
https://doi.org/10.1007/s00165-021-00551-6

Formal Aspects of Computing (2021) 33: 925–955
Formal Aspects

of Computing

Efficient data validation for geographical
interlocking systems
Jan Peleska1 , Niklas Krafczyk1,†, Anne E. Haxthausen2 and Ralf Pinger3
1 Department of Mathematics and Computer Science, University of Bremen, Bremen, Germany
2 DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark
3 Siemens Mobility GmbH, Brunswick, Germany

Abstract. In this paper, an efficient approach to data validation of distributed geographical interlocking sys-
tems (IXLs) is presented. In the distributed IXL paradigm, track elements are controlled by local computers
communicating with other control components over local and wide area networks. The overall control logic is
distributed over these track-side computers and remote server computers that may even reside in one or more
cloud server farms. Redundancy is introduced to ensure fail-safe behaviour, fault-tolerance, and to increase the
availability of the overall system. To cope with the configuration-related complexity of such distributed IXLs, the
software is designed according to the digital twin paradigm: physical track elements are associated with software
objects implementing supervision and control for the element. The objects communicate with each other and
with high-level IXL control components in the cloud over logical channels realised by distributed communica-
tion mechanisms. The objective of this article is to explain how configuration rules for this type of IXLs can be
specified by temporal logic formulae interpreted on Kripke Structure representations of the IXL configuration.
Violations of configuration rules can be specified using formulae from a well-defined subset of LTL. By decom-
posing the complete configuration model into sub-models corresponding to routes through the model, the LTL
model checking problem can be transformed into a CTL checking problem for which highly efficient algorithms
exist. Specialised rule violation queries that are hard to express in LTL can be simplified and checked faster by
performing sub-model transformations adding auxiliary variables to the states of the underlying Kripke Struc-
tures. Further performance enhancements are achieved by checking each sub-model concurrently. The approach
presented here has been implemented in a model checking tool which is applied by Siemens Mobility for data
validation of geographical IXLs.

Keywords: Data validation, Interlocking systems, LTL, CTL, Model checking

Correspondence to: Jan Peleska, e-mail: peleska@uni-bremen.de
†Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—Project number 407708394.

The Author(s) © 2021

http://crossmark.crossref.org/dialog/?doi=10.1007/s00165-021-00551-6&domain=pdf
http://orcid.org/0000-0003-3667-9775
http://orcid.org/0000-0001-7349-8872

926 J. Peleska et al.

1. Introduction

Background

Railway interlocking systems (IXLs) are designed according to different paradigms [Pac02, Chapter 4]. Two of the
most widely used are (a) route-based interlocking systems and (b) geographical interlocking systems. The former
are based on predefined routes through the rail network and use interlocking tables specifying safety conflicts
between different routes and the point positions and signal states to be enforced before a route may be entered
by a train. For design type (b), routes through the railway network can be allocated dynamically by indicating
the starting and destination points of trains intending to traverse the railway network portion controlled by the
IXL under consideration. In the original technology, electrical relay-based circuits were applied, whose elements
and interconnections were designed in one-to-one correspondence with those of the physical track layout. The
electric circuit design ensured dynamic identification of free routes from starting point to destination, the locking
of points and setting of signals along the route, as well as on neighbouring track segments for the purpose of
flank protection. In today’s software-controlled electronic interlocking systems, instances of software components
“mimic” the elements of the electric circuit, acting as digital twins of the associated physical track elements.
Typically following the object-oriented paradigm, different components are developed, each corresponding to
a specific type of physical track element, such as points, track sections associated with signals, and others with
axle counters or similar devices detecting trains passing along the track. Similar to connections between electric
circuit elements, instances of these software components are connected by communication channels reflecting
the track network. The messages passed along these channels carry requests for route allocation, point switching
and locking, signal settings, and the associated responses acknowledging or rejecting these requests. The software
components are developed for re-use, so that novel interlocking software designs can be realised by means of
configuration data, specifying which instances of software components are required, their attribute values, and
how their communication channels shall be connected.

IXL design induces a distinguished verification and validation (V&V) step which is called data validation.
For route-based IXLs, its main objective is to ensure completeness and correctness of interlocking tables. For
geographical IXLs, the objective is to check whether the instantiation of software components is complete, each
component is equipped with the correct attribute values, and whether the channel interconnections are adequate.
Data validation becomes still more complex, if the IXL logic is distributed over track-side computers monitoring
and controlling their associated physical track elements (local IXL logic) and cloud-based servers executing
the global IXL logic. This approach is followed by Siemens Mobility with their new Distributed Smart Safe
System DS3 which has been certified in 2020 [Son18, Pel20]. In addition to the digital twin configuration, aspects
like deployment of software components, communication topology, and reconfiguration behaviour need to be
configured for the software components residing in the cloud.

In any case, data validation objectives are specified by means of rules, and the rules collection is usually quite
extensive (several hundred), so that manual data validation would be cumbersome, costly, and error-prone task.
Also, manually programmed checking software is not a satisfactory solution, since the addition of new rules
would require frequent extensions of the code. These extensions are costly, since data validation tools need to
be validated according to tool class T2, as specified in the standard [CEN11]. Therefore, it is desirable to use
data validation tools processing a logical query language to specify which rules should be enforced or which rule
violations should be detected. This type of tool can be validated once and for all, since new validation rules can
be specified by mans of new queries, without changing the software code.

Previous work

This paper is a follow-up contribution to [PKHP19], where the basic model checking principle for data validation
of geographical IXLs has been presented. This principle was based on the following insights.

1. Exploiting known results about the temporal logic LTL, it has been shown that violations of safety-properties
can be represented by a syntactic subset of LTL which is denoted by data validation language (DVL). These
considerations ensure that violations of IXL configuration rules can always be specified using this subset.

2. Exploitingknown results aboutLTLandCTL, itwas shownhowLTL formulaeφ representing safety violations
(so-called DVL-queries) can be translated to CTL formulae �(φ), such that CTL model checking of �(φ) is

Efficient data validation for geographical interlocking systems 927

an over-approximation for LTL model checking of φ in the sense of abstract interpretation. This means that
the absence of witnesses1 for CTL formula �(φ) implies the absence of solutions for LTL formula φ, which
proves that no rule violations specified by φ are present.

3. For CTL, highly efficient and well-explored global model checking algorithms can be applied. These have
complexity O(| f | · (| S | + | R |), where | f | is the number of sub-formulae in CTL formula f , | S | is the
size of the state space, and | R | is the size of the transition relation. Moreover, the application of CTL model
checking is generally more efficient than LTL model checking, since the latter represents an NP-hard problem
[CGP99, Section 4.2]. Explicit global model checking is an adequate approach to data validation, since the
typical number of states (corresponding to track elements) to be expected is in the order of 106 for the largest
IXL configurations.

4. Adecomposition of the complete IXL configuration into sub-models corresponding to directed routes through
the railway network allows for a significant speed-up of the checking process by processing sub-models con-
currently.

To make this article self-contained, the essential parts of [PKHP19] have been reproduced here verbatim or
with small additions.

Main contributions

In this article, the material presented in the previous work [PKHP19] is extended by the following contributions.

1. The underlying theory is presented here in a comprehensive form and with full proofs for the crucial lemmas
and theorems involved.

2. The application of the theory to data validation is described in more detail and with additional examples that
have not been published in [PKHP19]. In particular, examples concerning flank protection have been added.

3. The parallelisation concept used to speed up model checking is described in detail.
4. A solution for an unsolved problem stated in [PKHP19] is presented. As mentioned above, the application

of CTL to sub-models instead of LTL results in an over-approximation which may lead to false alarms. We
present a method and an associated algorithm, detecting false alarms by exploiting the finite LTL encoding
elaborated in [BHJ+06].

It should be emphasised that the scientific contribution of [PKHP19] and of the present article consists in
showing how existingknowledge about formalmodels, temporal logic, andmodel checking can be applied to solve
a highly complex problem of the safety-critical systems domain, namely the automated data validation of IXL
configurations. To our best knowledge, the approach presented here has never been proposed by other authors
before, and no alternative industrial-strength data validation tool exists, possessing the same characteristics as
the DVL-Checker presented here.

Overview

In Section 2, the data validation approach to geographical IXLs is explained from an engineering perspective. The
mathematical foundations required to enable automated complete detection of IXL configuration rule violations
are elaborated in Section 3.This is donewithout any reference to the intended application.The latter is described in
Section 4, where the application of themathematical theory to IXLdata validation, including its parallelisation, is
presented in detail. An algorithm for the detection of false alarms resulting from over-approximation is described
and shown to be correct. Performance evaluation results are presented. Section 5 contains references to related
work and competing approaches. Section 6 contains a conclusion.

2. Data validation for geographic interlocking systems

As indicated above, the software controlling geographical interlocking systems consists of objects communicating
over channels, each instance representing a physical track element or a related hardware interface. Themain types
of track elements to be considered are points and diamond crossings, track segments, signals, and level crossings.

1 A witness is a sequence of states fulfilling a temporal logic formula.

928 J. Peleska et al.

Fig. 1. Physical layout, associated software instances and channel connections.

The different tasks to be fulfilled by each track element at a specific position inside the track network require
a large variety of sub-types, such as track segments acting as route interface elements or track segments acting
as track vacancy detectors. Siemens structures the main types listed above into approximately 45 sub-types; and
each track element sub-type is further specialised by a set of element-specific parameters that become attribute
values of the objects they are represented by.

A subset of the channels—called primary channels in the following—reflect the physical interconnection
between neighbouring track elements which are part of possible routes, to be dynamically allocated when a re-
quest for traversal from some starting point to a destination is given (Fig. 1). Other channels—called secondary
channels—connect certain elements s1 to others s2, such that s1 and s2 are never neighbouring elements on a
route, but s2 may offer flank protection to s1, when some route including s1 should be allocated. Since geo-
graphical interlocking is based on request and response messages, each channel for sending request messages
from some instance s1 connected to an instance s2 is associated with a “response channel” from s2 to s1. Pri-
mary channels are subsequently denoted by variable symbols a, b, c, d , while secondary channels are denoted by
e, f , g, Only points and diamond crossings use c-channels, and d -channels are used by diamond crossings
only.

For signals, the driving direction they apply to is along channel a. For points, the straight track (point
position “+”) is always represented by the channel connections from a to b and vice versa, and the diverging
track (point position “−”) always from a to c and vice versa. The stems of a point are denoted by A, B, C
according to the channels associated with the stem. The entry into/exit from the track network controlled by the
interlocking systems is always marked by border elements of a special type. In Fig. 1, these types are denoted

Efficient data validation for geographical interlocking systems 929

by the fictitious identifiers t1 and t3. Some track sections may be crossed in both directions, so a border element
may serve both as entry and exit element. This is discussed in more detail in the context of sub-model creation
in Section 4.

All software instances are associated with a unique id and a type t corresponding to the track element type
they are representing. Depending on the type, a list of further int-valued attributes a1, . . . , ak may be defined for
each software instance. By using default value 0 for attributes that are not applicable to a certain component type,
each element can be associated with the same complete list of attributes. Each valuation of a channel variable
contains either a default value 0, meaning “no connection on this channel”, or the instance identification id > 0
of the destination instance of the channel. Data validation rules state conditions about admissible sequences of
element types and about admissible parameters.

In the following examples, when an element has the value n as its id , it is referred to as sn .

Example 2.1 A typical pattern of data validation rules checks the existence of expected follow-up elements for
an element of a given type.

Rule 1. From channel a of an element of type sig (i.e. a signal) pointing in downstream direction2, an element
of the same type with its a-channel also pointing downstream is found, before a border element of type t1 or
t3 is reached.

Every rule can be transformed into a rule violation condition. For Rule 1, the violation would be specified as

Violation of Rule 1. From channel a of an element of type sig pointing in downstream direction, no element of
the same type with its a-channel pointing downstream is found, before a border element of type t1 or t3 is
reached.

