
https://doi.org/10.1007/s00165-021-00537-4
The Author(s) © 2021
Formal Aspects of Computing (2021) 33: 855–884

Formal Aspects
of Computing

Integration of formal proof into unified
assurance cases with Isabelle/SACM
Simon Foster , Yakoub Nemouchi, Mario Gleirscher, Ran Wei, and Tim Kelly
Department of Computer Science, University of York, United Kingdom

Abstract. Assurance cases are often required to certify critical systems. The use of formal methods in assur-
ance can improve automation, increase confidence, and overcome errant reasoning. However, assurance cases
can never be fully formalised, as the use of formal methods is contingent on models that are validated by
informal processes. Consequently, assurance techniques should support both formal and informal artifacts,
with explicated inferential links between them. In this paper, we contribute a formal machine-checked in-
teractive language, called Isabelle/SACM, supporting the computer-assisted construction of assurance cases
compliant with the OMG Structured Assurance Case Meta-Model. The use of Isabelle/SACM guarantees
well-formedness, consistency, and traceability of assurance cases, and allows a tight integration of formal
and informal evidence of various provenance. In particular, Isabelle brings a diverse range of automated
verification techniques that can provide evidence. To validate our approach, we present a substantial case
study based on the Tokeneer secure entry system benchmark. We embed its functional specification into
Isabelle, verify its security requirements, and form a modular security case in Isabelle/SACM that combines
the heterogeneous artifacts. We thus show that Isabelle is a suitable platform for critical systems assurance.

Keywords: Assurance cases; Integrated formal methods; Proof assistants; Safety cases; Common criteria

1. Introduction

Assurance cases (ACs) are structured arguments, supported by evidence, intended to demonstrate that a
system meets its requirements, such as safety or security, when applied in a particular operational con-
text [WKD+19, Kel98]. They are recommended by several international standards, such as ISO 26262 for
automotive applications. An AC consists of a hierarchical decomposition of claims, through appropriate ar-
gumentation strategies, into further claims, and eventually supporting evidence. Several AC notations exist,
including the Goal Structuring Notation (GSN) [Kel98], Claims, Arguments, and Evidence (CAE) [BB98],
and the Structured Assurance Case Metamodel (SACM) [Obj20, WKD+19]. These notations support the
management of complex ACs via their hierarchical decomposition and modular representation [GC17].

Correspondence to: Simon Foster, simon.foster@york.ac.uk.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00165-021-00537-4&domain=pdf
http://orcid.org/0000-0002-9889-9514
mailto:simon.foster@york.ac.uk

856 S. Foster et al.

Fig. 1. Overview of our approach to integrative model-based assurance cases

AC creation can be supported by model-based design, which utilises a variety of models for argumentation,
system architecture and behaviour, and a variety of other assurance artifacts [HHK+15, DMW+18, WKD+19].
The use of models can improve the systems assurance process by allowing the consequences of design decisions
to be explored early on, and the justifications recorded in the AC argument. In particular, the SACM
standard supports structured model-based assurance cases [WKD+19] with argumentation and evidence
traceability, and several advanced features like patterns [DP13] and modularity [DP15]. However, structured
ACs can suffer from ambiguity, logical fallacies, and inadequate evidence, which can compromise confidence
in assurance claims [GKHP06, DP15, DMW+18]. Moreover, ACs can be difficult to maintain and update in
the presence of evolving requirements [GFN19]. There is therefore a need for tools that can automate AC
creation and evolution, whilst maintaining the integrity of the arguments and evidence.

A proposed approach to improve confidence in ACs is their formalisation in a machine-checked logic to
enable verification of consistency and well-formedness [Rus13, Rus14]. Moreover, as confirmed by the avionics
standard DO-178C and its supplement DO-333, the evidence gathering process can also benefit from the
rigour of Formal Methods (FMs) [J+11]. It is clear that there are significant benefits to the use of formality
in systems assurance [DMW+18]. At the same time, we observe that (1) ACs are intended primarily to
convince humans (particularly non-experts) of their claims; and (2) formal models must be validated using
informal processes [HK14] (particularly by domain experts). Consequently, ACs usually combine informal
and formal content, and so tools must support this combination. Moreover, there is a need to integrate several
FMs [Pai97], potentially with differing computational paradigms and levels of abstraction [HH98]. Therefore
we maintain traceability across these heterogeneous artifacts using FM integration [GFW19], which goes
beyond shallow hyperlinking of engineering data.
Vision Our vision, illustrated in Fig. 1, is a unified framework for machine-checked ACs with heteroge-
neous artifacts and integrated FMs. We envisage an assurance backend for a variety of graphical assurance
tools [DP18, WKD+19] that utilise SACM [Obj20] as a unified interchange format, and an array of FM
tools provided by the Isabelle proof assistant [NPW02, WW07] and our unified verification platform, Is-
abelle/UTP [FBC+20, FZN+19]. Our framework aims to improve existing processes by harnessing formal
verification to produce mathematically grounded ACs with guarantees of consistency and adequacy of the
evidence, whilst supporting human readable justifications accessible by non-experts. In the context of safety
regulation in domains such as intelligent transportation, critical infrastructure, human-robot collaboration,
or medical devices, our framework can aid AC evaluation through machine-checking with automated verifi-
cation [BW19b, FNO+20].
Contributions A first step towards our vision is made by the contributions of this paper, which are: (1)
Isabelle/SACM, an implementation of SACM in Isabelle; (2) an interactive DSL for machine-checked ACs
based on Isabelle/SACM; (3) a novel mechanisation of the Tokeneer benchmark [BCJ+06] in Isabelle/UTP,
which serves as a case study for our approach; (4) formal verification of the Tokeneer security requirements1;
and (5) a modular assurance case capturing the lifecycle artifacts and claims that Tokeneer meets its security
requirements. Our Tokeneer assurance case demonstrates how one can integrate formal artifacts, resulting
from the work with Isabelle/UTP (4), and informal artifacts, such as the Tokeneer documentation.

Isabelle [NPW02] provides a sophisticated executable document model for presenting a graph of hy-
perlinked formal artifacts, such as definitions, theorems, and proofs [Wen19]. It provides automatic and

1Supporting materials, including Isabelle theories, can be found on our website.

http://www.cs.york.ac.uk/~simonf/FAOC2020

Integration of formal proof into unified assurance cases with Isabelle/SACM 857

incremental consistency checking, where updates to artifacts trigger rechecking. Such capabilities can sup-
port efficient maintenance and evolution of model-based ACs [WKD+19]. Moreover, the document model
allows both formal and informal content [Wen18], and provides access to an array of automated proof
tools [WW07, Wen18]. Additionally, Brucker et al. [BACW18, BW19a, BW19b] have recently created Is-
abelle/DOF, a framework with a textual language for the embedding of ontologies into Isabelle. DOF allows
the embedding of structured informal content into an Isabelle document, such as documentation and justi-
fication, which we harness to support SACM. These facilities make Isabelle an attractive platform both for
assurance cases and integration of formal methods, for which our work serves as a proof-of-concept.

Isabelle/UTP [FBC+20] employs Unifying Theories of Programming [HH98] (UTP) to provide formal
verification facilities for a variety of languages, with paradigms as diverse as concurrency [FCC+19], real-
time [FCWZ18], and hybrid computation [FTCW16, MSF20]. Moreover, verification techniques such as
Hoare logic, weakest precondition calculus, and refinement calculus are all available through a variety of
proof tactics. This makes Isabelle/UTP an obvious choice for modelling and verification of Tokeneer, and
more generally as a platform for integrated FMs based on unifying formal semantics.

We believe our novel mechanisation of the Tokeneer functional specification in Isabelle/UTP is one of
the most complete to date, with respect to the original benchmark [C+08a]. The model includes 60 state
variables, 38 top-level operations for user entry, admin, and enrolment procedures, 30 invariants, and several
hundred discharged invariant proof obligations. Where possible, we are faithful to the benchmark, using the
same names and structure for the system model. With our mechanisation we are able to formally verify three
security requirements that could only be argued semi-formally in the original [C+08b]. Our work therefore
demonstrates how automated proof tools have advanced over the past fifteen years. We also highlight a few
invariants missing from the original formal specification, without which we could not verify Tokeneer.

This paper is an extension of a previous conference paper [FNGK19]. We develop a more elaborate
modular assurance case for Tokeneer (§ 3 and § 6), further develop our IAL (§ 4), and formalise the Admin
operations in the Tokeneer formal model and verify two additional security properties (§ 5). We also pro-
vide further implementation details and examples throughout, and in particular describe our strategy for
converting the Tokeneer Z schemas into Isabelle/UTP.

Our paper is organised as follows. In § 2, we outline preliminaries: SACM, Isabelle, DOF, and Is-
abelle/UTP. In § 3 we describe the Tokeneer system. In § 4, we begin our contributions by describing
Isabelle/SACM, which consists of the embedding of SACM into DOF (§ 4.1), and IAL (§ 4.2). In § 5, we
model and verify Tokeneer in Isabelle/UTP. In § 6, we describe the mechanisation of the Tokeneer AC in
the ACME graphical assurance case tool and Isabelle/SACM. In § 7, we indicate relationships to previous
research. After reflecting on our approach in § 8, we conclude in § 9.

2. Preliminaries

In this section, we provide background material on ACs, the SACM standard, the Isabelle components, and
Isabelle/UTP. These are all required to follow our investigations in § 4, § 5, and § 6.

2.1. Assurance cases and SACM

Assurance cases are often presented using a graphical notation like GSN [Kel98], as shown in Fig. 2. In
GSN, claims (called “goals”) are rectangles, which are linked with “supported-by” arrows, strategies are
parallelograms, and the circles are evidence (“solutions”). The other shapes denote various types of context,
which are linked to by the “in-context-of” arrows. An argument in GSN proceeds from the most abstract claim
down, through argumentation strategies and further subclaims, until the claims can be directly supported by
evidence. GSN also has a modular extension, where arguments can be encapsulated in modules. Particular
elements in modules can be marked as public, meaning that they are visible in the module interface, and can
be cited from other modules using elements such as “away goals” and “away context”. Elements that are not
marked as public are hidden, which allows arguments to be abstracted and thus favours compositionality.

SACM is an OMG standard meta-model for ACs [WKD+19]. It unifies, extends, and refines several
predecessor notations, including GSN [Kel98] and CAE [BB98] (Claims, Arguments, and Evidence), and
is intended as a definitive reference model. SACM models three crucial concepts: arguments, artifacts, and
terminology. An argument is a set of claims, evidence citations, and inferential links between them.

858 S. Foster et al.

Fig. 2. The goal structuring notation (GSN) with modular extensions

Artifacts represent evidence, such as system models, techniques, results, activities, participants, and trace-
ability links. Terminology fixes formal terms for use in claims. Normally, claims are in natural language, but in
SACM they can also contain structured expressions, which allows integration of formal languages. Arguments,
artifacts, and terminology can all be grouped into a number of packages, which generalise GSN modules.

The argumentation meta-model of SACM is shown in Fig. 3. The base class is ArgumentAsset, which
groups the argument assets, such as Claims, ArtifactReferences, and AssertedRelationships (which are infer-
ential links). Every asset may contain a MultiLangString that provides a description, potentially in multiple
natural and formal languages, and corresponds to contents of the shapes in Fig. 2.

AssertedRelationships represent a relationship that exists between several assets. They can be of type
AssertedContext, which uses an artifact to define context; AssertedEvidence, which evidences a claim; As-
sertedInference which describes explicit reasoning from premises to conclusion(s); or AssertedArtifactContext
which documents a dependency between the claims of two artifacts.

Both Claims and AssertedRelationships inherit from Assertion, because both claims and inferential links
are subject to argumentation and refutation. SACM allows six different classes of assertion, via the attribute
assertionDeclaration, including axiomatic (needing no further support), assumed, and defeated, where a claim
is refuted. An AssertedRelationship can also be flagged as isCounter, where counter evidence is presented.

For development of graphical assurance cases, we use an Eclipse-based tool called Assurance Case Manage-
ment Environment (ACME), from which we captured Fig. 2. ACME supports the creation and management
of assurance cases using notations such as GSN (and in the future CAE), the abstract syntax of which is an
extension of SACM, as explained in detail in [WKD+19]. ACME integrates a number of model management
tools and frameworks, including Eclipse Epsilon [KPP06], Eclipse Hawk [BK13], and Xtext [Bet16], towards
the management of fully model-based assurance cases. Using SACM’s full potential and with the help of
model management frameworks, ACME currently supports 1) fine-grained traceability from an assurance
case to its referenced engineering models (defined in mainstream modelling technologies such as, e.g. UML)
to the level of model elements; 2) traceability to formal notations in Isabelle; 3) automated means to val-
idate/verify traced engineering artifacts; 4) use and execution of constrained natural language for model
validation; 5) automated change impact analysis for assurance cases and their engineering artifacts.

