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Abstract. We propose E↓( �D)-logic as a formal foundation for the specification and development of event-based
systems with data states. The framework is presented as an institution in the sense of Goguen and Burstall and
the logic itself is parametrised by an underlying institution �D whose structures are used to model data states.
E↓( �D)-logic is intended to cover a broad range of abstraction levels from abstract requirements specifications
up to constructive specifications. It uses modal diamond and box operators over complex actions adopted from
dynamic logic. Atomic actions are pairs e� ψ where e is an event and ψ a state transition predicate capturing the
allowed reactions to the event.Towrite concrete specificationsof recursiveprocess structureswe integrate (control)
state variables and binders of hybrid logic. The semantic interpretation relies on event/data transition systems.
For the presentation of constructive specifications we propose operational event/data specifications allowing for
familiar, diagrammatic representations by state transition graphs. We show that E↓( �D)-logic is powerful enough
to characterise the semantics of an operational specification by a single E↓( �D)-sentence. Thus the whole (formal)
development process for event/data-based systems relies on E↓( �D)-logic and its semantics as a common basis. It
is supported by a variety of implementation constructors which can express, among others, event refinement and
parallel composition. Due to the genericity of the approach, it is also possible to change a data state institution
during system development when needed. All steps of our formal treatment are illustrated by a running example.

1. Introduction
Event-based systems are an important kind of software systems that are open to the environment to react to
certain events. A crucial characteristic of such system is that their reaction to events will differ over time due to
their internal state; in particular, not any event may be meaningful at any time. Hence the control flow of the
system is significant and should be modelled by appropriate means. On the other hand components administer
data which may change upon the occurrence of an event. Thus also the specification of admissible data changes
caused by events plays a major role.

There is quite a lot of literature on modelling and specifying event-based systems. Several approaches, often
underpinnedbygraphical notations, provide formalismsaimingatbeing constructive enough to suggest particular
designs or implementations, like e.g., Event-B [Abr13, FMP17], symbolic transition systems [PR06], and UML
behavioural and protocol state machines [OMG17, KMRG15]. On the other hand, there are logical formalisms
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to express desired properties of event-based systems. Among them are temporal logics integrating state and event-
based styles [tBFGM08], and various kinds ofmodal logics involving data, like first-order dynamic logic [HKT00]
or the modal μ-calculus with data and time [GM14]. The gap between logics and constructive specification is
usually filled by checking whether the model of a constructive specification satisfies certain logical formulæ.

In this paperwe are interested in investigating a logicwhich is capable to express properties of event/data-based
systems on various abstraction levels in a common formalism.For this purposewe follow ideas of [MBHM18], but
there data states, effects of events on them and constructive operational specifications (see below)were not consid-
ered. The advantage of an expressive logic is that we can split the transition from system requirements to system
implementation into a series of gradual refinement stepswhich aremore easy tounderstand, to verify, and to adjust
when certain aspects of the systemare tobe changedorwhenaproduct lineof similar products has tobedeveloped.

To that end we propose E↓( �D)-logic, a dynamic logic enriched with features of hybrid logic and parametrised
by an underlying logic �D for data states. The dynamic part uses diamond and box operators, 〈λ〉� and [λ]� resp.,
over structured actions λ adopted from dynamic logic [HKT00]. Atomic actions are of the form e� ψ with e
an event and ψ a state transition predicate specifying the admissible effects of e on the data. Using sequential
composition, union, and iteration we obtain complex actions that, in connection with the modal operators, can
be used to specify required and forbidden behaviours. In particular, if E is a finite set of events, though data is
infinite we are able to capture all states of the system, reachable from initial ones by events of E , and thus to
express liveness and safety properties, the latter by sentences of the form [EEE ∗]�. But E↓( �D)-logic is also powerful
enough to specify concrete, recursive process structures by integrating state variables x , binders ↓x . � and jumps
(@Fx )� from hybrid logic [Bra10] with the subtle difference that our state variables are used to denote control
states only and that we relativise jumps by a set F of events.

An axiomatic specification Sp � (�, Ax) in E↓( �D) is given by an event/data signature � � (E , δ) with a set E
of events and a data signature δ to model data states, and a set of E↓( �D)-sentences Ax , called axioms, describing
desired system properties. For the semantic interpretation we use event/data transition systems (edts). Their states
are reachable configurations (c, d ) showing a control state c that records the current state of execution, and a data
state d . Transitions between configurations are labelled by events. The semantics of a specification Sp is “loose”
in the sense that it consists of all edts satisfying the axioms of the specification. Such structures are called models
of Sp. Loose semantics allows us to define a simple refinement notion: Sp1 refines to Sp2 if the model class of
Sp2 is included in the model class of Sp1. We may also say that Sp2 is an implementation of Sp1.

Our refinement process starts typically with axiomatic specifications whose axioms involve only the dynamic
part of the logic. Hybrid features will successively be added in refinements when specifying more concrete be-
haviours by introducing variables for control states, variable binders and jumps. Aiming at a concrete design, the
use of an axiomatic specification style may, however, become cumbersome since we have to state explicitly also
all negative cases, what the system should not do. For a convenient presentation of constructive specifications we
propose operational event/data specifications, which are a kind of symbolic transition systems equipped (again)
with a model class semantics in terms of edts. We will show that E↓( �D)-logic, by use of the hybrid features, is
powerful enough to characterise the semantics of an operational specification. Therefore, we do not really move
outside E↓( �D)-logic when refining axiomatic by operational specifications. Moreover, since several constructive
notations in the literature, including (essential parts of) Event-B, symbolic transition systems, and UML proto-
col state machines, can be expressed as operational specifications, E↓( �D)-logic provides a logical umbrella under
which event/data-based systems can be developed.

In order to consider more complex kinds of refinements we take up an idea of Sannella and Tarlecki [ST88,
ST12] who have proposed the notion of constructor implementation. This is a generic notion applicable to
specification formalisms based on signatures and their semantic structures. As both are available in the context of
E↓( �D)-logic, we complement our approach by introducing a couple of constructors, among them event refinement
and parallel composition. For the latter we provide a powerful refinement criterion relying on a relationship
between syntactic and semantic parallel composition.We show under which additional assumptions our criterion
is even a necessary condition which sharpens a corresponding result in [HMK19]. The logic and the use of
the implementation constructors will be illustrated by a running example. We have also implemented a small,
prototypical tool2 that allows to check E↓( �D)-formulæ on finite-state edts and the refinement of finite-state
operational specifications using constructor implementations such that the running example can be reproduced.

2 Available at https://bitbucket.org/knappale/edhl/.
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This paper is a significant extension of the conference paper [HMK19]. We provide a formalisation of our
specification theory for event data-based systems as an “institution”. The notion of an institution has been
proposed by Goguen and Burstall in [GB92] as an abstract concept to capture the essential ingredients that
a logical system should provide when being used in formal software development. Since then the ideas of an
institution becamequite popular andmanydifferent logical systems have beenpresented as institutions; see [ST12]
for an overview. Formalising a logical system as an institution has several advantages: It provides a better insight
in the used concepts with a clear structure concerning syntax (in terms of signatures and sentences), semantics
(in terms of mathematical structures) and the relationship between the two in terms of a satisfaction relation.
Having an institution supports the process of software development by formalising system extensions, reducts
and component-wise development by means of signature morphisms. It also allows to reuse abstract results that
are valid in arbitrary institutions concerning, e.g., structured specifications and refinement. All this does not come
for free but with a proof obligation: The logical system at handmust guarantee the “satisfaction condition” which
expresses that validity of logical sentences is invariant under change of context or notation. This is an important
requirement for modular software design.

Wepresent E↓( �D)-logic as a generic institutionwhich is parametrised by an underlying data state institution �D.
In particular, we show that for E↓( �D) the satisfaction condition holds. The proof relies, besides on the satisfaction
condition for �D, (a) on the data state labelling for configurations of event/data transition systems and (b) on a
generalisation of the jump operator (@x )� of hybrid logic to a relativised jump operator (@Fx )� which moves
the state of evaluation to all configurations whose control state is denoted by x and which are reachable by an
explicitly stated set F of events. This way the scope of the events usable for “jumping” remains under control
of the formula and thus is independent of the context in which the formula is used. Both, (a) and (b) were not
incorporated in [HMK19] and the logic there could not be reused as it is to get an institution.

Due to the genericity of E↓( �D)-logic, any concrete data state institution satisfying a few assumptions, most
importantly the amalgamation property, can be used to instantiate E↓( �D). Of course, this improves significantly
the applicability of E↓( �D). An important consequence is also that during system development the data state
institution can be changed if different, usually more expressive, constructs are needed when moving towards an
implementation. As a tool for sound migration of data state institutions we use institution comorphisms. How
this works is exemplified by our running example.

Being parametric in the underlying data state institution requires a proper institutional treatment of pairs of
data states representing pre- and post-states of transitions. For this purpose, we introduce the novel concept of a
2-data state institution 2 �D over �D which, by itself, is a new research result that should be applicable to institution-
alise other kinds of pre/post-condition style specification formats. The formalisation of 2 �D uses pushouts and
amalgamations. The latter allow to combine two data states, a pre- and a post-state, over which state transition
predicates can be interpreted. These predicates are formalised as sentences of the corresponding pushout signa-
ture. The base signature of such pushouts models “rigid” symbols, i.e., symbols whose interpretation remains
unchanged when moving from one data state to another.

Related to the genericity of E↓( �D)-logic are approaches which deal with “temporalisation” [FG92], “modali-
sation” [FF02, DS07] and “hybridisation” [MMDB11, DM16]. In these papers the idea is to extend an arbitrary
base logic or institution with temporal, modal, or hybrid features and thus to be able to work out the character-
istic features of the respective logical extensions and to study preservation of certain properties. The motivation
of our work is not to find yet another hybridisation process but to provide support for system development.
As a consequence, we consider (a) only models reachable from initial states, (b) operational specifications, and
(c) implementation constructors useful in a refinement methodology. In this context, an important point for us is
to be able to express safety and liveness properties by navigation through all reachable states and to be able to ex-
press concrete process structures as well by using operational specifications, which can be equivalently expressed
in our logic by binders and (relativised) jumps. A relevant point is also that our 2-data state institutions allow
to relate logically pre- and post-states of transitions on the basis of pushout constructions and amalgamated
unions. Therefore neither quantification of hybrid logical formulæ is needed as in [MMDB11] nor a particular
“rigidification” of symbols as in [DM16].
Outline. The remainder of this paper is structured as follows: In Sect. 2 we recall the notion of an institution
and some related concepts. Then, in Sect. 3, we consider institutions for data states and their transitions. The
constituents of the generic E↓( �D)-logic institution are introduced in Sect. 4. A significant part of this section
concerns the proof of the satisfaction condition. In Sect. 5 we consider axiomatic as well as operational spec-
ifications of event/data-based systems and demonstrate the expressiveness of E↓( �D)-logic. Refinement of both
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types of specifications using several implementation constructors is considered in Sect. 6. Section 7 provides some
concluding remarks.

Readers who aremore interested in the stepwise (hierarchical) formalisation of institutions for data states ( �D),
data state transitions (2 �D), and the hybrid dynamic logic E↓( �D) built on top of these can concentrate on Sections 2
to4; readerswhowant to focuson theusageofE↓( �D) as amethodology for the stepwise developmentof event/data-
based systems can put their attention to Sections 4 to 6 with some occasional references to Sections 2 and 3.

2. Institutions

The concept of an institution has been introduced in [GB92]. It formalises some basic ingredients that a logical
system should provide when it is used as a specification framework in program development. The notion relies on
a clear separation between syntax (signatures, sentences) and semantics (models) such that models and sentences
are related by a satisfaction relation. Differently to the original terminology models will be called structures to
avoid ambiguity when we talk about models of a specification later on. For the categorical terminology used in
the sequel of this paper we refer the reader to the book by Mac Lane [Mac98] (where, however, functional order
of morphism composition g ◦ f is used instead of the diagrammatic order f ; g often employed here).

Definition 1 An institution (S, Str , Sen, |�) consists of

– a category S whose objects are called signatures and arrows signature morphisms;
– a functor Str : Sop → Cat, giving for each signature � a category whose objects are called �-structures, and
whose arrows are called �-(structure) morphisms; each arrow σ : � → �′ in S (i.e., σ : �′ → � in S

op), is
mapped to a functor Str (σ ) : Str (�′) → Str (�) called reduct functor, whose effect is to cast a structure of �′
as a structure of �; when M � Str (σ )(M ′) we say thatM is the σ -reduct ofM ′;

– a functor Sen : S → Set, giving for each signature a set whose elements are called sentences over that signature;
each arrow σ : � → �′ in S is mapped to a sentence translation function Sen(σ ) : Sen(�) → Sen(�′);

– a family |� � (|�� ⊆ |Str (�) | × Sen(�))�∈|S| of satisfaction relations determining, for each signature �,
satisfaction of �-sentences by �-structures (where |Str(�)| denotes the objects of the category Str (�))

such that for each signature morphism σ : � → �′ in S, the satisfaction condition

M ′ |��′ Sen(σ )(ϕ) ⇐⇒ Str (σ )(M ′) |�� ϕ

holds for eachM ′ ∈ |Str (�′)| and ϕ ∈ Sen(�); graphically,

� Str (�) Sen(�)

�′ Str (�′) Sen(�′)

σ

|��

Str (σ )

|��′
Sen(σ )

�

Example 1 We sketch propositional logic and many-sorted first-order logic with equality as institutions Prop and
FO�, respectively (for detailed expositions see, e.g., [ST12]).

(a) Propositional logic Prop � (SProp, Str Prop, SenProp, |�Prop).
The category of propositional signatures S

Prop has sets P of propositional variables as objects and functions
π : P → P ′ as morphisms.
The propositional structures functor Str Prop : (SProp)op → Cat maps each signature P ∈ |SProp| to the category
Str Prop(P ) with functions μ : P → B � { f f , t t} as objects and h : μ1 → μ2 a (unique) morphism from
μ1 : P → B to μ2 : P → B if {p | μ1(p) � t t} ⊆ {p | μ2(p) � t t}; and each signature morphism π : P → P ′

to the reduct functor Str Prop(π ) : Str Prop(P ′) → Str Prop(P ) defined by Str Prop(π )(μ′) � π ; μ′ for each
μ
′ ∈ |Str Prop(P ′) | such that indeed Str Prop(π )(h ′) : Str Prop(π )(μ′

1) → Str Prop(π )(μ′
2) for h

′ : μ
′
1 → μ

′
2 in

Str Prop(P ′).
The propositional sentences functor SenProp : SProp → Set maps each signature P ∈ |SProp| to the set SenProp(P )
defined by the grammar

ρ ::� p | true | ¬ρ | ρ1 ∨ ρ2 | ρ1 ∧ ρ2 | ρ1 → ρ2 | ρ1 ↔ ρ2
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for p ∈ P ; and each morphism π : P → P ′ to the sentence translation SenProp(σ ) : SenProp(P ) → SenProp(P ′)
replacing each propositional variable p by σ (p).
Finally, for each signature P ∈ |SProp|, each structure μ ∈ |Str Prop(P )|, and each sentence ρ ∈ SenProp(P ) the
propositional satisfaction relation μ |�Prop

P ρ is defined inductively as usual:

– μ |�Prop
P p iff μ(p) � t t ;

– μ |�Prop
P true;

– μ |�Prop
P ¬ρ iff not μ |�Prop

P ρ;

– μ |�Prop
P ρ1 ∨ ρ2 iff μ |�Prop

P ρ1 or μ |�Prop
P ρ2;

and similarly for the other connectives, such that the satisfaction condition is fulfilled.

(b) First-order logic with equality FO � (SFO�
, Str FO

�
, SenFO�

, |�FO�
).

Amany-sorted signature � � (S ,F ) consists of sets of sorts S and function symbols F ; the latter have argument
sorts and a result sort, a function symbol without arguments is a constant. A many-sorted signature morphism
σ � (σS , σF ) : � → �′ maps the sorts and function symbols of � to their counterparts in �′ such that the
sorting of function symbols is transferred. Many-sorted signatures and signature morphisms form the category
of signatures SFO�

.
A �-algebra A for a many-sorted signature � � (S ,F ) consists of non-empty carrier sets sA for each sort s
and functions f A : sA1 × . . . × sAn → sA for each f ∈ F with argument sorts s1, . . . , sn and result sort s ; a
�-algebra homomorphism h : A1 → A2 is given by an S -indexed family of functions (hs : sA1 → sA2 )s∈S such
that hs (f A1 (a1, . . . , an )) � f A2 (hs1 (a1), . . . , hsn (an )) for all f ∈ F and all ai ∈ sA1

i . �-algebras and �-algebra
homomorphisms form the category Str FO

�
(�). For a many-sorted signature morphism σ � (σS , σF ) : � → �′

the reduct of a �′-algebra A′ is the �-algebra A′|σ with sA
′|σ � σS (s)A

′
for each s ∈ S and f A

′|σ � σF (f )A
′

for each f ∈ F ; the reduct of a �′-algebra homomorphism h ′ : A′
1 → A′

2 is the �-algebra homomorphism
h|σ : A′

1|σ → A′
2|σ with (h ′|σ )s � h ′σS (s) for each s ∈ S . The structures functor Str FO

�
: (SFO�

)op → Cat maps
� to the category Str FO

�
(�) and σ : � → �′ to the functor −|σ .

For constructing terms and formulæ over a many-sorted signature � � (S ,F ) an S -indexed family of variables
X is assumed. The S (�)-indexed family of terms T (�,X ) is inductively given by x ∈ T (�,X )s for x ∈ Xs and
f (t1, . . . , tn ) ∈ T (�,X )s for f ∈ F with arguments sorts s1, . . . , sn and result sort s and ti ∈ T (�,X )si . The
set of formulæ F (�,X ) is given by the grammar

ϕ ::� t1 � t2 | true | ¬ϕ | ϕ1 ∨ ϕ2 | ∀ x : s . ϕ ,

where in ∀ x : s . ϕ the variable x is bound by the quantifier. Term and formulæ translation along a many-sorted
signature morphism σ : � → �′ preserve the term and formulæ structure as well as unbound, free variables. The
sentence functor SenFO�

: SFO� → Set maps � to the sentences over �, i.e., the formulæ over � that show no
free variables, and σ : � → �′ to the formula translation along σ .
For a �-algebra A and a valuation β � (βs : Xs → sA)s∈S (�) the term evaluation β∗ � (β∗

s : T (�,X )s →
sA)s∈S (�) is inductively given by β∗

s (x ) � βs (x ) and β∗
s (f (t1, . . . , tn )) � f A(β∗

s1
(t1), . . . , β∗

sn
(tn )). Formula satis-

faction A, β |�FO�
� ϕ for a formula ϕ ∈ F (�,X ) is inductively given by

– A, β |�FO�
� t1 � t2 iff β∗(t1) � β∗(t2);

– A, β |�FO�
� true;

– A, β |�FO�
� ¬ϕ iff not A, β |�FO�

� ϕ;
– A, β |�FO�

� ϕ1 ∨ ϕ2 iff A, β |�FO�
� ϕ1 or A, β |�FO�

� ϕ2;
– A, β |�FO�

� ∀ x : s . ϕ iff A, β{x : s �→ a} |�FO�
� ϕ for all a ∈ sA,

where β{x : s �→ a}(x ) � a and β{x : s �→ a}(y) � β(y) for y �� x .

Finally, the satisfaction relation A |�FO�
� ϕ for a �-algebra A ∈ |Str FO�

(�)| and a sentence ϕ ∈ SenFO�
(�) is

defined by A, β |�FO�
� ϕ for an arbitrary valuation β (as ϕ shows no free variables). �

Let us now recall some useful properties of institutions.
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Amalgamation Property

The amalgamation property will be used later to construct the union of two data states (intuitively pre- and
post-states) over which state transition predicates, formalised as sentences over a pushout signature, can be
interpreted.