The configuration in Fig. 1 violatesRule 1, because, for example, the path segmentπ1 � s21.s23.s24.s22.s25 contains
the follow-up element s22, but this is reached along π1 via its a-channel. Practically, this means that the signal
with id 22 does not point into the expected driving direction, so the expected route exit signal along π1 is missing.
An example of a path segment which is consistent with this rule is π2 � s32.s24.s23.s13.s11.s10. �

Example 2.2 Another typical pattern of data validation rules refers to the element types that are required or
admissible in certain segments of a route marked by elements of specific type.

Rule 2. From channel a of a signal of type sig pointing in downstream direction, there must be at least one
element of type t3, before the corresponding signal with type sig and channel a pointing in downstream
direction is reached.

The corresponding rule violation can be specified as

Violation of Rule 2. From channel a of a signal of type sig pointing in downstream direction, no element of type
t3 can be found before the corresponding signal with type sig and channel a pointing in downstream direction
is reached.

The configuration in Fig. 1 violates this rule, because the path segments connecting the signals of type sig do not
contain any element of type t3. �

Example 2.3 Another typical pattern of data validation rules restricts the number of elements of a certain type
that may be allocated between two elements of another type. The following fictitious rule illustrates this pattern
(the real rules are slightly more complex and refer to other element types).

Rule 3. From channel a of a signal of type sig pointing in downstream direction, no more than k points (t � pt)
are allowed, before the corresponding signal with type sig and channel a pointing in downstream direction
is reached.

2 This means that the signal is visible to trains driving in the direction of the a channel, see channel identifications for objects of type sig in
Fig. 1. ‘Downstream’ denotes the driving direction.

930 J. Peleska et al.

Fig. 2. Several variants of flank protection.

The corresponding rule violation is specified as

Violation of Rule 3. From channel a of a signal of type sig pointing in downstream direction, more than k points
(t � pt) are encountered, before the corresponding signal with type sig and channel a pointing in downstream
direction is reached. �

Slightly more complex rules have to be specified for ensuring the correct configuration of elements offering
flank protection to routes crossing points. In Fig. 2, several variants of signals and points offering flank protection
to point p1 are shown. Note that several more variants have to be considered in practise.

Flank protection by signal is shown for driving directions AB/BA in Fig. 2a and for driving directions
AC/CA in Fig. 2b. Since flank protection by signal is unable to prevent collisions if the signals are disregarded,
flank protection by point is the preferred solution, if available. Driving directions AB/BA of a point p1 can be
protected from trains entering the C-stem of p1, if another point p2 exists that may prevent trains from entering
p1’s C-stem. This is illustrated in Fig. 2c. Driving directions AC/CA are protected from trains entering the B-stem
of p1 by points p2 shown in Fig. 2d.

Example 2.4 The variants of flank protection shown in Fig. 2 lead to the following rules applicable to every
element p1 with type t � pt . It suffices to check flank protection for one driving direction, because then it also
holds for the opposite driving direction. Therefore, the rules are only formulated for the case where the B and
C-stems of the point under consideration point in driving direction.

Efficient data validation for geographical interlocking systems 931

Rule 4.1 (protection of driving direction AB/BA) If p1’s c-channel points in downstream direction, another point
p2 with its b channel or c-channel pointing towards the C-stem of p1 is required, or a signal with a-channel
pointing towards the C-stem of p1 is required before another point p3 with its a-channel pointing towards the
C-stem of p1 is encountered.
The condition about p3 ensures that the flank protection is implemented not too far away from the point p1
to be protected: after encountering a point like p3, two signals instead of one would be required to protect p1,
because trains could approach p1’s C-stem via the B-stem or A-stem of p3.

Rule 4.2 (protection of driving direction AC/CA) If p1’s b-channel points in downstream direction, another point
p2 with its b channel or c-channel pointing towards the B-stem of p1 is required, or a signal with a-channel
pointing towards the B-stem of p1 is required before another point p3 with its a-channel pointing towards the
B-stem of p1 is encountered.

For all points displayed in Fig. 1, Rule 4.1 and Rule 4.2 are fulfilled. The corresponding rule violations are
specified as

Violation of Rule 4.1 If p1’s c-channel points in downstream direction, no other point p2 with its b channel or
c-channel pointing towards the C-stem of p1 can be found, and no signal with a-channel pointing towards
the C-stem of p1 can be found before another point p3 with its a-channel pointing towards the C-stem of p1
is encountered, or a border element has been reached.

Violation of Rule 4.2 If p1’s b-channel points in downstream direction, no other point p2 with its b channel or
c-channel pointing towards the B-stem of p1 can be found, and no signal with a-channel pointing towards
the B-stem of p1 can be found before another point p3 with its a-channel pointing towards the B-stem of p1
is encountered, or a border element has been reached. �

3. Logical foundations

3.1. Overview

In this section, the logical foundations of the model checking method for data validation are explained. The
underlying theory is described without references to their practical application in the IXL context; the latter is
explained in Section 4. The main results of this section are as follows.

1. The specification of rule violations that we use for data validation can be expressed by negations of LTL safety
formulae (Section 3.4).

2. These negated formulae can always be expressed by LTL formulae using unquantified first-order formulae
composed by path operators X (next) andU (until) only (Theorem 3.1).

3. Checking this type of LTL formulae can be performed by CTL model checking of transformed formulae: if
the CTL check does not find a witness (a path) for the transformed formula, there is also none for the original
LTL formula. This means that no rule violation exists (Section 3.6 and Theorem 3.3).

4. CTL checking is an over-approximation of LTL checking. As a consequence, false alarms may occur. These
are witnesses for the transformed formula, but do not represent models of the original LTL formula. Since the
manual verification or falsification of witness paths is cumbersome for users, an algorithm for the detection
of false alarms is presented in the next section (Section 4.4).

5. The CTL model checking algorithms required for checking the formulae relevant for data validation are
explained in Section 3.7.

In Section 4 it will be shown how IXL configurations may be interpreted as Kripke Structures, so that rule
violations can be expressed in a natural way as negated LTL safety formulae over these configurations.

3.2. Kripke structures

A State Transition System is a tripleTS � (S ,S0,R), where S is the set of states, S0 ⊆ S is the set of initial states,
R ⊆ S × S is the transition relation. The intuitive interpretation of R is that a state change from s1 ∈ S to s2 ∈ S
is possible in TS if and only if (s1, s2) ∈ R.

932 J. Peleska et al.

Table 1. Expression evaluation.

s(d) � d for integer constants d

s(x ω e) � s(x) ω s(e) for variables x and expressions e

and arithmetic operators ω ∈ {+,−, /, ∗, <<,>>,%}

Table 2. Semantics of atomic propositions.

s |� true

s �|� false

s |� v ν d iff s(v) ν d for comparison operators ν ∈ {�, ��,<, ≤,>, ≥}
s |� v ν w iff s(v) ν s(w)

A Kripke Structure K � (S ,S0,R,L,AP) is a state transition system (S ,S0,R) augmented by a set AP
of atomic propositions and a labelling function L : S −→ 2AP mapping each state s of K to the set of atomic
propositions valid in s . Furthermore, it is required that the transition relation R is total in the sense that ∀ s ∈
S : ∃ s ′ ∈ S : (s, s ′) ∈ R.

A computation of a state transition system (or a Kripke structure) is an infinite sequence π � s0.s1.s2 · · · ∈ Sω

of states si ∈ S , such that the start state is an initial state, that is, s0 ∈ S0, and each pair of consecutive states
is linked by the transition relation, that is, ∀ i > 0 : (si−1, si) ∈ R. The terms path or execution are used
synonymously for computations.

In the context of this paper, state spaces S consist of valuation functions s : V −→ D mapping variable names
from V to their actual values in D . For the context of this paper, it suffices to consider D � int, because all
configuration parameters used for the interlocking systems under consideration may be encoded as integers. For
the Boolean values true, false, the integer values 1, 0 are used, respectively.

3.3. First order formulae and their valuation

Given a Kripke StructureK with variable valuation functions s : V −→ int as states, arithmetic expressions over
variables from V are interpreted in a given state s by the rules shown in Table 1. These rules extend the domain
of each valuation s to integer constants and arithmetic expressions over variables from V .

Atomic propositions are constructed by composing variables or arithmetic expressions using comparison
operators. The valuation of atomic propositions is specified in Table 2, where d denotes integer constants, and
v ,w denote variables from V or arithmetic expressions over variables from V . We write s |� p if p evaluates to
true in state s , and s �|� p if p evaluates to false.

An (unquantified) first-order formula f overV is a logical formulawith atomic propositions overV as specified
above, composed by logical operators ¬,∧,∨. The domain of valuation functions s is extended once more to
first-order formulae, as specified in Table 3.

Table 3. Semantics of first-order formulae.

s |� ¬f iff s �|� f

s |� f ∧ g iff s |� f and s |� g

s |� f ∨ g iff s |� f or s |� g

Efficient data validation for geographical interlocking systems 933

Table 4. Semantics of LTL formulae.

π i |�LTL true for all i ≥ 0

π i �|�LTL false for all i ≥ 0

π i |�LTL f iff π (i) |� f if f is an unquantified first-order formula over V ,

to be evaluated as specified in Table 1, 2 and 3.

π i |�LTL ¬ϕ iff π i �|�LTL ϕ

π i |�LTL ϕ ∧ ψ iff π i |�LTL ϕ and π i |�LTL ψ

π i |�LTL ϕ ∨ ψ iff π i |�LTL ϕ or π i |�LTL ψ

π i |�LTL Xϕ iff π i+1 |�LTL ϕ

π i |�LTL Gϕ iff π i+j |�LTL ϕ for all j ≥ 0

π i |�LTL Fϕ iff there exists j ≥ 0 such that π i+j |�LTL ϕ

π i |�LTL ϕUψ iff there exists j ≥ 0 such that π i+j |�LTL ψ and

π i+k |�LTL ϕ for all 0 ≤ k < j

π i |�LTL ϕWψ iff

π i+k |�LTL ϕ for all k ≥ 0,

or there exists j ≥ 0 such that π i+j |�LTL ψ and

π i+k |�LTL ϕ for all 0 ≤ k < j

3.4. Linear temporal logic LTL, safety properties and their violations

Linear temporal logic LTL

Linear Temporal Logic (LTL) is a logical formalism aiming at the specification of computation properties. The
material presented here is based on [CGP99]. Given a Kripke structure with state valuations over variables from
V , we use unquantified first-order LTL with the following syntax.

• Every unquantified first-order formula over V as specified above is an unquantified first-order LTL formula.

• If f , g are unquantified first-order LTL formulae, then¬f , f ∧g , f ∨g ,Xf (Next),Gf (Globally),Ff (Finally),
fUg (Until), and fWg (Weak Until) are also unquantified first-order LTL formulae.

Operators X, G, F, U, and W are called path operators.
The models of LTL formulae are infinite paths π � s0.s1.s2. · · · ∈ Sω; we write π |�LTL f if formula f holds

on path π according to the semantic rules specified in Table 4.3 We use notation π i � si .si+1.si+2 . . . to denote
the path segment of π starting at element π (i). A Kripke structure K fulfils LTL formula f if and only if every
computation of K is a model of f :

K |�LTL f iff π |�LTL f for all computations π of K

In the remainder of the paper, some equivalences between LTL formulae will be used in proofs. These are
listed in the following lemma.

Lemma 3.1 Let ϕ,ψ be LTL formulae. Then

ϕ ∨ ψ ≡ ¬(¬ϕ ∧ ¬ψ) ¬(ϕ ∧ ψ) ≡ ¬ϕ ∨ ¬ψ ¬(ϕ ∨ ψ) ≡ ¬ϕ ∧ ¬ψ
Gϕ ≡ ϕ W false Fϕ ≡ ¬G¬ϕ ϕUψ ≡ ϕWψ ∧ Fψ
Fϕ ≡ trueUϕ ¬Xϕ ≡ X¬ϕ ¬Gϕ ≡ F¬ϕ

¬(ϕWψ) ≡ (¬ψU¬(ϕ ∨ ψ)
)

3 The operators ∨, G, F, U are redundant and can be expressed using the remaining LTL operators alone. Therefore, they are sometimes
introduced as syntactic abbreviations. For the purpose of this paper, however, it is better to represent their semantics in an explicit way.