Integration of formal proof into unified assurance cases with Isabelle/SACM 859

Fig. 3. Fragment of the SACM argumentation meta-model [Obj20]

2.2. Isabelle, Isar, and DOF

Isabelle/HOL is an interactive theorem prover for higher order logic (HOL) [NPW02], based on the generic
framework Isar [WW07]. The former provides a functional specification language, and an array of automated
proof tools [BBN11]. The latter has an interactive, extensible, and executable document model [Wen18],
which describes Isabelle theories. Plugins, such as Isabelle/HOL, DOF, Isabelle/UTP, and Isabelle/SACM
have document models that contain conservative extensions to Isar.

Fig. 4: The Isabelle/Isar
Document Model

Figure 4 illustrates the document model. The first section for context def-
inition describes imports of existing theories, and keywords which extend the
concrete syntax. The second section is the body enclosed between begin-end,
which is a sequence of commands. The concrete syntax of commands con-
sists of (1) a pre-declared keyword (in blue), such as the command ML, (2) a
“semantics area” enclosed between ‹...›, and (3) optional subkeywords (in
green). Commands generate document elements. For example, the command
lemma creates a new theorem within the underlying theory context. When
a document is edited by removal, addition, or alteration of elements, it is
immediately executed and checked by Isabelle, with feedback provided to the
frontend. This includes consistency checks for the context and well-formedness
checks for the commands. Isabelle is therefore ideal for ACs, which have to be
maintainable, well-formed, and consistent. In § 4.2 we extend this document
model with commands that define our assurance language.

Moreover, informal artifacts in Isabelle theories can be combined with for-
mal artifacts using the command text ‹...›. It is a processor for markup
strings containing a mixture of informal artifacts and hyperlinks to for-
mal artifacts through antiquotations of the form @{aqname ...}. For exam-
ple, text ‹The reflexivity theorem @{thm HOL.refl}› mixes natural lan-
guage with a hyperlink to the theorem HOL.refl through the antiquotation
@{thm HOL.refl}. This is important since antiquotations are also checked
by Isabelle as follows: (1) whether the referenced artifact exists within the
underlying theory context; (2) whether the type of the referenced artifact matches the antiquotation’s type.

860 S. Foster et al.

A major foundation for our work is Isabelle/DOF [BACW18, BW19a, BW19b], an ontology framework for
Isabelle. DOF permits the description of ontologies using Isabelle Ontology Specification Language (IOSL),
a language to model document classes, which extends the document model with new structures. We use the
command doc_class from IOSL to add new document classes for each of the SACM classes. Instances of
DOF classes are not embedded into the HOL logic as datatypes, but sit at the meta-logical level in the
document model. This means they can refer to other objects like theorems and definitions, can themselves
be referenced using antiquotations, and carry an enriched version of the corresponding Isabelle markup
string. One of DOF’s targets is formal development of certification documents, making use of Isabelle’s proof
facilities [BW19b]. In this work, we advance this goal with our SACM-based assurance case framework.

2.3. Isabelle/UTP

Isabelle/UTP [FBC+20] is a tool for developing formal semantics and verification tools based on Hoare and
He’s Unifying Theories of Programming [HH98]. Isabelle/UTP contains a number of theories for reasoning
about programs built using different computational paradigms, such as concurrent and real-time program-
ming. In this paper, we use the core relational programming model to verify the functional specification of
Tokeneer.

Variable mutation in Isabelle/UTP is modelled algebraically using lenses [FGM+07]. A variable of type V
in a state space S is denoted by a lens x : V �⇒ S , with two functions get : S → V and put : S → V → S ,
that respectively query and update the value of the variable in a given state s : S . This allows us to treat
variables as semantic objects, rather than syntactic objects. We can check whether two lenses, x and y, refer
to disjoint regions of the state space using independence x �� y. We can also check whether an expression e
depends on a particular variable x using unrestriction, which is written x � e, and is a semantic encoding of
variable freshness. For example, if x �� y (they are different variables), then x �(y +1), since the valuation of
y+1 does not depend on the value of x. Using these predicates, and the UTP relational program model [HH98],
we can express laws about assignments, such as commutativity:

(x :� e � y :� f) � (y :� f � x :� e)provided that x �� y, y � e, x � f
that is, two assignments commute provided that the variables are independent and the assigned expressions
do not use the adjacent variables. As we have shown [FBC+20], lenses allow us to semantically characterise
variable sets as well (for example a � {x, y, z}) and thus framing properties. As a dual to unrestriction, we
also have the used-by predicate, a � e, which states that e uses only those variables mentioned in a.

Rather than using the Z notation [Spi89], we use a variant of Dijkstra’s Guarded Command Language
(GCL) [Dij75] encoded in Isabelle/UTP to specify the model’s behaviour. Our GCL has the following syntax:

P ::� skip | abort | P � P | E −→ P | P � P | V :� E | V :[P]

Here, P is a program, E is an expression, and V is a variable. The language provides sequential composition,
guarded commands, non-deterministic choice2, and assignment. We adopt a frame operator a :[P], which
states that P changes only variables in the namespace a [FZW16, FZN+19]. The namespace is modelled
by a lens a : S1 �⇒ S2, which shows how to embed the inner state-space S1 into the outer state-space
S2. This enables modular reasoning about the Tokeneer Identification Station (TIS) internal and real-world
states, which is a further novelty of our work. We give both a weakest precondition (wp) and weakest liberal
precondition (wlp) semantics to our GCL. Technically, each operator is denoted as a relational predicate in
UTP, and the following laws are theorems of these definitions [HH98, CW06].

Theorem 2.1 (UTP Weakest Preconditions).

skip wp b � b
abort wp b � false

(P � Q)wp b � P wp (Qwp b)
(e −→ P)wp b � (e ∧ P wp b)

(P � Q)wp b � P wp b ∨ Qwp b
x :� ewp b � b[e/x]
a :[P]wp b � (b ∧ (P wp true)↑a) a � b
a :[P]wp b � (P wp b↓a)↑a a � b

With these equations, we can calculate the weakest precondition of any program composed of these operators.

2Technically, this is identical to the ∨ in Isabelle/UTP, the same as in Z.

https://github.com/isabelle-utp/utp-main/blob/master/utp/utp_wp.thy

Integration of formal proof into unified assurance cases with Isabelle/SACM 861

The wlp semantics is almost the same for each operator, except for the following equations:
abort wlp b � true (e −→ P)wlp b � (e ⇒ P wp b) (P � Q)wlp b � P wp b ∧ Qwp b

Most of the wp and wlp laws are standard [Dij75], the exception being the laws for the frame operator.
These make use of state space coercions [FB20], P↑a and P↓a, which respectively grow and shrink the state
space of P using a. This, for example, means that the types of variables and quantifiers in P are type coerced.
The first frame law has the proviso a � b, meaning that the postcondition b does not depend on any variables
in the frame a. Consequently, the weakest precondition is essentially b, but we also need to conjoin the
domain of P. Since P operates on the inner state space, we need to grow its state space using coercions.
The second frame law, conversely, has that b depends only on the variables in a. Consequently, the weakest
precondition is derived directly from P, but with suitable state space coercions applied.

We can use wlp calculus to verify Hoare triples, using the following well-known theorem [FBC+20]:

Theorem 2.2 {p}Q {r} ⇔ (p ⇒ Qwlp r)
In Isabelle/UTP we have developed a tactic, hoare_wlp_auto, that utilises this theorem, calculates the
precondition using Theorem 2.1, and uses the UTP tactic rel_auto for relational calculus [FBC+20] to try
and discharge the resulting verification condition. We also have a similar tactic, hoare_auto [FBC+20] that
employs the classic Hoare logic deduction rules, rather than a wlp calculation.

In addition to Hoare logic verification, some properties require that we can reason about the variables that
a given operation can modify. In Isabelle/UTP, we can answer such framing questions using lenses [FBC+20].
We define a novel modification predicate, P nmods a, which states that the program P does not modify any
of the variables captured by a. This can be formally specified by requiring that the relational characterisation
of P is a fixed point of the function M (X) � (a′ � a ∧ X), so that every observation of P satisfies a′ � a.
We prove the following modification laws for this predicate.

Theorem 2.3 (Modification Predicate).
—

skip nmods x
—

abort nmods x
P nmods x Q nmods x

(P � Q)nmods x
P nmods x Q nmods x

(P � Q)nmods x
x �� y

(y :� v)nmods x
P nmods x

(b −→ P)nmods x
x �∈ a

a :[P]nmods x
P nmods x

a :[P]nmods a:x
As expected, neither skip nor abort modify any variable x. Sequential composition, P � Q, does not modify
x provided that neither P nor Q does, and similarly for internal choice. Assignment to y does not modify
x provided that x is independent of y (x �� y), which effectively means that y is not part of x. A guarded
command b −→ P does not modify x provided that P also does not. For the frame operator, a :[P], we
identify two cases. If a variable x is not in a, then clearly it is not modified. Conversely, if x is within the a
namespace, then it is necessary to check whether P nmods x. We use this predicate for formulating one of
the Tokeneer security properties.

3. Case study: Tokeneer

To demonstrate our approach, we use the Tokeneer Identification Station (TIS)3 illustrated in Fig. 5, a system
that guards entry to a secure enclave. The pioneering work on the TIS assurance was carried out by Praxis
High Integrity Systems and SPRE Inc. [BCJ+06]. Barnes et al. performed security analysis, definition of a
security target, formal functional specification using Z, refinement to a formal design, implementation in
SPARK, and verification of the security properties against the Z specification (Fig. 5b).

After independent assessment, Common Criteria (CC) Evaluation Assurance Level (EAL) 5 was achieved.
Therefore, Tokeneer can be seen as a successful example of using FMs to assure a system against CC. Though
now more than fifteen years old, it remains an important benchmark for FMs and other assurance techniques.

3Project website: https://www.adacore.com/tokeneer.

https://github.com/isabelle-utp/utp-main/blob/105fbfee39c68177c730abb2ec47def5920d1e8b/utp/utp_wlp.thy#L80
https://github.com/isabelle-utp/utp-main/blob/7abe4b02af634ee70503afc39fab60f46a8cf954/utp/utp_rel.thy#L704
https://www.adacore.com/tokeneer

862 S. Foster et al.

Fig. 5. The Tokeneer ID station architecture and assurance procedure (adapted from [C+08c])

As indicated in Fig. 5a, the physical infrastructure consists of a door, fingerprint reader, display, and
card (token) reader. The main function is to check the credentials on a presented token, read a fingerprint if
necessary, and then either unlatch the door, or deny entry. Entry is permitted when the token holds at least
three data items: (1) a user identity (ID) certificate, (2) a privilege certificate, with a clearance level, and
(3) an identification and authentication (I&A) certificate, which assigns a fingerprint template. When the
user first presents their token, the three certificates are read and cross-checked. If the token is valid, then
a fingerprint is taken, which, if validated against the I&A certificate, allows the door to be unlocked once
the token is removed. An optional authorisation certificate is written upon successful authentication, which
allows the fingerprint check to be skipped.

The TIS has a variety of other functions related to its administration. Before use, a TIS must be enrolled,
meaning it is loaded with a public key chain and certificate, which are needed to check token certificates.
Moreover, the TIS stores audit data which can be used to check previously occurred entries. The TIS
therefore also has a keyboard, floppy drive, and screen to configure it. Administrators are granted access to
these functions. The TIS also has an alarm which will sound if the door is left open for too long.

The security of the TIS is assured by demonstrating six Security Functional Requirements (SFRs) [C+08b]:

SFR1 If the latch is unlocked, then TIS must possess either a User token or an Admin token. The User token
must either have a valid authorisation certificate, or valid ID, Privilege, and I&A Certificates, together
with a template that allowed to successfully validate the User’s fingerprint. Or, if the User token does
not meet this, the Admin token must have a valid authorisation certificate, with the role “guard”.

SFR2 If the latch is unlocked automatically by TIS, then the current time must be close to being within
the allowed entry period defined for the User requesting access.

SFR3 An alarm will be raised whenever the door/latch is insecure.
SFR4 No audit data is lost without an audit alarm being raised.
SFR5 The presence of an audit record of one type will always be preceded by certain other audit records.
SFR6 The configuration data will be changed, or information written to the floppy, only if there is an

Admin person logged on to the TIS.
Our objective is to (i) construct a machine-checked assurance case that argues that the TIS fulfils the
security properties SFR1, SFR3, and SFR6, and (ii) integrate evidential artifacts from the mechanised
model of the TIS behaviour in Isabelle/UTP into this assurance case. For these SFRs, our approach re-enacts
the green parts in Fig. 5b. Particularly, we focus on verifying the functional formal specification against the
security properties and on checking well-formedness of the functional specification. We omit SFR4 and SFR5
because they are not formalised by the Tokeneer project, and SFR2 for technical reasons which we explain in
§ 8.

