https://doi.org/10.1007/500165-019-00483-2
The Author(s) © 2019 Formal Aspects

Formal Aspects of Computing (2019) 31: 375-409 of Computing

®

Check for
updates

Efficient verification of concurrent systems

using local-analysis-based approximations
and SAT solving

Pedro Antonino®, Thomas Gibson-Robinson and A. W. Roscoe
Department of Computer Science, University of Oxford, Wolfson Building, Parks Road, Oxford, OX1 3QD, UK

Abstract. This work develops a type of local analysis that can prove concurrent systems deadlock free. As
opposed to examining the overall behaviour of a system, local analysis consists of examining the behaviour of
small parts of the system to yield a given property. We analyse pairs of interacting components to approximate
system reachability and propose a new sound but incomplete/approximate framework that checks deadlock
and local-deadlock freedom. By replacing exact reachability by this approximation, it looks for deadlock (or
local-deadlock) candidates, namely, blocked (locally-blocked) system states that lie within our approximation.
This characterisation improves on the precision of current approximate techniques. In particular, it can tackle
non-hereditary deadlock-free systems, namely, deadlock-free systems that have a deadlocking subsystem. These
are neglected by most approximate techniques. Furthermore, we demonstrate how SAT checkers can be used to
efficiently implement our framework, which, typically, scales better than current techniques for deadlock-freedom
analysis. This is demonstrated by a series of practical experiments.

Keywords: Approximate reachability, Local analysis, SAT solving, Formal verification, Deadlock freedom, Model
checking, Approximate verification

1. Introduction

Fully automatic verification techniques, such as model checking, have been severely hindered by the state space
explosion problem [BKO08]. In the context of concurrent and distributed systems, for instance, verification tech-
niques have to analyse a state space that typically grows exponentially on number of components in the system.
This explosion makes the analysis of even moderated-sized systems infeasible. Since model checkers were invented,
finding techniques to cope with this problem has been an active area of research.

Correspondence and offprint requests to: P. Antonino, E-mail: prgantonino@gmail.com; pedro.antonino@cs.ox.ac.uk

http://crossmark.crossref.org/dialog/?doi=10.1007/s00165-019-00483-2&domain=pdf
http://orcid.org/0000-0002-5627-0910

376 P. Antonino et al.

Many techniques to tackle the state-space explosion problem have been invented: most notably partial-
order reductions [GW93, GRHRW15, Val92, Pel93], compression techniques (or, compositional reachability
analysis) [RGG*95, YY91], symbolic state-space representation [POR12, BCCZ99, BCM*92] and counter-
example-guided abstraction refinement (CEGAR) [CGJ*00, CCO*05]. They employ different mechanisms to
reduce the state space to be explored or represent it more efficiently. For instance, partial-order reduction allows
one to explore only a representative sample of ways in which components of a distributed system can cooperate.
Hence, to check whether a property holds, fewer possibilities of cooperation need to be explored. CEGAR, on
the other hand, systematically refines an (abstract) over-approximated version of the system until it converges to
a representation that is faithful enough to check the desired property. All these techniques have in common their
quest for a precise reduction/abstraction for the system’s state space. Despite being able to tame the state-space
explosion problem in many cases, the exact nature of these reductions means they are bound to be as inefficient
as simple explicit state-space exploration in other cases; the state-space reduction might not compensate the time
taken to carry it out. There is no single method that will work best all the time.

Approximate techniques provide another alternative to deal with the state-space explosion problem [MJ97,
ACO05, CK94, DCCN04, OPRW13, OCS17, FOSC16, Ant18]. These techniques are built around the fact that a
property P can often be approximated by some proxy property P’ satisfying two conditions. If a system satisfies
P’, it must also satisfy P, i.e. P* = P. Also, it must be easier to check P’ than P. The first condition ensures
soundness. If such a framework shows that P’ holds, it can soundly deduce that P holds. Note, however, that the
reverse implication (P = P’) need not hold. By ignoring this implication, we allow approximate frameworks to
be incomplete/imprecise. If P’ does not hold for a system, we have no information about P; it might hold or not.
This sort of inconclusive result reflects the imprecision of these methods, which is meant to leave some room for
efficiency gains. Instead of deciding the original, exact problem, one can look for an incomplete problem with
lower complexity. These frameworks purposely sacrifice completeness for efficiency. So, unlike exact methods,
they should efficiently analyse all (or most) input systems, albeit, in some cases, imprecisely. In this paper, we
introduce a new class of approximate techniques.