934 J. Peleska et al.

Proof. We prove ¬(ϕWψ) ≡ (¬ψU¬(ϕ ∨ ψ)
)
, since this equivalence is usually not to be found in standard text

books, but is essential for our further considerations. The derivation is performed by transforming the left-hand
side and right-hand side into their first-order representation and proving semantic equivalence of the latter. The
other statements are established in an analogous way.

π i |�LTL ¬(ϕWψ)
⇔ π i �|�LTL ϕWψ

[Semantics of ¬, Table 4]
⇔ ¬(∀ k ≥ 0 : π i+k |�LTL ϕ

) ∧ ¬(∃ j ≥ 0 : (π i+j |�LTL ψ ∧ ∀ 0 ≤ k < j : π i+k |�LTL ϕ)
)

[Semantics of W (Table 4), negated]
⇔ (∃ h ≥ 0 : π i+h �|�LTL ϕ

) ∧
(∀ j ≥ 0 : (π i+j �|�LTL ψ ∨ ∃ 0 ≤ k < j : π i+k �|�LTL ϕ)

)

[First-order logic rules for negation and quantification]
⇔ (∃ h ≥ 0 : π i+h |�LTL ¬ϕ

) ∧
(∀ j ≥ 0 : (π i+j |�LTL ¬ψ ∨ ∃ 0 ≤ k < j : π i+k |�LTL ¬ϕ)

)

[LTL semantics of ¬, (Table 4)]
⇔ (

(∃ h ≥ 0 : π i+h |�LTL ¬ϕ) ∧ (∀ j ≥ 0 : π i+j |�LTL ¬ψ)
) ∨

(∃ j > 0 : (π i+j |�LTL ψ ∧ ∀ 0 ≤ k < j : πk |�LTL ¬ψ ∧ ∃ 0 ≤ h < j : π i+h |�LTL ¬ϕ)
)

[First-order logic rules for ∨, ∧, ∀, and ∃,
note that second disjunct implies ∃ h ≥ 0 : π i+h |�LTL ¬ϕ,
note that j must be greater zero, because otherwise π i |�LTL ϕWψ]

⇔ (∃ h ≥ 0 : (π i+h |�LTL (¬ϕ ∧ ¬ψ) ∧ ∀ 0 ≤ k < h : π i+k |�LTL ¬ψ)
)

[First-order logic rules]
⇔ π i |�LTL

(¬ψU¬(ϕ ∨ ψ)
)

[LTL semantics of U, rules for ∧,∨]
�

Safety properties

A safety property P is a collection of computations π ∈ Sω, such that for every π ′ ∈ Sω with π ′ �∈ P , the fact
that π ′ does not fulfil P can already be decided on a finite prefix of π ′. It has been shown in [Sis94] that every
safety property P can be characterised by a Safety LTL formula ϕ, so that the computations in P are exactly
those fulfilling ϕ. The Safety LTL formulae are specified as follows [Sis94, Theorem 3.1]:

1. Every unquantified first-order formula is a Safety LTL-formula.
2. If ϕ,ψ are Safety LTL-Formulae, then so are

ϕ ∧ ψ, ϕ ∨ ψ, Xϕ, ϕWψ, Gϕ.

Observe that in these safety formulae, the negation operator must only occur in first-order sub-formulae.
Suppose that a safety property P is specified by Safety LTL formula ϕ. When looking for a path π violating

ϕ, the violation π |�LTL ¬ϕ can be equivalently expressed by a formula containing only first-order expressions
composed by the operators ∧,∨,X,U. This is shown in the following theorem.

Theorem 3.1 Let ϕ be a Safety LTL formula. Then safety violation ¬ϕ can be equivalently expressed using first-
order expressions composed by operators ∧,∨,X,U.

Proof. We use structural induction over the syntax of safety LTL formulae.

Base case. If ϕ is a first-order expression, then its negation is again a first-order expression.

Induction hypothesis. Suppose that the negation of Safety LTL formulae ϕ,ψ can be expressed using first-order
expressions composed by operators ∧,∨,X,U only.

Efficient data validation for geographical interlocking systems 935

Table 5. Interpretation of first-order expressions, conjunction and disjunction of LTL formulae.
| [ϕ] |i 0 ≤ i ≤ k
| [f] |i si |� f f is an unquantified first-order expression

| [¬f] |i si �|� f f is an unquantified first-order expression
| [ψ1 ∧ ψ2] |i | [ψ1] |i ∧ | [ψ2] |i ψ1, ψ2 LTL formulae
| [ψ1 ∨ ψ2] |i | [ψ1] |i ∨ | [ψ2] |i ψ1, ψ2 LTL formulae

Table 6. Interpretation rules for LTL path operatorsX,U on acyclic paths.
| [ϕ] |i 0 ≤ i < k i = k

| [Xψ] |i | [ψ] |i+1 false

| [ψ1Uψ2] |i | [ψ2] |i ∨(| [ψ1] |i ∧ | [ψ1Uψ2] |i+1
) | [ψ2] |i

Induction step. Since every Safety LTL formula can be expressed using operators∧,∨,X,W,G, we need to show
that the negations of ϕ ∧ψ , ϕ ∨ψ ,Xϕ, ϕWψ ,Gϕ can also be expressed using first-order expressions composed
by operators ∧,∨,X,U. To prove this, we use the equivalences for LTL formulae established in Lemma 3.1.

Case ϕ ∧ ψ . Since ¬(ϕ ∧ ψ) ≡ ¬ϕ ∨ ¬ψ and, according to the induction hypothesis, ϕ,ψ can be negated using
first-order expressions composed by operators ∧,∨,X,U only, the induction step holds for operator ∧.
Case ϕ ∨ ψ . Since ¬(ϕ ∨ ψ) ≡ ¬ϕ ∧ ¬ψ and ϕ,ψ can be negated using first-order expressions composed by
operators ∧,∨,X,U only, the induction step holds for operator ∨.
Case Xϕ. Since ¬Xϕ ≡ X¬ϕ and ϕ can be negated using first-order expressions composed by operators
∧,∨,X,U only, the induction step holds for operatorX.

Case (ϕWψ). Since¬(ϕWψ) ≡ (¬ψU¬(ϕ∨ψ)
) ≡ (¬ψU(¬ϕ∧¬ψ)

)
and ϕ,ψ can be negated using first-order

expressions composed by operators ∧,∨,X,U only, the induction step holds for operatorW.

Case Gϕ. Since ¬Gϕ ≡ F¬ϕ ≡ (trueU¬ϕ) and ϕ can be negated using first-order expressions composed by
operators ∧,∨,X,U only, the induction step holds for operatorG. This completes the proof. �

As a consequence of Theorem 3.1, a model checker specialised on the detection of safety violations only needs
to support the evaluation of first-order formulae and operators ∧,∨,X,U.

3.4.1. Safety violation formulae on finite paths

It will be explained in Section 4 how IXL configurations may be interpreted as Kripke structures K . Con-
crete model checking for uncovering rule violations will be performed on Kripke sub-models of K , whose tran-
sitions graphs are acyclic. This interpretation needs one relaxation of the Kripke structure definition K �
(S ,S0,R,L,AP): we admit state transition systems (S ,S0,R) whose transition relations are no longer total. In
particular, all sub-model computations are finite, which follows trivially from the fact that finite, acyclic graphs
cannot possess infinite paths.

FromTheorem3.1aboveweknowthat theLTLformulaeweare interested in—these express safetyviolations—
can be represented using operators ∧,∨,X,U only. Tables 5 and 6 present a semantic interpretation for such
formulae on finite paths. This interpretation is based onmore general results presented in [BHJ+06]. Given a finite
path π � s0.s1 . . . sk , | [ϕ] |i denotes the interpretation of LTL formula ϕ on the path segment π i � si .si+1 . . . sk ,
so π |�LTL ϕ holds if and only if | [ϕ] |0 evaluates to true. Table 5 contains the interpretation rules for first-order
(sub-)formulae in unquantified first-order LTL formulae ϕ. First-order formula f holds in segment π i if and only
if f holds in the segment’s first state si , and its negation holds if f does not hold in si (recall the interpretation
rules from Tables 1, 2, and 3). Conjunction and disjunction of arbitrary LTL formulae are defined in Table 5 in
the usual way by distributing the operators through | [·] |.

Table 6 specifies the interpretation of the temporal operators X,U. Exploiting the assumption that our
transition graphs are acyclic, the rules do not have to deal with situations where the last state sk coincides with
a previous state on the same path. This general case is handled in [BHJ+06], but not needed in our context. As a
consequence, the rule for interpreting | [Xψ] |i just states that | [Xψ] |i� false for i � k , because no next state
exists where ψ could be evaluated in. For i < k , the usual interpretation is chosen: | [Xψ] |i evaluates to true if
and only if ψ holds on the segment π i+1. For the until operator, the right-hand side operand must hold if i � k ,
otherwise the formula evaluates to false. For i < k , the usual recursive interpretation is chosen: | [ψ1Uψ2] |i is
true if and only if ψ2 holds on segment π i or, alternatively, ψ1 holds on π i and ψ1Uψ2 holds on segment π i+1.

936 J. Peleska et al.

Theorem 3.2 If the transition relation R of a Kripke structure K can be represented by a finite, acyclic, directed
graph, then the semantic extension of LTL to finite paths specified above coincides with the finite linear encodings
for LTL semantics introduced in [BHJ+06] that is used for bounded LTL model checking.

Proof. As described above, our interpretation in Tables 5 and 6 differs from the linear encodings specified in
[BHJ+06] only in the cases i � k for operators X and U. These cases are specified by more general formulae in
[BHJ+06] which can be simplified to false for the X-operator and to | [ψ2] |i for the U-operator, if all paths
are acyclic and, therefore, do not contain any lasso states [BHJ+06, Section 1.3] that need to be considered in the
case of potential cycles. �

The semantic rule for the U-operator in Table 6 is recursive. For the use of this in proofs it is sometimes
practical to use equivalent non-recursive representations. Since the paths to be considered have finite length k , it
is trivial to see that

| [ψ2] |i ∨(| [ψ1] |i ∧ | [ψ1Uψ2] |i+1
) ≡ ∃ 0 ≤ j ≤ k − i .

(
π i+j |�LTL ψ2 ∧ ∀ 0 ≤ 	 < j . π i+	 |�LTL ψ1

)
(1)

3.5. Computation tree logic CTL

Syntax of CTL formulae.

WhileLTL formulae have computations ofKripke structures asmodels, CTLhas trees of computations asmodels.
As a consequence, two new path quantifiers are introduced in addition to the path operators already known from
LTL: QuantifierE denotes existential path quantification, in the sense that “there exists a path segment starting at
the current node of the computation tree, such that the formula specified after E holds on this segment.” Quantifier
A denotes universal path quantification, in the sense that “on all path segments starting at the current node of the
computation tree the formula specified afterA holds.”The CTL syntax is defined by the following grammar, where
f denotes unquantified first-order formulae as specified in Section 3.3, formulae φ are called state formulae, and
formulae ψ are called path formulae.

CTL-formula ::� φ
φ ::� f | ¬φ | φ ∨ φ | φ ∧ φ | E ψ | A ψ
ψ ::� X φ | φ U φ

According to this grammar, the path operatorsX,U can never be prefixed by another temporal operator in CTL.
The same holds for the other path quantors which may be expressed inX andU according to Lemma 3.1. Only
pairs consisting of path quantifier and temporal operator can occur in a row.

Semantics of CTL formulae.

The semantics of CTL formulae is explained using a Kripke structure K , specific states s of K and paths π
through the computation tree of K . We write

K , s |�CTL φ (s a state of K , φ a state formula)

to express that φ holds in state s of K .

Efficient data validation for geographical interlocking systems 937

Table 7. Semantics of CTL formulae.