Integration of formal proof into unified assurance cases with Isabelle/SACM 863

Fig. 6. A modular assurance case for the Tokeneer system development and assurance

We envisage the modular assurance case [Kel98, DP15] for Tokeneer illustrated in Fig. 6. Here, we have
modelled the main documents produced during the development process as assurance case modules using
modular GSN. The numbers correspond to the document codes given in the Tokeneer archive4. Each of
the package symbols represents a collection of claims, arguments, and other lifecycle artifacts, for example
40 4 Security Properties provides formalisation of some of the six SFRs. Certain artifacts are marked public,
meaning they can be used by other modules, and some are private. The arrows between the modules indicate
dependencies, for example the formal specification is developed both in the context of the system requirements
and the security properties. In this paper, we focus on formalisation of 41 2 Functional Specification, and the
argument that the SFRs are satisfied in TIS SFRs. The assurance arguments and artifacts will be embedded
into Isabelle/SACM, which we develop in the next section.

4. Isabelle/SACM
In this section we encode SACM as a DOF ontology (§ 4.1), and use it to provide an interactive machine-
checked AC language (§ 4.2). Our embedding implements ACs as meta-logical entities in Isabelle, that is,
elements of the document model, rather than as formal elements embedded in the HOL logic, as this would
prevent the expression of informal reasoning and explanation. Therefore, antiquotations to formal artifacts
can be freely mixed with natural language and other informal artifacts.

4.1. Modelling: embedding SACM in Isabelle

We embed the SACM meta-model in Isabelle using IOSL, and we focus on modelling ArgumentAsset5 and
its child classes from Fig. 3, as these are the most relevant classes for the TIS assurance argument that we
develop in § 6. The class ArgumentAsset has the following textual model:
doc class ArgumentAsset = ArgumentationElement +

content_assoc:: MultiLangString

Here, doc_class defines a new class, and automatically generates an antiquotation type, @{ArgumentAsset
‹...›}, which can be used to refer to entities of this type. ArgumentationElement is a class which the class
ArgumentAsset inherits from, but is not discussed further. content_assoc models the content association
in Fig. 3. To model MultiLangString in Isabelle/SACM, we use DOF’s markup string. Thus, the usage of
antiquotations is allowed for artifacts with the type MultiLangString.

ArgumentAsset has three subclasses: (1) Assertion, which is a unified type for claims and their rela-
tionships; (2) ArgumentReasoning, which is used to explicate the argumentation strategy being employed;
and (3) ArtifactReference, that evidences a claim with an artifact. Since DOF extends the Isabelle/HOL
document model, we can use the latter’s types, such as sets and enumerations (algebraic datatypes), in
modelling SACM classes, as shown below:

4Tokeneer materials: https://www.adacore.com/tokeneer/download.
5We model all parts of SACM in DOF, but omit details for sake of brevity.

https://www.adacore.com/tokeneer/download

864 S. Foster et al.

datatype assertionDeclarations_t =
Asserted|Axiomatic|Defeated|Assumed|NeedsSupport|AsCited

doc class Assertion = ArgumentAsset +
assertionDeclaration::assertionDeclarations_t

doc class Claim = Assertion +
metaClaim::"Assertion set" <= "{}"

doc class ArgumentReasoning = ArgumentAsset +
structure_assoc::"ArgumentPackage option"

doc class ArtifactReference = ArgumentAsset +
referencedArtifactElement_assoc::"ArtifactElement set"

Here, datatype defines an algebraic datatype, assertionDeclarations_t is an enumeration, set is the set
type, and option is an optional type. Attribute assertionDeclaration has type assertionDeclarations_t,
which specifies the status of instances of type Assertion. Examples of Assertions in SACM are claims,
justifications, and both kinds of arrows in Fig. 2. A Claim is an assertion, extended with the metaClaim
association. The attribute structure_assoc, in class ArgumentReasoning, is an association to the class
ArgumentPackage, which is not discussed here. Finally, the attribute referencedArtifactElement_assoc,
from class ArtifactReference, is an association to ArtifactElements from the ArtifactPackage, allowing
instances of type ArgumentAsset to be supported by evidential artifacts.

The class Claim in Fig. 3 inherits from the class Assertion the attributes gid, content_assoc, and
assertionDeclaration of type assertionDeclarations_t. The other child class of
Assertion is AssertedRelationship, as shown below.
doc class AssertedRelationship = Assertion +

isCounter::bool
reasoning_assoc:: "ArgumentReasoning option"

doc class AssertedInference = AssertedRelationship +
isCounter::bool <= False
source::"Assertion set"
target::"Assertion set"

doc class AssertedEvidence = AssertedRelationship +
isCounter::bool <= False
source::"ArtifactAsset set"
target::"Assertion set"

AssertedRelationship models the relationships between instances of type ArgumentAsset, such as the
“supported-by” and “in-context-of” arrows of Fig. 2. isCounter specifies whether the target of the relation
is supported or refuted by the source, and reasoning_assoc is an association to ArgumentReasoning, which
models GSN strategies in SACM. The attributes source and target, both of type ArgumentAsset, specify
the source and target for the relation. Rather than placing them directly in AssertedRelationship we put
them in the concrete subclasses, as this means they can be specialised to enforce OCL constraints in the
reference meta-model [Obj20]. The various kinds of relationship classes, such as AssertedInference and
AssertedEvidence, are then created as subclasses. An AssertedInference can only connect assertions, and
an AssertedEvidence can only connect an evidential artifact to an assertion. These constraints are enforced
by DOF when model instances are created.

4.2. Interactive assurance language

Interactive Assurance Language (IAL) is our assurance language with a concrete syntax consisting of various
Isabelle commands that extend the document model shown in Fig. 4. Each command performs a number of
checks: (1) standard Isabelle checks (§ 2); (2) OCL-style constraints imposed on the attributes by SACM
(provided by DOF); (3) well-formedness checks against the meta-model, e.g. instances comply to the type
restrictions imposed by the SACM datatypes.

Integration of formal proof into unified assurance cases with Isabelle/SACM 865

Fig. 7. A GSN diagram and its translation to the interactive assurance language (IAL)

IAL instantiates the doc_classes from § 4.1 to create SACM model elements in Isabelle, for example,
the command Claim creates a model element of the class Claim. Attributes and associations of a class have
a concrete syntax represented by an Isabelle (green) subcommand. The grammar of the IAL commands for
creating argumentation elements is shown below.
<AssertDecl> := asserted | axiomatic | assumed | defeated | needsSupport
<ClaimComm> := Claim <gid> isAbstract? isCitation? (metaClaims <gid>*)? <AssertDecl>? <Description>
<InferenceComm> := Inference <gid> <AssertDecl> (src <gid>*) (tgt <gid>*) <Description>
<ContextComm> := Context <gid> <AssertDecl> (src <gid>*) (tgt <gid>*) <Description>
<EvidenceComm> := Evidence <gid> <AssertDecl> (src <gid>*) (tgt <gid>*) <Description>

Claim creates a model element of type Claim with an identifier (gid), and description contained in a
MultiLangString. The antiquotation @{Claim ‹<gid>›} can be used to reference the created model el-
ement. The subcommands isAbstract, isCitation, metaClaims, and <AssertDecl> are optional, with
default values being False, False, {} and asserted, respectively. The metaClaims keyword allows us to
link a claim to assertions about this claim, such as the level of confidence in it. Inference creates an inference
between several model elements of type ArgumentAsset. It has subcommands src and tgt that are both lists
of antiquotations pointing to ArgumentAssets. The use of antiquotations to reference the instances ensures
that Isabelle will do the checks explained in § 2. Context similarly asserts that an instance should be treated
as context for another, and Evidence associates evidence with a claim. Model elements created by IAL are
semi-formal, since they can contain both informal content and references to machine checked formal content.

With these commands, IAL can represent a GSN diagram, as shown in Fig. 7. In this translation, each
shape and arrow element is mapped to an IAL command. The arrows do not necessarily have labels in GSN,
so we allocate these for referencing purposes. Claims C1–C4 are encoded using the Claim command. Claim C1
is supported by C2 via the inference I1, which represents the “supported-by” arrow in the GSN at the left,
and uses antiquotations to refer to the two claims. An artifact called Hazard_Log is introduced as context
for C2 using the Context command, which corresponds to the “in-context-of” arrow to the right of goal C2 in
the GSN diagram. A further evidence artifact FV1 is used to support claim C3, using the Evidence command
to create E1, which corresponds to a “supported-by” arrow. The claim C4 is left undeveloped, marked using
a diamond, and so the corresponding Claim is marked by the needsSupport keyword.

Figure 8 shows the interactive nature of IAL, and some of the error types. In Fig. 8a, the Inference
command expects a source followed by target element, but the latter is missing, and so IAL raises the error
message at the bottom. The exclamation marks on the left denote from where the error originates. In the
jEdit interface, these errors are raised interactively whilst the user is typing. Moreover, this kind of check
ensures that the model elements produced conform to the SACM reference meta-model.

In Fig. 8b, the target is specified (Claim_B), but it refers to a claim that does not exist (hence the blue
colour), and so IAL again raises an error message. In Fig. 8c, an element called Claim_B exists, but it is of
the wrong type. Claim_B is an artifact, which violates the OCL constraints of the SACM standard [Obj20],
and so DOF raises an ontological error.

866 S. Foster et al.

Fig. 8. The interactive nature of error handling in IAL

Finally, Fig. 8d shows the cascading effect of errors: Claim_B does not exist, the element Rel_A fails to
process, and consequently an attempt to reference it also fails. This kind of cascading can also be used to
detect proof failures following an update to a model and failed verification.

In addition to argumentation commands, we have also implemented several commands for creating dif-
ferent kinds of SACM artifacts, for assurance case context and evidence, as show below.
<ArtifactComm> := Artifact <gid> (version <string>)? (date <string>)? <Description>
<RequirementComm> := Requirement <gid> (version <string>)? (date <string>)? <Description>
<ResourceComm> := Resource <gid> (location <URI>) <Description>
<ActivityComm> := Activity <gid> (startTime <string>)? (endTime <string>)? <Description>
<EventComm> := Event <gid> (occurence <string>)? <Description>
<ParticipantComm> := Participant <gid> <Description>
<TechniqueComm> := Technique <gid> <Description>
<ArtifactRelComm> := ArtifactRelation <gid> src <gid>* tgt <gid>* <Description>

With the exception of Requirement, these artifact classes are adopted from the SACM standard [WKD+19].
They allow us to model the various artifacts created during the development and assurance lifecycle, and
the relationships between them, for the purposes of traceability. The Artifact command represents a unit
of data produced during the lifecycle, such as a specification or verification results. It can be annotated with
a version, and the creation date. The Requirement command can be used to represent requirements, which
contain the same information as artifacts, but are marked as requirements that should be satisfied. The
Resource command can be used to model a link to an external resource, such as a standard or code base,
which is uniquely represented by a URI. The Activity command models an activity or process, with a start
time and end time, and Event similarly represents a timed and dated event. A Participant models an actor
that takes part in the lifecycle, such as a developer, and Technique models a technique, such as a modelling
language or formal method, that is applied in the creation of artifacts. Finally, ArtifactRelation allows us
to relate two artifacts.

An example using the artifact commands is shown in Fig. 9, which further elaborates the verification result
in Fig. 7. The formal verification result FV1 is an artifact, with version 1, that points to the Isabelle theorem
vc1. The result was created during a verification activity, VACT1, as shown using the artifact relation AR1.
Isabelle was used to perform the proof, which is modelled using a Resource that links to the Isabelle website.
The verification activity was led by a proof engineer, Anne Other, who is modelled as a Participant, and
linked to the verification activity by a further artifact relation. The specific technique used for the proof was
the Isabelle simplifier, which is modelled as a Technique, and contains a link to the proof method simp.

Integration of formal proof into unified assurance cases with Isabelle/SACM 867

Fig. 9. Specification of artifacts and traceability in IAL

We have now developed Isabelle/SACM and our IAL. In the next section, we consider the modelling
verification of the Tokeneer system.

5. Modelling and verification of Tokeneer

In this section we present a novel mechanisation of Tokeneer in Isabelle/UTP [FZW16, FZN+19] to provide
evidence for the AC. This model encodes the formal functional specification (41 2) in the modular assur-
ance case in Fig. 6. In [C+08b], the satisfaction of the SFRs are argued semi-formally using the functional
specification, but here we provide a formal proof. We focus on the verification of three of the requirements:
SFR1 (the most challenging of the six), SFR3, and SFR6, and describe the necessary model elements. All
formal artifacts in this section are accompanied by links to their mechanisations in our repository.

5.1. Modelling and mechanisation

The TIS functional specification [C+08a] describes an elaborate state space and a collection of relational
operations. The state is bipartite, consisting of (1) the digital state of the TIS and (2) the monitored and
controlled variables shared with the real world. The TIS monitors the time, enclave door, fingerprint reader,
token reader, and several peripherals. It controls the door latch, an alarm, a display, and a screen.

The specification describes a complex state transition system, with around 50 operations for enrolling
the station, performing various administrative operations, such as archiving log files and updating the con-
figuration file, and the user entry operations. The main user entry operations are illustrated in Fig. 10 (cf.
[C+08a, page 43]), where each transition corresponds to an operation. Following enrolment, the TIS becomes
quiescent (awaiting interaction). ReadUserToken triggers if the token is presented, and reads its contents.
Assuming a valid token, the TIS determines whether a fingerprint is necessary, and then triggers either
BioCheckRequired or BioCheckNotRequired. If required, the TIS then reads a fingerprint (ReadFingerOK), val-
idates it (ValidateFingerOK), and finally writes an authorisation certificate to the token (WriteUserTokenOK).
If the access credentials are available (waitingEntry), then a final check is performed (EntryOK), and once the
user removes their token (waitingRemoveTokenSuccess), the door is unlocked (UnlockDoor).