A proxy property can be simply created by means of a reachability over-approximation. In other words,
the approximation is a simpler-to-establish set of states which certainly contains all reachable states but might
contain extra ones. Many properties are naturally formulated as (or, can be simply translated into) “no bad state
can be reached”, where a bad state accounts for some erroneous behaviour. For such properties, replacing exact
reachability by some over-approximation creates a proxy property. For instance, deadlock freedom is formulated
as “no deadlocked state is in the set of reachable states”, and its approximate/proxy counterpart as “no deadlocked
state lies within the over-approximation”. If this approximation tightly captures the actual state space of a system,
it can give rise to a reasonably accurate approximative framework. In a concurrent system, a state is expressed as
a tuple containing the state of each component process. Thus, an over-approximation might contain more state
tuples than can actually be reached. Obviously, we expect the use of this approximation to speed up the verification
process. In this work, we propose a technique to approximate reachability and we analyse the deadlock-freedom
and local-deadlock-freedom verification framework it gives rise to, in particular, its precision and scalability. A
system is free of local deadlocks if none of its subsystems can become irreversibly blocked. So, for every state, this
property has to ensure that all (exponentially many) subsystems are not stuck. As this notion of quantification
over subsystems is not normally available in traditional verification frameworks, checking this property would
typically require a separate state-space exploration for each subsystem. Of course, this sort of analysis would be
completely unmanageable.

In this paper, we are particularly interested in how local analysis and the invariants they capture can be used
to create reachability over-approximations. Verification frameworks normally analyse the global behaviour of the
system to yield whether a property holds or not. In many cases, however, a property can be established based on
the analysis of small parts of the system. In these cases, verification frameworks can benefit from employing local
analysis to examine small subsystems and capture local invariants. A local invariant approximates the behaviour
of the system based on the behaviour of one of its subsystems; it is meant to show that a system cannot engage
in some behaviours because the components in this subsystem cannot cooperate to perform them. This work
proposes the notion of subsystem reachability as a device to implement local analysis and capture local invariants.
It over-approximates system reachability by showing that some system states are not reachable because the
components in some subsystem cannot cooperate to reach them.

Efficient verification of concurrent systems using local-analysis-based approximations and SAT solving 377

We also use the notion of subsystem reachability to systematically create a family of reachability over-
approximations. For & > 1, k-reachability proposes an approximation that combines reachability for some
subsystems of size up to k. This systematisation is an attempt to create an useful reachability approximation
that can guide the implementation of a fully automatic verification framework. Without this systematisation,
the user of such frameworks would have the unpleasant task of hand-picking some combination of subsystems.
Note there are exponentially many combinations to choose from. 1-reachability is a trivial property that simply
discards all tuples in which one of the components cannot by itself reach the corresponding state. As k increases
up to n, the size of the system, k-reachability gets progressively stronger, and obviously equals reachability when
k is equal to n.

To demonstrate how local analysis can give rise to useful verification frameworks, we use 2-reachability to cre-
ate a framework, called Pair, that checks deadlock and local-deadlock freedom for concurrent systems. Broadly
speaking, Pair is the result of replacing exact reachability for 2-reachability. This replacement makes it an approxi-
mate framework: Pair either shows deadlock (local-deadlock) freedom or it produces an inconclusive result in the
sense that it finds a state that is blocked (locally-blocked) and 2-reachable but might not be reachable. This frame-
work’s precision is better than current local-analysis-based approximative techniques for deadlock freedom. For
example, no other locally-based technique can prove that a system that has some subsystem that can deadlock is
deadlock (or local-deadlock) free. Such systems are deadlock free but not hereditarily deadlock free. This improve-
ment, however, comes with a price. While traditional approximate frameworks are based around polynomially
checkable conditions, the problems Pair is built around are NP-hard. So, we rely on SAT checkers to efficiently
implement Pair in a way that, typically, scales better than current techniques for deadlock-freedom analysis. These
solvers are designed for the purpose of efficiently handling existential quantification. Therefore, they should be
particularly effective at tackling the sort of subsystem quantification we use in local-deadlock analysis.