K , s |�CTL f iff s |� f for any unquantified first-order formula f
with “|�” as defined in Table 3

K , s |�CTL ¬φ iff K , s �|�CTL φ

K , s |�CTL φ1 ∨ φ2 iff K , s |�CTL φ1 or K , s |�CTL φ2
K , s |�CTL φ1 ∧ φ2 iff K , s |�CTL φ1 and K , s |�CTL φ2
K , s |�CTL E ψ iff there is a path π from s such that K , π |�CTL ψ

K , s |�CTL A ψ iff on every path π from s holds K , π |�CTL ψ

K , π i |�CTL X φ iff K , π (i + 1) |�CTL φ

K , π i |�CTL φ0Uφ1 iff there exists j ≥ 0 such that K , π (i + j) |�CTL φ1 and
K , π (i + k) |�CTL φ0 for all 0 ≤ k < j

We write

K , π |�CTL ψ (π a computation of K , ψ a path formula)

to express that ψ holds along path π through K . For CTL formulae φ we say φ holds in the Kripke model K
and write K |�CTL φ if and only if K , s0 |�CTL φ holds in every initial state s0 of K . While this is useful for
asserting that desired properties are fulfilled when starting from any initial state of K , it is not appropriate when
wanting find witnesses for formulae expressing unwanted properties, such as the violations of IXL rules discussed
in this paper. If the unwanted property is expressed by state formula φ, the model checker should return true or
‘ALARM’ if and only if

∃ s0 ∈ S0. K , s0 |�CTL φ

The semantics of CTL formulae is specified in Table 7, where f denotes unquantified first-order formulae,
φ, φi denote state formulae, and ψ,ψj denote path formulae. First-order formulae are interpreted just as in LTL,
as specified in Table 3.

3.6. Over-approximation of LTL safety violation formulae by CTL

Full LTL and CTL have different expressiveness, and neither one is able to express all formulae of the other with
equivalent semantics [CGP99]. In this section, however, it will be shown that any safety violation specified by an
LTL formula f on a path π can also be detected by applying CTLmodel checking to a translated formula�(f) on
any Kripke structureK containing π as a computation. This is, however, an over-approximation, in the sense that
witnesses for �(f) in K will not always correspond to “real” rule violations in the IXL configuration. This will
be illustrated by examples, and it is explained why the choice of sub-models described in Section 4.2 significantly
reduces the number of such false alarms. Moreover, an algorithm for identifying false alarms is presented in
Section 4.4.

Recalling fromTheorem 3.1 that any safety violation can be specified using first-order formulae and operators
∧,∨,X,U, we specify a partial transformation function � : LTL �−→ CTL as follows.

�(f) � f for all first-order expressions f
�(f ∧ g) � �(f) ∧ �(g)
�(f ∨ g) � �(f) ∨ �(g)

�(Xf) � EX(�(f))
�(fUg) � E(�(f)U�(g))

Observe that � maps every LTL formula in its domain to a CTL state formula, since first-order expressions are
state-formulae, and any LTL formula starting with a temporal operator is prefixed under � with the existential
path quantifier E. With this transformation at hand, the following theorem states that the absence of witnesses
for �(f) in K guarantees the absence of a rule violation f on π .

From now on, we focus on finite, acyclic computations and use the interpretation of LTL formulae on finite,
acyclic paths as specified in Tables 5 and 6. While some of the theorems to be presented below do hold in a more
general setting, we only need the version for finite, acyclic paths. Moreover, not having to distinguish between
finite and infinite paths facilitates the proof structures of most of the theorems we need in the sequel.

938 J. Peleska et al.

Theorem 3.3 Let π be any finite, acyclic path and f an LTL formula specifying a safety violation on π . Let K be
a Kripke structure over state space S containing π as a computation. Then

π |�LTL f implies K , π (0) |�CTL �(f).

Proof. The proof uses structural induction over the syntax of LTL formulae representing safety violations. These
are expressed by first-order formulae and operators∧,∨,X,U according to Theorem 3.1. Throughout the proof,
let k �| π | −1 be the last valid index of π � π (0) . . . π(| π | −1) and π i � π (i).π (i + 1).π (i + 2) . . . π (k) be an
arbitrary path segment of π with 0 ≤ i ≤ k .

Base case. Suppose that π i |�LTL g for an arbitrary first-order expression g . According to the semantic rules of
LTL specified in Table 5 for first-order expressions, this is equivalent to π (i) |� g , with “|�” specified in Table 3.
Since π is a computation ofK by assumption, π i is a path segment ofK . Since the evaluation rules for first-order
expressions are the same in LTL and CTL,K , π (i) |�CTL g follows. This argument was independent on the value
of 0 ≤ i ≤ k . Therefore, we can conclude from π � π0 that π |�LTL f impliesK , π (0) |�CTL f for any first-order
expression f , which concludes the base case.

Induction hypothesis. Suppose that π i |�LTL f and π i |�LTL g implyK , π (i) |�CTL �(f) andK , π (i) |�CTL �(g),
respectively, for given LTL formulae f , g expressing safety violations and any path segment π i with 0 ≤ i ≤ k .

Induction step.Using the induction hypothesis, it has to be shown thatπ i |�LTL f ∧g ,π i |�LTL f ∨g ,π i |�LTL Xf ,
and π i |�LTL fUg imply that K , π (i) |�CTL �(f) ∧ �(g), K , π (i) |�CTL �(f) ∨ �(g), K , π (i) |�CTL EX�(f),
and K , π (i) |�CTL E(�(f)U�(g)), respectively.4

Case π i |�LTL f ∧g . This case is equivalent to π i |�LTL f and π i |�LTL g according to the LTL semantics specified
in Table 5. According to the induction hypothesis, this implies K , π (i) |�CTL �(f) and K , π (i) |�CTL �(g).
According to the CTL semantics specified in Table 7, this is in turn equivalent to K , π (i) |�CTL �(f) ∧ �(g).

Case π i |�LTL f ∨ g . This case is shown in analogy to the previous case.

Case π i |�LTL Xf . This case is equivalent to i < k ∧ π i+1 |�LTL f according to the LTL semantics specified in
Table 6. According to the induction hypothesis, this impliesK , π (i + 1) |�CTL �(f). From the definition of � we
know that �(f) is a state formula. Therefore, EX�(f) is again a CTL state formula. From the CTL semantics in
Table 7 and from the fact that K , π (i + 1) |�CTL �(f) has been established, we can derive K , π i |�CTL X�(f),
and, therefore, K , π (i) |� EX�(f).

Case π i |�LTL fUg . This case is equivalent to

∃ 0 ≤ j ≤ k − i .
(
π i+j |�LTL g ∧ ∀ 0 ≤ 	 < j . π i+	 |�LTL f

)

according to the LTL semantics specified in Table 6 and (1). This implies

∃ 0 ≤ j ≤ k − i .
(
K , π (i + j) |�CTL �(g) ∧ ∀ 0 ≤ 	 < j . K , π (i +) |�CTL �(f)

)
(∗)

according to the induction hypothesis. Since �(f),�(g) are state formulae, �(f)U�(g) is a path formula, and
the CTL semantics specified in Table 7 shows that (*) implies K , π i |�CTL �(f)U�(g). As a consequence,
K , π (i) |�CTL E(�(f)U�(g)) holds as well. This completes the induction step and the proof of Theorem 3.3. �

3.7. CTL model checking

Basic concept of classical CTL model checking.

The CTLmodel checking algorithm used for IXL data validation is based on the “classical” algorithm described
in [CGP99, Chapter 4]. It is specialised, however, on the CTL syntax required for uncovering safety violations.
FromTheorem3.1 andTheorem3.3we know that for this purpose, only unquantified first-order formulae and the
CTL operators ∧,∨,EX,EU need to be supported. The algorithm’s main concepts are summarised as follows.

4 Recall that we do not have to consider negation, since this only occurs inside first-order formulae.

Efficient data validation for geographical interlocking systems 939

• The CTL specification formula is decomposed into its (binary) syntax tree.

• Starting at the leaves of the syntax tree (the leaves represent unquantified first-order formulae), the algorithm
processes a sequence of sub-formulae φi (these are always state formulae) in bottom-up manner. This is
implemented by means of a recursive in-order traversal of the syntax tree.

• The goal of each processing step is to annotate all states s ∈ S satisfying s |�CTL φi with the new sub-formula
φi . To this end, an additional labelling function label : S −→ P(CTL) is used, mapping each state to the set
of sub-formulae it fulfils.

• The algorithm stops when the last formula φi having been processed coincides with the specification φ.

• The result of the algorithm is the set Sφ � {s ∈ S | φ ∈ label(s)}.
• The Kripke model (S ,S0,R,L,AP) satisfies φ if its initial states are a subset of Sφ . This is of less interest
for us, since our formulae φ will always represent safety violations, so it needs to be ensured that none of the
initial states fulfil φ. Therefore, we check whether Sφ contains at least one initial state s0 satisfying φ, i.e. we
investigate whether

∃ s0 ∈ S0. K , s0 |�CTL φ which is equivalent to S0 ∩ Sφ �� ∅

Overview over the algorithm.

In Fig. 3, the entry function of the recursive algorithm is shown. checkCTL returns Sφ � {s ∈ S | φ ∈ label(s)},
which is the set of all states satisfying the given formulaφ. It remains to checkwhether at least one initial state of the
Kripke structure K is contained in Sφ . Function checkCTL initialises an auxiliary function label : S −→ 2CTL

by mapping each state to a set containing only the atomic proposition true, which is fulfilled by every state.
Auxiliary function label is passed as an in-out-parameter to every procedure called from checkCTL and its sub-
procedures. In each sub-procedure, the image of label is extended by adding new entries to the sets label(s) of
formulae fulfilled by certain states s .

In Fig. 4, the main function calcLabel of the algorithm is shown. It traverses the syntax tree representation
of the formula φ to be checked and calls recursively itself or special sub-procedures for processing sub-formulae.

For evaluating unquantified first-order expressions, procedure calcLabelFO is used (Fig. 5). For each state
s ∈ S , the procedure evaluates the expression according to the semantic rules stated in Tables 1, 2, 3 and adds
the formula to label(s), if s |� φ holds.

For evaluating conjunctions φ � φ0 ∧φ1, each operand is evaluated separately by recursive calls to calcLabel,
after which φi ∈ label(s) holds for every state s fulfilling φi . Then sub-procedure calcLabelAND (Fig. 6) is
called and adds φ to label(s) for all states s where label(s) contains both φ0 and φ1. Disjunctions are evaluated
analogously, using sub-procedure calcLabelOR from Fig. 7.

For formulae φ � EXφ0, a recursive call to calcLabel first labels all states satisfying the operand formula φ0.
(Note that according to the syntax rules of CTL, φ0 must be a state formula.) Then sub-procedure calcLabelEX
(Fig. 8) checks all states s fulfilling φ0 and inserts EXφ0 into label(s ′) for all predecessor states s ′ of s .

Finally, formulae φ � E(φ0Uφ1) are processed by first labelling states satisfying the operand (state) formulae,
in analogy to conjunction and disjunction. Next, sub-procedure calcLabelEU (Fig. 9) identifies all states s ∈ T
satisfying φ1: these also fulfil E(φ0Uφ1) and are labelled accordingly. Then predecessors s ′ of elements s ∈ T
are investigated: if they fulfil φ0, they also fulfil E(φ0Uφ1), since their successor s does. New states s ′ fulfilling
E(φ0Uφ1) are added to T , so that their predecessors will be examined as well. Processed states are removed from
T , so that the procedure terminates when T is empty.

Complexity considerations.

Studying thealgorithmsbelow, it is easy to see that the running time for checkingK |�CTL φ isO(| φ |·(| S |+| R |),
where | φ | is the number of sub-formulae in CTL formula φ, | S | is the size of the state space, and | R | is the size
of the transition relation. This is a well-known result which is elaborated, for example, in [CGP99, Theorem 1].
As a consequence, the running time is affected by the model size in a linear way only, while model size may affect
the running time of bounded model checking in an exponential way. The running time is also lower than using
LTL model checking algorithms directly, since the latter are NP-hard [CGP99, Section 4.2].