We mechanise the TIS using hierarchical state space types, with invariants adapted from the Z specifi-
cation [C+08a]. We define the operations using GCL [Dij75] rather than the Z schemas directly, to enable
syntax-directed reasoning. The syntax of Z [Spi89], though maximally flexible, does not easily lend itself to
such reasoning, since every operation schema contains a set of conjoined predicates which must be considered
in turn. In contrast, as illustrated in § 2.3, it is straightforward to calculate the weakest precondition of a
GCL program. Within these constraints, we have endeavoured to remain faithful to the function specification
by representing each of the state and operation schemas and using the same naming and overall structure.
The use of GCL means that the model is also much closer to a program, and consequently refinement
to code should be straightforward. Moreover, since GCL has a denotational semantics in UTP’s relational
calculus [HH98], it is possible to prove equivalences between program notation and Z-style schema notation.

868 S. Foster et al.

Fig. 10. The main states and transitions of the TIS unlocking procedure

5.2. State space

We first describe the state space of the TIS state machine:

Definition 5.1 (TIS types and state space).

LATCH � unlocked | locked
DOOR � open | closed

TOKENTRY � noT | badT | goodTToken
PRESENCE � present | absent

PRIVELEGE � userOnly | guard | securityOfficer | auditManager
ADMINOP � archiveLog | updateConfigData | overrideLock | shutdownOp
FLOPPY � noFloppy | emptyFloppy | badFloppy | configFile (configFileOf : Config) | · · ·

Config �
[
alarmSilentDuration : TIME, latchUnlockDuration : TIME,
tokenRemovalDutation : TIME, enclaveClearance : CLEARANCE, · · ·

]

IDStation �

⎡
⎢⎢⎢⎢⎢⎣

currentUserToken : TOKENTRY , currentTime : TIME,
userTokenPresence : PRESENCE, status : STATUS,
enclaveStatus : ENCLAVESTATUS, currentDisplay : DISPLAYMESSAGE,
issuerKey : USER �→ KEYPART, rolePresent : PRIVELEGEoption,
availableOps : ADMINOPset, currentAdminOp : ADMINOPoption,
ifloppy : FLOPPY , config : Config, · · ·

⎤
⎥⎥⎥⎥⎥⎦

Controlled �
[
latch : LATCH , alarm : ALARM , display : DISPLAYMESSAGE, screen : Screen

]

Monitored �
[
now : TIME,finger : FINGERPRINTTRY,
userToken : TOKENTRY ,floppy : FLOPPY , keyboard : KEYBOARD

]

RealWorld � [mon : Monitored, ctrl : Controlled]

SystemState � [rw : RealWorld, tis : IDStation]

A collection of algebraic data types characterise the state of system elements, including the door, latch, and
token. The type α option represents an optional value that can either take the value None, meaning that it
is undefined, or Some x for x : α, meaning that it is defined. The function the : α option → α allows us to
extract the value from a defined value. We define state types for the TIS state, controlled variables, monitored
variables, real-world, and the entire system, respectively. The controlled variables include the physical latch,
the alarm, the display, and the screen. The monitored variables correspond to time (now), the door (door),
the fingerprint reader (finger), the tokens, and the peripherals. RealWorld combines the physical variables,
and SystemState composes the physical world (rw) and the TIS (tis).

https://github.com/isabelle-utp/utp-main/blob/7abe4b02af634ee70503afc39fab60f46a8cf954/casestudies/Tokeneer/Tokeneer.thy#L202

Integration of formal proof into unified assurance cases with Isabelle/SACM 869

Variable currentUserToken represents the last token presented to the TIS, and userTokenPresence indi-
cates whether a token is currently present. The variable status is used to record the state the TIS is in, and
can take the values indicated in the state bubbles of Fig. 10. Variable issuerKey is a partial function repre-
senting the public key chain, which is needed to authorise user entry. Variables rolePresent, availableOps, and
currentAdminOp are used to represent the presence of an Admin, the available operations for this Admin,
and the current operation being executed.

In addition to the state types, we also encode a number of predicates that represent the invariants of
seven Z state schemas. These effectively encode low-level well-formedness constraints for the types; the higher
level invariants are considered in § 5.4. The predicate representing the invariants associated with the Admin
variables is shown below.
Definition 5.2 (Administrator Invariants).

Admin �

⎛
⎜⎜⎜⎜⎜⎝

(rolePresent �� None ⇒ the(rolePresent) ∈ {guard, auditManager, securityOfficer})
∧ (rolePresent � None ⇒ availableOps � {})
∧ (rolePresent � Some(guard) ⇒ availableOps � {overrideLock})
∧ (rolePresent � Some(auditManager) ⇒ availableOps � {archiveLog})
∧ (rolePresent � Some(securityOfficer) ⇒ availableOps � {updateConfigData, shutdownOp})
∧ (currentAdminOp �� None ⇒ the(currentAdminOp) ∈ availableOps ∧ rolePresent �� None)

⎞
⎟⎟⎟⎟⎟⎠

This predicate closely corresponds to the Admin schema in the functional specification [C+08a, page 22]. It
states, firstly, that if a role is present, it must be one of the three Admin roles. Conversely, if no roles are
present then no Admin operations are available to be executed. The next three implications assign possible
operations to the given Admin roles. The final predicate states that if an Admin operation is being executed,
then it must be one of the available operations and there must be a role present. We collect the seven
well-formedness predicates in TIS-wf, as defined below.

Definition 5.3 (Well-formedness Properties).

TIS-wf � (DoorLatchAlarm ∧ Floppy ∧ KeyStore ∧ Admin ∧ Config ∧ AdminToken ∧ UserToken)
The verification of the TIS SFRs depends on these state predicates being invariant for all of the operations.

5.3. Operations

We now specify the operations over IDStation, a selection of these are shown below6:

Definition 5.4 (User Entry Operations).

ReadUserToken �

⎛
⎝ enclaveStatus ∈

{
enclaveQuiescent,
waitingRemoveAdminTokenFail

}

∧ status � quiescent ∧ userTokenPresence � present

⎞
⎠

−→ currentDisplay :� wait � status :� gotUserToken

BioCheckRequired �

(
status � gotUserToken ∧ userTokenPresence � present
∧ UserTokenOK ∧ (¬UserTokenWithOKAuthCert)

)

−→ status :� waitingFinger � currentDisplay :� insertFinger

ReadFingerOK �

(
status � waitingFinger ∧ fingerPresence � present
∧ userTokenPresence � present

)

−→ status :� gotFinger � currentDisplay :� wait

UnlockDoor �
(latchTimeout :� currentTime + latchUnlockDuration �

alarmTimeout :� currentTime + latchUnlockDuration + alarmSilentDuration �

currentLatch :� unlocked � doorAlarm :� silent

)

6The TIS operations have been mechanised using the same names as in [C+08a].

https://github.com/isabelle-utp/utp-main/blob/7abe4b02af634ee70503afc39fab60f46a8cf954/casestudies/Tokeneer/Tokeneer.thy#L391
https://github.com/isabelle-utp/utp-main/blob/7abe4b02af634ee70503afc39fab60f46a8cf954/casestudies/Tokeneer/Tokeneer.thy#L587
https://github.com/isabelle-utp/utp-main/blob/7abe4b02af634ee70503afc39fab60f46a8cf954/casestudies/Tokeneer/Tokeneer.thy#L1391

870 S. Foster et al.

UnlockDoorOK �

(
status � waitingRemoveTokenSuccess
∧ userTokenPresence � absent

)

−→ UnlockDoor � status :� quiescent �

currentDisplay :� doorUnlocked

Each operation is guarded by execution conditions and consists of several assignments. BioCheckRequired re-
quires that the current state is gotUserToken, the user token is present, and sufficient for entry (UserTokenOK),
but there is no authorisation certificate (¬UserTokenWithOKAuthCert). The latter two predicates essentially
require that (1) the three certificates can be verified against the public key store, and (2) additionally there
is a valid authorisation certificate present. We give the definition of UserTokenOK below.

UserTokenOK �

⎛
⎜⎝∃ t •

currentUserToken � goodT(t) ∧ t ∈ CurrentToken ∧
(∃ c ∈ IDCert • idCert(t) � c ∧ CertOKc) ∧
(∃ c ∈ PrivCert • privCert(t) � c ∧ CertOKc) ∧
(∃ c ∈ IandACert • iandACert(t) � c ∧ CertOKc)

⎞
⎟⎠

It requires that currentUserToken contains a token, which is current (CurrentToken), and has valid ID,
privilege, and I&A certificates. The definitions of the omitted predicates can be found elsewhere [C+08a].

Assuming these preconditions hold, operation BioCheckRequired updates the state to waitingFinger and
the display with an instruction to provide a fingerprint. ReadFingerOK requires that the state is waitingFinger,
and checks whether both a finger and user token are present. If they are, then the state switches to gotFinger,
and the display is updated to wait. UnlockDoorOK requires that the state is waitingRemoveTokenSuccess,
and the token has been removed. It unlocks the door, using the auxiliary operation UnlockDoor, returns
the status to quiescent, and updates the display. UnlockDoor both unlocks the latch, and also updates two
timeout variables, latchTimeout and alarmTimeout. The former is used to close the latch after a certain
period, and the latter to sound an alarm if the door is left open.

These operations act only on the TIS state space. During their execution, monitored variables can also
change, to reflect real-world updates. Mostly these changes are arbitrary, with the exception that time must
increase monotonically. We therefore promote the operations to SystemState with the following schema.

UEC (Op) � tis :[Op] � rw :[mon:now ≤ mon:now ′ ∧ ctrl ′ � ctrl]
In Z, this functionality is provided by the schema UserEntryContext [C+08a], from which we derive the name
UEC. It promotes Op to act on tis, and composes this with a relational predicate that constrains the real-
world variables (rw). The behaviour of all monitored variables other than now is arbitrary, and all controlled
variables are unchanged. This separation enables modular reasoning, since we can promote invariants of the
TIS to any real world context using Theorem 2.1 and the following Hoare logic theorem.

Theorem 5.1 (TIS Promotion). If {I }P {I } then {I↑tis}UEC (P) {I↑tis}
This shows that if I is an invariant of P, an operation of the TIS, then I in the extended state space is
an invariant of promoted operation. For comparison with the original Z operation schemas, we give the
ReadUserToken schema below:

ReadUserToken
UserEntryContext
�UserToken
�DoorLatchAlarm
�Stats
AddElementsToLog
enclaveStatus ∈ {enclaveQuiescent,waitingRemoveAdminTokenFail}
status � quiescent
userTokenPresence � present
currentDisplay′ � wait
status′ � gotUserToken

https://github.com/isabelle-utp/utp-main/blob/7abe4b02af634ee70503afc39fab60f46a8cf954/casestudies/Tokeneer/Tokeneer.thy#L495
https://github.com/isabelle-utp/utp-main/blob/7abe4b02af634ee70503afc39fab60f46a8cf954/casestudies/Tokeneer/Tokeneer.thy#L1372
https://github.com/isabelle-utp/utp-main/blob/d0356202092c61f7109cb9b30b464df44ce2f299/casestudies/Tokeneer/Tokeneer.thy#L1386

Integration of formal proof into unified assurance cases with Isabelle/SACM 871

We have employed a pattern for conversion from Z to GCL. Every conditional predicate, for example status �
quiescent, becomes a guard in Definition 5.4. Every primed variable equation, such as status′ � gotUserToken,
becomes an assignment, and all of the resulting commands are sequentially composed. Nevertheless, we
preserve the non-determinism of the original model, and these assignments are equivalent to primed variable
equations since in UTP we denote an assignment as follows [HH98, CW06]:

(x :� e) � x ′ � e ∧ y ′ � y ∧ · · · ∧ z ′ � z
Consequently, the operations could be expressed as relational expressions. Using UEC , we promote each
operation, for example TISReadToken � UEC (ReadToken), to effectively include UserEntryContext.

In Z, invariants of the state are imposed through the inclusion of state schemas, such as UserToken. Here,
we do not impose these but we prove that each operation preserves each invariant in § 5.4. This sometimes
requires that we add extra assignments to satisfy the invariant, as we illustrate below.

We next define some of the key Admin operations, which are necessary to prove the security properties.

Definition 5.5 (Admin Operations).

