. It is based on a kernel language with support for multiple meta-levels but lacking
deep characterization. The proposal is incipient as it is neither formalized nor implemented. In [CFRS17], the
authors analyse the limitations of feature models alone to describe a set of assets, and propose using multi-
level models instead. As multi-level models have limitations to express variability—as described in Sec. 2.2—we
propose to combine feature models and multi-level models.

Nesic and collaborators [NNG17] explore the use of MLT [FAGdC18] to reverse engineer sets of related
legacy assets into PLs. MLT is a multi-level modelling approach based on powertypes and first order logic. In
their work, the authors represent variability concepts like PCs and product groups within MLT models. This
embedding may result in complex models where elements can represent either variability concepts or domain
concepts. Instead, we separate PCs and feature models to avoid cluttering the multi-level model. Our goal is to
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define highly reusable language families, for which we provide feature models to describe variability options, and
offer the possibility to defer configurations; instead, the approach in [NNG17] lacks an explicit representation
of feature models. Finally, we provide both a theory and a working implementation.

Other formalizationsofpotency-basedmulti-levelmodelling exist, like [RdLG+14]or themore recent [WMR20].
Those theories do not account for variability, but they could be extended with feature models, in a similar way
as we do.

7.3. Software product lines

Our deferred configurations can be seen as a particular case of staged configurations [CHE05]. These permit
selecting a member of the PL in stages, where each stage removes some choices. In our approach, the potency
controls the level where the variability can be resolved. Staged configurations are also useful in software design
reuse. In this setting, Kienzle and collaborators [KMCA16] propose Concern-Oriented Reuse, a paradigm where
reusable modules (called concerns) define variability interfaces as feature models. The variability of a reused con-
cern can be resolved partially, in which case, the undefined features are re-exposed in the interface of the resulting
concern. We also support deferring the variability resolution, but composing deep model PLs is future work.

Taentzer and collaborators formalized model-based SPLs using category theory [TSSC17]. Different from
ours, their formalization does not capture typing (it is within a single meta-level), while their morphisms can
expand the feature model, but cannot be used to model partial configurations. Borba and collaborators have
studied PL refinement, which adds new products maintaining the behaviour of existing ones [BTG12]. In our
case, our variability extension morphisms preserve partial configurations.

To cope with large variability spaces, partitioning techniques can be applied to feature models to yield so-
called multi-level feature models [CHE05, RPG+18]. However, the term multi-level does not refer to multiple
levels of classification (as in our case), but to multiple partitions of a feature model.

In our work, we use F-morphisms (cf. Definition 8) to represent a partial configuration relation between
two (deep) feature models, and EF-morphisms (cf. Definition 14) to represent an extension of a (deep) feature
model. Related to this, syntactic and semantic differences between feature models have been studied in the PL
community [AHC+12, DKMR19, TBK09]. In [TBK09] the authors present different types of relations between
feature models, like refactoring (the products in both models remain the same), specialization (the set of prod-
ucts is reduced), and generalization (the set of products increase), along with algorithms based on SAT solving
to compute them. In our case, F-morphisms correspond to specializations, while EF-morphisms are similar to
generalizations (they in addition demand that invalid configurations cannot be extended to valid ones). Further-
more, our interest is in understanding whether extensions can be advanced to configurations (and to typing).
In [AHC+12] the authors propose additional techniques for both syntactic and semantic differencing, to help
in understanding and reasoning about differences. These differences can be combined with composition and
decomposition operators. Open-world semantics for feature models, together with semantic diffs based on those
semantics, are introduced in [DKMR19]. Such semantics includes all configurations—even containing features
not belonging to the original feature model—which do not contradict the feature model formula. Hence, this
notion is similar to our allowed extensions, and to the generalization relations in [TBK09].

Other modelling notations support variability. For example, Clafer [JSM+19] is an approach that unifies
feature and class modelling. It supports both class and (partial) object models, feature models and their (partial)
configurations and logic constraints. However, it does not support multi-level modelling or deep characterization.
Similar to delta-oriented programming [SBB+10], in �-modelling, a core model (representing one product) is
enrichedwith a set of changes (with application conditions) to capture further products [Sch10]. The approach has
been proposed in combination with MDE, showing that model configuration and refinement (e.g., a component
being refined by a set of classes) commute. This is in line with our Theorems 5.2 and 5.4, but we are interested
in instantiation (instead of refinement), and need to incorporate potency for deep characterization. Therefore,
in our case instantiation and specialization (configuration) do not commute, but the latter can be advanced to
former. In addition, we have also studied the advancement of extension to both instantiation and specialization.

Within model-driven software product line engineering [CAK+05], some researchers have analysed tech-
niques to manage variability across multiple models and artefacts [GW21, SPJ18]. In [GW21] the authors com-
pare how different tools and approaches deal with the propagation of PCs across different models. They report
that automated propagation is a feature that is scarcely supported. A multi-level model can be seen as a mega-
model [BJRV05] made of a set of models related via instantiation relations. In our case, we do support automated
propagation, for example, when instantiating a deepmodel PL (cf. Sect. 6.2), as well as when advancing extension
to instantiation (cf. Sect. 6.3).
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Table 1. Summary of approaches to variability in language and model-driven engineering (where MM stands for meta-model,
FM for feature model, and MLM for multi-level model).
Approach Variability support Mechanism Style Meta-levels
White et al. [WHG+09] Closed MM + FM Annotative 1 (meta-)
Featured model types [PAA+16] Closed MM + FM Annotative 1 (meta-)
Meta-model PLs [GdLCS20] Closed MM + FM Annotative 1 (meta-)
Monticore [BPRW20] Open & closed MM with extension points + FM Compositional 1 (meta-)
Wendel et al. [WTZ09] Open & closed MM with Roles Compositional 1 (meta-)
Neverlang [VC15] Open & closed Language Modules Compositional 1 (meta-)
DeepTelos [JN16] Open MLM based on most general instances Instantiation arbitrary
FMMLx [Fra14] Open MLM based on instantiation levels Instantiation arbitrary
Melanee [AG16] Open MLM based on potency Instantiation arbitrary
MultEcore [MRS+18] Open MLM based on potency Instantiation arbitrary
MLT [FAGdC18] Open MLM based on powertypes Instantiation + Classificat. arbitrary
OMLM [IGSS18] Open MLM based on potency Instantiation arbitrary
TOTEM [JdL20] Open MLM based on potency Instantiation arbitrary
Our approach Open & closed MLM based on potency + FM Instantiation + Annotative arbitrary