An institution (S, Str , Sen, |�) has the amalgamation property [ST12, Def. 4.4.12] if all pushouts in S exist and

every pushout diagram

�1 +
σ1,σ2
�0

�2

�1 �2

�0

σ1 σ2

σ̂1 σ̂2

admits amalgamation:

M1 ×σ1,σ2 M2

M1 M2

M0

Str (σ1) Str (σ2)

Str (σ̂1) Str (σ̂2)

In more detail, (�1 +
σ1,σ2
�0

�2, (σ̂i : �i → �1 +
σ1,σ2
�0

�2)1≤i≤2) is a pushout along σ1 : �0 → �1 and σ2 : �0 → �2

in S if σ1; σ̂1 � σ2; σ̂ and, furthermore, for all �′ ∈ |S | and σ ′
i : �i → �′, 1 ≤ i ≤ 2 satisfying σ1; σ ′

1 � σ2; σ ′
2,

there is a unique σ : �1 +
σ1,σ2
�0

�2 → �′ with σ ′
i � σ̂i ; σ , 1 ≤ i ≤ 2. Such a pushout admits amalgamation if

– for any two structures M1 ∈ |Str (�1)| and M2 ∈ |Str (�2)| such that Str (σ1)(M1) � M0 � Str (σ2)(M2), there
exists a unique structureM1×σ1,σ2 M2 ∈ |Str (�1 +

σ1,σ2
�0

�2)| such that Str (σ̂i )(M1×σ1,σ2 M2) � Mi for 1 ≤ i ≤ 2;
and

– for any two morphisms μ1 : M1 → N1 in Str (�1) and μ2 : M2 → N2 in Str (�2) such that Str (σ1)(μ1) �
Str (σ2)(μ2), there is a unique morphism μ1×σ1,σ2 μ2 : M1 ×σ1,σ2 M2 → N1 ×σ1,σ2 N2 such that
Str (σ̂i )(μ1×σ1,σ2 μ2) � μi for 1 ≤ i ≤ 2.

Example 2 In the propositional logic institution Prop of Ex. 1(a) a pushout along two propositional signature
morphisms π1 : P0 → P1 and π2 : P0 → P2 in S

Prop is obtained as follows: Let P1 � P2 � {(1, p) | p ∈
P1} ∪ {(2, p) | p ∈ P2)} be the disjoint union of P1 and P2 and let ∼π1,π2

P0
⊆ (P1 � P2)2 be the smallest equivalence

relation containing {(1, π1(p)), (2, π2(p)) | p ∈ P0}. ThenP1+
π1,π2
P0

P2 � (P1�P2)/∼π1,π2
P0

and π̂i : Pi → P1+
π1,π2
P0

P2

with π̂i (p) � [(i , p)]∼π1 ,π2
P0

for p ∈ Pi , 1 ≤ i ≤ 2. The corresponding amalgamationμ1×π1,π2 μ2 : P1+
π1,π2
P0

P2 → B

of two propositional structures μ1 : P1 → B and μ2 : P2 → B with Str Prop(π1)(μ1) � π1; μ1 � μ0 � π2; μ2 �
Str Prop(π2)(μ2) for μ0 : P0 → B is given by (μ1×π1,π2 μ2)([(i , p)]∼π1,π2

P0
) � μi (p).

This construction can be generalised and adapted for the institution FO� of many-sorted first-order logic
with equality in Ex. 1(b) showing that both Prop and FO� satisfy the amalgamation property [ST12]. �
Lemma 1 (Reducts preserve amalgamations) Let (�1 +

σ1,σ2
�0

�2, (σ̂i : �i → �1 +
σ1,σ2
�0

�2)1≤i≤2) be a pushout of

σi : �0 → �i for 1 ≤ i ≤ 2 in S and (�′
1 +

σ ′
1,σ

′
2

�′
0

�′
2, (σ̂

′
i : �′

i → �′
1 +

σ ′
1,σ

′
2

�′
0

�′
2)1≤i≤2) a pushout of σ ′

i : �′
0 → �′

i for
1 ≤ i ≤ 2 in S. Let τi : �i → �′

i for 0 ≤ i ≤ 2 be signature morphisms such that the following diagram commutes

�1 +
σ1,σ2
�0

�2

�1 �2

�0

σ1 σ2

σ̂1 σ̂2

�′
1 +

σ ′
1,σ

′
2

�′
0

�′
2

�′
1 �′

2

�′
0

σ ′
1 σ ′

2

σ̂ ′
1 σ̂ ′

2

τ0

τ1 τ2

τ1 +τ0 τ2

with τ1 +τ0 τ2 the unique signature morphism from �1 +
σ1,σ2
�0

�2 to �′
1 +

σ ′
1,σ

′
2

�′
0

�′
2 resulting from the pushout property

due to σi ; τi � τ0; σ ′
i for 1 ≤ i ≤ 2 and σ1; τ1; σ̂ ′

1 � σ2; τ2; σ̂ ′
2. LetM

′
1 ∈ |Str (�′

1)| andM ′
2 ∈ |Str (�′

2)| such that
Str (σ ′

1)(M
′
1) � Str (σ ′

2)(M
′
2). Then

Str (τ1 +τ0 τ2)(M ′
1 ×σ ′

1,σ
′
2
M ′

2) � Str (τ1)(M ′
1)×σ1,σ2 Str (τ2)(M

′
2) .

Proof. By the uniqueness of amalgamations it suffices to show for 1 ≤ i ≤ 2 that

Str (σ̂i )(Str(τ1 +τ0 τ2)(M ′
1 ×σ ′

1,σ
′
2
M ′

2)) � Str (τi )(M ′
i ) .
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From the commuting diagram we have that

σ̂i ; (τ1 +τ0 τ2) � τi ; σ̂ ′
i

and hence by the functorial property of Str

Str (τ1 +τ0 τ2); Str (σ̂i ) � Str (σ̂ ′
i ); Str (τi ) .

Since M ′
1 ×σ ′

1,σ
′
2
M ′

2 is the amalgamation of M ′
1 and M ′

2 it holds Str (σ̂
′
i )(M

′
1 ×σ ′

1,σ
′
2
M ′

2) � M ′
i ; thus

Str (σ̂i )(Str(τ1 +τ0 τ2)(M ′
1 ×σ ′

1,σ
′
2
M ′

2)) � Str (τi )(Str(σ̂ ′
i )(M

′
1 ×σ ′

1,σ
′
2
M ′

2)) � Str (τi )(M ′
i ) . �

Closure under Boolean connectives

An institution (S, Str , Sen, |�) is closed under boolean connectives (see [Dia08, Sect. 5.1] and [ST12, Ex. 4.1.41])
if for each � ∈ |S| the following holds:
– there is a sentence true ∈ Sen(�) with M |�� true for all M ∈ |Str (�)|;
– for each sentence ϕ ∈ Sen(�) there is a sentence ¬ϕ ∈ Sen(�) with M |�� ¬ϕ if, and only if, M �|�� ϕ for all
M ∈ |Str (�)|;

– for all sentences ϕ1, ϕ2 ∈ Sen(�) there is a sentence ϕ1 ∨ ϕ2 ∈ Sen(�) with M |�� ϕ1 ∨ ϕ2 if, and only if,
M |�� ϕ1 or M |�� ϕ2 for all M ∈ |Str (�)|.
In any institution that is closed under boolean connectives all other binary boolean connectives ∧, →, ↔,

etc. and the constant false can be adequately represented.

Example 3 Institutions Prop and FO� from Ex. 1 are closed under boolean connectives by definition. �

Institution comorphisms

During system development ‘it is sometimes useful to switch from one institution to another. To do this insti-
tution comorphisms [GR02] are an appropriate tool. They allow to express a kind of embedding of a “poorer”
source into a “richer” target logic [MDT09]. Formally, an institution comorphism ν � (νS, νStr , νSen) : (SI ,
StrI , SenI , |�I ) → (SI

′
, StrI

′
, SenI

′
, |�I ′

) consists of a functor νS : S
I → S

I ′
, a natural transformation

νStr : (νS)op; StrI
′ .→ StrI , and a natural transformation νSen : SenI .→ νS; SenI

′
, such that for all � ∈| SI |,

M ′ ∈|StrI ′
(νS(�))|, and ϕ ∈ SenI (�) the following satisfaction condition holds:

νStr
� (M ′) |�I

� ϕ ⇐⇒ M ′ |�I ′
νS(�) νSen

� (ϕ) .

Example 4 There is an institution comorphism ν from Prop to FO�:
The signature functor νS : SProp → S

FO�
maps a propositional signature P to the (many-sorted) signature

�P � ({Bool}, {tt : Bool} ∪ {p : Bool | p ∈ P}) with a single sort Bool and a constant tt (different from all
propositional variables in P ) for true as well as constants for the propositional variables, and a propositional
signature morphism π : P → P ′ to the many-sorted signature morphism (πS , πF ) : �P → �P ′ with πS (Bool) �
Bool, πF (tt) � tt, and πF (p) � π (p).

For each P ∈ |SProp|, the structures functor νStr
P : Str FO

�
(�P ) → Str Prop(P ) maps a �P -algebra A ∈

|Str FO�
(�P ) | to μA : P → B with μA(p) � t t if, and only if, pA � ttA, and an algebra homomorphism

h : A1 → A2 to the unique propositional inclusion morphism μh : μA1
→ μA2

as pA1 � ttA1 implies pA2 �
h(pA1 ) � h(ttA1 ) � ttA2 . Then νStr : νS; Str FO

� .→ Str Prop obviously is a natural transformation.
For each P ∈ |SProp|, define the function (−)�P : SenProp(P ) → SenFO�

(�P ) inductively by

– (p)�P � (p � tt);
– (¬ρ)�P � ¬(ρ)�P ;
– (ρ1 ∨ ρ2)�P � (ρ1)�P ∨ (ρ1)�P ;

and similarly for the other connectives. Then νSen : SenProp(P ) → νS; SenFO�
with νSen(ρ) � (ρ)�P obviously is

a natural transformation.



1216 R. Hennicker et al.

Finally, the satisfaction condition

μA |�Prop
P ρ ⇐⇒ A |�FO�

�P
(ρ)�P

can be checked by structural induction over ρ. �
Lemma 2 Let ν : I → I ′ be an institution comorphism. Let (�1 +

σ1,σ2
�0

�2, (σ̂i : �i → �1 +
σ1,σ2
�0

�2)1≤i≤2) be a

pushout of σi : �0 → �i for 1 ≤ i ≤ 2 in SI admitting amalgamation such that (νS(�1)+
νS(σ1),νS(σ2)
νS(�0)

νS(�2), (νS(σ̂i ) :

νS(�i ) → νS(�1) +
νS(σ1),νS(σ2)
νS(�0)

νS(�2))1≤i≤2) is a pushout of νS(σi ) : νS(�0) → νS(�i ) for 1 ≤ i ≤ 2 in S
I ′

admitting amalgamation. Let M ′
1 ∈ |StrI ′

(νS(�1)) | and M ′
2 ∈ |StrI ′

(νS(�2)) | such that StrI
′
(νS(σ1))(M ′

1) �
StrI

′
(νS(σ2))(M ′

2). Then

νStr
�1+

σ1,σ2
�0

�2
(M ′

1 ×νS(σ1),νS(σ2) M
′
2) � νStr

�1
(M ′

1)×σ1,σ2 νStr
�2

(M ′
2) .

Proof. By the uniqueness of amalgamations it suffices to show for 1 ≤ i ≤ 2 that

StrI (σ̂i )(νStr
�1+

σ1,σ2
�0

�2
(M ′

1 ×νS(σ1),νS(σ2) M
′
2)) � νStr

�i
(M ′

i ) .

As νS preserves the pushout it follows from the naturality of νStr that

νStr
�1+

σ1,σ2
�0

�2
; StrI (σ̂i ) � StrI

′
(νS(σ̂i )); νStr

�i
.

SinceM ′
1×νS(σ1),νS(σ2)M

′
2 is the amalgamation ofM ′

1 andM ′
2 it holds that Str

I ′
(νS(σ̂i ))(M ′

1×νS(σ1),νS(σ2)M
′
2) � M ′

i ;
thus

StrI (σ̂i )(νStr
�1+

σ1,σ2
�0

�2
(M ′

1 ×νS(σ1),νS(σ2) M
′
2)) � νStr

�i
(StrI

′
(νS(σ̂i ))(M ′

1 ×νS(σ1),νS(σ2) M
′
2)) � νStr

�i
(M ′

i ) . �

3. Institutions for data states and transitions

Data institutions are used to model data states as well as data state changes which are typical in event/data-based
systems. We are interested in a generic approach which can be instantiated by concrete data institutions needed
in particular application domains.

General assumption. Throughout this paper we assume given an arbitrary institution D � (SD, StrD, SenD, |�D)
which is closed under boolean connectives and satisfies the amalgamation property.

We proceed in two steps: First, in Sect. 3.1, we show how to construct “data state institutions” on the basis of
D to model single data states (in terms of structures) and to specify properties of them (in terms of sentences). To
formalise transitions from one data state to another (and their properties) we introduce so-called “2-data state
institutions” in Sect. 3.2. Structures of a 2-data state institution are pairs of structures of a data state institution
modelling pre- and post-states of transitions.

3.1. Data state institutions

In principle, an institution D with the assumed properties could already serve as a formal framework for data
states. In general, however, it is useful to take not all signatures of D but to select only particular ones. For
instance, one may be interested to admit only signatures which are extensions of some (base) signature having a
unique interpretation. To treat this intuitively simple idea in a formal way we need some additional technicalities.

First, the category of signatures of a data state institution over D, which we call �D, should be a subcategory
of the arrow category (SD)→. This means that signatures in �D are signature morphisms δ : �0 → � in D
and signature morphisms (σ0, σ ) : (δ : �0 → �) → (δ′ : �′

0 → �′) in �D are pairs of signature morphisms
σ0 : �0 → �′

0 and σ : � → �′ in D such that σ0; δ′ � δ; σ . In order to facilitate compositions, we also require
that this subcategory of (SD)→ is closed under pushouts.
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Moreover, the form of signatures in a data state institution �D has a semantic counterpart concerning the
structures functor Str �D. We require that for each �D-signature δ : �0 → � the (base) signature �0 has a unique
interpretation in all structures of Str

�D(δ). The sentences and satisfaction relations of �D are those inherited
from D.
Definition 2 A data state institution �D � (S �D, Str

�D, Sen
�D, |�[ �D]) over D consists of the following parts:

– A category S
�D of �D-signatures which is a subcategory of the arrow category (SD)→ and which is closed under

pushouts, i.e., if (�1 +
δ1,δ2
�0

�2, (δ̂i : �i → �1 +
δ1,δ2
�0

�2)1≤i≤2) is a pushout of δ1 : �0 → �1 and δ2 : �0 → �2

in S
D and δ1, δ2 ∈ |S �D|, then δ1; δ̂1 � δ2; δ̂2 ∈ |S �D|.

– A functor Str �D : (S �D)op → Cat which yields
1. for every �D-signature δ : �0 → � ∈ |S �D| a non-empty subcategory of StrD(�) such that there is an

Mδ ∈ |StrD(�0)| with StrD(δ)(M ) � Mδ for all M ∈ |Str �D(δ)| and StrD(δ)(μ) � 1Mδ
for all μ : M1 → M2

in Str
�D(δ);

2. for every signature morphism (σ0, σ ) : (δ : �0 → �) → (δ′ : �′
0 → �′) in S

�D a reduct functor Str �D(σ0, σ ) :

Str
�D(δ′) → Str

�D(δ) such that

(∗) for everyM ′ ∈ |Str �D(δ′)|⊆ |StrD(�′)| and every μ
′ : M ′

1 → M ′
2 in Str

�D(δ′):
Str

�D(σ0, σ )(M ′) � StrD(σ )(M ′) and Str
�D(σ0, σ )(μ

′) � StrD(σ )(μ′).

– The functor Sen
�D : S �D → Set, giving for each signature δ : �0 → � ∈ |S �D1| the set SenD(�) of �-sentences in

D, i.e., Sen
�D(δ) � SenD(�), and for each �D-signature morphism (σ0, σ ) : (δ : �0 → �) → (δ′ : �′

0 → �′) the
sentence translation function SenD(σ ) : SenD(�) → SenD(�′) in D, i.e., Sen

�D(σ0, σ ) : Sen
�D(δ) → Sen

�D(δ′) is
SenD(σ ) : SenD(�) → SenD(�′).

– For each signature δ : �0 → � ∈ |S �D | the satisfaction relation |��D
δ ⊆ |Str �D(δ) | ×Sen

�D(δ) is given by the

satisfaction relation |�� in D, i.e., for each M ∈ |Str �D(δ)|⊆ |StrD(�)| and ϕ ∈ Sen
�D(δ) � SenD(�): M |��D

δ ϕ

if, and only if,M |�D
� ϕ. �

Remark 1. A data institution �D overD is indeed an institution. The satisfaction condition follows from condition
* taking into account that the satisfaction relation in �D is inherited from D and that D is an institution. More
precisely, let (σ0, σ ) : (δ : �0 → �) → (δ′ : �′

0 → �′) be a signature morphism in S
�D and M ′ ∈ |Str �D(δ′)|,

ϕ ∈ Sen
�D(δ). Then

Str
�D(σ0, σ )(M ′) |��D

δ ϕ

⇔ { cond. (*), def. |� �D }
StrD(σ )(M ′) |�D

� ϕ

⇔ { sat. cond. for D }
M ′ |�D

�′ SenD(σ )(ϕ)

⇔ { def. |� �D , Sen �D }
M ′ |��D

δ′ Sen
�D(σ0, σ )(ϕ)

Moreover, �D inherits closure under boolean connective from D. �

Remark 2. A data institution �D overD is uniquely defined once a subcategory S �D of the arrow category (SD)→ and
a functor Str �D : (S �D)op → Cat satisfying the above conditions are selected. According to condition * there is only
oneway todefine the reduct functor Str �D(σ0, σ ) for signaturemorphisms (σ0, σ ) : (δ : �0 → �) → (δ′ : �′

0 → �′)
in S

�D. In fact Str �D(σ0, σ ) works like the reduct functor StrD(σ ) in D. In concrete examples the critical part is
to check that for every M ′ ∈ |Str �D(δ′) | indeed StrD(σ )(M ′) ∈ |Str �D(δ) | holds and that for every morphism
μ′ : M ′

1 → M ′
2 in Str

�D(δ′) it holds that StrD(σ )(μ′) is a morphism in Str
�D(δ). �
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Example 5 (a) The propositional logic institution Prop of Ex. 1(a) is readily usable as data state institution as
no specific base propositional signature has to be selected that would need a fixed interpretation. Technically,
we can turn Prop into the data state institution Prop∅ as follows: For the category of signatures we choose
S
Prop∅ as the subcategory of (SProp)→ consisting of all propositional signature morphisms δP : ∅ → P for

P ∈ |SProp| as objects and all (∅, π ) : δP → δP ′ with π : P → P ′ in S
Prop as morphisms. In fact, SProp∅ is

isomorphic to S
Prop and also closed under pushouts. For the structures functor we set Str Prop∅ (δP ) � Str Prop(P )

and Str Prop∅((∅, π ) : δP → δP ′) � Str Prop(π ) which directly satisfies (*).

(b) A first data state institution Attr FO
�

�b,Ab
over the institution FO� of many-sorted first-order logic with equality,

see Ex. 1(b), considers sorted attributes over a base signature �b and a fixed algebra Ab.
We fix a many-sorted base signature �b ∈ |SFO�| providing sorts and function symbols for primitive data types
like booleans, integers, etc., and we fix a (standard) interpretation given by a �b-algebra Ab ∈ |Str FO�

(�b)|. In
particular, we assume that �b contains a sort Bool and constants tt : Bool, ff : Bool such that Ab interprets Bool
by B with ttAb � t t and ffAb � f f . An attribute over �b is a constant function symbol, denoted by a : s , whose
sort s belongs to the sorts of �b. Any set A of attributes over �b defines an attribute signature �A which is a
many-sorted signature with subsignature �b such that �A and �b have the same sorts and the function symbols
of �A extend the function symbols of �b by the attributes A.
For the signature category S

Attr FO
�

�b ,Ab of Attr FO
�

�b,Ab
we take as objects all the inclusion signature morphisms ι :

�b ↪→ �A in FO� where �A is an attribute signature over �b. These inclusion signature morphisms are also
closed under pushouts which correspond to disjoint unions. As signature morphisms (σ0, σ ) : (ι : �b ↪→ �A) →
(ι′ : �b ↪→ �A′) in Attr FO

�
�b,Ab

we take σ0 � 1�b and all signature morphisms σ : �A → �A′ in FO� such that the
restriction of σ to �b is the identity on �b. Hence there is a one-to-one correspondence between the signature

morphisms in S
Attr FO

�
�b ,Ab and the set of sort-preserving mappings from A to A′. Obviously, 1�b ; ι′ � ι; σ holds

and the category S
Attr FO

�
�b,Ab of signatures in Attr FO

�
�b,Ab

is a subcategory of the arrow category (SFO�
)→.