OverrideDoorLockOK �

(enclaveStatus � waitingStartAdminOp
∧ adminTokenPresence � present
∧ currentAdminOp � Some(overrideLock)

)

−→
screenMsg :� requestAdminOp � currentDisplay :� doorUnlocked �

enclaveStatus � enclaveQuiescent � UnlockDoor �

currentAdminOp :� None

FinishUpdateConfigOK �

⎛
⎜⎜⎜⎝

enclaveStatus � waitingFinishAdminOp
∧ adminTokenPresence � present
∧ currentAdminOp � Some(updateConfigData)
∧ floppyPresence � present ∧ currentFloppy ∈ range(configFile)
∧ ValidConfig(configFileOf(currentFloppy))

⎞
⎟⎟⎟⎠

−→
config :� configFileOf(currentFloppy) �

screenMsg :� requestAdminOp �

screenConfig :� displayConfigData(config) �

enclaveStatus � enclaveQuiescent � currentAdminOp :� None

AdminLogout � rolePresent �� None
−→ rolePresent :� None � currentAdminOp :� None � availableOps :� {}

ShutdownOK �

(enclaveStatus � waitingStartAdminOp
∧ currentAdminOp � Some(shutdownOp)
∧ currentDoor � closed

)

−→ LockDoor � AdminLogout � screenMsg � clear �

enclaveStatus :� shutdown � currentDisplay :� blank

OverrideDoorLockOK allows the door to be unlocked when an Admin has already logged in who can execute
the overrideLock command, that is, an Admin with the role guard. If the enclave is awaiting an Admin
command, an Admin token is present, and the Admin gives the overrideLock command, then the door is
unlocked and the enclave returns to awaiting another Admin command. FinishUpdateConfigOK is the second
part of a two stage process for updating the configuration file. The first step checks whether a configuration
file floppy has been inserted. In this second step, if the command updateConfigData has been selected and
a valid floppy has been inserted, then the config is updated, displayed on the screen, and the enclave again
returns to the main menu. Finally, ShutdownOK is used to shutdown the TIS. If an Admin is logged in,
selects the shutdownOp command, and the door is closed, then the operation locks the door, logs the Admin
out, blanks the screen and display, and sets the status to shutdown. The auxiliary operation AdminLogout
has one more assignment than the corresponding Z schema [C+08a, page 41], availableOps :� {}, to ensure
that the Admin invariants in Definition 5.2 are satisfied. In Z, this is implicit because the invariants are
enforced at each stage.

https://github.com/isabelle-utp/utp-main/blob/7abe4b02af634ee70503afc39fab60f46a8cf954/casestudies/Tokeneer/Tokeneer.thy#L2429

872 S. Foster et al.

The overall behaviour of the TIS operations is given below.
Definition 5.6 (Top-Level TIS Operations).

TISUserEntryOp �

⎛
⎜⎝

TISReadUserToken � TISValidateUserToken
� TISReadFinger � TISValidateFinger
� TISWriteUserToken � TISValidateEntry
� TISUnlockDoor � TISCompleteFailedAccess

⎞
⎟⎠

TISAdminOp �
(
TISOverrideDoorLockOp � TISShutdownOp
� TISUpdateConfigDataOp � TISArchiveLogOp

)

TISOp �
(
TISEnrolOp � TISUserEntryOp � TISAdminLogon � TISStartAdminOp
� TISAdminOp � TISAdminLogout � TISIdle

)

We omit several operations, though these have all been mechanised. In each iteration of the state machine,
we non-deterministically select an enabled operation and execute it. We also update the controlled variables,
which is achieved by composition with the following relational update operation.

TISUpdate � rw :[mon:now ≤ mon:now ′] � rw:ctrl:latch :� tis:currentLatch �

rw:ctrl:display :� tis:currentDisplay
This allows time to advance, allows other monitored variables to change, and copies the digital state of
the latch and display to the corresponding controlled variables. The system transitions are described by
TISOp � TISUpdate.

5.4. Formal verification

In this section, we verify three SFRs of the formal model using Isabelle/UTP. We first formalise the TIS
state invariants that are necessary to prove the SFRs7:

Definition 5.7 (TIS State Invariants Selection).

Inv1 �

⎛
⎝ status ∈

{
gotFinger, waitingFinger, waitingUpdateToken
waitingEntry, waitingUpdateTokenSuccess

}

⇒ (UserTokenWithOKAuthCert ∨ UserTokenOK)

⎞
⎠

Inv2 �
(
status ∈ {waitingEntry, waitingRemoveTokenSuccess}
⇒ (UserTokenWithOKAuthCert ∨ FingerOK)

)

Inv3 � (rolePresent �� None ⇒ AdminTokenOK)

Inv4 �
(
currentAdminOp ∈ {Some(shutdownOp),Some(overrideLock)}
⇒ ownName �� None

)

Inv5 �
(
adminTokenPresent � present ∧ rolePresent �� None
⇒ rolePresent � Some(role(authCert(ofGoodT (currentAdminToken))))

)

Inv6 � enclaveStatus ∈ {waitingStartAdminOp, waitingFinishAdminOp} ⇔ currentAdminOp �� None
Inv7 � enclaveStatus � gotAdminToken ⇒ rolePresent � None

TIS-inv � TIS-wf ∧ Inv1 ∧ Inv2 ∧ Inv3 ∧ Inv4 ∧ Inv5 ∧ Inv6 ∧ Inv7 · · · Inv10
Inv1 states that whenever the TIS is in a state beyond gotUserToken, then either a valid authorisation
certificate is present, or else the user token is valid. It corresponds to the first invariant in the IDStation
schema [C+08a, page 26]. However, we need to add an extra state, updateTokenSuccess and strengthen the
consequent. The consequent originally only required that there is a token with a valid authorisation certifi-
cate, which may not be the case if a fingerprint has not yet been taken. Inv2 states that whenever in state
waitingEntry or waitingRemoveTokenSuccess, then either an authorisation certificate or a valid fingerprint is
present.

7We adopt a different order for the invariants than our mechanisation, for the sake of presentation.

https://github.com/isabelle-utp/utp-main/blob/7abe4b02af634ee70503afc39fab60f46a8cf954/casestudies/Tokeneer/Tokeneer.thy#L527

Integration of formal proof into unified assurance cases with Isabelle/SACM 873

Fig. 11. Verification of the Tokeneer invariants in Isabelle/UTP

Inv2 is not present at all in [C+08a], but we found it necessary to satisfy SFR1, specifically to ensure that
a valid fingerprint is present. That certain invariants are missing, or too weak, is acknowledged in the TIS
Security Properties document [C+08b, page 11], but this does not invalidate the functional specification; it
just makes it difficult to formally verify the SFRs.

Invariant Inv3 states that whenever an Admin role is present, then a valid Admin token is also present
(AdminTokenOK), so that it is not necessary to explicitly check this in each Admin operation. Similar to
Inv1, it is equivalent to the second IDStation schema invariant [C+08a, page 26], but we again needed to
strengthen the consequent. Inv4 states that if an Admin operation shutdownOp or overrideLock is selected,
then the TIS must have an assigned name (also present in the key store), and hence it must already be
enrolled. Inv5 states that if an Admin token and Admin role are both present, then the role must match with
the one contained on the Admin token. This invariant does not seem to be present at all in [C+08a], but we
believe that it is certainly necessary to prove SFR1. Inv6 states that if an Admin operation is starting or
finishing, then an Admin operation currently must be selected. Finally, Inv7 states if the Admin token has
just been inserted, then a role is not currently present. We omit the additional three invariants that deal
with the screen and enrolment [C+08a] as they are not relevant for SFR verification.

As before, and differently to [C+08a], which imposes the invariants by construction, we prove that each
operation preserves the invariants using Hoare logic, similar to [RBC16]:

Theorem 5.2 (TIS Operation Invariants).
• {TIS-inv}TISUserEntryOp {TIS-inv}
• {TIS-inv}TISAdminOp {TIS-inv}

This theorem shows that the user entry and Admin operations never violate the well-formedness proper-
ties and ten state invariants. We can therefore assume that they hold to satisfy any requirements. The
proof involves discharging verification conditions for a total of 32 operations in Isabelle/UTP, a process
that is automated using our proof tactics hoare_auto [FBC+20] and hoare_wlp_auto. We illustrate this in
Fig. 11 for two of the defined operations. We follow the mathematical notation for GCL as much as possi-
ble. Each proof first applies an introduction rule, IDStation_correct_intro, that splits the goal into the
well-formedness and behavioural invariants. Then, hoare_wlp_auto is applied to each resulting goal. This
high-level automation means that proofs can be adapted for small changes to the operations with minimal
intervention.

We use this fact to assure SFR1, which is formalised by the formula FSFR1, that characterises the
conditions under which the latch will become unlocked having been previously locked. We can determine
these states by application of the weakest precondition calculus [Dij75], which mirrors the (informal) Z
schema domain calculations in [C+08b, page 5]. Specifically, we characterise the weakest precondition under
which execution of TISOp followed by TISUpdate leads to a state satisfying rw:ctrl:latch � unlocked. We
formalise this in the definition below.

https://github.com/isabelle-utp/utp-main/blob/7abe4b02af634ee70503afc39fab60f46a8cf954/casestudies/Tokeneer/Tokeneer.thy#L1807

874 S. Foster et al.

Definition 5.8 (Formalisation of SFR1).

FSFR1 �

⎛
⎜⎜⎝

(
(TISOp � TISUpdate)wp (rw:ctrl:latch � unlocked)
∧ TIS-inv ∧ tis:currentLatch � locked

)

⇒
(
(UserTokenOK ∧ FingerOK) ∨ UserTokenWithOKAuthCert
∨ AdminTokenGuardOK

)
⎞
⎟⎟⎠

AdminTokenGuardOK �
(∃ t ∈ TokenWithValidAuth • currentAdminToken � goodT(t)

∧ (∃ c ∈ AuthCert • authCert(t) � Some(c) ∧ role(c) � guard)

)

We first state the unlocking precondition for TISOp using wp calculus. Then, we conjoin the wp formula with
tis:currentLatch � locked to capture behaviours when the latch was initially locked, and the TIS invariants.
This formula needs to imply that either a user token is present, meeting certain conditions, or that an Admin
token is present with the role guard, which is formulated using AdminTokenGuardOK. The only operation
that unlocks the door for users is UnlockDoorOK , and for Admins it is OverrideDoorLockOK . As a result,
we can calculate the following unlocking preconditions.

Theorem 5.3 (Unlocking Preconditions).
((TISUserOp � TISUpdate)wp (rw:ctrl:latch � unlocked))[locked/tis:currentLatch]

� (status � waitingRemoveTokenSuccess ∧ userTokenPresence � absent)

((TISAdminOp � TISUpdate)wp (rw:ctrl:latch � unlocked))[locked/tis:currentLatch]

�
(
enclaveStatus � waitingStartAdminOp ∧ adminTokenPresence � present
∧ currentAdminOp � Some(overrideLock) ∧ rolePresent �� None ∧ currentAdminOp �� None

)

The first equation shows that the precondition for a user unlock is that access is permitted and the token
has been removed. The second equation shows that the precondition for an Admin unlock is that the TIS
is waiting for an Admin command, an Admin token is present, and the selected command is overrideLock.
From these equations we can calculate the unlocking precondition of TISOp itself, which is the disjunction
of the two preconditions above. We can then conjoin this with TIS-Inv, since we know that it holds in any
state. We show that this composite precondition implies that either a valid user token and fingerprint were
present (using Inv2) or a valid authorisation certificate, or else an Admin is present (using Inv5), and we can
use the well-formedness invariant Admin to show that this Admin must have the guard role. Consequently,
FSFR1 can indeed be verified.
Theorem 5.4 (FSFR1 is provable).
Proof. By application of weakest precondition and relational calculus.
Proof of SFR2 can likely be achieved in a similar way to SFR1, but more complex additional invariants are
required that depend on time, which we have not been able to formalise for this case study (see § 8).

Next, we consider SFR3, which requires that an alarm is raised if the door is left open. This property
can be proved more straightforwardly, since it is essentially a property of the well-formedness invariant in
DoorLatchAlarm [C+08a, page 23].

Definition 5.9 (Formalisation of SFR3).

FSFR3 �
(
IDStation ∧ currentLatch � lock ∧ currentDoor � open ∧ currentTime ≥ alarmTimeout

⇒ doorAlarm � alarming

)

This states that if the invariants hold, the latch is locked, the door is open, and the time has advanced
beyond the alarm timeout, then the door alarm is sounding. By Theorem 5.2, DoorLatchAlarm always holds
and therefore FSFR3 can be verified.
Theorem 5.5 (FSFR3 is provable).