In the programming world, Batory [Bat06, SB02] proposes mixin layers, a composition mechanism to add
features to sets of base classes (so called two-level designs). Higher-level designs can be obtained by applying the
same techniques. In [Bat06], these higher-level designs are called multi-level models. Again, the use of the term
multi-level is different from ours, which refers to models related by classification relations.

As a summary, Table 1 classifies the approaches along their variability support (open, closed), themechanisms
involved (e.g., meta-models, feature models, etc.), the style (annotative, compositional, via instantiation or classi-
fication relations), and the meta-models on which the variability take place. The upper part of the table classifies
approaches for language product lines, while the lower part contains approaches for multi-level modelling. Over-
all, our proposal is the first one adding variability to multi-level models with support for deep characterization
via potency.

8. Conclusions and future work

In this paper, we have proposed a new notion of multi-level model PL to improve current reuse techniques for
modelling languages. This is so as it permits both open variability (by successive instantiations leading to language
refinements for specific domains), and closed variability (by selecting among a set of variants). We have presented
a theory for the proper construction and use of language families. The theory contains results ensuring the
proper interleave of instantiation, configuration and extension steps. The ideas have implemented on top of the
multi-level modelling tool MetaDepth.

In the future, we plan to provide a categorical formalization of the theory, which would bring operations like
intersection via common parts (pullbacks) and merging (pushouts) of deep model PLs. We would like to develop
analysis techniques for multi-level model PLs, e.g., to check instantiability properties in the line of [GdLCS20].
Our goal is to make multi-level model PLs ready for MDE. This would entail the ability to define MDE services
like transformations and code generators on multi-level model PLs. Technically, our plan is to use the Epsilon
languages supported byMetaDepth, and follow ideas fromexistingworks onPLs of transformations [dLGCS18],
and transformation of PLs [SFR+14]. We would like to develop mechanisms for the assisted derivation of deep
language families out of existing DSL meta-models, using as a basis the techniques for bottom-up modelling
presented in Sect. 5.2. Finally, to proper model language families, we need to consider the concrete syntax as
well. For this purpose, we plan to build on approaches to define graphical and textual syntaxes for multi-level
models [Ger17, dLGC15], making them aware of closed variability through feature models (e.g., in the style
of [GWG+20]).

Appendix

In this appendix we provide the proof details of the lemmas and theorems proposed in the paper.
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Fig. 23. Commutativity conditions for composition of D-morphisms.

Proof of Lemma 1 (D-morphism composition yields a D-morphism): In this lemma, we need to prove that,
given two D-morphisms m1 � 〈d1,m1

C ,m1
S ,m2

R〉 : M0 → M1 and m2 � 〈d2,m2
C ,m2

S ,m2
R〉 : M1 → M2, their

compositionm2 ◦m1 : M0 → M2 (withm2 ◦m1 � 〈d1 +d2,m2
C ◦m1

C ,m2
S ◦m1

S ,m2
R ◦m1

R〉) is a valid D-morphism.
For this purpose, we proof the three conditions for D-morphisms of Definition 2, as follows:

1. We need to prove p0 + (d1 + d2) � p2. Since m1 and m2 are valid D-morphisms, we have p0 + d1 � p1 and
p1 + d2 � p2, and so p0 + d1 � p2 − d2, and therefore p0 + (d1 + d2) � p2.

2. We need to prove ∀ e ∈ X0 • pot0(e) + (d1 + d2) � pot2(m2
X ◦m1

X (e)) (forX ∈ {C ,S ,R}). Sincem1 andm2 are
validD-morphisms, we have ∀ e ∈ X0•pot0(e)+d1 � pot1(m1

X (e)) and ∀ e ′ ∈ X1•pot1(e ′)+d2 � pot2(m2
X (e ′))

(for X ∈ {C ,S ,R}). Since the second property applies to all elements e ′ ∈ X1, it also applies to m1
X (e), and

so we have ∀ e ∈ X0 • pot0(e) + d1 � pot1(m1
X (e)) ∧ pot1(m1

X (e)) + d2 � pot2(m2
X (m1

X (e))). But then,
∀ e ∈ X0 • pot0(e) + d1 � pot2(m2

X ◦ m1
X (e)) − d2 and so ∀ e ∈ X0 • pot0(e) + (d1 + d2) � pot2(m2

X ◦ m1
X (e))

as required.
3. We need to proof that each function m2

C ◦ m1
C ,m2

S ◦ m1
S ,m2

R ◦ m1
R commutes with functions srci and tari .

But this follows by the composition of commutative squares in set functions [EEPT06], as the outer squares
of Fig. 23 shows.