940 J. Peleska et al.

CTL algorithms over-approximate existence proof for LTL safety violations.

The following theorem states that the CTL model checking algorithms presented here are fit to uncover safety
violations f specified in LTL, because the CTL solution space for the transformed formula �(f) is an over-
approximation of the LTL solution space of f . As stated above, we focus on finite, acyclic paths satisfying safety
violations, though the next theorem also holds in a more general context.

Theorem 3.4 Let π ∈ S ∗ be a finite, acyclic path and f an LTL formula specifying a safety violation on π . Let K
be a Kripke structure over state space S containing π as a computation. Then π |�LTL f implies that function
checkCTL finds a witness for �(f), in the sense that π (0) ∈ checkCTL(K ,�(f)).

Proof. The proof is performed by structural induction over the formula syntax. For the induction to be ap-
plicable, we show in fact a stronger statement than that of the theorem. It is shown that after termination of
calcLabel(K ,�(f), label),

∀ i ∈ {0, . . . , | π | −1}. π i |�LTL g ⇒ �(g) ∈ label(π (i)) (2)

holds for arbitrary sub-formulae g of f , including f itself. The statement of the theorem follows from (2) for the
special case i � 0 and g � f , because �(f) ∈ label(π (0)) implies that π (0) ∈ checkCTL(K ,�(f)), as can be seen
from the specification of checkCTL in Fig. 3.

Base case. Let g be a first-order sub-formula of f and suppose that π i |�LTL g . Then LTL semantics (Table 5)
implies that π (i) |� g according to the semantics of first-order formulae from Tables 1, 2, 3. Since g is a sub-
formula of f and a first-order expression, it is located in one of the�(f)-formula tree’s leaves in an untransformed
representation, since �(g) � g . When calcLabel is called with �(g) � g as formula parameter, the procedure
branches into procedure calcLabelFO, see Fig. 5. There, all states s fulfilling s |� g will be labelled with g ; in
particular, �(g) � g will be added to label(π (i)), since π is a computation of K , so all π (i) are states of K . This
shows the validity of (2) for the base case.

Induction hypothesis. Assume that Statement (2) holds for LTL sub-formulae φ0, φ1 of f .

Induction step.We need to show that under the assumption of the induction hypothesis, Statement (2) also holds
for LTL sub-formula g of f , with g being of the form φ0 ∧ φ1, φ0 ∨ φ1, Xφ0, and (φ0Uφ1). Theorem 3.1 implies
that we do not have to show anything for negated formulae, since, by assumption of the theorem, f specifies a
negated safety formula, so negation only occurs inside first-order expressions.

Case g � φ0 ∧ φ1. Since π i |�LTL g by assumption, the LTL semantics implies π i |�LTL φ0 and π i |�LTL φ1
(Table 5). The CTL checking algorithm is applied to �(g) � �(φ0)∧ �(φ1). In case of a conjunction, procedure
calcLabel of the checking algorithm first labels all states satisfying�(φ0) and�(φ1), respectively. By the induction
hypothesis, this leads to state π (i) being labelled with both �(φ0) and �(φ1). Next, procedure calcLabel calls
procedure calcLabelAND (Fig. 6). There, state π (i) is labelled with �(f) � �(φ0) ∧ �(φ1), because this state is
already labelled with �(φ0) and �(φ1), as was to be shown.

Case g � φ0 ∨ φ1 is verified in analogy to the previous case.

Case g � Xφ0. Since π i |�LTL g by assumption, the LTL semantics on finite paths (see Table 6) implies i <|
π | −1 and π i+1 |�LTL φ0. The CTL checking algorithm is applied to �(g) � EX�(φ0). For state formulae
EX�(φ0), procedure calcLabel first labels all states satisfying �(φ0). The induction hypothesis implies that
�(φ0) ∈ label(π (i + 1)). Moreover, since π is a computation of K , the pair (π (i), π (i + 1)) is contained in the
transition relation R of K . Therefore, the if-condition in calcLabelEX (see Fig. 8) evaluates to true for states
s � π (i) and s ′ � π (i + 1), and formula �(g) � EX�(φ0) is added to label(π (i)), as was to be shown.

Case g � φ0Uφ1. Since π i |�LTL g by assumption, the LTL semantics on finite paths (see Table 6) implies the
existence of some 0 ≤ j , such that i + j <| π |, π i+j |�LTL φ1, and π i+	 |�LTL φ0 for 0 ≤ 	 < j . Since �(g) �
E(�(φ0)U�(φ1)), function calcLabel first labels all states satisfying�(φ0), and then all states satisfying�(φ1). The
induction hypothesis yields�(φ1) ∈ label(π (i+ j)) and�(φ0) ∈ label(π (i+)) for all 0 ≤ 	 < j as a result of these
two steps. Next, calcLabel calls calcLabelEU (K ,�(φ0),�(φ1), label) (see Fig. 9). Since �(φ1) ∈ label(π (i + j))
when this procedure is called, state π (i + j) is added to queue T during its initialisation in calcLabelEU. In the
following loop, formula E(�(φ0)U�(φ1)) is added to label(π (i + j)). The pairs (π (i), π (i + 1)), (π (i + 1), π (i +
2)), . . . , (π (i + j − 1), π (i + j)) are all contained in the transition relation ofK because π is a computation ofK .

Efficient data validation for geographical interlocking systems 941

Fig. 3.Main algorithm for CTL property checking against Kripke structures.

Fig. 4. Label calculation—control algorithm driven by formula syntax.

Therefore, the states involved will all be analysed in condition if E(φ0Uφ1) �∈ label(u)∧φ0 ∈ label(u) in the inner
loop of procedure calcLabelEU. The order of these analyses is u � π (i + j − 1), π (i + j − 2) . . . , π (i), because
π (i + j −m) is always a predecessor of π (i + j −m + 1) in K ’s transition relation. Moreover, �(φ0) is contained
in each set label(π (i +)) for each 0 ≤ 	 < j . Consequently, all these states π (i +) are labelled with E(φ0Uφ1)
as well. In particular, for 	 � 0, this yields E(φ0Uφ1) ∈ label(π (i)), as was to be shown. �

Fig. 5. Algorithm for labelling states with first-order formulae.

942 J. Peleska et al.

Fig. 6. Algorithm for labelling states with (φ0 ∧ φ1) formulae.

Fig. 7. Algorithm for labelling states with (φ0 ∨ φ1) formulae.

4. Model checking of IXL configurations

This section explains how an IXL software configuration can be represented as a Kripke structure having a state
for each element and a transition from one element to another element, whenever the first element has a channel
with the second element as its destination.

Fig. 8. Algorithm for labelling states with EXφ formulae.

Efficient data validation for geographical interlocking systems 943

Fig. 9. Algorithm for labelling states with E(φ0Uφ1) formulae.

4.1. IXL configurations as Kripke structures

Theconfigurations for geographical IXLsdescribed inSection2give rise toKripke structuresK � (S ,S0,R,L,AP)
with variable symbols from some set V as follows (symbol d denotes int-values).

V � {id , t} ∪ C ∪ A
C � {c | c is a primary or secondary channel symbol}
A � {a | a is an attribute symbol}
S � {s : V −→ int | There exists a configuration instance with

id, type, channel, and attribute valuation s}
S0 � S
R � {(s, s ′) | ∃ c ∈ C : s(c) � s ′(id)}

AP � {id � d | ∃ s ∈ S : s(id) � d} ∪ {t � d | ∃ s ∈ S : s(t) � d} ∪
{c � d | c ∈ C ∧ ∃ s ∈ S : s(c) � d} ∪ {a � d | a ∈ A ∧ ∃ s ∈ S : s(a) � d}

L : S −→ 2AP ; s �→ {v � d | v ∈ V ∧ s(v) � d}
Each K-state in S is represented by a valuation function s mapping id, type, channel, and attribute symbols to
corresponding integer values, such that there is a configuration element with exactly these values. The atomic
propositions consist of all equalities v � d , where v is a symbol of V and d an integer value occurring for v
in at least one configuration element. Every K -state is an initial state, because configuration rules are checked
from any element as starting point. Two elements s, s ′ are linked by the transition relation whenever s has a
channel c connected to s ′; this is expressed by s(c) carrying the id of s ′. The labelling function maps each state s
exactly to the propositions v � s(v), v ∈ V that are valid in this state. Using the state valuation rules specified
in Section 3.3, this can be equivalently expressed by L(s) � {v � d | s |� v � d}.

The transition graph of K is a directed graph (S ,R) with K -states S as its set of nodes and K ’s transition
relation R as its set of edges. Each edge (s, s ′) is labelled with channel symbol c ∈ C if and only if s(c) � s ′(id),
that is, if and only if a c-channel emanting from s ends at s ′.

With the Kripke structure at hand, IXL configuration rules can be expressed by LTL Safety formulae, so rule
violations may be expressed in LTL using first-order formulae and operators ∧,∨,X,U, as shown in Section 3.
Specifying rule violations onKripke structureK representing a complete IXL configuration is quite complicated,
however, becausemost rules refer to routes traversed in a certain driving direction, whereasK ’s transition relation
connects any pair of configuration elements linked by any channel. This results in computations that do not
correspond to any “real” route through the network.

944 J. Peleska et al.

Example 4.1 The Kripke structure corresponding to the configuration shown in Fig. 1 has a finite path

s10.s11.s13.s23.s21.s20,

because all elements in this sequence are linked by some channel a, b, c. This path, however, cannot be realised
as a train route, due to the topology of points s13 and s23. �

In [HPP13], this problem has been overcome by using existentially quantified LTL with rigid variables as intro-
duced in [MP92]. Apart from the fact that quantified LTL formulae are harder to create and understand, this
would not allow for the over-approximation by means of CTL as described in Section 3.6. Therefore, we will now
introduce sub-models of full configuration models where the problem of infeasible paths no longer occurs.

4.2. Sub-models

The border elements of an IXL configuration can be identified by the fact that only one of the main channels
a, b is connected to another element, while the other channel is undefined. Element 20 in Fig. 1, for example,
is a border element, because it has channel a connected to element 21, while channel b remains unconnected.
Points or diamond crossings are never used as border elements, so only channels a, b need to be considered when
identifying border elements in the Kripke structure K representing the complete configuration. Each border
element introduces a well-defined driving direction specified by the channel which is defined and, therefore,
“points into” the network specified by the configuration.

A sub-model is now created for every border element sbdr as a Kripke structure K (sbdr) which is a sub-
structure of Kripke structure K representing the whole IXL configuration, as described above in Section 4.1. A
sub-model is created according to the following rules.

1. The driving direction associated with K (sbdr) corresponds to the direction specified by the defined channel a
or b of border element sbdr .

2. The transition graph of K (sbdr) is the largest rooted, acyclic, directed sub-graph G of K ’s transition graph,
such that the following properties hold.

(a) G has root node sbdr .
(b) Each node which is reachable via edges in driving direction is part of G .
(c) For nodes s representing points entered by their B-stem or C-stem, the only continuation is via the element

s ′ connected to the points’ A-stem. This means that edge (s, s ′) is labelled by an a channel.
(d) Fornodes s representingpoints enteredby theirA-stem, the continuations are via the elements s ′ connected

to the points’ B-stem or C-stem. This means that edge (s, s ′) is labelled by a b or c channel.
(e) For diamond crossings entered via A,B,C,D-stem, the only possible continuations are via elements con-

nected to the D,C,B,A-stems, respectively.
(f) The graph expansion stops at node s1 and edge (s1, s2), if s2 is already contained in the set of nodes. In

this case, (s1, s2) is not added to the edges of the sub-model.
(g) The graph expansion stops when a node s represents a track element which is reached by its defined

channel, so that no outgoing channel is available. In other words, the node s which has been reached is
another border element.