Finally, we consider SFR6, which requires that the configuration and floppy can change only when an
Admin is logged on. This property can be formulated using the nmods predicate, and the various laws we
proved in Theorem 2.3. Using these laws we can automatically verify that a program does not modify certain
variables, and so formalise SFR6 as follows.

https://github.com/isabelle-utp/utp-main/blob/7abe4b02af634ee70503afc39fab60f46a8cf954/casestudies/Tokeneer/Tokeneer.thy#L2887
https://github.com/isabelle-utp/utp-main/blob/7abe4b02af634ee70503afc39fab60f46a8cf954/casestudies/Tokeneer/Tokeneer.thy#L2894
https://github.com/isabelle-utp/utp-main/blob/7abe4b02af634ee70503afc39fab60f46a8cf954/casestudies/Tokeneer/Tokeneer.thy#L2921
https://github.com/isabelle-utp/utp-main/blob/7abe4b02af634ee70503afc39fab60f46a8cf954/casestudies/Tokeneer/Tokeneer.thy#L2976
https://github.com/isabelle-utp/utp-main/blob/7abe4b02af634ee70503afc39fab60f46a8cf954/casestudies/Tokeneer/Tokeneer.thy#L2983

Integration of formal proof into unified assurance cases with Isabelle/SACM 875

Fig. 12. Partial argument for satisfaction of the security functional requirements (TIS SFRs)

Definition 5.10 FSFR6 � (adminTokenPresence � absent −→ TISOp)nmods {config,floppy}
If we assume that there is not an Admin token, then this means that TISOp cannot modify either config
or floppy. For the verification, we can distribute the absence precondition throughout the operations using
the law b −→ (P � Q) � (b −→ P) � (b −→ Q). One Admin operation can modify config, namely
FinishUpdateConfigOK in Definition 5.5. If we prefix this operation with adminTokenPresence � absent, we
obtain the program abort which does not modify config, since this violates the second guard. We can also
prove that for every other operation P, P nmods config deductively using Theorem 2.3. Consequently, we
can prove FSFR6.

Theorem 5.6 (FSFR6 is provable).
We have now formalised and verified three of the SFRs. In the next section we place these in the context

of an assurance case.

6. Mechanising the Tokeener assurance case

In this section, we use ACME and Isabelle/SACM to model the Tokeneer development process originally
followed by Praxis, and illustrated in Fig. 5b. A GSN diagram of the modular structure of the AC is shown
in Fig. 6. The modules have names that correspond to the modelled artifact and a brief description. Each
module contains a mixture of lifecycle and certification artifacts, such as requirements and models, and GSN
arguments. The former were developed originally by Praxis and evaluated to comply with CC EAL 5 in the
context of the certification process of TIS.

https://github.com/isabelle-utp/utp-main/blob/7abe4b02af634ee70503afc39fab60f46a8cf954/casestudies/Tokeneer/Tokeneer.thy#L3072
https://github.com/isabelle-utp/utp-main/blob/7abe4b02af634ee70503afc39fab60f46a8cf954/casestudies/Tokeneer/Tokeneer.thy#L3074

876 S. Foster et al.

Fig. 13. An argument for satisfaction of SFR1 by formalisation

While the certification artifacts were the contribution of Praxis, the GSN AC argument modelling those
artifacts is our contribution. Therefore, we complement the certification process of TIS with a GSN model
translated to Isabelle/SACM, which aids the evaluation process of the certification artifacts by offering a
machine-checked argument structure with full traceability. Our work also provides guidelines on the use of
modular GSN to document the artifacts.

We focus on the module TIS SFRs, illustrated in Fig. 12. It encapsulates an argument for a public claim
that all SFRs are satisfied, which are defined in the module 40 2, by the TIS model, which is defined in 41 2.
We reference these artifacts with the use of away context elements. For now, we focus on the SFRs that we
have formally verified, namely SFR1, SFR3, and SFR6. For this, we use the Theorems 5.2, 5.4, 5.5, and 5.6
from § 5 as evidential artifacts. Satisfaction of SFR1 is modelled by the claim SFR1 C1, which uses SFR1
as context. The claim is satisfied by formalisation, which is performed in another module called TIS SFR1.
Satisfaction of the other SFRs can be represented using the same pattern.

The argument for SFR1 is shown in Fig. 13. It uses the “formalisation pattern” [DP18], which shows
how results from a formal method can be used to provide evidence for claims to satisfy a requirement
{R} for a system element {S}. The strategy used to decompose the claim “Requirement {R} is met by
{S}” is contingent on the validation of both the formal specification of {R} and the formal model of {S}.
Consequently, the pattern breaks down the satisfaction of {R} into three claims stating that (1) the formal
model of {S} is validated, (2) the formalisation of {R} correctly characterises {R}, and (3) the formal model
of {S} satisfies the formalisation of {R}. The former two claims are usually satisfied by manual review, since
they are not amenable to formalisation, as the DO-178C formal methods supplement also makes clear:

“Formal methods cannot show that derived requirements and the reason for their existence are
correctly defined; this should be achieved by review.” [J+11]

In Fig. 13, we adapt Denney’s pattern [DP18] as follows. We begin with the claim SFR1 Formalisation,
which references both SFR1, with its natural language description from module 40 1, and FSFR1, which is
defined in this module and is defined in Definition 5.8 from § 5.

Integration of formal proof into unified assurance cases with Isabelle/SACM 877

Fig. 14. An argument and associated artifacts for FSFR1 in IAL

We then invoke an argumentation strategy, SFR1 S1, for formalisation. Instead of using a validation
claim for the formalization of the requirements, we use a justification element, FSFR1 V1, which should
be an explanation of how FSFR1 formalises SFR1. This is to preserve the well-formedness of the AC – the
“requirement validation” claims have a type different from the “requirement satisfaction” claims. An example
of a “requirement satisfaction” claim is SFR1 Formalisation.

FSFR1 also assumes that all the operations of the TIS preserve the system invariants, and so we record
a link to this proof in module 41 2, which corresponds to Theorem 5.2. The subclaim of SFR1 S1 is
FSFR1 Verified, which is supported by the evidence FSFR1-Proof, which refers to Theorem 5.4.

Figure 14 shows the IAL model of TIS SFR1 that was manually translated and elaborated from Fig. 13. In
our translation, each of the modules in Fig. 6 is assigned an Isabelle theory with the corresponding artifacts.
We represent both the artifacts and argumentation elements necessary to assure satisfaction of SFR1. Each
command has an optional descriptive text, enclosed in quotes ‹...› that can integrate hyperlinks to both
formal artifacts, such as theorems and proof, and structured assurance artifacts, such as model elements
generated by IAL. Since the checks performed by IAL are successful, no errors are issued in Fig. 14, which
in particular indicates that every referenced artifact exists and is correctly typed.

SACM provides several additional concepts for representing lifecycle artifacts, and we utilise them here.
We record two activities, FSFR1 Def Act and FSFR1 Proof Act, which represent the activities in the de-
velopment workflow for defining the formal requirement and discharging the proof obligations. Both have
a startTime and endTime associated. FSFR1 is represented by the artifact FSFR1 A, which links to the

878 S. Foster et al.

IAL requirement SFR1, which contains the natural language description of the requirement SFR1, using
the Requirement antiquotation, and the technique Weakest Precondition Calculus [Dij75]. FSFR1 A also
contains a link to the corresponding formal Isabelle constant via the antiquotation @{const FSFR1}.

We record a link to the proof of FSFR1 in the artifact FSFR1 Proof, and the Isabelle theory where this
resides in FSFR1 Proof Theory. Finally, we create an artifact relation that gives the provenance for the proof
of FSFR1. This proof was performed by the participant Simon Foster, during the activity FSFR1 Proof Act,
using the theorem prover Isabelle2019. In this way we record precisely how and when a particular assurance
artifact was created.

With the artifacts and their provenance defined, we move on to the argumentation. We first create the
key claims using the Claim command, which variously reference the artifacts previously defined. Claim
FSFR1 V1 is marked as assumed, since this is the validation claim that must be satisfied elsewhere by
review. The strategy SFR1 S1 from Fig. 13, is modelled by SFR1_S1 in Fig. 14. SFR1_S1 is created using
the command Inference, which uses antiquotations to refer to the premise claims SFR1_Formalisation,
TISOp_Correct, and FSFR1_V1, that is, the source src, and the conclusion claim FSFR1_Verified, that is
the target tgt.

We use the Context command to model the two contextual relations in Fig. 13. SFR1 C1 presents the
external claim TISOp Correct as context, which refers to the invariant proof (Theorem 5.2), and SFR1 C2
presents the assumed validation claim as context. Finally, we model the relationships from Fig. 13 that link
FSFR1 Verified to FSFR1 Proof. This is done in Fig. 14 by FSFR1_E1, which is created using the command
Evidence. It supports the claim FSFR1_Verified with the artifact FSFR1_Proof.

We have shown how Isabelle/SACM enables the integration of formal development with assurance argu-
mentation, documenting how the evidence collected establishes the overall security claims. In the next two
sections we survey related work and discuss the findings of our case study.

7. Related work

In this section, we discuss previous efforts in the verification of Tokeneer as well as other approaches to the
formalisation of assurance cases and the integration of formal methods with assurance cases.

Comparison with Previous Work in the Verification of Tokeneer Woodcock et al. [WAC10] high-
light defects of the Tokeneer SPARK implementation, indicate undischarged verification conditions, and
perform robustness tests generated by the Alloy SAT solver [Jac00] from a corresponding Alloy model. Us-
ing De Bono’s lateral thinking, these test cases go beyond the anticipated operational envelope and stimulate
anomalous behaviours. In shortening the feedback cycle for verification and test engineers, theorem proving
in the form of the proposed framework can help using this approach more intensively.

Abdelhalim et al. [ASST10] model part of the Tokeneer specification using UML activity diagrams trans-
lated to be checked for deadlock freedom by the CSP model checker FDR. Their formalisation is assumed to
be implemented on top of asynchronous communication, modelled in CSP in terms of buffers for each channel
between UML components. While our abstraction from such communication aspects yields a simpler proof
of the SFRs in § 3, their deadlock checking at a lower level can be useful for checking the correctness of the
communication in an implementation of the UML model such as the SPARK implementation mentioned in
Fig. 5b. Their UML diagrams can lead to comparatively large specifications whereas our formalisation stays
compact thanks to the abstraction and reuse mechanisms in Z schemas and Isabelle/UTP.

Rivera et al. [RBC16] present an Event-B model of the TIS, verify this model, generate Java code from
it using the Rodin tool, and test this code by JUnit tests manually derived from the specification. The
tests validate the model in addition to the Event-B invariants derived from the same specification, and aim
to detect errors in the Event-B model caused by misunderstandings of the specification. Using Rodin, the
authors state that they verify the SFRs (§ 3) using Hoare triples. Our work uses a similar abstract machine
specification, but with weakest precondition calculus as the main tool for verifying the SFRs. Beyond the
replication of the Tokeneer case study, Rivera et al. [RBC16] deal with the relationship between the model
and the code via testing, whereas we focus on the construction of certifiable assurance arguments from formal
model-based specifications. Nevertheless, we believe Isabelle’s code generation features could be applied in
a similar way.

Integration of formal proof into unified assurance cases with Isabelle/SACM 879

Previous Work on Formal Assurance and Formalised Assurance Cases In concordance with Wood-
cock et al.’s [WAC10] observations, several researchers have investigated ways of introducing formality into
assurance cases [CHOS13, Rus14, DP18, DMW+18]. We highlight some of these approaches below.

AdvoCATE is a graphical tool for the construction of GSN-based safety cases [DP18]. It uses a formal
foundation called argument structures, which prescribe well-formedness checks for the syntactic structure
of (i.e. the graph underlying) an AC, and allow instantiation of assurance case patterns. Our work likewise
ensures well-formedness, but also allows the embedding of content with formal semantics. Denney and Pai’s
formalisation pattern [DP18] is an inspiration for our work. Our framework is to be used as an assurance
backend, which complements AdvoCATE with a deep integration of modelling and specification formalisms.

Rushby [Rus14] illustrates how assurance arguments can be formalized with modern verification systems
such as Isabelle or PVS to overcome some of the logical fallacies associated with informal ACs. Similarly,
our framework allows reasoning using formal logic, but additionally supports the combination of formal and
informal artifacts. We drew inspiration from the work on the Evidential Tool Bus [CHOS13], which enables
the combination of evidence from several formal and semi-formal analysis tools. In a very similar way, Isabelle
supports the integration of a variety of formal analysis tools [WW07].

Diskin et al. [DMW+18] tackle the problem of hierarchical and modular assurance by using a formal
model (in this case, a compositional data-flow model) of the system to be assured as the basis for generating
evidence required for a particular assurance claim. Their framework is elaborate and practically relevant in
the sense that it integrates well with the practice of model-based development. The paradigm of our approach
is similar to theirs except that we use mechanised algebraic reasoning techniques, provide computer-assistance
for the proposed reasoning steps, integrating informal assurance evidence.

Overall, we believe that our work is the first to put formal verification effort into the wider context of
structured assurance argumentation, in our case, a machine-checked security case using Isabelle/SACM. We
have also recently applied our techniques to collision avoidance for autonomous ground robots [GFN19] and
an autonomous underwater vehicle [FNO+20]; both of which are more recent benchmark examples.

8. Evaluation and discussion

Below, we summarise several observations and findings from our investigation.

Isabelle as an Assurance Platform The Isabelle architecture brings many benefits that we harnessed
in our formal development. Though not a large model, the Tokeneer functional specification is by no means
trivial. It consists of over 3000 lines of Isabelle code, many of which are calls to automated proof tactics
that invoke compound proof procedures. Isabelle’s Prover IDE manages the processing of formal artifacts
asynchronously, with verification tasks being executed in the background, and where possible in parallel.
Incremental changes to a proof document automatically trigger the rerunning of relevant proof tasks, with
feedback provided to the user when proofs fail. We found this very useful for managing the development,
where invariant checking could be rerun whenever it was necessary to modify a TIS operation specification,
for example if we discovered a bug in a definition. These facilities could be inserted into a continuous
integration platform for larger projects.