Proof of Lemma 2 (F-morphism composition yields an F-morphism): In this lemma, we need to proof that, given
two F-morphisms, m1 � 〈d1,m1

F ,C 1 � 〈F−
1 ,F+

1 〉〉 : DFM0 → DFM1 and m2 � 〈d2,m2
F ,C 2 � 〈F+

2 ,F−
2 〉〉 :

DFM1 → DFM2, their composition m2 ◦ m1 : DFM0 → DFM2 (defined as 〈d1 + d2, 〈m2
F (F

+
1 ) ∪ F+

2 ,m2
F (F

−
1 ) ∪

F−
2 〉,m2

F ◦ m1
F 〉) is a valid F-morphism. For this purpose, we proof the three conditions for D-morphisms of

Definition 8, as follows:

• We need to prove that l0 + (d1 + d2) � l2. Since both m1 and m2 are F-morphisms, we have that l0 + d1 � l1
and l1 + d2 � l2. Therefore l0 + d1 � l2 − d2 and so l0 + (d1 + d2) � l2 as required.

• We need to show thatm2
F ◦m1

F is injective, and it is, since bothm2
F andm1

F are injective and the composition
of injective set functions is injective. In addition, we need to show that ∀ f ∈ F0 • pot0(f ) + d1 + d2 �
pot2(m2

F ◦ m1
F (f )). Since m

1 and m2 are F-morphisms, we have that ∀ f ∈ F0 • pot0(f ) + d1 � pot1(m1
F (f ))

and ∀ f ′ ∈ F1 • pot1(f ′) + d2 � pot2(m2
F (f

′)). Since the last statement applies to all f ′ ∈ F1, it also applies to
m1

F (f ), and so we have ∀ f ∈ F0 • pot0(f ) + d1 � pot1(m1
F (f )) ∧ pot1(m1

F (f )) + d2 � pot2(m2
F (m

1
F (f ))) and

therefore ∀ f ∈ F0 • pot0(f ) + d1 + d2 � pot2(m2
F ◦ m1

F (f )) as required.

• We need to proof that 〈m2
F (F

+
1 ) ∪ F+

2 ,m2
F (F

−
1 ) ∪ F−

2 〉 ∈ CFG(FM2), for which we need to check that
�2[m2

F (F
+
1 ) ∪ F+

2 /true,m2
F (F

−
1 ) ∪ F−

2 /false] � false. Becausem2 is F-morphism, �2[F+
2 /true,F−

2 /false] ∼�
�1[F1/m2

F (F1)] � false. Performing a further substitution for 〈F+
1 ,F−

1 〉, if �2[F+
2 /true,F−

2 /false][m2
F (F

+
1 )

/true,m2
F (F

−
1 )/false] ∼� false, then�1[F1/m2

F (F1)][F+
1 /true,F−

1 /false] ∼� false. But sincem1 is F-morphism,
this would mean that �0[F0/m1

F (F0)] ∼� false, which is not possible since FM0 is a valid feature model
according to Definition 5.

• We need to show that m2
F ◦ m1

F (F0) � F2 \ (m2
F (F

+
1 ) ∪ F+

2 ∪ m2
F (F

−
1 ) ∪ F−

2 ). Since both m1 and m2 are
F-morphisms, we have that m1

F (F0) � F1 \ (F+
1 ∪ F−

1 ) and m2
F (F1) � F2 \ (F+

2 ∪ F−
2 ). From the first

statement, we have that F1 � m1
F (F0) ∪ F+

1 ∪ F−
1 , and substituting in the second statement we have that

m2
F (m

1
F (F0)∪F+

1 ∪F−
1 ) � F2 \ (F+

2 ∪F−
2 ). Sincem2

F (m
1
F (F0)∪F+

1 ∪F−
1 ) � m2

F ◦m1
F (F0)∪m2

F (F
+
1 )∪m2

F (F
−
1 )
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we have thatm2
F ◦m1

F (F0) � F2 \ (F+
2 ∪ F−

2 ) \ (m2
F (F

+
1 ) ∪m2

F (F
−
1 )) � F2 \ (F+

2 ∪ F−
2 ∪m2

F (F
+
1 ) ∪m2

F (F
−
1 ))

as required.

• We need to show that �2[F+
2 ∪ m2

F (F
+
1 )/true,F

−
2 ∪ m2

F (F
−
1 )/false] ∼� �0[F0/m2

F ◦ m1
F (F0)]. We have that

�1[F+
1 /true,F−

1 /false] ∼� �0[F0/m1
F (F0)] and �2[F+

2 /true,F−
2 /false] ∼� �1[F1/m2

F (F1)]. In the latter, state-
ment, doing an additional substitution for 〈F+

1 ,F−
1 〉 on both sides should preserve equivalence, and so

we have �2[F+
2 ∪ m2

F (F
+
1 )/true,F

−
2 ∪ m2

F (F
−
1 )/false] ∼� �1[F1/m2

F (F1)][m2
F (F

+
1 )/true,m

2
F (F

−
1 )/false]. But

since �1[F+
1 /true,F−

1 /false] ∼� �0[F0/m1
F (F0)], we have �2[F+

2 ∪ m2
F (F

+
1 )/true,F

−
2 ∪ m2

F (F
−
1 )/false] ∼�

�0[F0/m2
F ◦ m1

F (F0)] as desired.