For the structures functor Str Attr
FO�
�b,Ab we take for each ι : �b ↪→ �A ∈ |SAttr FO

�
�b,Ab | the category whose objects are

all �A-algebras A ∈ |Str FO�
(�A)| such that A|ι � Ab and whose morphisms h : A1 → A2 are all �A-algebra

homomorphisms such that h|ι � 1Ab . Hence there is a one-to-one correspondence between the class of Attr FO
�

�b,Ab
-

structures with signature ι : �b ↪→ �A and the class of all valuations mapping attributes (a : s) ∈ A to values of
sort s in the algebra Ab.

For each signature morphism (1�b , σ ) : (ι : �b ↪→ �A) → (ι′ : �b ↪→ �A′) in S
Attr FO

�
�b ,Ab the corresponding

reduct functor Str Attr
FO�
�b ,Ab (1�b , σ ) : Str Attr

FO�
�b,Ab (ι′) → Str Attr

FO�
�b ,Ab (ι) maps every algebra A′ ∈|Str Attr FO

�
�b,Ab (ι′) |⊆

|Str FO�
(�A′) | to A′|σ ∈|Str FO�

(�A) | and every h ′ : A′
1 → A′

2 in Str Attr
FO�
�b,Ab (ι′) to h ′|σ : A′

1|σ → A′
2|σ in

Str FO
�
(�A). Then Str Attr

FO�
�b ,Ab (1�b , σ ) is well-defined: By the functorial property of the reduct functor in FO�

and since 1�b ; ι′ � ι; σ , we obtain that (A′|σ )|ι � (A′|ι′)|1�b � A′|ι′ � Ab, i.e., A′|σ ∈|Str Attr FO
�

�b ,Ab (ι)|; it follows
similarly that h ′|σ is a morphism in Str Attr

FO�
�b ,Ab (ι).

For each ι : �b ↪→ �A the sentences in SenAttr FO
�

�b ,Ab (ι) are the first-order�A-sentences in FO� and the satisfaction
relation in Attr FO

�
�b,Ab

is the first-order satisfaction relation.

(c) A second data state institution Attr��b,Ab
over FO� is defined just as Attr FO

�
�b,Ab

but omits quantification in

the sentences, i.e., SAttr��b ,Ab � S
Attr FO

�
�b ,Ab and, for each (ι : �b ↪→ �A) in S

Attr��b ,Ab , the sentences in SenAttr��b ,Ab (ι)
are the quantifier-free �A-sentences in FO�. The satisfaction relation in Attr��b,Ab

is the first-order satisfaction
relation but restricted to quantifier-free sentences.
Other variants of attribute-based institutions are also possible, like, for instance, allowing only finite sets of
attributes in the signatures. �
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Comorphisms between data state institutions

To get an institution comorphism between data state institutions it is sufficient to provide a comorphism between
their underlying base institutions if this comorphism satisfies some specific conditions: Let �D be a data state
institution overD, �D′ a data state institution overD′, and let ν : D → D′ be an institution comorphism such that

– νS(δ) ∈ |S �D′| for all δ ∈ |S �D| and (νS(σ0), νS(σ )) : νS(δ) → νS(δ′) in S
�D′
for all (σ0, σ ) : δ → δ′ in S

�D;

– νStr
� (M ′) ∈ |Str �D(δ) | for all (δ : �0 → �) ∈ |S �D | and M ′ ∈ |Str �D′

(νS(δ)) |, and νStr
� (μ′) in Str

�D(δ) for all
(δ : �0 → �) ∈ |S �D| and μ

′ : M ′
1 → M ′

2 in Str
�D′
(νS(δ)).

Define �νS(δ) � νS(δ) and �νS(σ0, σ ) � (νS(σ0), νS(σ )), �νStr
δ:�0→� � νStr

� , and �νSen
δ:�0→� � νSen

� . Then �νStr and �νSen

are natural transformations and for all (δ : �0 → �) ∈ |S �D|,M ′ ∈ |Str �D′
(�νS(δ))|, and ϕ ∈ Sen

�D(δ) it holds that:

�νStr
δ (M ′) |��D

δ ϕ

⇔ { def. �νStr }
νStr

� (M ′) |�D
� ϕ

⇔ { sat. cond. ν }
M ′ |�D

νS(�) νSen
� (ϕ)

⇔ { def. |� �D′
, �νSen }

M ′ |��D′
�νS(δ) �νSen

δ (ϕ)

Thus the institution comorphism ν : D → D′ can be lifted to the institution comorphism �ν : �D → �D′.

Example 6 The institution comorphism ν : Prop → FO� of Ex. 4 maps a Prop-signature P to �P � ({Bool},
{tt : Bool} ∪ {p : Bool | p ∈ P}) such that �b �↪→ �P as �b (see Ex. 5(b)) shows at least the additional
function symbol ff . Thus the first condition on signatures for lifting an institution comorphism to a comorphism
between data state institutions is violated. However, we may consider a subtly changed institution comorphism
νb : Prop → FO� that maps P to �b,P � �b ∪ ({Bool}, {p : Bool | p ∈ P}) but otherwise is defined as the
comorphism in Ex. 4. Then an institution comorphism �νb : Prop∅ → Attr��b,Ab

from the data state institution
Prop∅ to the data state institution Attr��b,Ab

(see Ex. 5(c)) can be obtained by lifting νb to the extended data
signatures since (νb)S(∅) � �b and (νb)StrP (A′) is an object and (νb)StrP (h ′) a morphism in Str Prop∅(δP : ∅ → P ) �
Str Prop(P ). �

3.2. 2-Data state institutions

We introduce 2-data state institutions as a formal framework to model data state transitions. The basic idea is
that structures of a 2-data state institution are pairs (M1,M2) of structures of an underlying data state institution
representing pre- and post-states of a transition. The data state institution and the 2-data state institution rely
both on the base institution D. Properties of pre-/post-state pairs can be specified by sentences of a 2-data state
institution which are built according to a pushout construction in the underlying institution D. The satisfaction
relation in a 2-data state institution relies on the construction of an amalgamation of M1 and M2 in D. The
existence of such pushouts and amalgamations is guaranteed since D satisfies the amalgamation property.

Let �D � (S �D, Str
�D, Sen

�D, |��D) be adata state institutionoverD. The 2-data state institution 2 �D � (S2 �D, Str2
�D,

Sen2
�D, |�2 �D) over �D consists of the following parts:

– The category S
2 �D of 2 �D-signatures is the category S

�D.

– The structures functor Str2 �D : (S2 �D)op → Cat maps each δ ∈ |S2 �D|� |S �D| to the cartesian product of categories
Str

�D(δ) × Str
�D(δ) and each signature morphism (σ0, σ ) : δ → δ′ in S

2 �D � S
�D to the cartesian product of

functors Str �D(σ0, σ ) × Str
�D(σ0, σ ) : Str

�D(δ′) × Str
�D(δ′) → Str

�D(δ) × Str
�D(δ). Hence, for each δ : �0 → �,

structures in |Str2 �D(δ)| are pairs of structures M1,M2 ∈ |Str �D(δ)|, and reducts of 2 �D-structures (M1,M2) are
computed pairwise.
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– The sentence functor Sen2
�D : S2 �D → Set is defined as follows: For each signature δ : �0 → � ∈ |S2 �D|� |S �D|, we

assume given a specifically chosen pushout of δwith itself inSD, denoted by (�+δ
�0

�, (δ̂i : � → �+δ
�0

�)1≤i≤2),
as illustrated in

� +δ
�0

�

� �

�0

δ δ

δ̂1 δ̂2

2δ

Then the set Sen2
�D(δ) of 2 �D-sentences is Sen

�D(2δ) � SenD(�+δ
�0

�). For each signature morphism (σ0, σ ) : (δ :

�0 → �) → (δ′ : �′
0 → �′) in S

2 �D � S
�D the sentence translation function Sen2

�D(σ ) : Sen2 �D(δ) → Sen2
�D(δ′)

is Sen
�D(σ0, σ +σ0 σ ) � SenD(σ +σ0 σ ) where σ +σ0 σ : � +δ

�0
� → �′ +δ′

�′
0
�′ is the unique signature morphism

in S
D such that the following diagram commutes:

� +δ
�0

�

� �

�0

δ δ

δ̂1 δ̂2

2δ

�′ +δ′
�0

�′

�′ �′

�′
0

δ′ δ′

δ̂′1 δ̂′2

2δ′

σ0

σ σ

σ +σ0 σ

Note that such a signature morphism exists due to the pushout property of � +δ
�0

�.

– The satisfaction relations in 2 �D are defined as follows: For each 2 �D-signature δ : �0 → � ∈ |S2 �D |� |S �D |
together with the pushout diagram above, and for any (M1,M2) ∈ |Str2 �D(δ) |� |Str �D(δ) | ×|Str �D(δ) | the
amalgamation property for D yields the amalgamation M1 ×δ M2 ∈ |StrD(� +δ

�0
�) | as illustrated in the

subsequent diagram, since StrD(δ)(M1) � Mδ � StrD(δ)(M2) as required for structures in |Str �D(δ)|:
M1 ×δ M2

M1 M2

Mδ

StrD(δ) StrD(δ)

StrD(δ̂1) StrD(δ̂2)

Then, for any ψ ∈ Sen2
�D(δ), i.e., ψ ∈ SenD(� +δ

�0
�), the 2 �D-satisfaction relation is given by

(M1,M2) |�2 �D
δ ψ if, and only if, M1 ×δ M2 |�D

�+δ
�0

�
ψ .

ConsideringM1 and M2 as pre- and post-states respectively, we see that the base signature �0 in δ : �0 → �
determines that part of data stateswhose interpretation, given byMδ, has to be kept invariantwhile interpretations
of the remaining part are flexible.

To show that 2 �D is indeed an institution we must prove the satisfaction condition.

Theorem 1 (Satisfaction condition of 2 �D) Let (σ0, σ ) : (δ : �0 → �) → (δ′ : �′
0 → �′) be a signature morphism

in S
2 �D, (M ′

1,M
′
2) ∈ |Str2 �D(δ′)|, and ψ ∈ Sen2

�D(δ). Then

(M ′
1,M

′
2) |�2 �D

δ′ Sen2
�D(σ0, σ )(ψ) ⇐⇒ Str2

�D(σ0, σ )(M ′
1,M

′
2) |�2 �D

δ ψ .
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Proof. Using the satisfaction condition for D, we get

Str2
�D(σ0, σ )(M ′

1,M
′
2) |�2 �D

δ ψ

⇔ { def. Str2
�D }

(Str �D(σ0, σ )(M ′
1), Str

�D(σ0, σ )(M ′
2)) |�2 �D

δ ψ

⇔ { Str
�D , def. |�2 �D }

StrD(σ )(M ′
1)×δ Str

D(σ )(M ′
2) |�D

�+δ
�0

�
ψ

⇔ { Lem. 1 }
StrD(σ +σ0 σ )(M ′

1 ×δ′ M ′
2) |�D

�+δ
�0

�
ψ

⇔ { sat. cond. for D }
M ′

1 ×δ′ M ′
2 |�D

�′+δ′
�′
0
�′ Sen

D(σ +σ0 σ )(ψ)

⇔ { def. Sen2
�D }

M ′
1 ×δ′ M ′

2 |�D
�′+δ′

�′
0
�′ Sen

2 �D(σ0, σ )(ψ)

⇔ { def. |�2 �D }
(M ′

1,M
′
2) |�2 �D

δ′ Sen2
�D(σ0, σ )(ψ) �

Again, as �D does from D, 2 �D inherits closure under boolean connective from �D.

Example 7 (a) For obtaining the propositional 2-data state institution 2Prop∅ from the data state institution
Prop∅ ofEx. 5(a)we choose the specificpushout signatureP+δP

∅ P inSProp for a signaturemorphism δP : ∅ → P in
S
Prop∅ to contain all propositional variables fromP together with primed copies p ′ of them (assuming thatP does

not already containprimedpropositional variables). δP -sentences in 2Prop∅, also called state transition predicates,
are then (P +δP

∅ P )-sentences in Prop, like, e.g., p ′ ↔ p or p ∨ q → q ′. The amalgamated union μ1×δP μ2 for
a 2Prop∅-structure (μ1, μ2) consisting of two functions μi : P → B interprets all propositional variables p ∈ P
using μ1 and all primed propositional variables p ′ by μ2 for the non-primed propositional variables p.

(b) Similarly to 2Prop∅, the construction of a 2-data state institution 2Attr��b,Ab
of equational attributes from

Attr��b,Ab
defined in Ex. 5(c) can choose as the pushout signature�A+ι

�b
�A for ι : �b ↪→ �A the FO�-signature

that contains all symbols of �A together with primed copies a ′ : s of all attributes a : s in A; possible state tran-
sition predicates here then are a ′ < a or a ′ � a + 1. The amalgamated union A1 ×ι A2 for a 2Attr��b,Ab

-structure
(A1,A2) consisting of two �A-algebras such that A1|ι � Ab � A2|ι interprets all symbols a : s in the signature
�A like A1 does and all primed attributes a ′ : s by the values of the non-primed attributes a : s in A2. Note
that A1 and A2 have the same interpretation for all symbols in the base signature �b which therefore cannot be
changed in data state transitions. �

Comorphisms between 2-data state institutions

We show that under certain conditions institution comorphisms between 2-data state institutions can be obtained
from comorphisms between their underlying base institutions. Let ν : D → D′ be an institution comorphism
that can be lifted to an institution comorphism �ν : �D → �D′ such that νS preserves the specific choices of
pushouts in S

D and S
D′

made for the construction of 2 �D and 2 �D′. Define (�ν2)S � �νS, (�ν2)Str � �νStr × �νStr , and
(�ν2)Senδ:�0→� � �νSen

�+δ
�0

�
. Then (�ν2)Str and (�ν2)Sen are natural transformations and for all (δ : �0 → �) ∈ |S2 �D |,

(M ′
1,M

′
2) ∈ |Str2 �D′

((�ν2)S(δ))|, and ψ ∈ Sen2
�D(δ) it holds that

(�ν2)Strδ (M ′
1,M

′
2) |�2 �D

δ ψ

⇔ { def. (�ν2)Str }
(�νStr

δ (M ′
1), �νStr

δ (M ′
2)) |�2 �D

δ ψ
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⇔ { �νStr , def. |�2 �D }
νStr

� (M ′
1)×δ νStr

� (M ′
2) |�D

�+δ
�0

�
ψ

⇔ { Lem. 2 }
νStr

�+δ
�0

�
(M ′

1 ×νS(δ) M ′
2) |�D

�+δ
�0

�
ψ

⇔ { sat. cond. ν }
M ′

1 ×νS(δ) M ′
2 |�D′

�+δ
�0

+�
νSen

�+δ
�0

�
(ψ)

⇔ { def. (�ν2)Sen }
M ′

1 ×νS(δ) M ′
2 |�D′

�+δ
�0

+�
(�ν2)Senδ (ψ)

⇔ { def. |�2 �D′ }
(M ′

1,M
′
2) |�2 �D′

(�ν2)S(δ) (�ν2)Senδ (ψ) .

Thus the institution comorphism �ν : �D → �D′ obtained from ν : D → D′ can be further lifted to the institution
comorphism �ν2 : 2 �D → 2 �D′.

Example 8 The institution comorphism �νb of Ex. 6 obtained as a lifting from the institution comorphism νb can
be further lifted to an institution comorphism �ν2

b : 2Prop∅ → 2Attr��b,Ab
since, using the notation of Ex. 6, νb

maps P +δP
∅ P to �b,P +ιP

�b
+�b,P with ιP : �b ↪→ �b,P . �

Particular sentences of 2-data state institutions

We finish this section by considering some particular sentences of 2-data state institutions. First, the set of
sentences of the 2-institution 2 �D contains translations of the sentences of D that refer either to the first or to the
second component of a 2 �D-structure (M1,M2). Such sentence translations are satisfied by (M1,M2) if, and only
if, their untranslated versions are satisfied by the respective component.

Proposition 1 For each 2 �D-signature δ : �0 → �, sentence ϕ ∈ SenD(�) and i ∈ {1, 2} it holds that
(M1,M2) |�2 �D

δ SenD(δ̂i )(ϕ) ⇐⇒ Mi |�D
� ϕ .

Proof. Expanding the satisfaction relation for 2 �D and using the satisfaction condition in D we have
(M1,M2) |�2 �D

δ SenD(δ̂i )(ϕ)

⇔ { def. |�2 �D }
M1 ×δ M2 |�D

�+δ
�0

�
SenD(δ̂i )(ϕ)

⇔ { sat. cond. for D }
StrD(δ̂i )(M1 ×δ M2) |�D

� ϕ

⇔ { def. amalg. prop. for D }
Mi |�D

� ϕ �

Example 9 Let 2Attr��b,Ab
be the 2-data state institution over the attribute data state institution Attr��b,Ab

, let
ι : �b ↪→ �A be a signature of 2Attr��b,Ab

and ϕ ∈ SenFO�
(�A). Then SenFO�

(ι̂1)(ϕ), Sen
FO�

(ι̂2)(ϕ), and

SenFO�
(ι̂1)(ϕ) ↔ SenFO�

(ι̂2)(ϕ) are sentences in Sen2Attr
�
�b ,Ab (ι). For each (A1,A2) ∈ |Str2Attr��b ,Ab (ι)| we obtain:

(A1,A2) |�
2Attr��b ,Ab
ι (SenFO�

(ι̂1)(ϕ) ↔ SenFO�
(ι̂2)(ϕ))

⇔ { def.↔ }
(A1,A2) |�

2Attr��b ,Ab
ι SenFO�

(ι̂1)(ϕ) iff (A1,A2) |�
2Attr��b ,Ab
ι SenFO�

(ι̂2)(ϕ)
⇔ { Prop. 1 }

A1 |�FO�
�A

ϕ iff A2 |�FO�
�A

ϕ .
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Hence, validity of the sentence SenFO�
(ι̂1)(ϕ) ↔ SenFO�

(ι̂2)(ϕ) in a 2Attr��b,Ab
-structure (A1,A2) expresses that

the sentence ϕ holds in A1 if, and only if, it holds in A2. �

Sentences over a signature δ : �0 → � in the 2 �D-institution take into account two �D-structures M1 and M2
at the same time. Semantically it is already ensured that the common part StrD(δ)(M1) � StrD(δ)(M2) remains
unchanged. It will, however, be useful to be able to express that certain additional parts ofM1 andM2 are identical.
In particular, this will be needed when we define the (syntactic) parallel composition of operational specifications
in Sect. 5.2.

Definition 3 (Invariance sentence) Let δ0 : �0 → �1 be a �D-signature and σ1 : �1 → � a D-signature morphism
such that δ � δ0; σ1 is a �D-signature. A sentence ψ ∈ Sen2

�D(δ) is an invariance sentence w.r.t. (δ0, σ1) if for all
(M1,M2) ∈ |Str2 �D(δ)|, (M1,M2) |�2 �D

δ ψ if, and only if, StrD(σ1)(M1) � StrD(σ1)(M2). �

Example 10 Let ι : �b ↪→ �A be a signature in 2Attr��b,Ab
and Af ⊆ A be a finite subset of attributes. Then the

sentence
∧

a∈Af
a ′ � a in 2Attr��b,Ab

is an invariance sentence w.r.t. (ι0 : �b ↪→ �Af , ι1 : �Af ↪→ �A). �

In general, we cannot expect that Sen2
�D provides invariance sentences. In this case we extend, for each 2 �D

signature δ : �0 → � and for each split δ0 : �0 → �1 and σ1 : �1 → � with δ � δ0; σ1 the set Sen
2 �D(δ) of

2 �D-sentences by the special invariance sentence id(δ0,σ1) for which satisfaction is defined as follows:

(M1,M2) |�2 �D
δ id(δ0,σ1) ⇐⇒ StrD(σ1)(M1) � StrD(σ1)(M2) .

Note that id(id�0 ,δ)
simply expresses true.