Moreover, Isabelle’s support for informal structured mark-up in the document model allows readable
justifications to have an integral part in a development. These features make Isabelle amenable to AC
development and maintenance, though more work is required to make it accessible to non-experts. This
could include the ability to drive development using a graphical tool like ACME [WKD+19], or possibly by
providing a more word processor-like front end for non-experts. Nevertheless, we believe that both safety
engineering and formal methods experts will always be required in such a development process. The critical
question is whether the different actors can effectively communicate. We believe that Isabelle-based assurance
cases can function as a central point of reference in the system lifecycle.

Proof Automation Our approach, as usual, reduces verification to finding invariants of the system under
development. Consequently, knowledge of both invariant formulae and Hoare logic is required to verify the
system. The majority of the invariant proofs are automated by the hoare_auto and hoare_wlp_auto tactics
with minimal user interaction. For example, to prove the invariants in IDStation for the eight top-level
user entry operations in Definition 5.6, we first split the goal into the well-formedness properties and state
invariants, and then discharge the resulting goals using hoare_auto. In this case, there are no residual proof

880 S. Foster et al.

obligations that require manual intervention. For efficiency purposes, it is sometimes necessary that we prove
each of the invariants separately, which requires some manual strengthening and weakening.

The main exception to this level of automation is the proof of the invariants for the enrolment operations
(TISEnrolOp). Here, there is an operation called ValidateEnrolmentDataOK , which completes the enrolment
procedure by updating the key store from a floppy disk using an operation called UpdateKeyStore. This
operation establishes the validity of the key store, for example by ensuring that every key has been properly
issued. The invariant proof is not fully automated, but produces six proof obligations that require reasoning
about relations and set theory. Nevertheless, these can be solved relatively straightforwardly using a few
deduction rules and automated theorem proving with sledgehammer [BBN11].

Proofs of SFR3 and SFR6 are both fully automatic. For SFR1, proof of the unlocking condition is
fully automated using wp calculus and relational calculus. The completion of the proof requires, again, some
weakening and strengthening, but this is mainly for efficiency reasons. It seems likely that manual interaction
cannot fully be avoided, and therefore having a well-documented library of deduction rules for proof engineers
is important. Nevertheless, the level of automation for verifying Tokeneer is very high, largely thanks to the
highly developed library of theories and lemmas in Isabelle/HOL.

Tokeneer Assurance Case Despite its age, we see Tokeneer as a highly relevant benchmark specification,
particularly since it is one of the grand challenges of the “Verified Software Initiative” [Woo06]. As we have
argued elsewhere [GFW19], such benchmarks allow us to conduct objective analyses of assurance techniques
to aid in their transfer to other domains. The issues highlighted in [WAC10] are systematic design problems
that can be fixed by a change of the benchmark (e.g. by a two-way biometric identification on both sides
of the enclave entrance). However, this is out of the scope of our work and does not harm Tokeneer in its
function as a benchmark.

During the translation from Z into Isabelle/UTP’s GCL and the formalisation of the SFRs, we identified
some deficiencies in the way that the security requirements were originally proven. SFR4 and SFR5, were
neither formalised nor proved. Moreover, as we have previously mentioned, the developers acknowledge that
there are missing invariants necessary to support the proofs:

We have not [added the invariants], as we believe it will add little to the assurance of correctness,
and is very time consuming. At higher levels of the CC assurance we would be required to carry
out more formal proofs, in which case these modifications would be done. [C+08b, page 11]

One of the reasons we can now do this is because automation of formal proof has vastly improved since the
development of Tokeneer. Consequently, we can reach these higher assurance levels with our mechanisation.

A further issue is that we could not prove SFR2 while staying faithful to its proposed formalisation in
the benchmark artifacts [C+08b, page 6]. This property states that, at the point of unlocking the door, the
time must be “close to being within the permitted entry period”. Like SFR1, it uses the operation TISOp �

TISUpdate as the target for the verification. However, this operation does not allow currentTime, which
internally records the time, to advance. This is because the variable currentTime is introduced by the schema
DoorLatchAlarm, and all internal operations have �DoorLatchAlarm, which implies that currentTime′ �
currentTime.

The advance of internal time occurs only when polling currentTime from the corresponding monitored
variable now, using TISPoll, which can advance arbitrarily. Consequently, if TISPoll is not included, any
invariant of time can be trivially satisfied, because time is constant. This seems to indicate that the security
property has not been formalised correctly. A fix for the issue would require us to reason about TISPoll, and
thus a more substantial proof. However, a reformulation of the requirement would require further interaction
with the developers, and this is out scope. Nevertheless, this does illustrate the benefit of formal proof,
since it highlights issues that cannot easily be spotted in an informal proof. If integrated into the system
development lifecycle, it would allow feedback to other teams, and thus more robust outputs.

Formal Design and Refinement As shown in Fig. 5b on page 8, a complete assurance case of the TIS
development would require the coverage of all three refinement steps described in [C+08c], the functional or
abstract formal specification, the more concrete formal design, and the SPARK implementation. The formal
design is a data and operation refinement of the abstract types used in the formal specification, replacing sets
and functions with data structures with operational semantics. Such refinement proofs would require formal
reasoning about the memory models of the formal design and the SPARK implementation in Isabelle/UTP.

Integration of formal proof into unified assurance cases with Isabelle/SACM 881

This reasoning can be based on separation logic like, for example, implemented in the Isabelle data refinement
library [Lam17].

Wider Applicability Although Tokeneer is an example from the building security domain, we are confident
that our approach is applicable to a wide variety of critical information and control systems. To justify our
confidence, we can resort to seminal work by Lamport [Lam77] on the notion of a safety property as a
property stating that “something will not happen”. Here, “something” is to be understood as a substitute
for “a bad thing”. For example, in system safety, “bad thing” refers to critical events (e.g. valve failures)
that can cause environmental damage or human injury. In building or infrastructural security, “bad thing”
means critical events (e.g. misauthentication) that allow unauthorized/malicious access to secrets/controls,
the latter potentially leading to damage or injury. Analogously, in IT security, “bad thing” signifies critical
events (e.g. side-channel attacks) that allow such unauthorized or malicious access.

The inclined reader will immediately recognize that system safety and these two flavors of security are not
only related in the form of their requirements but also in the nature of the consequences from violating these
requirements. Returning to Tokeneer, those security properties that are expressed as invariants, are safety
properties in Lamport’s sense. Their verification/falsification boils down to the checking of whether all system
runs/any system run fulfill/violates these invariants. In summary, the formal underpinning of our assurance
approach can deal with any property that can be expressed as an invariant in the same way. It may certainly
be an intricate issue to conceptually isolate invariants of appropriate strength, in other words, to express the
“bad thing” as a meaningful safety property. This requires in-depth analysis, experience, and expertise.

9. Conclusions

We have presented Isabelle/SACM, a framework for integrating formal proof into a unified and standardised
form of assurance cases and for their computer-assisted construction. We showed how SACM is embedded
into Isabelle as an ontology, and provided an interactive assurance language that guides its user in generating
valid instances of this ontology.

We applied this framework to part of the Tokeneer security case, including the verification of three of
the security functional requirements, and embedded these results into a mechanised assurance argument.
Isabelle/SACM enforces the usage of formal ontological links—a feature inherited from DOF—which es-
tablishes and enriches traceability between the assurance arguments, evidence of different provenance, and
the assurance claims. Isabelle/SACM combines features from Isabelle/HOL, DOF, and SACM in a way
that allows integration of formal methods and assurance cases [GFN19]. In summary, our work allows us to
intertwine a formal development in Isabelle, potentially consisting of several heterogeneous notations and
artifacts, with an assurance case that puts the formal results in context. We believe it also confirms the
hypothesis that Isabelle is an ideal platform for systems assurance [BW19b], and as evidenced by projects
like seL4 [KEH+09] and PikeOS [VHS+15], it can scale to verifications of a substantial size.

In future work, we will formalise the connection between ACME [WKD+19] and Isabelle/SACM, which
will make the platform more accessible to safety practitioners. We are currently working on a prototype
model-to-text transformation from SACM to Isabelle to facilitate this, and an integration with Eclipse to
allow feedback from Isabelle to be propagated back to the diagram editors. In this way, the structure of an
assurance case and its arguments can be created using a graphical editor, and formal artifacts from Isabelle
can be presented as evidence. We are currently working with our industrial partners to explore how this
technology can be inserted into their development processes, and the level of training required for employees.
Moreover, we are also applying Isabelle/SACM to develop an assurance case for other case studies, including
an autonomous underwater vehicle safety controller [FNO+20], which is being developed in partnership with
D-RisQ8 under the regime of the DO-178C standard. This work integrates a sophisticated graphical state
machine and architectural language for modeling robotic systems, called RoboChart [MRL+19, FBC+18],
and its associated Eclipsed-based tool, which will further aid accessibility.

From a safety engineering standpoint, we will also consider the integration of AC pattern execution [DP18],
to facilitate AC production. Moreover, to support more advanced safety analysis, we are exploring the use of
DOF to develop an ontology for safety concepts, such as hazards, risks, and control measures, following work
by Banham [Ban20] and the Safety of Autonomous Systems Working Group [oASWG20], and also ontologies

8D-RisQ Software Systems. http://www.drisq.com/.

http://www.drisq.com/

882 S. Foster et al.

for formal methods. Indeed, we envisage the development of a variety of ontologies that provide the necessary
terminology to formulate requirements, document developments, and otherwise aid in communication. We
also plan to complete the mechanisation of the TIS security case, including the overarching argument for how
the formal evidence can satisfy the requirements of CC [Com17]. This will involve mechanising the remaining
operators, and tackling the last three security requirements, which will require derivation and verification
of additional invariants. Moreover, formal provenance between the GCL operations and corresponding Z
schemas could in the future be established with suitable equivalence proofs.

In parallel, we are developing our verification framework, Isabelle/UTP [FBC+20, FZW16, FZN+19] to
support a variety of software engineering notations. We recently demonstrated formal verification facilities
for a StateChart-like notation [FBC+18, FCC+19], and are also working towards tools to support hybrid
dynamical languages [FTCW16, Fos19, MSF20] like Modelica and MATLAB Simulink. We have recently
applied this to verification of an autonomous marine vehicle [FGC20]. Though these kinds of models seem
quite different to Tokeneer, in the UTP they all have a relational semantics and so the development of proof
facilities here feed into these works.

A recent survey of practitioners in critical software and systems engineering [GM20] indicates a willing-
ness to apply formal methods, provided that the challenges of tool support and training can be addressed.
Thus, our long-term overarching goal is a comprehensive assurance framework supported by a variety of in-
tegrated FMs, in order to support complex certification tasks for cyber-physical systems such as autonomous
robots [GFW19, GFN19, FNO+20].

Acknowledgements

This work is funded by EPSRC projects CyPhyAssure (CyPhyAssure Project: https://www.cs.york.ac.uk/
circus/CyPhyAssure/) (grant reference EP/S001190/1) and RoboCalc (grant reference EP/M025756/1),
the German Science Foundation (DFG; grant 381212925), and the Assuring Autonomy International Pro-
gramme (AAIP; grant CSI:Cobot).