3. The states of K (sbdr) are the nodes of G .
4. Every state of K (sbdr) is an initial state.
5. Every element of the sub-model is equipped with additional Boolean (i.e. {0, 1}-valued) attributes dirA, dirB ,

dirC , dirD with value 1 if its respective channel a, b, c, or d points in driving direction; otherwise the attribute
carries value 0. Note that for points and diamond crossings, several dirX -attributes can have value 1.

6. Every element is associated with Boolean attributes upA, upB , upC , upD (“upstream A, B, C, D”). For a
given element s in a sub-model, upA � 1 if and only if there exists a predecessor element s ′ which is linked
by its a-channel to s . For B, C, D, the attribute values are analogously defined.

7. Further auxiliary attributes are added to each sub-model state as described in Section 4.3 below.

Efficient data validation for geographical interlocking systems 945

Fig. 10. Sub-model created from border element s33 in Fig. 1. Only attributes with positive value are shown.

The sub-model creation procedure described above is performed by means of a depth-first search on the
transition graph (S ,R) of the full model K . Therefore, the running time for the creation of one sub-model is
O(| S | + | R |) [CLRS09, p. 606]. The number of sub-models to be created equals the number of border elements
contained in the IXL configuration.

Example 4.2 The complete IXL configuration depicted inFig. 1 has border elements s10, s20, s33, s25, s14. The sub-
model resulting from border element s33 is shown in Fig. 10, together with the new auxiliary attributes dirA, . . .
(the meaning of attribute pCnt is explained in Section 4.3 below). Element s33 induces the driving direction along
its channel a; since it is a border element, its channel b is not linked to another element. �

4.3. Specifying rule violations on sub-models

As indicatedbefore, configuration rules for IXLconfigurations canalwaysbe representedbyLTLsafety conditions
to be fulfilled by all paths of all sub-models: every violation of a configuration rule can be decided on a finite
path of track element configurations, where consecutive elements on the path are linked by primary channels.
Consequently, when checking for rule violations φ, each of these formulae φ is a negated LTL safety formula, and
therefore described by means of first-order expressions and operators ∨,∧,X,U, as explained in the previous
section.

946 J. Peleska et al.

The description of rule violations in LTL becomes rather straightforward when specified for sub-models; this
is illustrated in the following examples.

Example 4.3 The rule violation specified in Example 2.1, when applied to a sub-model as the one depicted in
Fig. 10, can be expressed in unquantified first-order LTL as

φ1 ≡ t � sig ∧ dirA � 1 ∧ X
(
(t �� sig ∨ dirA � 0)U(t � t1 ∨ t � t3)

)

This LTL formula is translated via � defined in Section 3.6 into CTL formula

�(φ1) ≡ t � sig ∧ dirA � 1 ∧ EX
(
E

(
(t �� sig ∨ dirA � 0)U(t � t1 ∨ t � t3)

))

The only witness for �(φ1) in the sub-model shown on Fig. 10 is the path s32.s24.s23.s21.s20, and this is also a
witness for φ1, so in this example, the CTL over-approximation does not produce any false alarms in this case.

�

Example 4.4 The rule violation specified in Example 2.2, when applied to a sub-model, can be expressed in
unquantified first-order LTL as

φ2 ≡ t � sig ∧ dirA � 1 ∧ X
(
t �� t3U(t � sig ∧ dirA � 1)

)

This LTL formula is translated via � defined in Section 3.6 into CTL formula

�(φ2) ≡ t � sig ∧ dirA � 1 ∧ EX
(
E

(
t �� t3U(t � sig ∧ dirA � 1)

))

It is easy to see that for the sub-model shown in Fig. 10, the only witness is given by path s32.s24.s23.s13.s11, so,
again, no false alarms exist for this rule violation. �

The rule violations 4.1 and 4.2 associated with flank protection as described in Example 2.4 can be formalised
as follows. In the formulae below, we use abbreviation

boundary ≡ (dirA + dirB + dirC + dirD � 0).

boundary evaluates to true if and only if the element is an exit border element, since they are the only ones
without outgoing channels in driving direction.

Example 4.5 The rule violations 4.1 and 4.2 associated with flank protection as described in Example 2.4 can be
formalised as follows.

φ4.1 ≡ t � pt ∧ dirC � 1 ∧ X
(
upC � 1 ∧

((t �� pt ∨ dirA � 0) ∧ (t �� sig ∨ dirA � 1))
U(boundary ∨ (t � pt ∧ dirA � 0))

)

Condition XupC � 1 means that we are only interested in paths where the successor element of the point p1 is
connected to p1’s C-stem. The left operand of the U-operator specifies that no protecting points or signals are
found. The right hand side of theU-operator specifies that we stop looking for suitable flank protection as soon
as we have found a point offering no protection (this is equivalent to its a-channel pointing back towards p1) or
if the end of the route has been reached.

This LTL formula is translated via � defined in Section 3.6 into CTL formula

�(φ4.1) ≡ t � pt ∧ dirC � 1 ∧ EX
(
upC � 1 ∧

E((t �� pt ∨ dirA � 0) ∧ (t �� sig ∨ dirA � 1))
U(boundary ∨ (t � pt ∧ dirA � 0))

)

The formalisation of rule violation 4.2 (erroneous protection for driving directions AC/CA) is specified in
LTL as follows. Example 2.4 can be formalised as follows.

φ4.2 ≡ t � pt ∧ dirB � 1 ∧ X
(
upB � 1 ∧

((t �� pt ∨ dirA � 0) ∧ (t �� sig ∨ dirA � 1))
U(boundary ∨ (t � pt ∧ dirA � 0))

)

Efficient data validation for geographical interlocking systems 947

and in translated form as

�(φ4.2) ≡ t � pt ∧ dirB � 1 ∧ EX
(
upB � 1 ∧

E((t �� pt ∨ dirA � 0) ∧ (t �� sig ∨ dirA � 1))
U(boundary ∨ (t � pt ∧ dirA � 0))

)

�

Wehave seen above that auxiliary attributes can be introduced during sub-model creation, in order to facilitate
the construction of rule violation formulae. Moreover, these attributes may be used to speed up the checking
process.

Consider again the Example 2.3 in Section 2, where the number of elements of a certain type located between
two reference elements needs to be counted. In principle, violation formulae associated with rules of that kind
could be specified using Counting LTL, an extension of LTL allowing to check whether a path fulfils constraints
referring to thenumberof states fulfilling certainproperties [LMP10].CheckingCountingLTL formulae, however,
is EXPSPACE-complete, and therefore, we cannot expect to find model checking algorithms for Counting LTL
that are as efficient as the CTL-algorithms presented above.

Instead, a new auxiliary attribute pCnt is introduced during sub-model creation. In every state of the sub-
model, this attribute contains the number of points encountered in driving direction so far. This is illustrated in
Fig. 10.

Example 4.6 With auxiliary attribute pCnt at hand, the violation of Rule 3 from Example 2.3 is specified in LTL
as

φ3 ≡ t � sig ∧ dirA � 1 ∧ X
(
(t �� sig ∨ dirA � 0) U pCnt > k

)

The operand of X expresses that until pCnt > k , no signal pointing in the same direction as the starting signal
is met, i.e. if a signal is met, it must point in the opposite direction. Translated to CTL, this results in

�(φ3) ≡ t � sig ∧ dirA � 1 ∧ EX
(
E

(
(t �� sig ∨ dirA � 0) U pCnt > k

))

Assuming that k ≥ 3, there are obviously no witnesses for �(φ3) in the sub-model from Fig. 10. For k � 2,
checking �(φ3) results in witness s32.s24.s23.s13, and again, this is also a witness for the LTL formula φ3.

�

In analogy to the example shown here, further auxiliary attributes are added by the DVL Checker during
sub-model creation.

4.4. Detecting false alarms

The following example shows how theCTLover-approximation for checking LTL formulae on non-linearmodels
may lead to false alarms.

Example 4.7 Consider the transition graph of a Kripke structure K (s0) sketched in Fig. 11 with root node s0
and atomic propositions p, q . It is fictitious, but this graph pattern might well occur in an IXL sub-model with
driving direction s0 −→ s1, where node s2 represents a point.

Each node in Fig. 11 is annotated with the propositions fulfilled in the corresponding Kripke-state. For
example, s1 satisfies p but not q , s4 fulfils p and q , and s3 satisfies neither p nor q .

Supposewewish to prove the absence of awitness for LTL formula (Xp)U q . Applying the checking approach
described above, the formula is translated to CTL as �((Xp)U q) � E((EXp)U q).

The model fulfils K (s0) |�CTL E((EXp)U q), because the path π � s0.s1.s2.s3.s4 . . . fulfils (EXp)U q . This
is true because the states s0, s1, s2, s3 each fulfil EXp, and in s4, proposition q is fulfilled. Note that in state s2,
formulaEXp holds because the outgoing path s2.s5.s6 . . . fulfilsXp. Pathπ , however, is not a witness for the LTL
formula (Xp) U q , since s2.s3.s4 · · · �|�LTL Xp. Also for path π ′ � s0.s1.s2.s5.s6 . . . , the LTL formula (Xp) U q
is not fulfilled, because s6 neither fulfils p nor q .

Summarising, the CTL-based model checking approach yields a false alarm when trying to prove the absence
of a witness for LTL formula (Xp)U q . �

948 J. Peleska et al.

Fig. 11.Model fulfilling E((EXp) U q) but not (Xp)U q .

Fig. 12. Algorithm for detecting false alarms.

To elaborate an algorithm for detecting false alarms, we recall from Section 4.2 that the sub-models to be
checked in the context of data validation are rooted directed acyclic graphs (DAGs), with the entry point into the
railway network as root. Each DAG corresponds to a subset of routes through the railway network, each route
starting at the given entry point, but possibly ending in different exit points. The check whether a witness path π
of a CTL formula is also a witness for the corresponding LTL formula ϕ can be performed using the finite LTL
encodings presented above in Section 3.4.1, Tables 5 and 6.

Applying these rules, the algorithm shown in Fig. 12 can be used to check whether a path π is really a witness
for a given LTL formula ϕ. The algorithm takes a finite path π and an LTL formula ϕ in negation normal form
with temporal operatorsX,U only as input. It returns true if and only if π is a model of ϕ in the interpretation
| [ϕ] |0 on π .5

Theorem 4.1 Algorithm checkLTL(π, ϕ) from Fig. 12 always terminates and returns true if and only if path π
is an LTL witness for formula ϕ.

Proof. The proof is performed by structural induction over the formula syntax. To perform the inductive step,
it is necessary to prove a slightly more general statement than that of the theorem. Let k �| π | −1 be the last
defined index of π . Then we prove that

∀ i ∈ {0, . . . , k}. (π i |�LTL g) if and only if checkLTL(π i , g) (3)

holds for every sub-fromula g of ϕ, including ϕ itself. If (3) has been proven, the theorem follows by applying (3)
with i � 0 and g � ϕ.

5 We use Pascal-style notation: The return value is specified by means of an assignment to the function name.

Efficient data validation for geographical interlocking systems 949

Base case. Let g be an unquantified first-order expression and consider path segment π i with i ∈ {0, . . . , k}. For
the evaluation result checkLTL(π i , g), there are two cases to distinguish. (a) If g � f is positive, then the checking
result is produced in line 2: The function returns true if and only if the formula evaluates to true in the path
segment’s first state π (i). (b) If ϕ � ¬f is negated, so that f is a positive formula, the checking result is produced
in line 4: The function returns true if and only if the formula f evaluates to false in π (i). Both cases conform to
the LTL evaluation semantics specified for finite paths π in Table 5. The algorithm terminates immediately after
having executed lines 2 and 4, respectively. This proves the base case for (3).

Induction hypothesis. Suppose that for sub-formulae ϕ0 and ϕ1 of ϕ, the calls to checkLTL(π i , ϕ0) and to
checkLTL(π i , ϕ1) terminate for each i ∈ {0, . . . , k} and fulfil (3).

Induction step. We have to show that, under assumption of the induction hypothesis, termination is guaranteed
and (3) holds for formulae g � ϕ0 ∧ ϕ1, g � ϕ0 ∨ ϕ1, g � Xϕ0, and g � ϕ0Uϕ1.