Usingageneral, though“intuitively somewhatartificialwayofdealingwith the translationof sentences” [ST12,
p. 184], an institution extending 2 �D by such invariance sentences can be obtained directly [ST12, Ex. 4.1.46]. How-
ever, if certain additional pushouts are chosen specifically, invariance sentences can be translated along signature
morphisms in 2 �D as follows: Let (σ0, σ ) : (δ : �0 → �) → (δ′ : �′

0 → �′) be a signature morphism in 2 �D,
i.e., a pair of signature morphisms σ0 : �0 → �′

0 and σ : � → �′ in D such that σ0; δ′ � δ; σ . Then the

invariance sentence id(δ0,σ1) ∈ Sen2
�D(δ) is translated to the invariance sentence id(σ̂0,σ

′
1) ∈ Sen2

�D(δ′) according to
the following diagram where the left quadrilateral is a pushout diagram and σ ′

1 is the unique morphism from the
pushout signature to �′:

�0 �

�1

�′
0 �′

�′
0 +

σ0,δ0
�0

�1

δ

δ′

σ0 σ

δ0 σ1

σ̂0 σ ′
1

δ̂0

It is in order to obtain a proper mapping id(δ0,σ1) �→ id(σ̂0,σ
′
1) that the pushout �′

0 +
σ0,δ0
�0

�1 has to be fixed. Then
the next lemma shows that the satisfaction condition of 2 �D still holds if it is extended by invariance sentences; so
it remains an institution.

Lemma 3 (Satisfaction condition for invariance sentences) Let (σ0, σ ) : (δ : �0 → �) → (δ′ : �′
0 → �′) be a

signature morphism in S2 �D, (M ′
1,M

′
2) ∈ |Str2 �D(δ′)|, and id(δ0,σ1) ∈ Sen2

�D(δ) be an invariance sentence w.r.t. (δ0, σ1).
Then

(M ′
1,M

′
2) |�2 �D

δ′ Sen2
�D(σ0, σ )(id(δ0,σ1)) ⇐⇒ Str2

�D(σ0, σ )(M ′
1,M

′
2) |�2 �D

δ id(δ0,σ1) .

Proof. As illustrated in the following diagram, letMi � StrD(σ )(M ′
i ),M

′
i | � StrD(σ ′

1)(M
′
i ),Mi | � StrD(σ1)(Mi )

for 1 ≤ i ≤ 2, StrD(δ′)(M ′
1) � M ′

0 � StrD(δ′)(M ′
2), and StrD(δ)(M1) � M0 � StrD(δ)(M2) such that in particular
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StrD(σ0)(M ′
0) � M0:

M0 M1,M2

M1|,M2|

M ′
0 M ′

1,M
′
2

M ′
1|,M ′

2|

StrD(δ)

StrD(δ′)

StrD(σ0) StrD(σ )

StrD(δ0) StrD(σ1)

StrD(σ̂0) StrD(σ ′
1)

StrD(δ̂0)

Let first (M ′
1,M

′
2) |�2 �D

δ′ Sen2
�D(σ0, σ )(id(δ0,σ1)) hold. Then M ′

1| � M ′
2|, i.e., StrD(σ ′

1)(M
′
1) � StrD(σ ′

1)(M
′
2).

Thus StrD(δ̂0)(StrD(σ ′
1)(M

′
1)) � StrD(δ̂0)(StrD(σ ′

1)(M
′
2)) and, using σ1; σ � δ̂0; σ ′

1, we hence obtain that also
StrD(σ1)(StrD(σ )(M ′

1)) � StrD(σ1)(StrD(σ )(M ′
2)), i.e.,M1| � M2|.

Conversely, let Str2
�D(σ0, σ )(M ′

1,M
′
2) |�2 �D

δ id(δ0,σ1) hold. Then M1| � M2|, i.e., StrD(σ1)(StrD(σ )(M ′
1)) �

StrD(σ1)(StrD(σ )(M ′
2)). We have to prove thatM ′

1| � M ′
2|, i.e., StrD(σ ′

1)(M
′
1) � StrD(σ ′

1)(M
′
2). By σ1; σ � δ̂0; σ ′

1

we have Str
�D(δ̂0)(M ′

1|) � Str
�D(δ̂0)(M ′

2|), and from Str
�D(δ′)(M ′

1) � M ′
0 � Str

�D(δ′)(M ′
2) and δ′ � σ̂0; σ ′

1 it

follows that Str
�D(σ̂0)(M ′

1|) � M ′
0 � Str

�D(σ̂0)(M ′
2|). Thus by the amalgamation property we obtain M ′

1| �
Str

�D(σ̂0)(M ′
1|)×σ0,δ0 Str

�D(δ̂0)(M ′
1|) � Str

�D(σ̂0)(M ′
2|)×σ0,δ0 Str

�D(δ̂0)(M ′
2|) � M ′

2|. �

4. Generic E↓( �D)-logic

We present E↓( �D)-logic which forms an event/data institution for any underlying data state institution �D. Hence
E↓( �D)-logic is a generic logic parametrised by �D. It is an extension of dynamic logic with binders [MBHM18] tak-
ing into account data. Like its data-less predecessor in [MBHM18], E↓( �D) is intended to support the whole devel-
opment process for event/data-based systems from abstract requirements specifications down to concrete designs
specifying the (recursive) structure of processes. For the former we use constructs from dynamic logic [HKT00]
which allow us to integrate complex actions into modal formulæ with diamond and box operators. For the latter
we use constructs from hybrid logic [Bra10] which allow us to refer (and thus to jump) to computation states of
transition systems by means of state variables.

We assume given an arbitrary data state institution �D as considered in Sect. 3.1 and the 2-data state institution
2 �D as constructed in Sect. 3.2. We illustrate E↓( �D)-logic by specifying properties of an ATM which will be our
running example further on. In the examples of the section we use Prop∅ (see Ex. 5(a)) as data state institution,
i.e., we work in E↓(Prop∅). In further refinement steps later on we will switch to the more expressive data state
institution Attr��b,Ab

.

4.1. Signatures of E↓( �D)

A crucial ingredient of any event/data-based system are the events which may occur at a certain instance of time
and may change the computation state as well as the data state of a system. In E↓( �D)-logic signatures consist of
an event part, determined by a set of events, and a data part, determined by a signature of �D.

Definition 4 An event/data signature (ed signature for short) � � (E , δ : �0 → �) consists of a set of events E
and a data signature δ : �0 → � in |S �D|. We write E (�) for E and δ(�) for δ.

An event/data signature morphism σ � (η, ϑ) from � to �′ is given by a function η : E (�) → E (�′) and a
data signature morphism ϑ : δ(�) → δ(�′) in S

�D. We write E (σ ) for η and δ(σ ) for ϑ . �

Event/data signatures and their morphisms form a category denoted by SE
↓( �D).
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Example 11 We consider a (rather simplified) ATM application. We start with its exposition in E↓(Prop∅) based
on the propositional logic institution Prop and its corresponding data state institution Prop∅; see Ex. 5(a).

A first relevant set of events for our ATM is E0 � {insertCard, enterPIN, ejectCard}. For the data part of the
ATM, we use the propositional variable check. Our first ed signature for the ATM system thus is �0 � (E0, δP :
∅ → P ) where P � {check}.

If we wish to be able to cancel transactions, we extend E0 with the event cancel and get the larger ed signature
�1 � (E1, δP : ∅ → P ) withE1 � E0∪{cancel}. Thenσ0 � (η0, 1δP ) : �0 → �1 with η0 : E0 ↪→ E1 the inclusion is
an ed signaturemorphism. (For shortening the presentationweomit further events likewithdrawingmoney, etc.)�

4.2. Structures of E↓( �D)

Any ed signature � determines a class of semantic structures, called event/data transition systems, which are
transition systems with sets of initial states and events as labels on transitions. Since we are interested here in
describing (properties of) reactive systems which start their executions in some initial states, the state space of
our semantic models will be restricted to reachable states only. To capture the dynamic and the data aspect of
event/based systems, the states of our transition systems are pairs γ � (c, d ), called configurations, where c is a
control state recording the current execution state and the data state d is labelled by a �D-structure ω(d ) over δ(�).
The usefulness of the data state labelling will be detailed in Ex. 17 in connection with the satisfaction condition
of institutions. It is related to the functionM in hybridised logics [MMDB11] which maps states to structures of
an underlying base institution.

Definition 5 A �-event/data transition system (�-edts)M � (�,R, �0, ω) over an ed signature � consists of

– a set of configurations � ⊆ C ×D of pairs of control states from a set C and data states from a set D ;
– a family of transition relations R � (Re ⊆ � × �)e∈E (�);
– a non-empty set of initial configurations �0 ⊆ {c0} ×D0 ⊆ � with a unique initial control state c0 ∈ C ; and

– a data state labelling ω : D → |Str �D(δ(�))|,
such that � is reachable viaR, i.e., for all γ ∈ � there are γ0 ∈ �0, n ≥ 0, e1, . . . , en ∈ E (�), and (γi , γi+1) ∈ Rei+1
for all 0 ≤ i < n with γn � γ .

We write ω(M ) for ω, c(M )(γ ) for c and ω(M )(γ ) for ω(M )(d ) if γ � (c, d ) ∈ �, �(M ) for �, C (M ) for
{c(M )(γ ) | γ ∈ �(M )}, �(M ) for {ω(M )(γ ) | γ ∈ �(M )}, R(M ) for R, �0(M ) for �0, c0(M ) for c0, and �0(M )
for {ω(M )(γ0) | γ0 ∈ �0(M )}.

A �-edts morphism h : M1 → M2 is given by a function h : �(M1) → �(M2) such that

– c(M2)(h(γ1)) � c(M2)(h(γ ′
1)) for all γ1, γ

′
1 ∈ �(M1) with c(M1)(γ1) � c(M1)(γ ′

1);
– h(γ1,0) ∈ �0(M2) for all γ1,0 ∈ �0(M1); and
– (h(γ1), h(γ ′

1)) ∈ R(M2)e for all (γ1, γ ′
1) ∈ R(M1)e and e ∈ E (�). �

For any ed signature �, the class of �-edts and their morphisms form a category denoted by StrE
↓( �D)(�).

A �-edts M is extensional if ω(M ) is injective, i.e., ω(M )(γ1) � ω(M )(γ2) implies γ1 � γ2; in this case the
data states and the data labels can be identified.

Example 12 Continuing Ex. 11, a �1-edtsM1 in StrE
↓(Prop∅)(�1) is shown in Fig. 1a. Its control states are Card,

PIN , and Return. The data states are check and ¬check standing for the functions μcheck, μ¬check : {check} →
B with μcheck(check) � t t and μ¬check(check) � f f . The data labelling ω is just the identity such that M1
is extensional. The control state Card is initial with two initial data states, check and ¬check. There is no
configuration with control state PIN and data state check in M1 since such a configuration is not reachable.
There is a non-deterministic choice for enterPIN when the control state is PIN . The first alternative going to
configuration (Return, check) models the situation where a correct PIN has been entered. The other alternatives
either allow to repeat entering an incorrect PIN or stop the process if sufficiently often an incorrect PIN has been
entered. In the latter case the card is kept.

�
Thuswe have already defined the first part of the (contravariant) structures functor StrE

↓( �D) : (SE
↓( �D))op → Cat

mapping each ed signature � to the category of �-edts.
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Fig. 1. Sample edtsM1 andM0 for an ATM

It remains to define, for any signature morphism σ : � → �′ in S
E↓( �D), the reduct functor StrE

↓( �D)(σ ) :
StrE

↓( �D)(�′) → StrE
↓( �D)(�) that sends �′-edts and their morphisms to their reducts. Special care has to be taken

because of the reachability property of event/data transition systems: for any �′-edtsM ′ its reduct along σ must
be a �-edts with reachable configurations. Therefore we propose an inductive definition for reducts of edts. Of
course, the reducts of the data parts of configurations will be the reducts of data states as provided by the data
state institution �D.

Definition 6 Let σ : � → �′ be an ed signature morphism and M ′ a �′-edts. The σ -reduct of M ′ is the �-edts
M ′|σ such that

– �(M ′|σ ) and R(M ′|σ ) � (R(M ′|σ )e )e∈E (�) are inductively defined by �0(M ′) ⊆ �(M ′|σ ) and, for all γ ′, γ ′′ ∈
�(M ′), e ∈ E (�), if γ ′ ∈ �(M ′|σ ) and (γ ′, γ ′′) ∈ R(M ′)E (σ )(e), then γ ′′ ∈ �(M ′|σ ) and (γ ′, γ ′′) ∈ R(M ′|σ )e ;

– �0(M ′|σ ) � �0(M ′); and

– ω(M ′|σ )(γ ′) � Str
�D(δ(σ ))(ω(M ′)(γ ′)) for all γ ′ ∈ �(M ′|σ ). �

Note that in particular �(M ′|σ ) ⊆ �(M ′), c(M ′|σ )(γ ′) � c(M ′)(γ ′) for all γ ′ ∈ �(M ′|σ ), and therefore
C (M ′|σ ) ⊆ C (M ′).

Example 13 Continuing Ex. 12, the reduct M0 of the �1-edts M1 in Fig. 1a along the ed signature morphism
σ0 : �0 → �1 of Ex. 11 is shown in Fig. 1b. It does not contain the configuration (Return,¬check) any more, as
�0 does not show the event cancel and thus (Return,¬check) becomes unreachable. �

Lemma 4 Let σ : � → �′ in S
E↓( �D) and h ′ : M ′

1 → M ′
2 be a �′-edts morphism in StrE

↓( �D)(�′). Then h ′|σ :
�(M ′

1|σ ) → �(M ′
2|σ ) with (h ′|σ )(γ ′

1) � h ′(γ ′
1) is a �-edts morphism from M ′

1|σ toM ′
2|σ .

Proof. The well-definedness of h ′|σ follows directly from the inductive definition of reducts. �
For any σ : � → �′ in S

E↓( �D), the map StrE
↓( �D)(σ ) : StrE

↓( �D)(�′) → StrE
↓( �D)(�) that sends �′-edts and their

morphisms to their reducts is a functor. This lifts to the desired functor StrE
↓( �D) : (SE

↓( �D))op → Cat mapping each
ed signature to the category of its structures and each ed signature morphism to its reduct functor.
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4.3. Sentences of E↓( �D)

Actions. Atomic actions over an ed signature� are given by expressions of the form e�ψ with e ∈ E (�) an event
and ψ ∈ Sen2

�D(δ(�)) a state transition predicate formalised as a sentence in the 2-data state institution 2 �D; see
Sect. 3.2. The intuition is that the occurrence of the event e causes a state transition in accordance with ψ , i.e.,
the pre- and post-data states satisfy ψ . Thus ψ specifies the possible effects of e. Following the ideas of dynamic
logic we also use complex, structured actions formed over atomic actions by union “+” (expressing alternatives),
sequential composition “; ” and iteration “∗”.

Definition 7 Let � � (E , δ : �0 → �) be an ed signature. The set �(�) of �-event/data actions (�-ed actions) is
given by the grammar

λ ::� e� ψ | λ1 + λ2 | λ1; λ2 | λ
∗

where e ∈ E and ψ ∈ Sen2
�D(δ). �

We use the following shorthand notations for ed actions taking into account that 2 �D comprises the sentence
true. For an event e ∈ E , we alsowrite e for the atomic action e�true, and for a finite subsetF � {e1, . . . , ek } ⊆ E ,
we also write {e1, . . . , ek } or simply FFF to denote the complex action e1 + . . . + ek . In particular, if E is finite we
writeEEE for the composed action obtained by combining with “+” all elements of E . This captures the choice of
all possible events with arbitrary effects. Moreover, if E is finite we write −{e1, . . . , ek } for the composed action
obtained by combining with “+” all elements of E \ {e1, . . . , ek } and briefly −e for −{e}.
Example 14 For the ATM signature �0 in Ex. 11, a �0-ed action enterPIN� check′ expresses that after enterPIN
has occurred the propositional variable check is true. The action EEE ∗

0; insertCard here abbreviates (insertCard�
true + enterPIN� true + ejectCard� true)∗; insertCard� true and means an arbitrary sequence of event occurrences
and data transitions ending in an occurrence of insertCard. �

Let σ : � → �′ be an ed signature morphism. The event/data action translation �(σ ) : �(�) → �(�′) along
σ is recursively given by
– �(σ )(e� ψ) � E (σ )(e)� Sen2

�D(δ(σ ))(ψ);
– �(σ )(λ1 + λ2) � �(σ )(λ1) + �(σ )(λ2);
– �(σ )(λ1; λ2) � �(σ )(λ1); �(σ )(λ2);
– �(σ )(λ∗) � �(σ )(λ)∗.

Formulæ and sentences. The logical formulæ of E↓( �D) are a combination of features from dynamic logic [HKT00]
and hybrid logic [Bra10]. From dynamic logic we use modalities filled with regular expressions of actions. In our
context the atomic actions are event/data actions e� ψ as introduced above. As usual a diamond formula 〈λ〉�
expresses that it is possible to execute λ in the current state such that � is satisfied in the subsequent state; the
derived box modality [λ]� expresses that whenever λ is executed in the current state then it is necessary that �
holds in any subsequent state. From hybrid logic we use state variables which can be bound to the current control
state by the binder operator ↓x . � for further reference in formula �, and the jump operator (@Fx )� whichmoves
the state of evaluation for � to the state bound by x .

The binder operator was first studied by [Gor94]. In contrast to the classical approach we are dealing here
with configurations which are pairs of control and data state. We claim that state variables should refer to the
current point of control flow of a system and that binders and jumps should provide means to model the control
flow. For instance, a sentence like ↓x . 〈inc� c′ � c + 1〉x should model a looping behaviour where an attribute c
is constantly incremented by 1. Thus x should not be bound to a configuration including a data state. Therefore,
variables in E↓( �D)-formulæ denote just control states and not configurations; i.e., for the hybrid part of our logic,
data states are disregarded. This will be reflected in the satisfaction of E↓( �D)-formulæ below. Another variation
concerns the jump operator (@Fx )� which parametrises the jump operator (@x )� of hybrid logic by a set F of
events. It has the effect that � will be evaluated in all configurations having the control state determined by x and
being reachable with events from F . We will illustrate later, in Ex. 18, that this relativisation is useful to get the
satisfaction condition of an institution for E↓( �D)-logic.

E↓( �D) retains from hybrid logic the use of binders and jumps, but omits free nominals. Thus sentences, i.e.,
formulæwithout free variables, become restricted to express properties of configurations reachable from the initial
ones.
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In the following of this paper we always assume given a countably infinite set X of control state variables.

Definition 8 The setF (�) of �-event/data formulæ over an ed signature � is defined by the following grammar

� ::� ϕ | x | ↓x . � | (@Fx )� | 〈λ〉� | ¬� | �1 ∨ �2

where ϕ ∈ Sen
�D(δ(�)), x ∈ X , F ⊆ E (�), λ ∈ �(�). The set of free variables of a formula is defined as usual

with ↓x being the unique operator binding variables. A �-event/data sentence (�-ed sentence) is a �-event/data
formula without free variables. The set SenE

↓( �D)(�) consists of all �-ed sentences. �
Wewrite [λ]� for¬〈λ〉¬� andweuse theusual booleanconnectives.Furthermore,we express the (unrelativised)

jump operator (@x )� of hybrid logic by (@E (�)x )�.
Using additionally the shorthand notations for actions, we can specify safety properties with [EEE ∗]�; deadlock

freedom is expressed by [E ∗]〈EEE 〉true. Liveness properties, like “whenever an event e has happened, an event e ′
can eventually occur”, can be expressed by [EEE ∗; e]〈EEE ∗; e ′〉true. We can also express that an event e ′ must never
occur when an event e has happened before with [EEE ∗; e; EEE ∗; e ′]false. Of course, events e and e ′ standing for e�
true and e ′� true could be more generally replaced by e� ψ and e ′� ψ ′. These kinds of properties are suited for
abstract requirements specifications. They use only the dynamic logic fragment of E↓( �D).

Example 15 Continuing Ex. 14, we can express some abstract properties required for an ATM using ed signature
�0 of Ex. 11:

(0.1) “Whenever a card has been inserted, a correct PIN can eventually be entered.”

[EEE ∗
0; insertCard]〈EEE ∗

0; enterPIN� check′〉true
(0.2) “Whenever a correct PIN has been entered, the card can eventually be ejected.”

[EEE ∗
0; (enterPIN� check′)]〈EEE ∗

0; ejectCard〉true
(0.3) “A card cannot be ejected if it was not inserted before.”