Proof ofLemma3 (PL-morphismcomposition yields aPL-morphism): This lemmahas twoparts. In thefirst one,
we need to prove that given PL-morphismsm1 � 〈mD

1 ,mF
2 〉 : DM0 → DM1 andm2 � 〈mD

2 ,mF
2 〉 : DM1 → DM2,

their composition m2 ◦ m1 � 〈mD
2 ◦ mD

1 ,mF
2 ◦ mF

1 〉 : DM0 → DM2 is a valid PL-morphism.
FromDefinition 3 se havemD

2 ◦mD
1 � 〈d1 +d2,m2

C ◦m1
C ,m2

S ◦m1
S ,m2

R ◦m1
R〉, and according to Definition 9

we have mF
2 ◦ mF

1 � 〈d1 + d2, 〈m2
F (F

−
1 ) ∪ F−

2 ,m2
F (F

+
1 ) ∪ F+

2 〉,m2
F ◦ m1

F 〉.
We need to prove:

∀ e ∈ C0 ∪ S0 ∪ R0 • φ2(mD
2 ◦ mD

1 (e))[F+
2 ∪ m2

F (F
+
1 )/true,F

−
2 ∪ m2

F (F
−
1 )/false] ∼� φ0(e)[F0/m2

F ◦ m1
F (F0)]

Since both m1 and m2 are PL-morphisms, we have that

(1) ∀ e ∈ C0 ∪ S0 ∪ R0 • φ1(mD
1 (e))[F+

1 /true,F−
1 /false] ∼� φ0(e)[F0/m1

F (F0)]

and

(2) ∀ e ′ ∈ C1 ∪ S1 ∪ R1 • φ2(mD
2 (e))[F+

2 /true,F−
2 /false] ∼� φ1(e ′)[F1/m2

F (F1)]

In the latter statement, sinceboth termsare equivalent, performinganextra substitution [m2
F (F

+
1 )/true,m

2
F (F

−
1 )

/false] also yields equivalence: ∀ e ′ ∈ C1 ∪ S1 ∪ R1 • φ2(mD
2 (e))[F+

2 ∪ m2
F (F

+
1 )/true,F

−
2 ∪ m2

F (F
−
1 )/false]

∼� φ1(e ′)[F1/m2
F (F1)][m2

F (F
+
1 )/true,m

2
F (F

−
1 )/false]. But because of (1), we have

∀ e ∈ C0 ∪ S0 ∪ R0 • φ2(mD
2 ◦ mD

1 (e))[F+
2 ∪ m2

F (F
+
1 )/true,F

−
2 ∪ m2

F (F
−
1 )/false] ∼� φ0(e)[F0/m2

F ◦ m1
F (F0)]

as desired.
For the second part of the lemma, we need to proof that, ifm1 andm2 are specializations, so ism2 ◦m1. This

means proving three conditions:

• Injectivity: Since both mD
1 and mD

2 are injective so is mD
2 ◦ mD

1 .

• Level-preserving: Since both m1 and m2 are level-preserving, so is m2 ◦ m1 since d1 � d2 � 0 � d1 + d2.

• Keeping elements with non-false PC: We require that m2 ◦ m1’s co-domain contains exactly the ele-
ments e ∈ C2 ∪ S2 ∪ R2 s.t. φ2(e)[F+

2 ∪ m2
F (F

+
1 )/true,F

−
2 ∪ m2

F (F
−
1 )/false] � false. The co-domain

of the composition morphism m2 ◦ m1 contains those elements, since m2’s co-domain includes each ele-
ment e s.t. φ2(e)[F+

2 /true,F−
2 /false] � false, which is a larger set than the set of elements e making

φ2(e)[F+
2 ∪ m2

F (F
+
1 )/true,F

−
2 ∪ m2

F (F
−
1 )/false] � false. In addition, the co-domain of m2 ◦ m1 does not

contain elements e s.t. φ2(e)[F+
2 ∪ m2

F (F
+
1 )/true,F

−
2 ∪ m2

F (F
−
1 )/false] ∼� false, since m1’s co-domain does

not contain any element e s.t. φ1(e)[F+
1 /true,F−

1 /false] ∼� false.

Proof of Theorem 5.1 (Specialization morphisms for configurations): Given a deep model PL DM �
〈M ,DFM , φ〉 and a configuration C � 〈F+,F−〉 of DFM , we build DM ′ � 〈M ′,DFM ′, φ′〉 as follows:
• M ′ has the same level asM , and contains each element e ofM s.t.φ(e)[F+/true,F−/false] � false. Functions
src′, tar ′ and pot ′ are restrictions of src, tar and pot to the elements inM ′.

• DFM ′ � 〈l ,FM ′ � 〈F ′,�′〉, pot ′〉, where F ′ � F \ (F+ ∪ F−), �′ � �[F+/true, F−/false], and pot ′ is the
restriction of pot to F ′.

• Function φ′ is defined as follows: ∀ e ∈ C ′ ∪ S ′ ∪ R′ • φ′(e) � φ(e)[F+/true,F−/false].

Now we show that M ′ is a valid deep model according to Definition 1:
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• To check that src′ is well formed, we show that ∀ s ∈ S ′ ∪ R′, src(s ′) is defined. By condition 1 in Defi-
nition 10, φ(s) ⇒ φ(src′(s)). This precludes the source of any s ∈ S ′ ∪ R′ to be absent from C ′, since if
φ(src′(s))[F+/true,F−/false] � false, then φ′(s)[F+/true, F−/false] � false.

• The well-formedness of tar ′ is shown like in the previous case.
• Function pot ′ satisfies conditions 1–3 of Definition 1, since pot satisfies them, and pot ′ is just a restriction of
pot .

Now we show that DM ′ is a valid deep model PL according to Definition 10:

• M ′ and DFM ′ have the same level (l ).
• The three conditions over φ′ and pot ′ hold, since they hold for φ and pot .