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to
the material. If material is not included in the article’s Creative Commons licence and your intended use
is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/
by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

References
[ASST10] Abdelhalim I, Sharp J, Schneider S, Treharne H (2010) Formal verification of Tokeneer behaviours modelled in

fUML using CSP. In: Formal methods and software engineering, volume 6447 of LNCS. Springer, pp 371–387
[BACW18] Brucker AD, Aït-Sadoune I, Crisafulli P, Wolff B (2018) Using the Isabelle Ontology Framework—linking the

formal with the informal. In: Proceedings of the 11th international conference on intelligent computer mathematics
(CICM), volume 11006 of LNCS. Springer, pp 23–38

[Ban20] Banham D (2020) Formalising the language of risk. Saf Syst 28(1), February 2020
[BB98] Bishop PG, Bloomfield RE (1998) A methodology for safety case development. In: Redmill F, Anderson T (eds)

Industrial perspectives of safety-critical systems: proceedings of 6th safety-critical systems symposium. Springer,
pp 194–204

[BBN11] Blanchette JC, Bulwahn L, Nipkow T (2011) Automatic proof and disproof in Isabelle/HOL. In: Proceedings of
8th international symposium on frontiers of combining systems (FroCoS), volume 6989 of LNCS. Springer, pp
12–27

[BCJ+06] Barnes J, Chapman R, Johnson R, Widmaier J, Cooper D, Everett B (2006) Engineering the Tokeneer enclave
protection software. In: Proceedings of IEEE international symposium on secure software engineering (ISSSE)

[Bet16] Bettini L (2016) Implementing domain-specific languages with Xtext and Xtend. Packt Publishing Ltd

https://www.cs.york.ac.uk/circus/CyPhyAssure/
https://www.cs.york.ac.uk/circus/CyPhyAssure/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Integration of formal proof into unified assurance cases with Isabelle/SACM 883

[BK13] Barmpis K, Kolovos D (2019) Hawk: towards a scalable model indexing architecture. In: Proceedings of the
workshop on scalability in model driven engineering, pp 1–9

[BW19a] Brucker A, Wolff B (2019) Isabelle/DOF: Design and implementation. In: Proceedings of 17th international con-
ference on software engineering and formal methods (SEFM), LNCS 11724. Springer, pp 279–292

[BW19b] Brucker A, Wolff B (2019) Using ontologies in formal developments targeting certification. In: Integrated formal
methods (iFM), volume 11918 of LNCS. Springer, pp 65–82

[C+08a] Cooper D et al Tokeneer ID station: formal specification. Technical report, Praxis High Integrity Systems, August
2008. https://www.adacore.com/tokeneer

[C+08b] Cooper D et al Tokeneer ID station: security properties. Technical report, Praxis high integrity systems, August
2008. https://www.adacore.com/tokeneer

[C+08c] Cooper D et al Tokeneer ID station: summary report. Technical report S.P1229.81.1, Praxis High integrity systems,
August 2008. https://www.adacore.com/tokeneer

[CHOS13] Cruanes S, Hamon G, Owre S, Shankar N (2013) Tool integration with the evidential tool bus. In: Proceedings of
14th interantional conference on verification, model checking, and abstract interpretation (VMCAI), volume 7737
of LNCS. Springer

[Com17] Common Criteria Consortium (2017). Common criteria for information technology security evaluation—part 1:
Introduction and general model. Technical report CCMB-2017-04-001, Common Criteria Consortium, 2017

[CW06] Cavalcanti A, Woodcock J (2006) A tutorial introduction to CSP in unifying theories of programming. In: Refine-
ment techniques in software engineering, volume 3167 of LNCS. Springer, pp 220–268

[Dij75] Dijkstra EW (1975) Guarded commands, nondeterminacy and formal derivation of programs. Commun ACM
18(8):453–457

[DMW+18] Diskin Z, Maibaum T, Wassyng A, Wynn-Williams S, Lawford M (2018) Assurance via model transformations
and their hierarchical refinement. In: MODELS. IEEE

[DP13] Denney E, Pai G (2013) A formal basis for safety case patterns. In: Proceedings of 32nd international conference
on computer safety, reliability, and security (SAFECOMP), volume 8153 of LNCS. Springer, pp 21–32

[DP15] Denney E, Pai G (2015) Towards a formal basis for modular safety cases. In: 34th inteenational confernece on
computer safety, reliability, and security (SAFECOMP), volume 9337 of LNCS. Springer, pp 328–343

[DP18] Denney E, Pai G (2018) Tool support for assurance case development. Autom Softw Eng 25:435–499
[FB20] Foster S, Baxter J (2020) Automated algebraic reasoning for collections and local variables with lenses. In: Winter

M (ed) Proceedings of 18th international conference on relational and algebraic methods in computer science
(RAMiCS), volume 12062 of LNCS. Springer, April 2020

[FBC+18] Foster S, Baxter J, Cavalcanti A, Miyazawa A, Woodcock J (2018) Automating verification of state machines with
reactive designs and Isabelle/UTP. In 15th Intl. Conf. on Formal Aspects of Component Software (FACS), volume
11222 of LNCS, pages 137–155. Springer, October 2018

[FBC+20] Foster S, Baxter J, Cavalcanti A, Woodcock J, Zeyda F (2020) Unifying semantic foundations for automated
verification tools in Isabelle/UTP. Sci Comput Program 197, October 2020

[FCC+19] Foster S, Cavalcanti A, Canham S, Woodcock J, Zeyda F (2019) Unifying theories of reactive design contracts.
Theor Comput Sci 802, September 2019

[FCWZ18] Foster S, Cavalcanti A, Woodcock J, Zeyda F (2018) Unifying theories of time with generalised reactive processes.
Inf Process Lett 135:47–52

[FGC20] Foster S, Gleirscher M, Calinescu R (2020) Towards deductive verification of control algorithms for autonomous
marine vehicles. In: 25th proceedings of international conference on engineering of complex computer systems
(ICECCS). IEEE, October 2020

[FGM+07] Foster J, Greenwald M, Moore J, Pierce B, Schmitt A (2007) Combinators for bidirectional tree transformations:
a linguistic approach to the view-update problem. ACM Trans Program Lang Syst 29(3), May 2007

[FNGK19] Foster S, Nemouchi Y, Gleirscher M, Kelly T (2019) Isabelle/SACM: Computer-assisted assurance cases with
integrated formal methods. In: Proceedings of 15th international conference on integrated formal methods (iFM),
volume 11918 of LNCS. Springer, pp 379–398, December 2019

[FNO+20] Foster S, Nemouchi Y, O’Halloran C, Tudor N, Stephenson K (2020) Formal model-based assurance cases in
Isabelle/SACM: an autonomous underwater vehicle case study. In: Formal methods in software engineering (For-
maliSE 2020): proceedings of the 8th international conference. ACM, 2020

[Fos19] Foster S (2019) Hybrid relations in Isabelle/UTP. In: UTP, volume 11885 of LNCS. Springer, pp 130–153
[FTCW16] Foster S, Thiele B, Cavalcanti A, Woodcock J (2016) Towards a UTP semantics for Modelica. In: UTP, LNCS

10134. Springer, pp 44–64
[FZN+19] Foster S, Zeyda F, Nemouchi Y, Ribeiro P, Wolff B (2019) Isabelle/UTP: mechanised theory engineering for

unifying theories of programming. Archive of Formal Proofs, https://www.isa-afp.org/entries/UTP.html
[FZW16] Foster S, Zeyda F, Woodcock J (2016) Unifying heterogeneous state-spaces with lenses. In: Proceedings of 13th

international colloquium on theoretical aspects of computing (ICTAC), LNCS 9965. Springer
[GC17] Gleirscher M, Carlan C (2017) Arguing from hazard analysis in safety cases: a modular argument pattern. In High

assurance systems engineering (HASE), 18th international symposium, pp 53–60
[GFN19] Gleirscher M, Foster S, Nemouchi Y (2019) Evolution of formal model-based assurance cases for autonomous

robots. In Proceedings 17th International Conference on Software Engineering and Formal Methods (SEFM),
LNCS 11724. Springer

[GFW19] Gleirscher M, Foster S, Woodcock J (2019) New opportunities for integrated formal methods. ACM Comput. Surv
52(6). https://dl.acm.org/doi/10.1145/3357231

[GKHP06] Greenwell W, Knight J, Holloway CM, Pease J (2006) A taxonomy of fallacies in system safety arguments. In:
Proceedings of 24th international system safety conference, pp 430–439, July 2006

https://www.adacore.com/tokeneer
https://www.adacore.com/tokeneer
https://www.adacore.com/tokeneer
https://www.isa-afp.org/entries/UTP.html
https://dl.acm.org/doi/10.1145/3357231

884 S. Foster et al.

[GM20] Gleirscher M, Marmsoler D (2020) Formal methods in dependable systems engineering: a survey of professionals
from Europe and North America. Empir Softw Eng 25(6)

[HH98] Hoare CAR, He J (1998) Unifying theories of programming. Prentice-Hall
[HHK+15] Hawkins R, Habli I, Kolovos D, Paige R, Kelly T (2015) Weaving and assurance case from design: A model-based

approach. In Proceedings 16th international symposium on high assurance systems engineering. IEEE, pp 110–117
[HK14] Habli I, Kelly T (2014) Balancing the formal and informal in safety case arguments. In: VeriSure workshop,

colocated with CAV, July 2014
[J+11] Krodel J et al (2011) Formal methods supplement to DO-178C and DO-278A. RTCA, Inc.
[Jac00] Jackson D (2000) Alloy: a lightweight object modelling notation. ACM Trans Softw Eng Methodol, 11(2):256–290
[KEH+09] Klein G, Elphinstone K, Heiser G, Andronick J, Cock D, Derrin P, Elkaduwe D, Engelhardt K, Kolanski R, Norrish

M, Sewell T, Tuch H, Winwood S (2009) seL4: formal verification of an OS kernel. In: Proceedings 22nd symposium
on operating systems principles (SOSP), . ACM, pp 207–220

[Kel98] Kelly T (1998) Arguing safety—a systematic approach to safety case management. Ph.D. thesis, University of
York

[KPP06] Kolovos D, Paige R, Polack F (2006) Eclipse development tools for Epsilon. In: Eclipse summit Europe, eclipse
modeling symposium, vol 20062, p 200

[Lam77] Lamport L (1977) Proving the correctness of multiprocess programs. IEEE Trans Softw Eng 3(2):125–43
[Lam17] Lammich P (2017) Refinement to imperative HOL. J Autom Reason 62(4):481–503
[MRL+19] Miyazawa A, Ribeiro P, Li W, Cavalcanti A, Timmis J, Woodcock J (2019) Robochart: modelling and verification

of the functional behaviour of robotic applications. Softw Syst Modell 18, January 2019
[MSF20] Munive JHY, Struth G, Foster S (2020) Differential Hoare logics and refinement calculi for hybrid systems with Is-

abelle/HOL. In: 18th international conference on relational and algebraic methods in computer science (RAMiCS),
volume 12062 of LNCS. Springer, pp 169–186, April 2020

[NPW02] Nipkow T, Paulson LC, Wenzel M (2002) Isabelle/HOL—a proof assistant for higher-order logic, volume 2283 of
LNCS. Springer

[oASWG20] Safety of Autonomous Systems Working Group (2020) Safety assurance objectives for autonomous systems (version
2.0), volume SCS-153A. Safety Critical Systems Club, February 2020

[Obj20] Object Management Group (2020) Structured assurance case metamodel specification. https://www.omg.org/
spec/SACM/, April 2020

[Pai97] Paige RF (1997) A meta-method for formal method integration. In: Formal methods Europe (FME), volume 1313
of LNCS. Springer, pp 473–494

[RBC16] Rivera V, Bhattacharya S, Cataño N (2016) Undertaking the Tokeneer challenge in Event-B. In: Proceedings of
4th international conference on formal methods in software engineering (FormaliSE). ACM Press

[Rus13] Rushby J (2013) Logic and epistemology in safety cases. In: Proceeidngs of 32nd international conference on
computer safety, reliability, and security (SAFECOMP), volume 8153 of LNCS. Springer, pp 1–7

[Rus14] Rushby J (2014) Mechanized support for assurance case argumentation. In: New frontiers in artificial intelligence,
volume 8417 of LNCS. Springer

[Spi89] Spivey M (1989) The Z-notation—a reference manual. Prentice Hall, Englewood Cliffs, N. J.
[VHS+15] Verbeek F, Havle O, Schmaltz J, Tverdyshev S, Blasum H, Langenstein W, Stephan B, Wolff B, Nemouchi Y

(2015) Formal API specification of the PikeOS separation kernel. In: Proceedings of 7th NASA formal methods
symposium (NFM 2015), volume 9058 of LNCS. Springer, pp 375–389

[WAC10] Woodcock J, Aydal EA, Chapman R (2010) The Tokeneer experiments. In: Reflections on the work of C.A.R.
Hoare. Springer, pp 405–430

[Wen18] Wenzel M (2018) Isabelle/jEdit as IDE for domain-specific formal languages and informal text documents. In:
Proceedings of 4th workshop on formal integrated development environment (F-IDE), pp 71–84

[Wen19] Wenzel M (2019) Interaction with formal mathematical documents in Isabelle/PIDE. In Proceedings of 12th
international confrence on intelligent computer mathematics (CICM), volume 11617 of LNCS. Springer, pp 1–15

[WKD+19] Wei R, Kelly T, Dai X, Zhao S, Hawkins R (2019) Model based system assurance using the structured assurance
case metamodel. Syst Softw 154

[Woo06] Woodcock J (2006) First steps in the verified software grand challenge. IEEE Comput 39(10)
[WW07] Wenzel M, Wolff B (2007) Building formal method tools in the Isabelle/Isar framework. In Proceedings of the 20th

international conference on theorem proving in higher order logics (TPHOLs), volume 4732 of LNCS. Springer,
pp 352–367

Received 23 July 2020
Accepted in revised form 30 January 2021 by Lizeth Tarifa, Wolfgang Ahrendt and Heike Warheim
Published online 8 June 2021

https://www.omg.org/spec/SACM/
https://www.omg.org/spec/SACM/

	Integration of formal proof into unified assurance cases with Isabelle/SACM
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Assurance cases and SACM
	2.2 Isabelle, Isar, and DOF
	2.3 Isabelle/UTP

	3 Case study: Tokeneer
	4 Isabelle/SACM
	4.1 Modelling: embedding SACM in Isabelle
	4.2 Interactive assurance language

	5 Modelling and verification of Tokeneer
	5.1 Modelling and mechanisation
	5.2 State space
	5.3 Operations
	5.4 Formal verification

	6 Mechanising the Tokeener assurance case
	7 Related work
	8 Evaluation and discussion
	9 Conclusions
	Acknowledgements
	References