[(−insertCard)∗; ejectCard]false

Note that the complex action −insertCard in (0.3) ranges over all events of �0 except insertCard. �

The logic E↓( �D) is also suited to directly express process structures and, thus, the implementation of abstract
requirements. The binder operator is crucial for this. The ability to give names to visited control states, together
with the modal features to express transitions, makes possible a precise description of the whole dynamics of
a process structure in a single sentence. This will be significant in Sect. 5.3. Binders allow to express recursive
patterns, namely loop transitions from the current to some already visited control state. Actually, this kind of
properties cannot be specified in the absence of a feature to refer to specific control states in a model, as in
standard modal logic. For example, sentence

↓x0 .
(〈e〉x0 ∧ 〈f 〉↓x1 . (〈e〉x0 ∧ 〈f 〉x1)

)

specifies process structures with two states represented by x0 and x1. Event e loops in x0, event f moves to x1
and loops in x1 while e moves back to x0. To model that this is the only allowed behaviour one could expand the
sentence within the scope of x0 and x1 by

(@x0)([e]x0 ∧ [f ]x1) ∧ (@x1)([e]x0 ∧ [f ]x1)

Clearly, structures like this can also involve specific data properties which will be illustrated later in our develop-
ment.

To get the sentence functor of an institution it remains to define sentence translation. Let σ : � → �′ be an ed
signature morphism. The event/data formulæ translation F (σ ) : F (�) → F (�′) along σ is recursively given by

– F (σ )(ϕ) � Sen
�D(δ(σ ))(ϕ);

– F (σ )(x ) � x ;
– F (σ )(↓x . �) � ↓x .F (σ )(�);

– F (σ )((@Fx )� � (@E (σ )(F )x )F (σ )(�);
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– F (σ )(〈λ〉�) � 〈�(σ )(λ)〉F (σ )(�);
– F (σ )(¬�) � ¬F (σ )(�);
– F (σ )(�1 ∨ �2) � F (σ )(�1) ∨ F (σ )(�2).

The event/data sentence translation SenE
↓( �D)(σ ) : SenE

↓( �D)(�) → SenE
↓( �D)(�′) along the ed signature morphism σ

is defined as SenE
↓( �D)(σ )(�) � F (σ )(�) for each � ∈ SenE

↓( �D)(�).
Mapping each signature � ∈| SE↓( �D)| into the set of event/data sentences SenE

↓( �D)(�) and each ed signature
morphism σ : � → �′ in S

E↓( �D) into the event/data sentence translation SenE
↓( �D)(σ ) defines a functor SenE

↓( �D) :
S
E↓( �D) → Set.

4.4. Satisfaction relation of E↓( �D)

Todefine the satisfaction relation forE↓( �D)-logicwemust first, as usual in dynamic logic, provide an interpretation
of the actions �(�) over a �-edtsM as the family of relations (R(M )λ ⊆ �(M )× �(M ))λ∈�(�) defined by

– R(M )e�ψ � {(γ, γ ′) ∈ R(M )e | (ω(M )(γ ), ω(M )(γ ′)) |�2 �D
δ(�) ψ},

– R(M )λ1 + λ2
� R(M )λ1

∪ R(M )λ2
, i.e., union of relations,

– R(M )λ1; λ2
� R(M )λ1

; R(M )λ2
, i.e., sequential composition of relations,

– R(M )λ∗ � (R(M )λ)∗, i.e., reflexive-transitive closure of relations.

The satisfaction of state formulæ ϕ relies on the satisfaction relation of the underlying data state institution
�D. Similarly, satisfaction of diamond formulæ 〈λ〉� relies, for λ � e� ψ , on the satisfaction relation of the 2-data
institution 2 �D (via the relations R(M )e�ψ ). To define satisfaction of formulæ involving the jump operator we use
the following (generalised) reachability notion:

Let � be an ed signature, F ⊆ E (�), and M a �-edts. A configuration γ ∈ �(M ) is F -reachable in M if
there are γ0 ∈ �0(M ), n ≥ 0, e1, . . . , en ∈ F , and (γi , γi+1) ∈ R(M )ei+1 for all 0 ≤ i < n with γn � γ . The set of
F -reachable configurations ofM is denoted by �F (M ).

Definition 9 Given an ed signature � and a �-edts M , the satisfaction of an event/data formula � ∈ F (�)
is inductively defined w.r.t. valuations v : X → C (M ) mapping control state variables to control states, and
configurations γ ∈ �(M ):

– M , v , γ |�E↓( �D)
� ϕ iff ω(M )(γ ) |��D

δ(�) ϕ;

– M , v , γ |�E↓( �D)
� x iff c(M )(γ ) � v (x );

– M , v , γ |�E↓( �D)
� ↓x . � iffM , v{x �→ c(M )(γ )}, γ |�E↓( �D)

� �;

– M , v , γ |�E↓( �D)
� (@Fx )� iffM , v , γ ′ |�E↓( �D)

� � for all γ ′ ∈ �F (M ) with c(M )(γ ′) � v (x );

– M , v , γ |�E↓( �D)
� 〈λ〉� iffM , v , γ ′ |�E↓( �D)

� � for some γ ′ ∈ �(M ) with (γ, γ ′) ∈ R(M )λ;

– M , v , γ |�E↓( �D)
� ¬� iffM , v , γ �|�E↓( �D)

� �;

– M , v , γ |�E↓( �D)
� �1 ∨ �2 iffM , v , γ |�E↓( �D)

� �1 orM , v , γ |�E↓( �D)
� �2.

A �-event/data sentence � ∈ SenE
↓( �D)(�) is satisfied in M , denoted by M |�E↓( �D)

� �, if M , v , γ0 |�E↓( �D)
� � for

all γ0 ∈ �0(M ) and an arbitrary valuation v (which is anyway irrelevant since sentences do not contain free
variables). �
Example 16 Continuing Ex. 15, let us check that the statements (0.1) to (0.3) are satisfied in the �0-edts M0
depicted inFig. 1b: For (0.1), whenever an insertCard has happened, configuration (PIN ,¬check) is entered. Then
it is (immediately) possible to enter enterPIN with the effect that check holds. For (0.2), whenever an enterPIN
has happened such that check holds, configuration (Return, check) is reached. Then ejectCard is (immediately)
possible. Finally, (0.3) is obviously satisfied by M0, since its first event is insertCard. �
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4.5. Satisfaction condition for E↓( �D)

The idea of the satisfaction condition is to ensure that satisfaction is invariant under change of notation. Formally,
a change of notation is expressed by a signature morphism σ : � → �′. In the context of E↓( �D)-logic the
satisfaction condition requires that for any�′-edtsM ′ and for any�-sentence � the reduct ofM ′ along σ satisfies
� if, and only if, M ′ satisfies the sentence translation of � w.r.t. σ . For the proof we use the following lemmas.
The first lemma will be used to prove the satisfaction condition for sentences involving the diamond modality. It
is crucial here that the 2-data institution 2 �D satisfies the satisfaction condition for state transition predicates, i.e.,
sentences in 2 �D.

Lemma 5 Let σ : � → �′ be an ed signature morphism, M ′ a �′-edts, and γ ′
1 ∈ �(M ′|σ ) ⊆ �(M ′). Then

1. (γ ′
1, γ

′
2) ∈ R(M ′|σ )e�ψ if, and only if, (γ ′

1, γ
′
2) ∈ R(M ′)�(σ )(e�ψ) for all γ ′

2 ∈ �(M ′) and e� ψ ∈ �(�);
2. {γ ′

2 ∈ �(M ′|σ ) | (γ ′
1, γ

′
2) ∈ R(M ′|σ )λ} � {γ ′

2 ∈ �(M ′) | (γ ′
1, γ

′
2) ∈ R(M ′)�(σ )(λ)} for all λ ∈ �(�).

Proof. For (1) let γ ′
2 ∈ �(M ′) and e� ψ ∈ �(�):

(γ ′
1, γ

′
2) ∈ R(M ′|σ )e�ψ

⇔ { def. R(M ′|σ )e�ψ }
(γ ′

1, γ
′
2) ∈ R(M ′|σ )e ∧ (ω(M ′|σ )(γ ′

1), ω(M
′|σ )(γ ′

2)) |�2 �D
δ(�) ψ

⇔ { def. R(M ′|σ )e and γ ′
1 ∈ �(M ′|σ ) }

(γ ′
1, γ

′
2) ∈ R(M ′)E (σ )(e) ∧ (ω(M ′|σ )(γ ′

1), ω(M
′|σ )(γ ′

2)) |�2 �D
δ(�) ψ

⇔ { def. ω(M ′|σ ) }
(γ ′

1, γ
′
2) ∈ R(M ′)E (σ )(e) ∧ (Str �D(δ(σ ))(ω(M ′)(γ ′

1)), Str
�D(δ(σ ))(ω(M ′)(γ ′

2))) |�2 �D
δ(�) ψ

⇔ { def. Str2
�D }

(γ ′
1, γ

′
2) ∈ R(M ′)E (σ )(e) ∧ Str2

�D(δ(σ ))(ω(M ′)(γ ′
1), ω(M

′)(γ ′
2)) |�2 �D

δ(�) ψ

⇔ { sat. cond. for 2 �D }
(γ ′

1, γ
′
2) ∈ R(M ′)E (σ )(e) ∧ (ω(M ′)(γ ′

1), ω(M
′)(γ ′

2)) |�2 �D
δ(�′) Sen

2 �D(δ(σ ))(ψ)
⇔ { def. R(M ′)�(σ )(e�ψ) }

(γ ′
1, γ

′
2) ∈ R(M ′)�(σ )(e�ψ)

For (2) we apply induction on the structure of �-actions λ where the base case λ � e� ψ follows directly from
(1). �

Thenext lemma is needed toget the satisfaction condition for sentences involving the relativised jumpoperator.

Lemma 6 Let σ : � → �′ be an ed signature morphism, F ⊆ E (�), andM ′ a �′-edts. Then, for all γ ′ ∈ �(M ′),
γ ′ ∈ �F (M ′|σ ) if, and only if, γ ′ ∈ �E (σ )(F )(M ′).

Proof. Let γ ′ ∈ �(M ′). By induction, it holds that γ ′ ∈ �E (σ )(F )(M ′) if, and only if, there are γ ′
0, . . . , γ

′
n ∈ �(M ′)

and e1, . . . , en ∈ F with n ≥ 0, γ ′
0 ∈ �0(M ′), (γ ′

i , γ
′
i+1) ∈ R(M ′)E (σ )(ei+1) for all 0 ≤ i < n, and γ ′ � γ ′

n .
Now, γ ′ ∈ �0(M ′|σ ) if, and only if, γ ′ ∈ �0(M ′); and, if γ ′ ∈ �(M ′|σ ), γ ′′ ∈ �(M ′), and e ∈ E (�), then
(γ ′, γ ′′) ∈ R(M ′|σ )e if, and only if (γ ′, γ ′′) ∈ R(M ′)E (σ )(e). Thus by induction, γ ′ ∈ �F (M ′|σ ) if, and only if, γ ′ ∈
�E (σ )(F )(M ′). �

Finally, the next lemma is formulated for formulæ, possibly involving free variables, in order to be able to
perform induction on the structure of formulæ. The satisfaction condition for sentences stated in the subsequent
corollary is a direct consequence.

Lemma 7 Let σ : � → �′ be an ed signature morphism andM ′ a �′-edts. For all � ∈ F (�), all γ ′ ∈ �(M ′|σ ) ⊆
�(M ′), and all v : X → C (M ′|σ ) ⊆ C (M ′) it holds that

M ′|σ, v , γ ′ |�E↓( �D)
� � ⇐⇒ M ′, v , γ ′ |�E↓( �D)

�′ F (σ )(�) .
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Proof. We apply induction on the structure of �-event/data formulæ. We only consider the cases ϕ, x , ↓x . �,
(@Fx )�, and 〈λ〉�; negation and disjunction are straightforward.
Case ϕ:

M ′|σ, v , γ ′ |�E↓( �D)
� ϕ

⇔ { def. |�E↓( �D) }
ω(M ′|σ )(γ ′) |��D

δ(�) ϕ

⇔ { def. ω(M ′|σ ) }
Str

�D(δ(σ ))(ω(M ′)(γ ′)) |��D
δ(�) ϕ

⇔ { sat. cond. for �D }
ω(M ′)(γ ′) |��D

δ(�′) Sen
�D(δ(σ ))(ϕ)

⇔ { def. |�E↓( �D) }
M ′, v , γ ′ |�E↓( �D)

�′ Sen
�D(δ(σ ))(ϕ)

⇔ { def.F (σ ) }
M ′, v , γ ′ |�E↓( �D)

�′ F (σ )(ϕ)

Case x :
M ′|σ, v , γ ′ |�E↓( �D)

� x

⇔ { def. |�E↓( �D) }
v (x ) � c(M ′|σ )(γ ′)

⇔ { def. |σ }
v (x ) � c(M ′)(γ ′)

⇔ { def. |�E↓( �D) }
M ′, v , γ ′ |�E↓( �D)

�′ x
⇔ { def.F (σ ) }

M ′, v , γ ′ |�E↓( �D)
�′ F (σ )(x )

Case ↓x . �:

M ′|σ, v , γ ′ |�E↓( �D)
� ↓x . �

⇔ { def. |�E↓( �D) }
M ′|σ, v{x �→ c(M ′|σ )(γ ′)}, γ ′ |�E↓( �D)

� �

⇔ { def. c(M ′|σ ) and I.H. }
M ′, v{x �→ c(M ′)(γ ′)}, γ ′ |�E↓( �D)

�′ F (σ )(�)

⇔ { def. |�E↓( �D) }
M ′, v , γ ′ |�E↓( �D)

�′ ↓x .F (σ )(�)
⇔ { def.F (σ ) }

M ′, v , γ ′ |�E↓( �D)
�′ F (σ )(↓x . �)
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Case (@Fx )�:
M ′|σ, v , γ ′ |�E↓( �D)

� (@Fx )�

⇔ { def. |�E↓( �D) }
M ′|σ, v , γ ′′ |�E↓( �D)

� � for all γ ′′ ∈ �F (M ′|σ ) with c(M ′|σ ′)(γ ′′) � v (x )

⇔ { Lem. 6 }
M ′|σ, v , γ ′′ |�E↓( �D)

� � for all γ ′′ ∈ �F (M ′|σ ) � �E (σ )(F )(M ′) with c(M ′|σ )(γ ′′) � v (x )
⇔ { def. c(M ′|σ ) and I.H. }

M ′, v , γ ′′ |�E↓( �D)
�′ F (σ )(�) for all γ ′′ ∈ �E (σ )(F )(M ′) with c(M ′)(γ ′′) � v (x )

⇔ { def. |�E↓( �D) }
M ′, v , γ ′ |�E↓( �D)

�′ (@E (σ )(F )x )F (σ )(�)
⇔ { def.F (σ ) }

M ′, v , γ ′ |�E↓( �D)
�′ F (σ )((@Fx )�)

Case 〈λ〉�:
M ′|σ, v , γ ′ |�E↓( �D)

� 〈λ〉�
⇔ { def. |�E↓( �D) }

M ′|σ, v , γ ′′ |�E↓( �D)
� � for some γ ′′ ∈ �(M ′|σ ) with (γ ′, γ ′′) ∈ R(M ′|σ )λ

⇔ { Lem. 5(2) }
M ′|σ, v , γ ′′ |�E↓( �D)

� � for some γ ′′ ∈ �(M ′|σ ) ⊆ �(M ′) with (γ ′, γ ′′) ∈ R(M ′)�(σ )(λ)

⇔ { I.H. by Lem. 5(2) for “⇐” }
M ′, v , γ ′′ |�E↓( �D)

�′ F (σ )(�) for some γ ′′ ∈ �(M ′) with (γ ′, γ ′′) ∈ R(M ′)�(σ )(λ)

⇔ { def. |�E↓( �D) }
M ′, v , γ ′ |�E↓( �D)

�′ 〈�(σ )(λ)〉F (σ )(�)
⇔ { def.F (σ ) }

M ′, v , γ ′ |�E↓( �D)
�′ F (σ )(〈λ〉�) �

Corollary 1 (Satisfaction condition for E↓( �D)) For any ed signature morphism σ : � → �′ in S
E↓( �D), M ′

∈| StrE↓( �D)(�′)|, and � ∈ SenE
↓( �D)(�),

StrE
↓( �D)(σ )(M ′) |�E↓( �D)

� � ⇐⇒ M ′ |�E↓( �D)
�′ SenE

↓( �D)(σ )(�) .
Proof. By unfolding the definitions we obtain

StrE
↓( �D)(σ )(M ′) |�E↓( �D)

� �

⇔ { def. |�E↓( �D) for sentences, StrE
↓( �D)(σ )(M ′) � M ′|σ }

M ′|σ, v , γ ′
0 |�E↓( �D)

� � for all γ ′
0 ∈ �0(M ′|σ ) � �0(M ′) and some valuation v : X → C (M ′|σ )

⇔ { Lem. 7 }
M ′, v , γ ′

0 |�E↓( �D)
�′ F (σ )(�) for all γ ′

0 ∈ �0(M ′) and some valuation v : X → C (M ′|σ ) ⊆ C (M ′)

⇔ { def. |�E↓( �D) for sentences }
M ′ |�E↓( �D)

�′ SenE
↓( �D)(σ )(�) �

As an immediate consequence we obtain:

Theorem 2 E↓( �D) � (SE
↓( �D), StrE

↓( �D), SenE
↓( �D), |�E↓( �D)) is an institution for each data state institution �D. �
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Example 17 This example illustrates the usefulness of the data state labellingω in the definition of ed structures to
get the satisfaction condition. We work in the institution E↓(Prop∅). Let E � E ′ � {e} and P � {p}, P ′ � {p, q}.
Thus we have two ed signatures � � (E , δP : ∅ → P ) and �′ � (E ′, δP ′ : ∅ → P ′), and an ed signature
morphism σ from � to �′ whose event part is the identity and whose data part is the inclusion. The following
�′-edts M ′ has two configurations being pairs (c, p ∧ q) and (c, p ∧ ¬q) with the same control state c. The data
state p ∧ q represents the function μp∧q with μp∧q(p) � μp∧q(q) � t t and p ∧ ¬q represents the function μp∧¬q
with μp∧¬q(p) � t t and μp∧¬q(q) � f f . The data state labelling ω(M ′) is the identity.

c
p ∧ q

c
p ∧ ¬q

e

The reduct of M ′ along σ is the following �-edtsM ′|σ :
c

p ∧ q

c
p ∧ ¬q

e

M ′|σ has the same configurations asM ′ but the data state labelling ω(M ′|σ ) restricts both data states p ∧ q and
p ∧ ¬q to p, pictorally represented by shadowing q and¬q respectively. Intuitively this means that q is hidden but
the data states of the configurations are still different; only their labellings coincide (i.e.M ′|σ is not extensional).
This has the effect that both edts satisfy the �-sentence 〈e〉true ∧ [e; e]false, i.e.,

M ′ |�E↓(Prop∅)
�′ 〈e〉true ∧ [e; e]false and M ′|σ |�E↓(Prop∅)

� 〈e〉true ∧ [e; e]false .