Case g � ϕ0 ∧ϕ1. In this case line 6 of the algorithm applies, and checkLTL(π i , ϕ0 ∧ϕ1) returns true if and only
if checkLTL(π i , ϕ0) ∧ checkLTL(π i , ϕ1) holds, which means that both checkLTL(π i , ϕ0) and checkLTL(π i , ϕ1)
evaluate to true. Now the induction hypothesis implies that this is the case if and only if π i |�LTL ϕ0 and
π i |�LTL ϕ1. Applying the semantic rule for the ∧-operator in Table 5, we conclude that this holds if and only
if π i |�LTL ϕ0 ∧ ϕ1. This proves the ∧-case for (3). Termination is ensured, since at most checkLTL(π i , ϕ0) and
checkLTL(π i , ϕ1) are executed, and both calls terminate according to the induction hypothesis.

Case g � ϕ0 ∨ ϕ1 is verified in analogy to the ∧-case.
Case g � Xϕ0. For this case, line 10 of the algorithm applies. For the special case where path π i has length 1,
false is returned which conforms to the evaluation rule in Table 6 for the case i � k . If the path length is greater
than 1, the call checkLTL(π i+1, ϕ0) is performed which, due to the induction hypothesis, returns true if and only
if π i+1 |�LTL ϕ0. Summarising, checkLTL(π i ,Xϕ0) returns true if and only if i < k and π i+1 |�LTL ϕ0. Now the
semantic rule for the X-operator in Table 6 states that this is the case if and only if π i |�LTL Xϕ0. This proves
the X-case for (3). Termination is ensured, since, if checkLTL(π i ,Xϕ0) is called at all in line 10, its termination
is guaranteed by the induction hypothesis.

Case g � ϕ0Uϕ1. For the U-case, line 12 applies. There, it can be seen that the algorithm exactly implements
the recursive rule for the U-operator specified in Table 6. However, we cannot apply the induction hypothesis
to operand checkLTL(π1, ϕ0Uϕ1), since this references ϕ0Uϕ1. Therfore, we perform another induction over
the length of the path segments π i . For length 1 (i.e. i � k), line 12 returns checkLTL(π i , ϕ1). Termination is
ensured by the structural induction hypothesis. Moreover, the latter implies that this call returns true if and only
if π i |�LTL ϕ1, which conforms to the semantic rule for U in the case i � k . Now suppose that termination is
ensured and (3) holds for g � ϕ0Uϕ1 on all path segments πk , . . . , πk−i0 , 0 ≤ i0 < k . We need to show that
then that termination is guaranteed and (3) also holds for path segment πk−i0−1. From line 12 and the fact that
| πk−i0−1 |�| π | −k + i0 + 1 � i0 + 2 > 1 we conclude that the return value of checkLTL(πk−i0−1, ϕ0Uϕ1)
is

(
checkLTL(πk−i0−1, ϕ1) ∨ (checkLTL(πk−i0−1, ϕ0) ∧ checkLTL(πk−i0 , ϕ0Uϕ1))

)
. To the first two operands of

this expression, we can apply the structural induction hypothesis, and to the third operand, the hypothesis of
the induction over the length of the path segment. This implies that checkLTL(πk−i0−1, ϕ0Uϕ1) terminates and
returns true if and only if πk−i0−1 |�LTL ϕ1 ∨ (πk−i0−1 |�LTL ϕ0 ∧ πk−i0 |�LTL ϕ0Uϕ1). This conforms to the
semantic rule for the U-operator as specified in Table 6, proves (3) for the U-case, and completes the structural
induction. �
Example 4.8 Applying the detection algorithm for false alarms from Fig. 12 to the finite path s0.s1.s2.s3.s4 which
is a witness of K (s0) |�CTL �((Xp)Uq) in Example 4.7 results in the recursive call tree shown in Fig. 13. As
expected, the algorithm returns false for the call checkLTL(s0.s1.s2.s3.s4, (Xp)Uq), so this CTL witness for
�((Xp)Uq) is a false alarm. �

950 J. Peleska et al.

Fig. 13. Recursive call tree resulting from application of Algorithm from Fig. 12 to Example 4.7.

4.5. Parallelisation

The concept to use sub-models for verifying DVL-queries allows for parallelisation of checking activities. The
concurrent checker design is shown in Fig. 14. At the user interface, a checking request is submitted to the
DVL-Checker and received there by the request manager. The request consists of a set of IXL configuration
models, and each model in the list is associated with a set of queries (LTL formulae specifying IXL configuration
rule violations) to be checked against the model. Since IXL configurations are usually repeatedly accessed with
different queries during a checking session, the sub-models created from eachmodel are cached, so that sub-model
creation is only required once per model and per session.

If a model in the checking request is referenced for the first time in the current session, or if a model has
been updated, it is read by the sub-model generator from the model database, where all IXL configurations are
stored in XML format. The generator creates aKripke structure as described in Section 4.1 from themodel which
kept in memory until the sub-model creation has been completed. For each border element of the model, a job
consisting of a reference to the Kripke structure and a border element identification is inserted into the job queue.
Worker threads retrieve these jobs from the queue and execute the sub-model generation algorithm explained in
Section 4.2. The resulting sub-models are cached.

Analogously, queries that are not yet contained in the query cache are parsed and transformed into CTL by
worker threads exercising the query parser.

The checking requests for cached sub-models and associated queries are transferred by the request manager
into the job-queue. Each job consists of one sub-model reference and one query. For these jobs, the worker
threads invoke a (sequential) CTLmodel checker running the algorithms described in Section 3.7. Several worker
threads may execute CTL checks concurrently, each with a different pair of sub-model and query. If a CTL check
yields a CTL witness for a potential rule violation, the witness is passed on to the false alarm filter described in
Section 4.4, where it is checkedwhether thewitness is also anLTLwitness representing a “real” IXL configuration
rule violation. The false alarms are discarded by the filter. The valid rule violations are presented by the request
manager to the users.

Efficient data validation for geographical interlocking systems 951

Fig. 14. DVL-Checker—architecture.

Table 8. Running time for query evaluation on sub-models for IXL test configurations provided by Siemens.
IXL Config. # Elements # Sub-Models # Queries t[ms] t‖[ms]

TST02 333 8 18 149 65
TST03 73 2 18 25 14
TST04 176 2 18 182 94
TST05 313 19 18 577 240
TST06 412 11 18 1615 690∑

2548 1103

4.6. Evaluation

Running time for query evaluation

The efficiency of the CTLmodel checking algorithms in combination with the parallelisation allows for checking
queries interactively, because the results can usually be obtained within a few seconds. For a more detailed
evaluation, 5 IXL test configurations were provided by Siemens, see Table 8. The evaluation has been performed
onaLinuxPCwith Intel(R)Core(TM) i7-6700HQCPU(2.60GHz, 4 cores), and32GBmainmemory.Theworker
queues allowed for up to 7 concurrent threads for processing the 18 queries on each sub-model. In Table 8, the
columns 2, 3, and 4 list the number of elements contained in each model, the number of sub-models, and the
number of queries (i.e. CTL formulae �(f), where f is an LTL formula specifying a rule violation). In the fifth
column marked by t[ms], the evaluation for sequential (single core, single-threaded) processing of 18 queries on
each sub-model is listed. In the last column marked by t‖[ms], the running time for concurrent query evaluation
is listed. With the available hardware, the concurrent evaluation more than doubles the speed. All 18 queries6

could be evaluated on all 5 models less than 1.2 seconds. It should be noted that with today’s cloud technologies,
further speed-up could be achieved by running the evaluation on a cloud server with more CPU cores.

No false alarms have been encountered with the DVL queries checked so far on the IXL configurations
provided by Siemens.

6 Note that the full catalogue of IXL configuration rules consists of several hundred rules.

952 J. Peleska et al.

Table 9. Running time for sub-model creation from IXL test configurations.
IXL Config. # Sub-Models t[ms] t‖[ms]

TST02 8 15 5
TST03 2 3 2
TST04 2 7 4
TST05 19 40 13
TST06 11 55 17∑

120 41

Running time for sub-model creation.
The sub-models are created separately and kept in main memory, whenever a newmodel is provided, or when

an existingmodel has been updated. This allows for running queries against sub-models at different points in time
without having to re-generate the sub-models for every query. Table 9 shows the time measurements performed
during the sub-model generation for the IXL test configurations provided by Siemens. In the third column labelled
by t[ms], the running time for sequential sub-model creation is shown. In the fourth column, the running time
for concurrent sub-model creation with 7 worker threads on the same hardware specified above is listed. For the
larger models, the parallelisation approximately triples the speed of the sub-model creation. It can be seen from
Table 9 that sub-model creation is not a critical timing factor for the DVL-Checker: the creation of all sub-models
from all models took less than 0.5 seconds.
Comparison with bounded model checking approach.

The bounded model checking version used before as described in [HPP13] could also produce witnesses for
faulty configurations in acceptable time (less than 10 seconds formodels that are comparable to the ones shown in
Table 8), but was unable to prove the absence of errors, due to running time that was exponential in the length of
the search paths and very high memory consumption. Moreover, the approach investigated in [HPP13] operated
on the complete Kripke model representing the whole network. This required the utilisation of existentially
quantified LTL queries [MP92]: intuitively speaking, the existential quantification is needed when operating on
the complete model to identify neighbouring track elements in driving direction. This increased the running time
for query processing in a significant way.

5. Related work

Data validation for railway interlocking systems is a well-establishedV&V task in railway technology. At the same
time, it is a very active research field, since the complexity of today’s IXL configurations require a high degree
of automation for checking their correctness. There seems to be an agreement among the research communities
that hard-coded data validation programs are inefficient, due to the large number of rules to be checked and
the frequent adaptations and extensions of rules that are necessary to take into account the requirements of
different IXLs. These observations are confirmed by numerous publications on IXL data validation, such as
[BDP12, HPP13, HSL16, FLFO17, KZC19].

It is interesting to point out that some V&V approaches for IXLs do not explicitly distinguish between data
validation and the verification of dynamic IXL behaviour; this is the case, for example, in [CK16, KZC19].
We agree, however, with [FLFO17] (and have applied this principle, for example, in [HHP17, HØ16]), where it
is emphasised that data validation should be a separate activity in the IXL V&V process. This assessment is
motivated by the analogy to software verification, where the correctness of static semantics—this corresponds to
the IXL configuration data—is verified before the correctness of dynamic program behaviour—this corresponds
to the dynamic IXL behaviour—is analysed.

As observed in [BtBF+18], the B-Method and its variant Event-B are the most widely used formal methods
in the railway domain. This holds for both industrial and academic applications. This success story started with

Efficient data validation for geographical interlocking systems 953

the application of B for the development of the driverless Paris Metro 14, where B was used for both software
verification and data validation [BBFM99]. The core B formalism is based on quantified first-order logic and
provides a theorem prover for automated and interactive verification of correctness properties. As reported in
[LBL12], the original theorem prover was less well-suited for data validation, where constraints on—potentially
very complex—data types need to be verified. Therefore, data validation approaches based on the B tool family
usually rely on model checking; we name [LBL12, BDP12, HSL16, FLFO17, KZC19] as noteworthy examples
for this fact. For model checking purposes in this context, the ProB tool seems to be the most widely used
[HSL16].

The methodology and tool support described in the present paper differs significantly from the B approaches
to data validation: while the latter require specifications in first-order logic, our approach is based on temporal
logic.Moreover, ourmethodology is strictly specialised on geographic interlocking systems, while—in principle—
the B-methods can be applied to any type of IXL technology. Our more restricted approach, however, comes with
the advantage that rule specifications are simpler to construct than in B, since the temporal logic formulae do not
require quantification over variables. Moreover, the sub-model construction technique used in our methodology
ensures that the proper verification by CTL model checking is always fully automatic and fast. Since the ProB
approach described in [HSL16] specialises on Thales/Alsthom railway control systems, while our approach is
focused on geographical Siemens interlocking systems, the IXL configuration data to be validated, as well as the
validation rules, differ significantly. Therefore, we cannot state whether one approach is superior to the other; it
can only be said that both approaches work with sufficient effectiveness.