In general, k-reachability gives rise to frameworks that should be more scalable than exact frameworks, but
they cannot show properties that depend on some invariant of subsystems of size greater than k. For instance,
Puair cannot show deadlock (or local-deadlock) freedom if it depends on some local invariant emerging from how
triples or larger combinations of components behave. So, to increase Pair’s precision, we propose the PairPicking
framework. It improves 2-reachability by combining Pair with subsystem reachability for some subsystems picked
by the user. This extension should be useful when proving deadlock (local-deadlock) freedom involves invariants
of triples or larger combinations of components, these combinations can be easily identified by the user, and
they are much smaller than the entire system. We point out that local analysis alone is not suited to prove
properties emerging from the system’s global behaviour. So, in particular, neither of the present paper’s verification
frameworks satisfactorily handle such cases. That said, we show that some interaction mechanisms commonly
implemented by concurrent systems give rise to local invariants that ensure deadlock and local-deadlock freedom.
This work is only concerned with techniques based purely on local analysis. Therefore, we only tangentially discuss
techniques that detect global system invariants in Sect. 2. We point out that we have studied a number of ways
to effectively combine the sort of local-analysis-based approximations presented in this work with techniques
deriving global invariants [AGRR16b, AGRR17a, AGRR17b] and intend to cover these in sequels to this paper.

This paper extends the work in [AGRR16a] as follows.

e We provide a detailed analysis of the deadlock- and local-deadlock-freedom-checking problems and show
they are PSPACE-complete.

e We generalise the notion of pairwise analysis to that of subsystem reachability, which in turns lead to the
generalisation of pairwise reachability into k-reachability.

e We formally analyse the complexity of our reachability approximations and the Pair framework, leading to
the proof that the problem of finding deadlock candidates for this framework is NP-complete, whereas finding
local-deadlock candidates in NP-hard.

e We introduce the PairPicking strategy; it uses reachability analysis for some selected subsystems (triples or
larger combinations of components) to improve Pair’s precision.

e We have formally proved our results, most of which were left unproven in the original work.

e We have evaluated our tools with further test cases and against a few other techniques.

Outline Section 2 discusses some work related to ours. In Sect. 3, we introduce the notion of supercombi-
nator machines, upon which this work is based, and we introduce the deadlock- and local-deadlock-freedom-
checking problems. Section 4 proposes the local-analysis-based reachability approximations this work revolves
around. In particular, we introduce the notions of subsystem and k-reachability to capture and implement
local analysis. In Sect. 5, we propose Pair, a framework that uses local analysis for proving deadlock and

378 P. Antonino et al.

local-deadlock freedom. Section 6 introduces PairPicking, a strategy that extends Pair’s fully-automatic use
of local analysis with some manually-provided user inputs. Finally, in Sect. 7, we present our concluding re-
marks.

2. Related work

Local analysis has been used in many verification frameworks for different contexts and types of concurrency
[RD87, BR91, AOS* 14, ASW14, OAR*16, AC05, ABB*13, LMC11, Mar96]. [RD87, BR91] introduce a theory
of deadlocks based on the notion of an ungranted request, that is, a wait-for dependency between components.
This work introduces a proof rule based around the fundamental principle: under reasonable assumptions about
the system, a cycle of ungranted requests is a necessary condition for a deadlock. So, absence of such cycles
demonstrates deadlock freedom. This proof rule provides a mathematical tool that can be manually used to show
that a system is deadlock free; this work does not propose any verification tool to mechanically support the
application of (or, make use of) this rule.