Without using a data state labelling,M ′|σ would just have a single configuration (c, p) where the event e is either
enabled, leading to a loop, or not. In each case M ′|σ would not satisfy the above sentence but M ′ does. Hence,
the satisfaction condition would be violated. �
Example 18 This example illustrates why the relativisation of the jump operator is needed to get the satisfaction
condition. We work again in the institution E↓(Prop∅). Let E � {e} and E ′ � {e, e′} be two sets of events and
P � P ′ � {p}. Thus we have two ed signatures � � (E , δP : ∅ → P ) and �′ � (E ′, δP ′ : ∅ → P ′) and an ed
signaturemorphism σ from� to�′ whose event part is the inclusion andwhose data part is the identity. Consider
the following extensional �′-edtsM ′ with just one control state c and with configurations (c, p) and (c,¬p):

c
p

c
¬p

e′

e

The σ -reduct ofM ′ has no e′-transition; it is just

c
p

e

Assume that we would use the unrelativised jump operator (@x ) in � � ↓x . (@x )p referring to all configurations
whose control state is bound by x and not only to those reachable by E � {e}. In M ′ this would include the

configuration (c,¬p) which is not reachable inM ′|σ . Thus we haveM ′ �|�E↓(Prop∅)
�′ �, butM ′|σ |�E↓(Prop∅)

� �. Thus
the satisfaction condition would be violated. Using the relativised jump operator (@Ex ) we have, however,

M ′ |�E↓(Prop∅)
�′ ↓x . (@Ex )p and M ′|σ |�E↓(Prop∅)

� ↓x . (@Ex )p . �
Example 19 Continuing Ex. 16, consider again the �1-edts M1 shown in Fig. 1a and its σ0-reduct M0 shown
in Fig. 1b. As shown in Ex. 16, M0 satisfies the sentences (0.1) to (0.3). Hence, by the satisfaction condition
for E↓(Prop∅), M1 satisfies the sentences (0.1) to (0.3) as well (after applying the trivial sentence translation by
inclusion). Conversely, one could also show first thatM1 satisfies the sentences (0.1) to (0.3) and deduce, by using
the satisfaction condition, thatM0 satisfies (0.1) to (0.3). �
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4.6. Institution comorphisms for E↓( �D)

Let ν : D → D′ be an institution comorphism. We know that it can be lifted to an institution comorphism
�ν : �D → �D′ on data state institutions which in turn can be lifted to an institution comorphism �ν2 : 2 �D → 2 �D′ on
2-data state institutions. We can then provide a final lifting into an institution comorphism �ν↓ : E↓( �D) → E↓( �D′)
on event/data institutions as follows:

– For event/data signatures, �νS is applied to the data signature: Define (�ν↓)S(E , δ) � (E , �νS(δ)) and (�ν↓)S(η, ϑ) �
(η, �νS(ϑ)).

– For event/data structures, �νStr is applied to the data labels of configurations: Define (�ν↓)Str� (�′,R′, �′
0, ω

′) �
(�′,R′, �′

0, ω) with ω(γ ′) � �νStr
δ(�)(ω

′(γ ′)) for all γ ′ ∈ �′, and (�ν↓)Str� (h) � h.

– For event/data sentences, �νSen is lifted to event/data actions via �ν�
� : �(�) → �((�ν↓)S(�)) with �ν�

� (e� ψ) � e�
(�ν2)Senδ(�)(ψ) etc., and to event/data formulæ via �νF

� : F (�) → F ((�ν↓)S(�)) with �νF
� (ϕ) � �νSen

δ(�)(ϕ), �νF
� (〈λ〉�) �

〈�ν�
� (λ)〉�νF

� (�), etc., which then defines (�ν↓)Sen� as �νF
� on sentences.

The satisfaction condition is routinely checked by structural induction on E↓( �D)-formulæ.

Example 20 We can lift the institution comorphisms �νb : Prop∅ → Attr��b,Ab
and �ν2

b : 2Prop∅ → 2Attr��b,Ab
for

data state institutions in Ex. 6 and Ex. 8 to an institution comorphism �ν↓b : E↓(Prop∅) → E↓(Attr��b,Ab
) which

changes the underlying data state institution of our event/data logic by moving from propositional logic data
states to attribute-based data states. �

5. Specifications of event/data-based systems

For specifying event/data-based systems in E↓( �D) we consider two specification styles: An axiomatic specification
uses sentences as axioms to express requirements. This textual style is complemented by operational specifications
with a graphical representation. Operational specifications also offer a (syntactic) parallel composition operator.
We show that finitary operational specifications can be axiomatised such that we do not leave E↓( �D)-logic.

5.1. Axiomatic specifications of event/data-based systems

Sentences of any E↓( �D)-logic can be used to specify properties of event/data-based systems and thus to write
system specifications in an axiomatic way.

Definition 10 An axiomatic specification Sp � (�, Ax) in E↓( �D) consists of a signature � ∈| SE↓( �D) | and a set of
axioms Ax ⊆ SenE

↓( �D)(�). We write �(Sp) for � and Ax(Sp) for Ax .
The semantics of Sp is given by the pair (�(Sp),ModE↓( �D)(Sp)) where

ModE↓( �D)(Sp) � {M ∈ StrE
↓( �D)(�(Sp)) | ∀ � ∈ Ax(Sp) .M |�E↓( �D)

�(Sp) �} .

The �(Sp)-edts in ModE↓( �D)(Sp) are called models of Sp and ModE↓( �D)(Sp) is the model class of Sp. �
Example 21 Wecontinuewith theATMexample considered fromEx. 11onward.Nowweprovideafirst axiomatic
specification that will be gradually extended and refined later on in Sect. 6.

Our first specification is Sp0 � (�0, Ax0), where �0 � (E0, δP ) and Ax0 requires the properties (0.1–0.3)
described in Ex. 15. The �0-edts M0 shown in Fig. 1b is a model of Sp0; it satisfies the required axioms as
demonstrated in Ex. 16. �

5.2. Operational specifications

Operational specifications are introduced as ameans to specify in a constructive style the properties of event/data-
based systems.
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Fig. 2. Operational specification AT M

They are not appropriate for writing abstract requirements for which axiomatic specifications should be used.
Though E↓( �D)-logic is able to specify concrete process structures as well, cf. Sect. 4.3, operational specifications
provide a convenient representation of desired behaviours while undesired behaviours are automatically excluded
and need not be explicitly formalised like in the declarative, axiomatic specification style. Operational specifica-
tions allow a graphic representation close to well-known formalisms in the literature, like UML protocol state
machines, cf. [OMG17,KMRG15].Nevertheless, as will be shown in Sect. 5.3, finite operational specifications can
be characterised by a sentence in E↓( �D)-logic. Therefore, E↓( �D)-logic is still the common basis of our development
approach.

Transitions in an operational specification are tuples (c, ϕ, e, ψ, c′) with c a source control state, ϕ a precon-
dition, e an event, ψ a state transition predicate specifying the possible effects of the event e, and c′ a target
control state. In the semantic models an event must be enabled whenever the respective source data state satisfies
the precondition (condition (1) in Def. 11). Thus isolating preconditions has a semantic consequence that is not
expressible by transition predicates only. The effect of the event must respect ψ ; no other transitions are allowed,
i.e., any semantic transition must be justified by a syntactic one (condition (2) in Def. 11).

Definition 11 An operational specification O � (�,C ,T , (c0, ϕ0)) in E↓( �D) is given by a signature � ∈| SE↓( �D) |,
a set of control states C , a transition relation specification T ⊆ C × Sen

�D(δ(�))× E (�)× Sen2
�D(δ(�))× C , an

initial control state c0 ∈ C , and an initial state predicate ϕ0 ∈ Sen
�D(δ(�)), such that C is syntactically reachable,

i.e., for every c ∈ C \ {c0} there are (c0, ϕ1, e1, ψ1, c1), . . . , (cn−1, ϕn , en , ψn , cn ) ∈ T with n > 0 such that
cn � c. We write �(O) for �, etc.

A �-edts M is a model of O if C ⊆ C (M ) up to a bijective renaming, c0(M ) � c0, �0(M ) ⊆ {ω ∈
|Str �D(δ(�))|| ω |��D

δ(�) ϕ0}, and if the following conditions hold for all (c, d ) ∈ �(M ):

1. for all (c, ϕ, e, ψ, c′) ∈ T with ω(M )(d ) |��D
δ(�) ϕ, there is some ((c, d ), (c′, d ′)) ∈ R(M )e with (ω(M )(d ),

ω(M )(d ′)) |�2 �D
δ(�) ψ ;

2. for all ((c, d ), (c′, d ′)) ∈ R(M )e there is some (c, ϕ, e, ψ, c ′) ∈ T with ω(M )(d ) |��D
δ(�) ϕ and (ω(M )(d ),

ω(M )(d ′)) |�2 �D
δ(�) ψ .

The class of all models of O is denoted by ModE↓( �D)(O). The semantics of O is given by the pair
(�(O),ModE↓( �D)(O)) where �(O) � �. �
Example 22 We construct an operational specification ATM for the ATM example using Attr��b,Ab

as data state
institution; see Ex. 5(c). ATM will reappear in Sect. 6 in a refinement chain for the implementation of Sp0. The
ed signature of ATM is �AT M � (E1, ι : �b ↪→ �A) where E1 � {insertCard, enterPIN, ejectCard, cancel}, �b is
the base signature of Attr��b,Ab

, and �A is the attribute signature induced by the set of attributes A � {check :
Bool, trials : Int}. The integer-valued attribute trials is used to count the number of the attempts to enter a correct
PIN (with the same card). Specification ATM is graphically presented in Fig. 2. The initial control state is Card
and the initial state predicate is true. If no precondition is explicitly indicated, it is true. �

Operational specifications can be composed by a syntactic parallel composition operator which synchronises
shared events. Two ed signatures �1 and �2 are composable if δ(�1) : �0 → �1 and δ(�2) : �0 → �2 (for the
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same �0); their parallel composition is given by �1 ⊗ �2 with E (�1 ⊗ �2) � E (�1) ∪ E (�2) and δ(�1 ⊗ �2) :
�0 → �1 +

δ(�1),δ(�2)
�0

�2 defined by the pushout diagram

�1 +
δ(�1),δ(�2)
�0

�2

�1 �2

�0

δ(�1) δ(�2)

δ̂(�1) δ̂(�2)

δ(�1 ⊗ �2)

Let us abbreviate�1 +
δ(�1),δ(�2)
�0

�2 by�. A state predicate ϕi ∈ Sen
�D(δ(�i )) � SenD(�i ) can be considered as

state predicate SenD(δ̂(�i ))(ϕi ) ∈ Sen
�D(δ(�1 ⊗ �2)) � SenD(�) for 1 ≤ i ≤ 2. Using the satisfaction condition

for D it holds that

M |�D
� SenD(δ̂(�i ))(ϕi ) ⇐⇒ StrD(δ̂(�i )) |�D

�i
ϕi .

For a similar construction for transition predicatesψi ∈ Sen2
�D(δ(�i )) we note that by the uniqueness of pushouts

in D up to isomorphism, there are uniquely determined D-signature morphisms

2δ̂(�i ) : �i +
δ(�i )
�0

�i → � +δ(�1⊗�2)
�0

� for 1 ≤ i ≤ 2.

With these morphisms a transition predicate ψi ∈ Sen2
�D(δ(�i )) � SenD(�i +

δ(�i )
�0

�i ) can be considered as

transition predicate SenD(2δ̂(�i ))(ψi ) ∈ Sen2
�D(δ(�1 ⊗�2)) � SenD(�+δ(�1⊗�2)

�0
�) for 1 ≤ i ≤ 2. We abbreviate

SenD(δ̂(�i ))(ϕi ) by ϕ̂i and SenD(2δ̂(�i ))(ψi ) by ψ̂i .
Moreover, let id�(�i ) denote the invariance sentence id(δ(�i ),δ̂(�i )) ∈ Sen2

�D(δ(�1 ⊗ �2)) for 1 ≤ i ≤ 2 which
requires that composite states do not change on the �i part.

Definition 12 LetO1 andO2 be operational specifications such that�(O1) and�(O2) are composable. The parallel
composition of O1 and O2 is given by the operational specification O1 ‖ O2 � (�(O1) ⊗ �(O2),C ,T , (c0, ϕ0))
with c0 � (c0(O1), c0(O2)), ϕ0 � ϕ̂0,1 ∧ ϕ̂0,2 for ϕ0,1 � ϕ0(O1), ϕ0,2 � ϕ0(O2), andC andT are inductively defined
by c0 ∈ C and
– for e1 ∈ E (�1) \ E (�2), c1, c′1 ∈ C (O1), and c2 ∈ C (O2), if (c1, c2) ∈ C and (c1, ϕ1, e1, ψ1, c′1) ∈ T (O1), then
(c′1, c2) ∈ C and ((c1, c2), ϕ̂1, e1, ψ̂1 ∧ id�(�(O2)), (c

′
1, c2)) ∈ T ;

– for e2 ∈ E (�2) \ E (�1), c2, c′2 ∈ C (O2), and c1 ∈ C (O1), if (c1, c2) ∈ C and (c2, ϕ2, e2, ψ2, c′2) ∈ T (O2), then
(c1, c′2) ∈ C and ((c1, c2), ϕ̂2, e2, ψ̂2 ∧ id�(�(O1)), (c1, c

′
2)) ∈ T ;

– for e ∈ E (�1) ∩ E (�2), c1, c′1 ∈ C (O1), and c2, c′2 ∈ C (O2), if (c1, c2) ∈ C , (c1, ϕ1, e, ψ1, c′1) ∈ T (O1), and
(c2, ϕ2, e, ψ2, c′2) ∈ T (O2), then (c′1, c

′
2) ∈ C and ((c1, c2), ϕ̂1 ∧ ϕ̂2, e, ψ̂1 ∧ ψ̂2, (c′1, c

′
2)) ∈ T . �

Note that joint moves with e cannot become inconsistent due to composability of ed signatures. An example
for parallel composition of operational specifications is shown in Fig. 4.

5.3. Expressiveness of E↓( �D)-logic

Weshow that the semantics of an operational specificationO with finitelymany control states can be characterised

by a single E↓( �D)-sentence �O , i.e., an edtsM is amodel ofO iffM |�E↓( �D)
�(O) �O . UsingAlg. 1, such a characterising

sentence is

�O � ↓c0 . ϕ0 ∧ sen(c0, ImO (c0),C (O), {c0}) ,
where c0 � c0(O) and ϕ0 � ϕ0(O). The algorithm follows closely the procedure in [MBHM18] for characterising
a finite structure by a sentence of D↓-logic.
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Algorithm 1 Constructing a sentence from an operational specification
Require: O ≡ finite operational specification

ImO (c) � {(ϕ, e, ψ, c′) | (c, ϕ, e, ψ, c ′) ∈ T (O)} for c ∈ C (O)
ImO (c, e) � {(ϕ,ψ, c′) | (c, ϕ, e, ψ, c ′) ∈ T (O)} for c ∈ C (O), e ∈ E (�(O))

1 function sen(c, I ,V ,B )  c: state, I : image to visit, V : states to visit, B : bound states
2 if I �� ∅ then
3 (ϕ, e, ψ, c′) ← choose I
4 if c ′ ∈ B then
5 return (@c)ϕ → 〈e� ψ〉(c ′ ∧ sen(c, I \ {(ϕ, e, ψ, c′)},V ,B ))
6 else
7 return (@c)ϕ → 〈e� ψ〉(↓c ′ . sen(c, I \ {(ϕ, e, ψ, c′)},V ,B ∪ {c′}))
8 else
9 V ← V \ {c}

10 if V �� ∅ then
11 c ′ ← choose B ∩V
12 return fin(c) ∧ sen(c′, ImO (c ′),V ,B )
13 else
14 return fin(c) ∧ ∧

c1∈C (O),c2∈C (O)\{c1} ¬(@c1)c2
15 function fin(c)
16 return (@c)

∧
e∈E (�(O))

∧
P⊆ImO (c,e)

[e�
( ∧

(ϕ,ψ,c′)∈P (ϕ ∧ ψ)
) ∧ ¬( ∨

(ϕ,ψ,c′)∈ImO (c,e)\P (ϕ ∧ ψ)
)
]
( ∨

(ϕ,ψ,c′)∈P c ′
)

A call sen(c, I ,V ,B ) performs a recursive breadth-first traversal through the operational specification O
starting from c, where I holds the unprocessed quadruples (ϕ, e, ψ, c′) of transitions outgoing from c, V the
remaining states to visit, and B the set of already bound states. The function first requires the existence of each
outgoing transition of I , provided its precondition holds, in the resulting formula, binding any newly reached
state. Then it requires that no other transitions with source state c exist using calls to fin. Having visited all states
in V , it finally adds the requirement that all states in C (O) are pairwise different.

It is fin(c) where this algorithmmainly deviates from [MBHM18]: In order to ensure that no other transitions
from c exist than those specified in O , fin(c) produces the requirement that at state c, for every event e and for
every subset P of the transitions outgoing from c, whenever an e-transition can be done with the combined
effect of P but not adhering to any of the effects of the currently not selected transitions, the e-transition must
have one of the states as its target that are target states of P . The rather complicated formulation is due to
possibly overlapping preconditions where for a single event e the preconditions of two different transitions may
be satisfied simultaneously. For a state c, where all outgoing transitions for the same event have (semantically)
disjoint preconditions, the E↓( �D)-formula returned by fin(c) is equivalent to

(@c)
∧

e∈E (�(O))

∧
(ϕ,ψ,c′)∈ImO (c,e)[e� ϕ ∧ ψ ]c′ ∧

[e� ¬( ∨
(ϕ,ψ,c′)∈ImO (c,e)(ϕ ∧ ψ)

)
]false .

In both cases the actions involve a conjunction of a state predicate ϕ and a transition predicate ψ that indeed
can be combined faithfully using Prop. 1.

Example 23 We show the first few steps of representing the operational specificationATM of Fig. 2 as an E↓( �D)-
sentence �AT M . This top-level sentence is

↓Card . true ∧ sen(Card, {(true, insertCard, check′
� ff ∧ trials′ � 0, PIN )}, {Card, PIN , Return}, {Card}) .

The first call of sen(Card, . . .) explores the single outgoing transition from Card to PIN , adds PIN to the bound
states, and hence expands to

(@Card)true → 〈insertCard� check′ � ff ∧ trials′ � 0〉↓PIN .
sen(Card,∅, {Card,PIN , Return}, {Card,PIN }) .
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Now all outgoing transitions from Card have been explored and the next call of sen(Card,∅, . . .) removes
Card from the set of states to be visited, resulting in

fin(Card) ∧ sen(PIN , {(trials < 2, enterPIN, . . .), (trials � 2, enterPIN, . . .),
(trials ≤ 2, enterPIN, . . .), (true, cancel, . . .)},

{PIN , Return}, {Card,PIN }) .
As there is only a single outgoing transition from Card, the special case of disjoint preconditions applies for the
finalisation call, and

(@Card)[insertCard� check′ � ff ∧ trials′ � 0]PIN ∧
[insertCard� check′ � tt ∨ trials′ �� 0]false ∧
[enterPIN� true]false ∧ [cancel� true]false ∧ [ejectCard� true]false

is the result of fin(Card). �

6. Constructor implementations and refinement in E↓( �D)

The semantics of a specification is loose and allows usually several different models for its realisation. A re-
finement step is therefore understood as a restriction of the model class of an abstract specification. Following
the terminology of Sannella and Tarlecki [ST88, ST12], we will call a specification which refines another one
an implementation. Formally, a specification Sp′ is a simple implementation of a specification Sp over the same
signature, in symbols Sp � Sp′, whenever �(Sp) � �(Sp′) and Mod(Sp) ⊇ Mod(Sp′). This implementation
notion is, however, too simple for many practical applications. It requires the same signature for specification
and implementation and does not support the process of constructing an implementation. Therefore, Sannella
and Tarlecki have proposed the notion of constructor implementation which is a generic notion applicable to
specification formalisms which are based on institutions. We will reuse the ideas in the context of E↓( �D)-logic, of
course staying generic w.r.t. the underlying data institution.

6.1. Constructor implementations

We apply the notion of a constructor implementation [ST88, ST12] to E↓( �D)-logic and extend it to take into
account a change of institutions. For signatures �1, . . . , �n , � ∈| SE↓( �D) |, a constructor κ from (�1, . . . , �n )
to � is a (total) function κ :| StrE

↓( �D)(�1) | × . . .× | StrE
↓( �D)(�n ) |→| StrE

↓( �D)(�) |. Given a constructor κ

from (�1, . . . , �n ) to � and a set of constructors κi from (�1
i , . . . , �

ki
i ) to �i , 1 ≤ i ≤ n, the constructor

(κ1, . . . , κn ); κ from (�1
1, . . . , �

k1
1 , . . . , �1

n , . . . , �kn
n ) to � is obtained by the usual composition of functions.

The following definitions apply to both axiomatic and operational specifications since the semantics of both is
given in terms of ed signatures and model classes of edts. In particular, the implementation notion allows to
implement axiomatic specifications by operational specifications.

Definition 13 Given specifications Sp, Sp1, . . . , Spn and a constructor κ from (�(Sp1), . . . , �(Spn )) to �(Sp),
the tuple 〈Sp1, . . . , Spn 〉 is a constructor implementation via κ of Sp, in symbols Sp �κ 〈Sp1, . . . , Spn 〉, if for all
Mi ∈ ModE↓( �D)(Spi ) we have κ(M1, . . . ,Mn ) ∈ ModE↓( �D)(Sp). The implementation involves a decomposition if
n > 1. �

It may sound strange to call the case n > 1 a decomposition since κ composes structures. But indeed the
idea is to split the implementation of a specification into parts (the decomposition) and then to justify that
the implementation is correct by showing that those parts composed by the n-ary constructor κ satisfy the
requirements of the original specification. In the sequel all constructors apart from parallel composition will
have arity n � 1. The notion of simple implementation is also captured by the above definition if we choose the
identity constructor.