Finally, we build a specialization PL-morphism sp � 〈mM , spF 〉 : DM ′ → DM as follows:

• mM � 〈0, incMC , incMS , incMR 〉, where X ′ inc
M
X

↪→ X (for X � {C ,S ,R}) are inclusion set morphisms,

• spM � 〈0, incF ,C 〉, where F ′ incF

↪→ F is an inclusion morphism.

FormF , according to Definition 8, we need to show that: (i)mF (F ′) � F ′ � F \ (F+ ∪F−), which holds since
F ′ was defined above as F \ (F+ ∪ F−); and (ii) �[F+/true,F−/false] ∼� �′[F ′/incF (F ′)], which holds since �′
was defined above as �[F+/true,F−/false].

Then, according to Definition 11, we need to show that ∀ e ∈ C ′ ∪S ′ ∪R′ • φ(e)[F+/true,F−/false] ∼� φ′(e),
which holds by construction. Finally, we need to show that ∀ e ∈ X • (φ(e)[F+/true,F−/false] � false ⇔
∃ e ′ ∈ X ′ • spM

X (e ′) � e) (for X � C ,S ,R), which holds since we only include in DM ′ those elements for which
φ(e)[F+/true,F−/false] � false.

Now, we show that DM ′ is unique (up to isomorphism). To show that, assume we add a new clabject
n to DM ′. Let spM

C (e) be the element in DM that e is mapped to. Because sp is specialization, we require
φ(mM

C (e))[F+/true,F−/ false] � false, and somM
C (e) should have received a mapping from another node, since

sp was a correct specialization. This means that we should map sp non-injectively, which is not possible by the
definition of specialization. Adding new slots or references follows the same reasoning. Similarly, we could delete
an element from DM ′, but in that case an element from DM with φ(mM

C (e))[F+/true,F−/false] � false would
not receive a mapping, which is not allowed by specialization morphisms. Finally, we cannot change the source
or target of slots or references in DM ′, since then they would not commute properly, as required by correct
D-morphisms. Please note that, while DM ′ is unique, there might be several (equivalent) ways to map it to DM .

�
Proof of Theorem 5.2 (Specialization can be advanced to instantiation): LetC � 〈F+,F−〉 be the configuration

of the specialization PL-morphism sp : DM2 → DM1. From DM0 and C , we construct (uniquely) a deep model
DM3 and a specialization PL-morphism sp ′ : DM3 → DM0 as described in the proof of Theorem 5.1. Then, we
build a type PL-morphism tp ′ � 〈tp ′D , tp ′F 〉 : DM2 → DM3 as follows:

• tp ′D � 〈1, tpD
C |C2 , tp

D
S |S2 , tp

D
R |R2〉, with tpD

X |X2 the restriction of tp
D
X to setX2 inDM2 (forX � {C ,S ,R}).

• tp ′F � 〈1, tpF
F |F2 ,C 〉 with tpF

F |F2 the restriction of tpF
F to set F2.

D-morphism tp ′D is well defined because ∀ c ∈ C2, ∃ c ′ ∈ C3 s.t. tpD
C (spD

C (c)) � sp ′D
C (c ′). This is so as

φ1(spD
C (e))[F+/true,F−/false] � false due to Definition 11 of specialization PL-morphism. And now, since the

configuration of tp is empty, we have φ0(tpD
C (spD

C (e))[F+/true,F−/false] � false. This means that, according to
Definition 11, this element is in the co-domain of sp ′D

C , and is assigned to c by tp ′D
C . The same reasoning applies

to sets S2 and F2. Function tpF
F |F2 is also well formed, since the same configuration C was used to derive DM2

and DM3. This reasoning also shows that tp ◦ sp � sp ′ ◦ tp ′, as Theorem 5.2 demands.
Finally, please note that, once sp ′ is constructed, tp ′ is unique (while there can be several ways to build sp ′). �
Proof of Theorem 5.3 (Equivalent fully configured language): We need to check that given a chain of PL-

morphisms:

DM0
tp1← DM1

sp2←− DM2...
tpn← DMn

spn+1←− DMn+1

where each tpi is a type PL-morphism and each spi is an specialization PL-morphism, there is a unique deep
model PL DMFC ∈ Der (DM0) (called fully configured model) with a configuration made of all selected and
unselected features of the configurations of sp2, ..., spn+1, s.t. DMn+1 is an (indirect) instance of DMFC .
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Fig. 24. Calculating the equivalent fully configured model.

We use the diagram in Fig. 24 for the proof. We start by applying Theorem 5.2 to advance spn+1 to tpn ,
obtaining the (unique) deepmodel PLDMFCn−2 and PL-morphisms sp ′

n−1 : DMFCn−2 → DMn−1 (a specialization
PL-morphism) and tp ′

n : DMn+1 → DMFCn−2 (a type morphism). Now, by Lemma 3 we can compose sp ′
n−1 and

spn−1, which yields a specialization PL-morphism. Now, we apply again Theorem 5.2 to advance spn−1 ◦ sp ′
n−1

to tpn (cf. Fig. 24). This yields the (unique) deep model PL DMFCn−3 and PL-morphisms sp ′
n−3 : DMFCn−3 →

DMn−3 (a specialization PL-morphism) and tp ′
n−2 : DMFCn−2 → DMFCn−3 (a typemorphism).We can iterate this

procedure as needed. In the final result, we can obtain an indirect type morphism, by composing the calculated
type PL-morphisms (tp ′

n , tp
′
n−2,...). �

Proof of Lemma 4 (EF-morphisms can be advanced to F-morphisms): We need to prove that given an F-
morphism m � 〈d ,mF ,C 〉 : DFM0 � 〈l0,FM0, pot0〉 → DFM1 � 〈l1,FM1, pot1〉 and an EF-morphism
DFM0

me�⇒ DFM ext � 〈l0,FM ext , potext 〉, there is a deep feature model DFM ext
0 and morphisms m ′ �

〈d ,m ′
F ,C 〉 : DFM ext → DFM ext

0 , DFM1
m ′

e�⇒ DFM ext
0 s.t. m ′

e ◦ mF � m ′
F ◦ me .