In [AC05, ABB*13, ABB*18, LMC11, Mar96], fully-automated approximate techniques for deadlock free-
dom are introduced. [ACO05] proposes a method for analysing syntactically-restricted shared-variable concur-
rent programs, whereas the framework in [ABB*13, ABB*18] adapts it to a more general setting meant to
describe component-based message-passing systems. [LMC11] proposes a method for architecturally-restricted
component-based systems interacting via message passing, and [Mar96] proposes a method for syntactically-
restricted message-passing concurrent systems. All these frameworks are based on the fundamental principle
(discussed above): they use local analysis to prove the absence of cycles of ungranted requests. From analysing
individual and pairs of components, they construct an ungranted-requests digraph and show that such a cycle
cannot arise in any conceivable state of the system. These methods tend to be very efficient as this digraph can be
constructed and analysed in polynomial time. The use of cycles of dependencies to approximate deadlocks, how-
ever, can be imprecise in many ways. Our discussion of SDD (in Sect. 5.1), which is the archetypical framework
in this category, clearly exposes these limitations. The framework that we propose in this paper addresses some
of these limitations as it relies on a tighter characterisation of (local-)deadlocks and a more precise approach to
analyse reachability.

A semi-automatic framework to systematically design deadlock-free systems is introduced in [OAR*16]. It
proposes a set of composition rules that only allow components to be composed if they interact properly. Moreover,
it introduces a set of refinement expressions that can automatically check whether components interact properly.
This framework, however, cannot efficiently tackle systems that have a cyclic communication topology. To cope
with that, [AOS* 14, ASW14] introduce a set of design patterns that can be used to construct arbitrary-topology
systems. The shortcoming of this approach is that there is only a handful of patterns that can be used to construct
systems. It also provides a set of refinement expressions to automatically check that a system implements a given
pattern. An important benefit of such framework is their guidance in how to construct a deadlock-free system
through the use of patterns. The framework that we propose here applies to systems regardless of whether they
conform to a pattern or not but they do not provide any clear guide as to how to create a deadlock-free system.
For our framework, this burden rests upon the system designer.

Lazy reachability is an exact approach that is based on local analysis [JL16]. It begins analysing the behaviour
of a small set of components, and this set is incrementally augmented until either the property is shown or a
counter example is found. This approach works well when the property being tested can be demonstrated using
local analysis. Otherwise, it will analyse the entire system and thus run into state-space explosion problem. The
framework we propose is based on the analysis of small subsystems of a fixed size. Hence, it will not, at any point,
analyse the system as whole, which makes the framework efficient but it can also lead to imprecision. In some
cases, a property might emerge from the behaviour of a subsystem larger than the subsystems we were set to
analyse. In these cases, our framework will not be able to show the validity of the property for the system at hand.

Pure local-analysis techniques cannot prove a property that depends on some global invariant of the
system. To circumvent this issue, many frameworks rely on some technique to carry out approximate global
analysis [Mar96, CA95, ABC*91, Lam77, AFDR80, BL99, BGL"11, BBL*16, AGRR16b, AGRR17a]. Using
additional reachability information [Mar96], data-flow analysis [CK94, DCCNO04], or rules to calculate system
invariants [Lam77, AFDRS80, BL99, BBL*16] are examples of approaches that have been used to implement
global analysis. Note that the work presented here is not concerned with global analysis in any way. Instead,
it tries to demonstrate the positive impact local analysis alone can have in scaling up verification and to

Efficient verification of concurrent systems using local-analysis-based approximations and SAT solving 379

provide a better outline for the class of properties and systems that can be handled by local analysis and in-
variants. That being said, in previous work we have examined the combination of pairwise analysis with global
invariants and the benefits this might bring to verification frameworks [AGRR16b, AGRR17a].

There exist approximate frameworks that are not based on approximating reachability but in ad-hoc necessary
conditions of a given property. For instance, the frameworks in [OPRW13, FOSC16] check livelock freedom
whereas the one in [OCS17] checks determinism. The use of conditions that are specific to a property makes these
frameworks difficult to adapt for further properties. Conversely, we show in [AGRR17b] how approaches based
on replacing exact reachability by approximations, such the one presented here, can be easily adapted to verify
properties other than deadlock.