Using an institutional approach in system development has also the advantage that one can work in hetero-
geneous logical environments where several institutions may be used depending on different kinds of properties,
views, and aspects to be expressed by the formalism. This can even be supported by tools, like the heterogeneous
tool set HeTS [MML07]. A particularly relevant case is the change of institution when moving from a higher
abstraction level to a more concrete one. The need for such a change may be motivated by the need of richer ex-
pressiveness when moving towards an implementation. For that purpose we will use institution comorphisms; cf.



Hybrid dynamic logic institutions 1239

Sect. 2. The next definition incorporates institution comorphisms in the definition of constructor implementation.
It is a particular application of the notion of a generalised constructor in [ST12].

Definition 14 Let �ν↓ : E↓( �D) → E↓( �D′) be a lifted comorphism between event/data institutions; see Sect. 4.6.
Given a specification Sp over E↓( �D), specifications Sp1, . . . , Spn over E↓( �D′) and a constructor κ from (�(Sp1),
. . . , �(Spn )) to (�ν↓)S(�(Sp)), the tuple 〈Sp1, . . . , Spn 〉 is a constructor implementation via κ and �ν↓ of Sp, in sym-

bols Sp ��ν↓
κ 〈Sp1, . . . , Spn 〉, if for all M ′

i ∈ ModE↓( �D′)(Spi ) we have (�ν↓)Str�(Sp)(κ(M
′
1, . . . ,M

′
n )) ∈ ModE↓( �D)(Sp).

The implementation involves a decomposition if n > 1. �

We now introduce a set of constructors in the context of E↓( �D)-signatures and edts. The constructors will be
illustrated by a refinement chain of implementation constructions starting with the abstract ATM specification
Sp0 in Ex. 21. The first three specifications are developed in E↓(Prop∅). Then we change the data state institution
and continue with E↓(Attr��b,Ab

). From ATM onwards we use operational specifications:

Sp0 �κσ0
Sp1 � Sp2 ��ν↓b

κσ AT M �κ⊗; κα
〈AT M ′,CC〉 .

6.2. Reduct constructors and institution change

Reduct constructors allow us to move from one signature to another one via a signature morphism σ . The
refinement is correct if the σ -reducts of the models of the more concrete specification are models of the abstract
specification. Depending on the form of σ a variety of implementation constructions can be expressed. If σ is
bijective we obtain a one-to-one renaming; if σ is just injective the target signature is larger and the reduct, going
in the converse direction, hides the added details when constructing abstract models from concrete ones. This
kind of semantic constructions going in the converse direction led to the name “constructor implementation”.

Definition 15 Let σ : � → �′ be an ed signature morphism. The reduct constructor κσ from �′ to � maps
any M ′ ∈| StrE↓( �D)(�′)| to its reduct κσ (M ′) � M ′|σ . Whenever E (σ ) is a bijective function, κσ is an (event)
relabelling constructor; if E (σ ) is injective, κσ is an (event) restriction constructor. �

The following characterisation of implementation correctness for reduct constructors is a direct consequence
of the satisfaction condition of E↓( �D). It shows that for implementing an axiomatic specification Sp via a reduct
constructor it is sufficient to check that the (syntactically translated) axioms of Sp hold in the concrete specifi-
cation.

Theorem 3 Let Sp � (�, Ax) be an axiomatic specification, Sp′ a specification, and κσ from �(Sp′) to � a

reduct constructor via σ : � → �(Sp′). Then, Sp �κσ
Sp′ if, and only if, M ′ |�E↓( �D)

�(Sp′) SenE
↓( �D)(σ )(�) for all

M ′ ∈ ModE↓( �D)(Sp′) and all � ∈ Ax . �
Example 24 Consider the specification Sp0 from Ex. 21. We provide a refinement of this specification by adding
the possibility to cancel an ATM transaction. For this purpose we use a specification Sp1 � (�1, Ax1) with the
ed signature �1 � (E1, δP ) containing the cancel event; cf. Ex. 11. The axioms of Sp1 are the following sentences,
which are similar to the axioms of Sp0 but take into account cancel.

(1.1) “Whenever a card has been inserted, a correct PIN can be entered and also the transaction can be cancelled.”

[EEE ∗
1; insertCard](〈enterPIN� check′〉true ∧ 〈cancel〉true)

(1.2) “Whenever either a correct PIN has been entered or the transaction has been cancelled, the card can be
ejected.”

[EEE ∗
1; (enterPIN� check′) + cancel]〈ejectCard〉true

(1.3) “A card cannot be ejected if it was not inserted before.”

[(−insertCard)∗; ejectCard]false

The �1-edts M1 shown in Fig. 1a is a model of Sp1. To formally justify that specification Sp1 is a correct
implementation of Sp0 we use the reduct constructor κσ0 associated to the ed signature (inclusion) morphism
σ0 : �0 → �1 described in Ex. 11. In fact, κσ0 is an event restriction constructor.
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Fig. 3. A modelM2 of Sp2

To check that Sp0 �κσ0
Sp1 is a constructor implementation it is sufficient, by Thm. 3, to show that for

all M1 ∈ ModE↓(Prop∅)(Sp1) it holds that M1 satisfies the axioms (0.1–0.3) of Sp0. Axiom (0.1) is an obvious
consequence of axiom (1.1) of Sp1 since the latter strengthens (0.1). Similarly, axioms (1.2) and (1.3) of Sp1
strengthen (0.2) and (0.3) respectively. Note that in the axioms of Sp1,EEE1 ranges over all events of �1 and hence
includes cancel. The complex action −insertCard in (1.3) ranges over all events of �1 except insertCard. �
Example 25 In a second refinement step we provide a simple implementation Sp1 � Sp2 such that the specifica-
tion Sp2 � (�1, Ax2) has the same signature as Sp1. The axioms of Sp2 are the sentences (2.1–2.4) below which
have already a constructive flavour. Axioms (2.1) to (2.3) specify that only the desired behaviour should happen.
Axioms (2.3) and (2.4) use binders and state variables from hybrid logic to specify a loop. Axiom (2.4) deals,
additionally to the previous specifications, with the situation when an incorrect PIN has been entered too often.

(2.1) “At the beginning and whenever the control state of the beginning is reached, a card can be inserted with
the effect that check is false, and nothing else is possible.”

↓x0 . (@x0)〈insertCard� ¬check′〉true ∧ [insertCard� check′]false ∧ [−insertCard]false

“Whenever the control state of the beginning is reached” is expressed by the jump operator @x0.
(2.2) “Whenever a card has been inserted, a correct and an incorrect PIN can be entered and also the transaction

can be cancelled; but nothing else.”

[EEE ∗
1; insertCard](〈enterPIN� check′〉true ∧ 〈enterPIN� ¬check′〉true ∧ 〈cancel〉true ∧

[−{enterPIN, cancel}]false)
(2.3) “Whenever either a correct PIN has been entered or the transaction has been cancelled, the card can be

ejected and the ATM starts at the control state from the beginning. Nothing else is possible then.”

↓x0 . [EEE ∗
1; (enterPIN� check′) + cancel](〈ejectCard〉x0 ∧ [ejectCard]x0 ∧ [−ejectCard]false)

(2.4) “Whenever an incorrect PIN has been entered three times in a row the ATM goes back to the initial control
state.” Hence the current card is not ejected; it is kept.

↓x0 . [EEE ∗
1; (enterPIN� ¬check′)3]x0

It can easily be checked that all models of Sp2 must satisfy the axioms (1.1–1.3) of Sp1, i.e., Sp1 � Sp2 holds:
Axiom (1.1) is obviously a consequence of the stronger axiom (2.2). Similarly, (1.2) is a consequence of the
stronger axiom (2.3). Axiom (1.3) is a consequence of (2.1) which requires that the first event is always insertCard.
Note that the �1-edts M1 shown in Fig. 1a is not a model of Sp2 since it does not satisfy (2.4). A model M2 of
Sp2 is shown in Fig. 3. Since Sp1 � Sp2,M2 is also a model of Sp1 and, since Sp0 �κσ0

Sp1 holds, the σ0-reduct
ofM2 is a model of Sp0. This reduct removes fromM2 all cancel transitions, the configuration (Return,¬check),
and its outgoing ejectCard transition. �

During the development process it may turn out that the data state institution at hand is not expressive enough
to model more concrete solutions. In such cases a change of institution is necessary. Then one can continue with
constructors in the new institution as considered in Def. 14. If the constructor is a reduct constructor, the next
theorem, generalising Thm. 3, is helpful to prove implementation correctness with institution change. It is a direct
consequence of the satisfaction conditions of event/data institutions and institution comorphisms.
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Theorem 4 Let �ν↓ : E↓( �D) → E↓( �D′) be a lifted comorphism between event/data institutions E↓( �D) and E↓( �D′).
Let Sp � (�, Ax) be an axiomatic specification over E↓( �D), Sp′ a specification over E↓( �D′), and κσ from �(Sp′)
to (�ν↓)S(�) a reduct constructor via σ : (�ν↓)S(�) → �(Sp′). Then, Sp ��ν↓

κσ
Sp′ if, and only if, M ′ |�E↓( �D′)

�(Sp′)

SenE
↓( �D′)(σ )((�ν↓)Sen� (�)) for all M ′ ∈ ModE↓( �D′)(Sp′) and all � ∈ Ax . �

Example 26 Wecontinue the development of theATMexample.Axiom (2.4) of our last specification Sp2 inEx. 25
has required thatwhenever an incorrect PINhas been entered three times in a row, then theATMmoves back to its
initial control state. In a solution-oriented specification it should therefore be possible to count the number of trials
such that after a third trial with an incorrect PIN the control of the ATM is again at the beginning. Obviously, in
the data institution Prop∅ we are not able to count. Therefore we switch to the data institution Attr��b,Ab

, defined
in Ex. 5(c), where we have assumed that the underlying base signature �b and its algebra interpretation support
integers and thus counting. Hence we come up with the ed signature �ATM � (E1, ι : �b ↪→ �A) constructed
in Ex. 22 and we consider the operational specification ATM in Fig. 2.

We want to show that Sp2 ��ν↓b
κσ ATM holds, i.e., ATM is a constructor implementation of Sp2 via the

institution comorphism �ν↓b : E↓(Prop∅) → E↓(Attr��b,Ab
) changing the data state institution from propositional

logic to attribute-based data states (see Ex. 20) and using the reduct constructor κσ determined by the signature
morphism σ � (1E1 , ϑ) : (�ν↓b )S(�(Sp2)) → �AT M with ϑ being the inclusion of attribute signatures. In detail,
�(Sp2) � �1 � (E1, δP : ∅ → {check}) in Prop∅ and therefore (�ν↓b )S(�(Sp2)) � (E1, ι1 : �b ↪→ �A1 )
where �A1 is the attribute signature induced by A1 � {check : Bool}. The corresponding sentence translation
maps any occurrence of the propositional atom check to the equation check � tt and any occurrence of check′ to
check′ � tt and is extended to E↓(Prop∅)-formulæ inductively; in particular,¬check is translated to¬(check � tt)
and similarly for ¬check′. From this it should be clear how the axioms of Sp2 are translated to Attr��b,Ab

. For
instance, axiom (2.4) is translated to

↓x0 . [EEE ∗
1; (enterPIN� ¬(check′ � tt))3]x0

ByThm.4 it is sufficient to check that the translationsof the axiomsof Sp2 are satisfiedbyallmodels ofATM .Con-
cerning the first axiom (2.1) of Sp2, we can associate the state variable x0 with the control stateCard ofATM . Then
only insertCard�check′ � ff ∧ trials′ � 0 is possible.Hence, insertCard�check′ � ff and thus insertCard�¬(check′ �
tt) is possible, insertCard�check′ � tt is not possible, and also no other event is possible. Thus the translated version
of (2.1) holds in any model of ATM . For axiom (2.2) we observe that whenever a card has been inserted, control
state PIN is reached in ATM . Then only transitions as required by (2.2) are possible in ATM . Concerning (2.3),
after a correct PINhas been entered or if the transaction has been cancelled, control state Return is reached. Then
only ejectCardmoving to the initial control state is possible. Finally, let us consider axiom (2.4) of Sp2. Entering
a PIN is only possible in control state PIN . If three times in a row an incorrect PIN has been entered, inevitably
the initial control state Card is reached again. Thus the translations of all axioms of Sp2 are satisfied byATM .�

A further refinement technique for reactive systems (see, e.g., [GR00]), is the implementation of simple events
by complex events, like their sequential composition. To formalise this as a constructor we use composite events
�(E ) over a given set of events E , given by the grammar θ ::� e | θ + θ | θ ; θ | θ∗ with e ∈ E . For any
(E , δ)-edts M , additionally to the atomic events e ∈ E , the non-atomic events are interpreted by the relations
R(M )θ1+θ2 � R(M )θ1 ∪ R(M )θ2 , R(M )θ1; θ2 � R(M )θ1 ; R(M )θ2 , and R(M )θ∗ � (R(M )θ )∗. Let � � (E , δ) be an
ed signature, D a subset of �(E ) including E ,M a �-edts, and �D � (D, δ). ThenM induces a unique �D -edts
MD whose relations for θ ∈ D are defined on top of M as indicated above.

Definition 16 Let �,�′ be ed signatures, D ′ a subset of �(E (�′)) including E (�′), �′D ′ � (D ′, δ(�′)), and
α : � → �′D ′

an ed-signature morphism. The event refinement constructor κα from �′ to � maps any M ′ ∈
| StrE↓( �D)(�′)| to the reduct of M ′D ′

along α, that is to (M ′D ′
)|α ∈| StrE↓( �D)(�)|. �

The event refinement constructor will be applied in Ex. 28.

6.3. Parallel composition constructor

Finally, we consider a semantic, synchronous parallel composition constructor that allows for decomposition of
implementations into components which synchronise on shared events. The idea is to split the implementation of
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a specification into parts (the decomposition) and then to justify that the implementation is correct by showing
that the parallel, synchronous product of the parts satisfies the requirements of the original specification.

Given two composable ed signatures �1 and �2 (see Sect. 5.2 for the composition of ed signatures), the
parallel composition γ1 ⊗ γ2 of two configurations γ1 � (c1, d1), γ2 � (c2, d2) is given by ((c1, c2), (d1, d2)) of
the pair of control states and the pair of data states, and lifted to two sets of configurations �1 and �2 by
�1 ⊗ �2 � {γ1 ⊗ γ2 | γ1 ∈ �1, γ2 ∈ �2}.
Definition 17 Let �1, �2 be composable ed signatures. The parallel composition constructor κ⊗ from (�1, �2) to
�1 ⊗ �2 maps any M1 ∈| StrE↓( �D)(�1)|, M2 ∈| StrE↓( �D)(�2)| to M1 ⊗M2 � (�,R, �0, ω) ∈| StrE↓( �D)(�1 ⊗ �2)|,
where �0 � �0(M1) ⊗ �0(M2), ω(γ1 ⊗ γ2) � ω(M1)(γ1) ×δ(�1),δ(�2) ω(M2)(γ2), and � and R � (Re )e∈E (�1)∪E (�2)
are inductively defined by �0 ⊆ � and
– for all e1 ∈ E (�1) \ E (�2), γ1, γ

′
1 ∈ �(M1), and γ2 ∈ �(M2), if γ1 ⊗ γ2 ∈ � and (γ1, γ ′

1) ∈ R(M1)e1 , then
γ ′
1 ⊗ γ2 ∈ � and (γ1 ⊗ γ2, γ

′
1 ⊗ γ2) ∈ Re1 ;

– for all e2 ∈ E (�2) \ E (�1), γ2, γ
′
2 ∈ �(M2), and γ1 ∈ �(M1), if γ1 ⊗ γ2 ∈ � and (γ2, γ ′

2) ∈ R(M2)e2 , then
γ1 ⊗ γ ′

2 ∈ � and (γ1 ⊗ γ2, γ1 ⊗ γ ′
2) ∈ Re2 ;

– for all e ∈ E (�1) ∩ E (�2), γ1, γ
′
1 ∈ �(M1), and γ2, γ

′
2 ∈ �(M2), if γ1 ⊗ γ2 ∈ �, (γ1, γ ′

1) ∈ R(M1)e , and
(γ2, γ ′

2) ∈ R(M2)e , then γ ′
1 ⊗ γ ′

2 ∈ � and (γ1 ⊗ γ2, γ
′
1 ⊗ γ ′

2) ∈ Re . �

An obvious question is how the semantic parallel composition constructor is related to the syntactic parallel
composition of operational specifications. The following proposition shows that semantic parallel composition
is included in the semantics of syntactic parallel composition.

Proposition 2 Let O1,O2 be operational specifications with composable signatures. Then

ModE↓( �D)(O1)⊗ModE↓( �D)(O2) ⊆ ModE↓( �D)(O1 ‖ O2) ,

where ModE↓( �D)(O1)⊗ModE↓( �D)(O2) � {M1 ⊗M2 | M1 ∈ ModE↓( �D)(O1), M2 ∈ ModE↓( �D)(O2)}.
Proof. Let Oi � (�i ,Ci ,Ti , (ci,0, ϕi,0)) for i ∈ {1, 2}, � � �1 ⊗ �2, and O � O1 ‖ O2 � (�,C ,T , (c0, ϕ0)).
For an ω ∈ |Str �D(δ(�)) | abbreviate Str

�D(δ̂(�i ))(ω) by ω|�i for i ∈ {1, 2}; for ω1 ∈ |Str �D(δ(�1)) | and ω2 ∈
|Str �D(δ(�2))| abbreviate ω1 ×δ(�1),δ(�2) ω2 by ω1 × ω2. Let Mi ∈ ModE↓( �D)(Oi ) for i ∈ {1, 2} and M � M1 ⊗M2;

we prove thatM ∈ ModE↓( �D)(O).

For the initialisation condition, we have c0(M ) � (c1,0, c2,0) � c0(O1 ‖ O2) and ω1 × ω2 |��D
δ(�) ϕ̂0,1 ∧ ϕ̂0,2 �

ϕ0(O1 ‖ O2) for all ω1 × ω2 ∈ �0(M ) as required.

For condition (1) of Def. 11, let γ � (c1, d1) ⊗ (c2, d2) ∈ �(M ) and ((c1, c2), ϕ, e, ψ, (c′1, c
′
2)) ∈ T (O) with

ω(M )(γ ) |��D
δ(�) ϕ be given.

Case e ∈ E (�1) \ E (�2): Then (c1, ϕ1,e , e, ψ1,e , c′1) ∈ T (O1) with ϕ � ϕ̂1,e , ψ � ψ̂1,e ∧ id�(�2), and it holds

that (ω(M )(γ ))|�1 |��D
�(�1) ϕ1,e . As M1 ∈ ModE↓( �D)(O1) and (c1, d1) ∈ �(M1), there is a ((c1, d1), (c′1, d

′
1)) ∈

R(M1)e such that (ω(M1)(d1), ω(M1)(d ′
1)) |�2 �D

δ(�1) ψ1,e . Let γ ′ � (c ′1, d
′
1)⊗ (c2, d2); then it holds that ω(M )(γ ′) �

ω(M1)(d ′
1)× ω(M2)(d2) and (ω(M )(γ ), ω(M )(γ ′)) |�2 �D

δ(�) ψ . Then (γ, γ ′) ∈ R(M )e , since γ ∈ �(M ).

Case e ∈ E (�2) \ E (�1): Symmetric to e ∈ E (�1) \ E (�2).

Case e ∈ E (�1)∩E (�2): Then (c1, ϕ1,e , e, ψ1,e , c′1) ∈ T (O1), (c2, ϕ2,e , e, ψ2,e , c′2) ∈ T (O2) with ϕ � ϕ̂1,e ∧ ϕ̂2,e ,

ψ � ψ̂1,e ∧ ψ̂2,e , and ω(M )(γ )|�1 |��D
δ(�1) ϕ1,e , ω(M )(γ )|�2 |��D

δ(�2) ϕ2,e . SinceMi ∈ ModE↓( �D)(Oi ) and (ci , di ) ∈
�(Mi ), there are ((ci , di ), (c ′i , d

′
i )) ∈ R(Mi )e such that (ω(Mi )(di ), ω(Mi )(d ′

i )) |�2 �D
δ(�i ) ψi,e for i ∈ {1, 2}. Let

γ ′ � (c′1, d
′
1)⊗ (c ′2, d

′
2); then it holds that ω(M )(γ ′) � ω(M1)(d ′

1)×ω(M2)(d ′
2) and (ω(M )(γ ), ω(M )(γ ′)) |�2 �D

δ(�) ψ .
Then (γ, γ ′) ∈ R(M )e since γ ∈ �(M ).