We construct DFM ext
0 � 〈lext0 ,FM ext

0 � 〈F ext
0 ,�ext

0 〉, potext0 〉 as follows:
• The level is set to lext0 � l0 + d

• The feature set is set to F ext
0 � F0 ∪ (F1 \ mF (F0)) ∪ (F ext \ me (F0)), which is the disjoint union of F1

and F ext where the elements sharing a preimage in F0 are identified, which is a pushout in the category of
sets [EEPT06].

• The feature model formulae is set to �ext
0 � �1[mF (F0)/F0] ∨ �ext [me (F0)/F0] which is the disjunction of

the formulas of DFM1 and DFM ext using the names of features in DFM0.

• The potency is defined as:
∀ e ∈ F0 • potext0 (e) � pot1(mF (e)),
∀ e ∈ F1 \ mF (F0) • potext0 (e) � pot1(e), and
∀ e ∈ F ext \ me (F0) • potext0 (e) � potext (e) + d .

(The potency is taken from DFM1 for those elements in F0 or F1, and from DFM ext otherwise. Please note that
the potency of mapped features in DFM0 and DFM ext is the same since me is an EF-morphism).

Now, we need to show that FM ext
0 is correct according to Definition 5, for which we need to show that �ext

0
is satisfiable. This holds since �ext

0 � �1 ∨�ext and both �1 and �ext are satisfiable. Then, we need to show that
DFM ext

0 is correct according to Definition 7. This requires to show that the potency of each element is less than
or equal toDFM0’s level. This is so for those elements receiving potency from potext , since the level ofDFM0 and
DFM ext is the same, by Definition 15, and the level of DFM ext is equal or larger (l0 + d ). The potency is less or
equal than the level also for elements receiving the potency from pot1, because the level of DFM1 is l0 + d , which
is the level of DFM ext

0 .
Next, we need to show that there are commuting morphisms m ′ � 〈d ,m ′

F ,C 〉 : DFM ext → DFM ext
0 ,

DFM1
m ′

e�⇒ DFM ext
0 s.t. m ′

e ◦ mF � m ′
F ◦ me .

First, we build F-morphism m ′ � 〈d ,m ′
F ,C 〉 : DFM ext → DFM ext

0 as follows:

• The depth d is equal to the depth d of F-morphism m.

• The mapping m ′
F is defined as ∀ f ∈ F0 • m ′

F (me (f )) � f ; ∀ f ∈ F ext \ me (F0) • m ′
F (f ) � f (i.e., we build an

identity mapping).
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• The configuration C is equal to the configuration C of m.

The F-morphism m ′ so constructed is valid according to Definition 8, since:

• Themorphism depth fills the gap between the levels: lext+d � lext0 . This holds since lext � l0 and lext0 � l0+d .
• Morphism m ′

F is injective, since me is injective, and we built an identity for features in F ext \ mF (F0).
• The morphism depth d fills the gap between the potencies: ∀ f ∈ F ext • potext (f ) + d � potext0 (m ′

F (f )). To
show this, we split F ext in me (F0) and F ext \ me (F0) and check the property on these two sets:

– On the one hand, ∀ f ∈ F0 • potext0 (f ) � pot1(mF (f )) (by the way we have constructed DFM ext
0 ), and

∀ f ∈ F0 •pot0(f )+d � pot1(mF (f )) (sincem is an F-morphism). Therefore we have ∀ f ∈ F0 •potext0 (f ) �
pot0(f ) + d . Because me is an EF-extension, by Definition 14, we have that ∀ f ∈ F0 • pot0(f ) �
potext (me (f )), and so ∀ f ∈ me (F0) • potext0 (f ) � potext (m ′

F (f )) + d as required.
– On the other, by construction of DFM ext

0 , we have ∀ f ∈ F ext \ me (F0) • potext0 (f ) � potext (f ) + d , and
because m ′

F is an identity on those elements, ∀ f ∈ F ext \ me (F0) • potext0 (f ) � potext (m ′
F (f )) + d as

required.

• The configurationC � 〈F+,F−〉ofm ′
F should be a configuration ofDFM ext

0 .C is a configuration ofDFM ext
0

if �ext
0 [F+/true,F−/false] � false, Since C is a configuration of DFM1, we have �1[F+/true,F−/false] �

false, and so �ext
0 [F+/true,F−/false] � false as required.

• We need to showm ′
F (F

ext ) � F ext
0 \ (F+ ∪F−). Sincem is F-morphism, we havemF (F0) � F1 \ (F+ ∪F−),

and so F1 \ mF (F0) � F+ ∪ F−. By construction, we have F ext
0 � F0 ∪ (F1 \ mF (F0)) ∪ (F ext \ me (F0)),

and substituting we have F ext
0 � F0 ∪ (F+ ∪ F−) ∪ (F ext \ me (F0)). But by construction ofm ′

F we have that
F0 ∪ (F ext \ me (F0)) � m ′

F (F
ext ), and substituting again F ext

0 � m ′
F (F

ext ) ∪ (F+ ∪ F−). Solving, we find
F ext
0 \ (F+ ∪ F−) � m ′

F (F
ext ) as required.