The utilisation of sub-models has also gained attention in the field of verification of route-based interlocking
systems [JMN+14]. There, sub-models called cones are used to identify sub-networks from where the safety of a
given set of track elements couldpotentially be violatedat runtime.This construction, however, differs significantly
fromour sub-model construction:we always start at an entry point andunfold an acyclic graph in drivingdirection
from the entry point to all reachable exit points, whereas the cones in [JMN+14] are constructed “backwards”
from a set of track elements that are neither entry, nor exit points. The difference in the construction is motivated
by the different verification objectives: our presentation aims at data validation and disregards dynamic safety
aspects, because the latter can only be verified after the consistency of the IXL configuration data has been shown.
In [JMN+14], however, behavioural safety of route-based interlocking systems is investigated, which is quite a
different objective.

An general overview of trends in formal methods applications to railway signalling can be found in [Bjø03,
FFM12, BtBF+18]. Many other research groups have been using model-checking for the behavioural verification
of interlocking systems. In [FMGF11] a systematic study of applicability bounds of the symbolic model-checker
NuSMV and the explicit model checker SPIN showed that these popular model checkers could only verify small
railwayyards. Several domain-specific techniques topush theapplicabilitybounds formodel checking interlocking
systems have been suggested. Here we will just mention some of the most recent ones. In [Win12] Winter pushes
the applicability bounds of symbolic model checking with NuSMV by optimising the ordering strategies for
variables and transitions using domain knowledge about the track layout. Fantechi suggests in [Fan12] to exploit
a distributedmodelling approach to geographical interlocking systems and break the verification task into smaller
tasks that can be distributed to multiple processors such that they can be verified in parallel. In [MNR+13], it is
suggested to shrink the state space using abstraction techniques reducing the number of track sections and the
number of trains. In [HHP17], we have shown that boundedmodel checking in combination with k-induction can
cope with the size of real-world route-based interlocking systems for verifying their behaviour. As an alternative
to the B-family, the RAISE tool offers the possibility to perform combined verification by theorem proving and
model checking [GH18].

6. Conclusion

We have presented an efficient model checking approach and associated tool support for data validation of geo-
graphical interlocking systems. The tool is fast enough to uncover violations of configuration rules or prove the
absence of rule violations interactively, while working on a configuration: all checking results for IXL configura-
tions provided by Siemens Mobility were calculated within a few seconds.

The checking speed has been achieved by translatingLTL formulae specifying rule violations toCTL formulae
and using the “classical” global CTL model checking algorithms. It has been shown that for the class of LTL
formulae specifying rule violations, CTL model checking is an over-approximation for the (slower) alternative
to check for witnesses of LTL formulae directly. Therefore, the absence of CTL witnesses proves the absence of

954 J. Peleska et al.

path segments fulfilling the original rule violation formula specified in LTL. Since CTL is an over-approximation,
solutions to the CTL formulae may turn out to be false alarms. Therefore, an algorithm has been presented to
check CTLwitnesses, whether they are also witnesses for the original LTL formulae specifying the rule violations.
If this is not the case, the CTL witness is a false alarm and may be discarded.

Further speed-up has been achieved by running checks concurrently on configuration sub-models augmented
by auxiliary attributes, instead of performing a single check on the full model.

The concepts and algorithms presented here have been implemented in the DVL-Checker tool which is used
by Siemens for the validation of IXL configurations in new interlocking systems provided by Siemens for Belgian
railways.

Funding Open Access funding enabled and organized by Projekt DEAL.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and
indicate if changes were made. The images or other third party material in this article are included in the article’s
Creative Commons licence, unless indicated otherwise in a credit line to thematerial. If material is not included in
the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds
the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

References

[BBFM99] Behm P, Benoit P, Faivre A, Meynadier J-M (1999) Météor: A successful application of B in a large project. In: Wing JM,
Woodcock J, Davies J (eds) FM’99—Formal methods, world congress on formal methods in the development of computing
systems. Toulouse, France, September 20–24, 1999, Proceedings, Volume I, volume 1708 of lecture notes in computer science.
Springer, pp 369–387

[BDP12] Badeau F, Doche-Petit M (2012) Formal data validation with event-B. arXiv:1210.7039 [cs], October
[BHJ+06] Biere A, HeljankoK, Junttila T, Latvala T, Schuppan V (2006) Linear encodings of bounded LTLmodel checking. LogMethods

Comput Sci 2(5), November. arXiv:cs/0611029
[Bjø03] Bjørner D (2003) New results and current trends in formal techniques for the development of software for transportation

systems. In: Proceedings of the symposium on formal methods for railway operation and control systems (FORMS’2003),
Budapest/Hungary. L’Harmattan Hongrie, May 15–16

[BtBF+18] Basile D, ter Beek MH, Fantechi A, Gnesi SM, Piattino FA, Trentini D, Ferrari A (2018) On the industrial uptake of formal
methods in the railway domain. In: Furia CA, Winter K (eds) Integrated formal methods, lecture notes in computer science.
Springer International Publishing, pp 20–29

[CEN11] CENELEC (2011) EN 50128:2011 railway applications—communication, signalling and processing systems—software for rail-
way control and protection systems

[CGP99] Clarke EM, Grumberg O, Peled DA (1999) Model checking. The MIT Press, Cambridge
[CK16] Celebi BT, Kaymakci OT (December 2016) Verifying the accuracy of interlocking tables for railway signalling systems using

abstract state machines. J Mod Transp 24(4):277–283
[CLRS09] Cormen TH, Leiserson CE, Rivest RL, Stein C (2009) Introduction to algorithms, 3rd edn. The MIT Press
[Fan12] Fantechi A (2012) Distributing the challenge of model checking interlocking control tables. In: Margaria T, Steffen B (eds)

Leveraging applications of formal methods, verification and validation. Applications and case studies, volume 7610 of lecture
notes in computer science. Springer, Berlin, pp 276–289

[FFM12] FantechiA, FokkinkW,Morzenti A (2012) Some trends in formalmethods applications to railway signaling. In: Formalmethods
for industrial critical systems. Wiley, pp 61–84

[FLFO17] Fredj M, Leger S, Feliachi A, Ordioni J (2017) OVADO. In: Fantechi A, Lecomte T, Romanovsky A (eds) Reliability, safety,
and security of railway systems. Modelling, analysis, verification, and certification, lecture notes in computer science. Springer
International Publishing, pp 87–98

[FMGF11] Ferrari A, Magnani G, Grasso D, Fantechi A (2011) Model checking interlocking control tables. In: Schnieder E, Tarnai G
(eds) Proceedings of formal methods for automation and safety in railway and automotive systems (FORMS/FORMAT 2010),
Braunschweig, Germany. Springer

[GH18] Geisler S,HaxthausenAE (2018) Stepwise development andmodel checking of a distributed interlocking system—usingRAISE.
In: Havelund K, Peleska J, Roscoe B, de Vink EP (eds) Formal methods—22nd international symposium, FM 2018, held as
part of the federated logic conference, FloC 2018, Oxford, UK, July 15–17, 2018, Proceedings, volume 10951 of lecture notes in
computer science. Springer, pp 277–293

[HHP17] Hong LV, Haxthausen AE, Peleska J (2017) Formal modelling and verification of interlocking systems featuring sequential
release. Sci Comput Program 133:91–115

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1210.7039
http://arxiv.org/abs/cs/0611029

Efficient data validation for geographical interlocking systems 955

[HØ16] Haxthausen AE, Østergaard PH (2016) On the use of static checking in the verification of interlocking systems. In: Leveraging
applications of formal methods, verification and validation: discussion, dissemination, applications, Part II, volume 9953 of
lecture notes in computer science. Springer International Publishing AG, pp 266–278

[HPP13] Haxthausen AE, Peleska J, Pinger R (2013) Applied bounded model checking for interlocking system designs. In: Counsell S,
Núñez M (eds) SEFM workshops, volume 8368 of lecture notes in computer science. Springer, pp 205–220

[HSL16] HansenD, Schneider D, LeuschelM (2016) Using B and ProB for data validation projects. In: ButlerM, ScheweK-D,Mashkoor
A, Biro M (eds) Abstract state machines, alloy, B, TLA, VDM, and Z, lecture notes in computer science. Springer International
Publishing, pp 167–182

[JMN+14] James P, Moller F, Nga NH, Roggenbach M, Schneider SA, Treharne H (2014) Techniques for modelling and verifying railway
interlockings. Int J Softw Tools Technol Transf 16(6):685–711

[KZC19] Keming W, Zheng W, Chuandong Z (2019) Formal modeling and data validation of general railway interlocking system. WIT
Trans Built Environ 181

[LBL12] Lecomte T, Burdy L, Leuschel M (2012) Formally checking large data sets in the railways. CoRR, abs/1210.6815
[LMP10] Laroussinie F, Meyer A, Petonnet E (2010) Counting LTL. In: Markey N, Wijsen J (eds) TIME 2010—17th international

symposium on temporal representation and reasoning, Paris, France, 6–8 September 2010. IEEE Computer Society, pp 51–58
[MNR+13] Moller F, Nguyen HN, Roggenbach M, Schneider S, Treharne H (2013) Defining and model checking abstractions of complex

railway models using CSP‖B. In: Biere A, Nahir A, Vos T (eds) Hardware and software: verification and testing, volume 7857
of lecture notes in computer science. Springer, Berlin, pp 193–208

[MP92] Manna Z, Pnueli A (1992) The temporal logic of reactive and concurrent systems—specification. Springer
[Pac02] Pachl J (2002) Railway operation and control. VTD Rail Publishing, January
[Pel20] Peleska J (2020) New distribution paradigms for railway interlocking. In: Margaria T, Steffen B (eds) Leveraging applications

of formal methods, verification and validation: applications—9th international symposium on leveraging applications of formal
methods, ISoLA 2020, Rhodes, Greece, October 20–30, 2020, Proceedings, Part III, volume 12478 of lecture notes in computer
science. Springer, pp 434–448

[PKHP19] Peleska J, Krafczyk N, Haxthausen AE, Pinger R (2019) Efficient data validation for geographical interlocking systems. In: Du-
tilleul SC, Lecomte T, Romanovsky AB (eds) Reliability, safety, and security of railway systems.Modelling, analysis, verification,
and certification—third international conference, RSSRail 2019, Lille, France, June 4–6, 2019, Proceedings, volume 11495 of
lecture notes in computer science. Springer, pp 142–158

[Sis94] Sistla AP (1994) Safety, liveness and fairness in temporal logic. Form Aspects Comput 6(5):495–511
[Son18] Steffens S, Siemens Mobility GmbH (2018) Safety@COTS multicore, distributed smart safe system DS3. In: Innovationstag

ETCS stellwerk smartrail 4.0. Presentation Slides, pp 35–47
[Win12] Winter K (2012) Symbolic model checking for interlocking systems. In: Railway safety, reliability and security: technologies and

system engineering. IGI Global, pp 298–315

Received 30 August 2020
Accepted in revised form 17 May 2021 by Alessandro Fantechi and Jim Woodcock
Published online 10 August 2021

	Efficient data validation for geographical interlocking systems
	Abstract
	1 Introduction
	2 Data validation for geographic interlocking systems
	3 Logical foundations
	3.1 Overview
	3.2 Kripke structures
	3.3 First order formulae and their valuation
	3.4 Linear temporal logic LTL, safety properties and their violations
	3.4.1 Safety violation formulae on finite paths

	3.5 Computation tree logic CTL
	3.6 Over-approximation of LTL safety violation formulae by CTL
	3.7 CTL model checking

	4 Model checking of IXL configurations
	4.1 IXL configurations as Kripke structures
	4.2 Sub-models
	4.3 Specifying rule violations on sub-models
	4.4 Detecting false alarms
	4.5 Parallelisation
	4.6 Evaluation

	5 Related work
	6 Conclusion
	References