For condition (2) of Def. 11, we now show that for all e ∈ E (�) and ((c1, d1)⊗ (c2, d2), (c ′1, d
′
1)⊗ (c ′2, d

′
2)) ∈

R(M )e there is some ((c1, c2), ϕ, e, ψ, (c ′1, c
′
2)) ∈ T (O) such that ω(M )(d1, d2) |��D

δ(�) ϕ and (ω(M )(d1, d2),
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ω(M )(d ′
1, d

′
2)) |�2 �D

δ(�) ψ by induction over the reachability of�(M ): Let (c1, d1)⊗(c2, d2) ∈ �(M ) with ((c1,i , d1,i )⊗
(c2,i , d2,i ), (c1,i+1, d1,i+1) ⊗ (c2,i+1, d2,i+1)) ∈ R(M )ei+1 such that there are ((c1,i , c2,i ), ϕi+1, ei+1, ψi+1, (c1,i+1,
c2,i+1)) ∈ T (O) satisfying ω(M )(d1,i , d2,i ) |��D

δ(�) ϕi and (ω(M )(d1,i , d2,i ), ω(M )(d1,i+1, d2,i+1)) |�2 �D
δ(�) ψi+1

for 0 ≤ i < n, (c1,0, d1,0) ⊗ (c2,0, d2,0) ∈ �0(M ), and (c1,n , d1,n ) ⊗ (c2,n , d2,n ) � (c1, d1) ⊗ (c2, d2). Let
((c1, d1)⊗ (c2, d2), (c ′1, d

′
1)⊗ (c ′2, d

′
2)) ∈ R(M )e .

Case e ∈ E (�1) \ E (�2): Then ((c1, d1), (c′1, d
′
1)) ∈ R(M1)e and c ′2 � c2, d ′

2 � d2. Since M1 ∈ ModE↓( �D)(O1),
there is some (c1, ϕ1, e, ψ1, c′1) ∈ T (O1) such that (ω(M )(d1, d2))|�1 |��D

δ(�1) ϕ1 and also ((ω(M )(d1, d2))|�1,

(ω(M )(d ′
1, d

′
2))|�1) |�2 �D

δ(�1) ψ1. By induction hypothesis, (c1, c2) ∈ C (O) and hence ((c1, c2), ϕ̂1, e, ψ̂1 ∧ id�(�2),

(c′1, c2)) ∈ T (O), where ω(M )(d1, d2) |��D
δ(�) ϕ̂1 and (ω(M )(d1, d2), ω(M )(d ′

1, d
′
2) |�2 �D

δ(�) ψ̂1 ∧ id�(�2).

Case e ∈ E (�2) \ E (�1): Symmetric to e ∈ E (�1) \ E (�2).
Case e ∈ E (�1) ∩ E (�2): Then ((c1, d1), (c ′1, d

′
1)) ∈ R(M1)e and ((c2, d2), (c ′2, d

′
2)) ∈ R(M2)e . Since Mi ∈

ModE↓( �D)(Oi ), there are some (ci , ϕi , e, ψi , c′i ) ∈ T (Oi ) such that (ω(M )(d1, d2))|�i |��D
δ(�i ) ϕi holds and also

((ω(M )(d1, d2))|�i , ω(M )(d ′
1, d

′
2))|�i ) |�2 �D

δ(�i ) ψi for i ∈ {1, 2}. By induction hypothesis, (c1, c2) ∈ C (O) and

hence ((c1, c2), ϕ̂1 ∧ ϕ̂2, e, ψ̂1 ∧ ψ̂2, (c′1, c
′
2)) ∈ T (O), where ω(M )(d1, d2) |��D

δ(�) ϕ̂1 ∧ ϕ̂2 and (ω(M )(d1, d2),

ω(M )(d ′
1, d

′
2)) |�2 �D

δ(�) ψ̂1 ∧ ψ̂2. �

Example 27 The converse of Prop. 2, i.e., ModE↓( �D)(O1 ‖ O2) ⊆ ModE↓( �D)(O1)⊗ModE↓( �D)(O2), does, in general,
not hold: Consider the ed signature � � (E , ι) in E↓(Attr��b,Ab

) with E � {e}, and ι representing the empty
set of attributes. Consider also the operational specifications Oi � (�,Ci ,Ti , (ci,0, ϕi,0)) for i ∈ {1, 2} with
C1 � {c1,0}, T1 � {(c1,0, true, e, false, c1,0)}, ϕ1,0 � true; and C2 � {c2,0}, T2 � ∅, ϕ2,0 � true. Obviously,

ModE↓( �D)(O1) � ∅ since there is a transition in T1 with precondition true and transition predicate false which
is not satisfiable. Therefore, ModE↓( �D)(O1) ⊗ModE↓( �D)(O2) � ∅. On the other hand, ModE↓( �D)(O2) has a single
model showing just the initial configuration w.r.t. O2 but no transition. By definition of the syntactic parallel
composition of operational specifications,O1 ‖ O2 has no transition sinceT2 � ∅ and the only event is the shared
event e. Therefore, ModE↓( �D)(O1 ‖ O2) � {M } withM showing just the initial configuration w.r.t. O1 ‖ O2. �

The next theorem shows the usefulness of the syntactic parallel composition operator for proving imple-
mentation correctness when a (semantic) parallel composition constructor is involved. The theorem is a direct
consequence of Prop. 2 and Def. 13.

Theorem 5 Let Sp be an (axiomatic or operational) specification,O1,O2 operational specificationswith composable
signatures, and κ an implementation constructor from �(O1)⊗�(O2) to �(Sp): If Sp �κ O1 ‖ O2, then Sp �κ⊗; κ

〈O1,O2〉.
Proof. Let Sp �κ O1 ‖ O2 hold, i.e., κ(M ) ∈ ModE↓( �D)(Sp) for all M ∈ ModE↓( �D)(O1 ‖ O2). Let M1 ∈
ModE↓( �D)(O1) andM2 ∈ ModE↓( �D)(O2). Then κ⊗(M1,M2) � M1⊗M2 ∈ ModE↓( �D)(O1 ‖ O2) by Prop. 2, and there-
fore κ(κ⊗(M1,M2)) ∈ ModE↓( �D)(Sp). Thus Sp �κ⊗; κ 〈O1,O2〉. �
Example 28 We finish the refinement chain for the ATM specifications by applying a decomposition into two
parallel components. The operational specificationATM of Fig. 2 (and Ex. 26) describes the interface behaviour
of an ATM interacting with a user. For a concrete realisation, however, an ATM will also interact internally
with other components, like, e.g., a clearing company which supports the ATM for verifying PINs. Our last
refinement step hence realises the specificationATM by two parallel components, represented by the operational
specification ATM ′ in Fig. 4a and the operational specification CC of a clearing company in Fig. 4b. Models of
both specifications communicate (via shared events) when amodel ofATM ′ sends a verification request verifyPIN
to a model of CC . The clearing company model can answer with correctPIN or wrongPIN and then the ATM ′-
model continues following its specification. For the implementation construction we use the parallel composition
constructor
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Fig. 4. Operational specifications ATM ′, CC and their parallel composition

κ⊗ from (�(AT M ′), �(CC)) to �(AT M ′)⊗ �(CC)

which synchronises the models of ATM ′ and CC on shared events. The signature of CC consists of the events
shown on the transitions in Fig. 4b. Moreover, there is one integer-valued attribute count counting the number of
verification tasks performed. The signature of ATM ′ extends �(ATM ) by the events verifyPIN, correctPIN and
wrongPIN. The ed signature �(ATM ′)⊗ �(CC) is therefore (Ê , ι̂ : �b ↪→ �Â) with

Ê � {insertCard, enterPIN, ejectCard, cancel, verifyPIN, correctPIN,wrongPIN}
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and �Â is the attribute signature induced by the set of attributes Â � {check : Bool, trials : Int, count : Int}.
So far, we can apply κ⊗ to any modelsM1 ∈ ModE↓(Attr��b ,Ab

)(ATM ′) andM2 ∈ ModE↓(Attr��b ,Ab
)(CC) obtaining

the (Ê , ι̂)-edtsM1 ⊗M2. Our final goal is, however, to get an implementation of the specification ATM . For this
purpose we compose κ⊗ with an event refinement constructor (cf. Def. 16)

κα from �(AT M ′)⊗ �(CC) to �(AT M) .

We consider α : �(AT M) → (�(ATM ′)⊗�(CC))D , θ � enterPIN; verifyPIN; (correctPIN+wrongPIN) and
D � Ê ∪ {θ}. The event part of α maps enterPIN to θ ; for the other events α is the identity and for the attributes
the inclusion. Finally, we have to prove the refinement relation

ATM �κ⊗; κα
〈ATM′,CC〉 .

For doing this, we rely on the syntactic parallel composition ATM ′ ‖ CC shown in Fig. 4c, and on Thm. 5. It is
easy to see that AT M �κα

ATM ′ ‖ CC . In fact, all transitions for event enterPIN in Fig. 2 are split into several
transitions in Fig. 4c according to the event refinement defined by α. For instance, the loop transition from PIN
toPIN with precondition trials < 2 in Fig. 2 is split into the cycle from (PIN , I dle) via (P I N Entered, I dle) and
(Veri f ying, Busy) back to (PIN , I dle) in Fig. 4c. Thus, we have ATM �κα

ATM ′ ‖ CC and can apply Thm. 5
such that we get AT M �κ⊗; κα

〈ATM ′,CC〉.
Let us note again that we have implemented a small, prototypical tool that allows to check E↓( �D)-formulæ on

finite-state edts and the refinement of finite-state operational specifications using constructor implementations
such that this running example can be reproduced. �

We conclude this section by showing that the condition in Theorem 5 relying on Prop. 2 is even necessary
under some additional assumptions. First, for the converse of Prop. 2 to hold we have to consider well-formed
operational specifications O1 and O2 only: An operational specification O with signature � is well-formed, if for
all its transitions (c, ϕ, e, ψ, c′) and all ω ∈ |Str �D(δ(�))| the following holds: If ω |��D

δ(�) ϕ, then there exists an

ω′ ∈ |Str �D(δ(�))| such that (ω,ω′) |�2 �D
δ(�) ψ . Note that the counterexample Ex. 27 to the converse inclusion of

Prop. 2 indeed involves an operational specification, namely O1, that is not well-formed. Second, we restrict the
model class ofO1 ‖ O2 to extensional models since only an extensional model of the parallel composition of two
(well-formed) operational specifications can be split into models of the single operational specifications. Finally,
an isomorphism, i.e., a structure morphism which is bijective on the configurations, has to be allowed for:

Proposition 3 Let O1 and O2 be well-formed operational specifications with composable signatures. Let M ∈
ModE↓( �D)(O1 ‖ O2) be extensional. Then there is anM1 ⊗M2 ∈ ModE↓( �D)(O1)⊗ModE↓( �D)(O2) such thatM and
M1 ⊗M2 are isomorphic.

Proof. Let Oi � (�i ,Ci ,Ti , (ci,0, ϕi,0)) for i ∈ {1, 2}, � � �1 ⊗�2, and O � O1 ‖ O2 � (�,C ,T , (c0, ϕ)); for
ω1 ∈ |Str �D(δ(�1))| and ω2 ∈ |Str �D(δ(�2))| abbreviate ω1 ×δ(�1),δ(�2) ω2 by ω1 × ω2.

Let M ∈ ModE↓( �D)(O) be extensional, such that data states and data labels are identified. For a γ �
((c1, c2), ω1 × ω2) ∈ �(M ) define πi (γ ) � (ci , ωi ) for i ∈ {1, 2}. Define the �i -edts Mi � (�i ,Ri , �i,0) with
�i � {πi (γ ) | γ ∈ �(M )}, Ri,ei � {(πi (γ ), πi (γ ′)) | (γ, γ ′) ∈ R(M )ei } for ei ∈ E (�i ), and �i,0 � {πi (γ0) |
γ0 ∈ �0(M )}. Then M1 ⊗M2

∼� M : It is �0(M1 ⊗M2) ∼� �0(M ) by definition; for each e ∈ E (�) the inclusion
R(M1⊗M2)e ⊆ R(M )e up to isomorphism follows by induction on the syntactic reachability ofO1 ‖ O2 and the
reverse inclusion R(M )e ⊆ R(M1 ⊗M2)e up to isomorphism by induction on the reachability of M and using
the extensionality of M . However, Mi �∈ ModE↓( �D)(Oi ) for i ∈ {1, 2}, in general, as there may be a configuration
((c1, c2), ω1 × ω2) ∈ �(M ) with a transition (c1, ϕ1, e, ψ1, c′1) ∈ T (O1) for a shared e ∈ E (�1)∩E (�2) such that
ω1 |��D

δ(�1) ϕ1 but no transition (c2, ϕ2, e, ψ2, c′2) ∈ T (O2) with ω2 |��D
δ(�2) ϕ2, and, similarly, with 1 and 2 switched

(by contrast, transitions of O1 or O2 for non-shared events always have a counterpart in M1 orM2).
For reconstructing these “lost” transitions define their set as

Ii,e ((c1, c2), ω1 × ω2) � {(ci , ϕi , e, ψi , c′i ) ∈ T (Oi ) | ωi |��D
δ(�i ) ϕi ∧

∀(c3−i , ϕ3−i , e, ψ3−i , c′3−i ) ∈ T (O3−i ) . ω3−i �|� �D
δ(�3−i ) ϕ3−i }
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for all ((c1, c2), ω1 × ω2) ∈ �(M ), e ∈ E (�1) ∩ E (�2), and i ∈ {1, 2}. Also define semantic counterparts by

K (1)
i,e � {((ci , ωi ), (c ′i , ω

′
i )) | ∃ γ ∈ �(M ), (ci , ϕi , ei , ψi , c′i ) ∈ Ii,e (γ ) . πi (γ ) � (ci , ωi ) ∧ (ωi , ω

′
i ) |�2 �D

δ(�i ) ψi }
for all e ∈ E (�1)∩E (�2) and i ∈ {1, 2}; these semantic counterparts are bound to be non-empty due to the well-
formedness of Oi . Define the �i -edts M

(1)
i � (�(1)

i ,R(1)
i , �

(1)
i,0) with R(1)

i,e � Ri,e for e ∈ E (�) \ (E (�1) ∩ E (�2))

and R(1)
i,e � Ri,e ∪ K (1)

i,e for e ∈ E (�1) ∩ E (�2), and �
(1)
i � �i ∪ {γ ′

i | (γi , γ ′
i ) ∈

⋃
ei∈E (�i ) R

(1)
ei
} and �

(1)
i,0 �

�i,0. Again it holds that M (1)
1 ⊗ M (1)

2
∼� M as the added semantic relations do not contribute to the parallel

composition. However, still M (1)
i �∈ ModE↓( �D)(Oi ) for i ∈ {1, 2}, in general, as there may be a configuration

(ci , ωi ) ∈ �(M (1)
i )\�(Mi ) with a transition (ci , ϕi , ei , ψi , c′i ) ∈ T (Oi ) for some ei ∈ E (�i ) such thatωi |��D

δ(�i ) ϕi

but no ((ci , ωi ), (c′i , ω
′
i )) ∈ R(M (1)

i )ei ; again by the well-formedness of Oi such a successor (c′i , ω
′
i ) must exist.

For adding these missing relations let M (0)
i � Mi for i ∈ {1, 2} and define recursively

K (n+1)
i,ei

� {((ci , ωi ), (c′i , ω
′
i )) | (ci , ωi ) ∈ �(M (n)) \ �(M (n−1)) ∧

∃(ci , ϕi , ei , ψi , c′i ) ∈ T (Oi ) . ωi |��D
δ(�i ) ϕi ∧ (ωi , ω

′
i ) |�2 �D

δ(�i ) ψi }
R(n+1)

i,ei
� R(n)

i,ei
∪K (n+1)

i,ei

M (n+1)
i � (�(M (n)

i ) ∪ {γ ′
i | (γi , γ ′

i ) ∈
⋃

ei∈E (�i ) R
(n+1)
i,ei

},R(n+1)
i , �i,0)

for all ei ∈ E (�i ), i ∈ {1, 2}, and n ≥ 1. As the added semantic relations again do not contribute to the parallel
composition it holds thatM (n)

1 ⊗M (n)
2

∼� M for all n ≥ 0. Finally, forM∞
i � (

⋃
0≤n �(M (n)

i ),
⋃

0≤n R(M (n)
i ), �i,0)

for i ∈ {1, 2} it holds that bothM∞
1 ⊗M∞

2
∼� M and Mi ∈ ModE↓( �D)(Oi ) for i ∈ {1, 2}. �

7. Conclusions
We have presented a novel logic, called E↓( �D)-logic, for the rigorous formal development of event-based systems
incorporating changing data states. This logic is formalised as a generic institution which can be instantiated
by underlying data state institutions �D. Due to its genericity, E↓( �D) is applicable for different data models and
supports migration from one data state institution to another one during system development. The parametric
approach of E↓( �D) follows the lines of previous approaches for tailoring logics to specific formalisms describing
properties of dynamic systems [FG92, DS07, MMDB11]; see Sect. 1 for the relationship to E↓( �D). Our approach
supports the full development process for event/data-based systems ranging from abstract requirements specifi-
cations, expressible by the dynamic logic features, to constructive specifications of implementations, expressible
by the hybrid part of the logic.

The temporal logic of actions (TLA [Lam03]) supports also stepwise refinement where state transition pred-
icates are considered as actions. In contrast to TLA we model also the events which cause data state transitions.
For writing concrete specifications we have proposed an operational specification format capturing (at least
parts of) similar formalisms, like Event-B [Abr13], symbolic transition systems [PR06], and UML protocol state
machines [OMG17]. A significant difference to Event-B machines is that we distinguish between control and
data states, the former being encoded as data in Event-B. An institution-based semantics of Event-B has been
proposed in [FMP17] which coincides with our semantics of operational specifications for the special case of de-
terministic data state transition predicates. Similarly, our semantics of operational specifications coincides with
the unfolding of symbolic transition systems in [PR06] if we instantiate our generic data domain with algebraic
specifications of data types (and consider again only deterministic transition predicates). The syntax of UML
protocol state machines is about the same as the one of operational event/data specifications. As a consequence,
all of the aforementioned concrete specification formalisms (and several others) would be appropriate candidates
for integration into a development process based on E↓( �D)-logic.

There remain several interesting tasks for future research. First, our events do not support parameters which
is obviously desired in an extension of current E↓( �D). Of course, the parameters must also be formalised on an
institution-independent level. Secondly, we believe that the investigation of the 2-data state institution provides
an interesting basis for a (generic) formalisation of pre/post-condition specification styles like OCL [OMG14]. It
would also be interesting to work out a formal relationship between our 2-data state approach and the hybridisa-
tion process in [DM16] using rigidity constraints. Another issue concerns the separation of events into inputs and
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outputs as in I/O-automata [Lyn03]. Then also communication compatibility, see [dAH01] for interface automata
without and [MCM09] with data, as well as [MCM09, BHW11] for interface theories with data, would become
relevant when applying the parallel composition constructor. E↓( �D)-logic is not equipped with a proof system
for deriving consequences of specifications which is a working package for its own. This would also support the
proof of refinement steps which is currently achieved by purely semantic reasoning. A proof system for E↓( �D)-
logic must cover dynamic and hybrid logic parts at the same time, like the proof system in [MBHM18], which,
however, does not consider data states, and the recent calculus of [BP18], which extends differential dynamic
logic but does not handle events and reactions to events. Both proof systems could be appropriate candidates for
incorporating the features of E↓( �D)-logic. On the other hand, what concerns operational specifications we have
already implemented a tool for the verification of refinements supporting our constructors for implementations;
see the reference in Sect. 1. An integration into HeTS would allow for a combination of E↓( �D) with other provers
and heterogeneous institutions.
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