• Finally, we need to show that �ext
0 [F+/true,F−/false] ∼� �ext [F ext/m ′

F (F
ext )]. Using the remark in Def-

inition 8, this is equivalent to require that any configuration C ′ ∈ DFG(DFM ext ) s.t. C ≤ C ′ is valid
in DFM ext iff it is valid in DFM ext

0 . By construction, �ext
0 � �1[mF (F0)/F0] ∨ �ext [me (F0)/F0]. By the

second term, any configuration C ′ ∈ CFG(DFM ext ) belongs to CFG(DFM ext
0 ). Hence, any configuration

C ′ ∈ DFG(DFM ext ) s.t. C ≤ C ′ of DFM ext is valid in DFM ext
0 . Conversely, any non-valid configuration

C ′ ∈ DFG(DFM ext ) s.t. C ≤ C ′ makes the second term false. However, the first term should also be false,
since such configuration would make �0 false (by the second part of condition 2 in Definition 14) and hence
not equivalent to �1 as required by m being an F-morphism.

Second, we build m ′
e as follows: f ∈ mF (F0) ⇒ m ′

e (f ) � m−1
F (f ), and f ∈ F1 \ mF (F0) ⇒ m ′

e (f ) � f .
Morphism m ′

e so constructed is valid according to Definition 14, since (1) the potency potext0 of all elements
e ∈ F0∪F1 is taken from pot1(e), and (2) every configurationC ofDFM1 makes�1[mF (F0)/F0] true and hence a
configuration ofDFM ext

0 . In addition any invalid configurationC ofDFM1 makes�1[mF (F0)/F0] false, but also
�0 false (since mF is an F-morphism, and �1[F+/true,F−/false] and �0 are equivalent). Hence, �ext should
also be false, since me is an EF-morphism, and therefore �ext

0 should also be false as required. �
Proof of Theorem 5.4 (EPL-morphisms can be advanced to PL-morphisms): We need to prove that given a PL-

morphism m � 〈mD ,mF 〉 : DM0 → DM1 and an EPL-morphism me � 〈mD
e ,me〉 : DM0 → DM ext , such that

1. ∀ ei , ej ∈ C0 ∪ S0 ∪ R0 • mD (ei ) � mD (ej ) ⇒ φext (mD
e (ei )) � φext (mD

e (ej ))
2. ∀ e ∈ C0 • φext (mD

e (e)) � φ0(e)[F0/me (F0)].

then, we can build a deep model PL DM ext
0 , a PL-morphism m ′ � 〈m ′D ,m ′F 〉 : DM ext → DM ext

0 and an

EPL-morphism DM1
m ′e�⇒ DM ext

0 with m ′e � 〈m ′D
e ,m ′

e〉 s.t. m ′
e ◦ mF � m ′F ◦ me and m ′D ◦ mD � m ′D ◦ mD

e .
First, we construct DM ext

0 � 〈M ext
0 ,DFM ext

0 , φext
0 〉 as follows:

• The model M ext
0 � 〈pext

0 ,C ext
0 ,S ext

0 ,Rext
0 , srcext0 , tarext0 , potext0 〉 is essentially a pushout in the category of

graphs [EEPT06], constructed as follows:

– The level pext
0 � p0 + d is taken as the level of DM0 plus the morphism’s depth d .

– X ext
0 � X1

·∪X ext |≡ (for X � C ,S ,R). Where
·∪ is the disjoint union and ≡ is the smallest equivalence

relation with (mD (e),mD
e (e)) ∈≡ for all e ∈ X0 (for X � C ,S ,R).
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– ∀ e ∈ X1 • srcext0 ([e]) � [src1(e)], and ∀ e ∈ X ext • srcext0 ([e]) � [srcext (e)], for X � S ,R and where [e] is
the equivalence class of e in using relation ≡ (i.e., the element in X ext

0 e is mapped to). Function tarext0 is
constructed similarly.

– The potency function is constructed as: ∀ e ∈ X1 • potext0 ([e]) � pot1(e) (for X � C ,S ,R) and ∀ e ∈
X ext \ mD

e (X0) • potext0 ([e]) � potext (e) + d (where d is the depth of morphism mD ).

• The deep feature model DFM ext
0 is constructed as in the proof of Lemma 4.

• The presence condition function is constructed as follows: ∀ e ∈ X1 \ mD (X0) • φext
0 ([e]) � φ1(e); ∀ e ∈

X ext \mD
e (X0)•φext

0 ([e]) � φext (e); ∀ e ∈ X0•φext
0 ([mD (e)]) � φ1(mD (e))∧φext (mD

e (e)) (forX � C ,S ,R).

Now, we need to show that DFM ext
0 is correct according to Definition 10, for which we need to check:

• DFM0 and M0 have the same level, which is the level of DM0 plus the morphism’s depth d .
• The function φ maps elements to a (non-false) propositional formula. This is so as neither φ1 nor φext map
elements to false propositional formulae.

• The function φ satisfies the following three conditions:

1. ∀ s ∈ S ext
0 ∪ Rext

0 • φext
0 (s) ⇒ φext

0 (srcext0 (s)). This holds since (a) it holds for both DFM1 and DFM ext ,
(b) the PC of elements inC0 that are common inDFM0 is not changed bym orme , according to condition
2 in this theorem, and (c) the PC of elements in S ext ∪ Rext can be strengthened (since me is an EPL-
morphism). However, strengthening the premise of an implication preserves the implication (e.g., if we
have φext (s) ⇒ φ0(s) and φ0(s) ⇒ φ0(src(s)) then φext (s) ⇒ φ0(src(s))).

2. ∀ r ∈ Rext
0 • φext

0 (r ) ⇒ φext
0 (tarext0 (r )). This holds by the same reason as the previous property.

3. ∀ e ∈ C ext
0 ∪ S ext

0 ∪ Rext
0 , ∀ v ∈ Var (φext

0 (e)) • potext0 (v ) ≤ potext0 (e). For the elements mapped from
DM1, this holds as it holds for DM1, and the potency is copied in those case. For those elements mapped
from DM ext and not common in DM0, the potency of the elements in C ext

0 ∪ S ext
0 ∪ Rext

0 is increased by
d , just like the feature variables. Therefore, if it holds for DM ext , it holds for DM ext

0 .

Next, we construct the PL-morphism m ′ � 〈m ′D ,m ′F 〉 : DM ext → DM ext
0 as follows:

• The D-morphism m ′D � 〈d ′,m ′
C ,m ′

S ,m ′
R〉 is built as follows:

– The depth d ′ is taken as the depth of mD (which is d ).
– Each element is mapped to its equivalent class under ≡: ∀ e ∈ X ext • m ′

X (e) � [e] (for X � C ,S ,R).

• m ′F is constructed as in the proof of Lemma 4.

We need to show the three PL-morphism well-formedness conditions in Definition 2:

1. Property pext + d ′ � pext
0 holds since pext

0 � p0 + d ′ and pext � p0.
2. Property ∀ e ∈ X ext • potext (e) + d ′ � potext0 (m ′

X (e)) (for X ∈ {C ,S ,R}) holds by construction for those
elements e ∈ X ext \ mD

e (X0). For those elements in mD
e (X0), their potency is taken from pot1. However, that

potency is pot0 + d , and since potext � pot0 and d � d ′, we obtain the desired result.
3. Each function m ′

C ,m ′
S ,m ′

R commutes with functions srci and tari , which holds since DM ext
0 has been con-

structed as a pushout in the category of graphs [EEPT06].

Then, we construct the EPL-morphism m ′e � 〈m ′D
e ,m ′

e〉 : DM1 → DM ext
0 as follows:

1. The D-morphism m ′D
e � 〈d ′e ,m ′e

C ,m ′e
S ,m ′e

R 〉 is built as follows:
• The depth d ′e is 0.
• Each element is mapped to its equivalent class under ≡: ∀ d ∈ X1 • m ′e

X (d ) � [d ] (for X � C ,S ,R).

2. m ′
e is constructed as in the proof of Lemma 4.

Then, according toDefinition 15 of EPL-morphism, we need to show that ∀ e ∈ C1∪S1∪R1 • φext
0 (m ′e (e)) ⇒

φ1(e)[F1/m ′
e (F1)]. This holds for elements e in X1 \ mD (X0), since the PC is φext

0 ([e]) � φ1(e), and therefore
φ1(e) ⇒ φ1(e). It alsoholds for elements e inmD (X0), since their PC isφext

0 ([mD (e)]) � φ1(mD (e))∧φext (mD
e (e)),

and so φ1(mD (e)) ∧ φext (mD
e (e)) ⇒ φ1(mD (e)) as required.
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Proof of Corollary 1 (Preservation of type and specialization PL-morphisms): First we proof that ifm is a type
PL-morphism, so is m ′. PL-morphism m � 〈mD ,mF 〉 is type if mD and mF are types. Since the depth of m ′D
and m ′F is that of mD and mF , then m ′ is also type.

Then, we assumem is specialization. Then, according to Definition 11,mF is specialization,mD is injective,
level-preserving and satisfying ∀ e ∈ C1 ∪ S1 ∪R1 • (φ1(e)[F+

1 /true, F−
1 /false] � false ⇔ ∃ e ′ ∈ C0 ∪ S0 ∪R0 •

mD (e ′) � e). If mF is specialization, its depth is 0, and so is the depth of m ′F , and hence m ′F is type as well. If
mD is injective, so ism ′D because injectivity is preserved in pushouts in graphs (cf. fact 2.17 in [EEPT06]). IfmD

is level preserving, so is m ′D since they have the same depth.
Finally, regarding the property on the PC, let’s assume that for some element e inX ext

0 •φext
0 (e)[F+/true,F−

/false] � false (for X � C ,S ,R). If ∃ e ′ ∈ X1 with m ′e (e ′) � e then since m is a specialization morphism,
∃ e ′′ ∈ X0 withmD (e ′′) � e ′. In sucha case, by construction,∃ e ′′′ ∈ X ext such thatme (e ′′) � e ′′′, andmD (e ′′′) � e
as required. If instead �e ′ ∈ X1 with m ′e (e ′) � e, then by construction ∃ e ′ ∈ X ext with m ′D (e ′) � e.

Conversely, let’s assume that ∃ e ′ ∈ X ext withm ′D (e ′) � e. Then we need to show that φext
0 (m ′e (e ′))[F+/true,

F−/false] � false. By the condition in the corollary, φext (e ′)[F+/true,F−/false] � false. If e ′ ∈ X ext \ me (X0)
then φext

0 (e) � φext (e ′) and the condition holds. If e ′ ∈ m ′e (X0) then φext
0 (e) � φ1(e ′′) ∧ φext (e ′). Since m is

specialization, φ1(e ′′)[F+/true,F−/false] � false, and using the condition of the corollary, φext
0 (e)[F+/true,

F−/false] � false as required.
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