In [Cor96], a number of approaches to tackle the states explosion are discussed, amongst which are compo-
sitional techniques, data-flow analysis, symbolic model checking and integer programming. The framework and
techniques that we present in this paper are somehow related to these four approaches. Our framework relies
on the analysis of small parts of the system, hence it is, to some extent, compositional. These analyses involve
explicitly examining the interaction between components, which could be viewed as a type of data-flow analysis.
We use these analyses to create a constraint that looks for system states that fulfil a necessary condition for being
a deadlocked state; we call such states deadlock candidates. Although expressed in a different language—we
propose a boolean constraint as opposed to a system of linear equations with integer solutions—, we are trying
to achieve the same purpose as integer-programming-based frameworks, namely, approximate whether a state
is bad (i.e. deadlocked) by some necessary conditions it must fulfil in order to be so. Finally, we use symbolic
techniques, as in SAT solving, to solve this constraint and look for these deadlock candidates. Their absence
proves deadlock freedom whereas their presence leads to an inconclusive result: this candidate might or might
not be a deadlock. Unlike traditional symbolic model checking, however, where the precise state space is repre-
sented by a symbolic constraint, we use a symbolic constraint to deliberately capture an over-approximation of
the system state space, which should make the verification of concurrent systems more efficient. That work also
evaluates three deadlock-checking frameworks, one of which is an “integer necessary conditions” framework: an
approximate approach that shares similarities with ours. Its evaluation shows that it performs well on systems
with small components and it is not affected by the communication structures of the system. In our experimenta-
tions, we have found similar evidence regarding how systems with small components are more effectively tackled
by our framework. However, our approach is affected by the communication topology of the system. The more
connections the more analyses of interacting components our framework will need to do.

In [POR12] and [TGS17], two frameworks for symbolic model checking of concurrent systems are proposed.
[POR12] proposes an approach to perform refinement checking in a symbolic way. It uses a watchdog approach to
create a modified system that reaches an error states if and only if the refinement does not hold. Hence, it transforms
refinement checking into a reachability property. Then, it proposes a technique to encode the state space of a
system into a boolean formula that can be used for bounded model checking. This framework is later extended
to check for an induction step that makes their model-checking framework unbounded. In some cases, this
framework outperforms traditional precise explicit-exploration techniques for finding refinement violations. The
authors of [POR12], however, admit that their framework is usually much less efficient than traditional explicit-
state-exploration techniques for proving that a refinement assertion holds. The authors of [TGS17] propose a
boolean encoding for the state space of a system in addition to a set of heuristics that speed up the process of finding
error states. They use this approach to create a bounded model checker, which, in particular, cannot guarantee the
absence of error states but that they do not exist up to a certain bound i.e. number of transitions. Their experiments
suggest that their heuristics outperform general-purpose SAT verification in proving that some state is reachable.
The authors do remark, however, that they seem not to help in proving unreachability, even if it is only bounded
unreachability. Hence, their framework is useful for finding bugs but not so much for proving safety properties.
Unlike both of these approaches, the frameworks and techniques we propose are meant to prove safety properties
as opposed to finding bugs. We propose techniques that over-approximate the state space of a system. Therefore,
we can prove (unbounded) unreachability by showing that a state does not lie in this approximation, but we do not
prove that a given bad stateis reachable. If a state lies in the approximation, we do not know whether it truly belongs
to the state space of the system or whether it does not. Thus, our techniques should complement the above ones.

380 P. Antonino et al.

3. Background

In this section, we introduce supercombinator machines, the notation upon which our work is based. This notation
isused by FDR4 [GRABR 14] to capture and implement CSP systems [Hoa85, Ros10]. Communicating Sequential
Processes (CSP) [Hoa85, Ros10] is a notation used to model concurrent systems where processes interact by
exchanging messages. As this paper does not depend on the details of CSP, we do not describe the details of the
language or its semantics. These can be found in [Ros10]. Supercombinator machines will capture the semantics
of concurrent systems in virtually all process algebras. In particular, they can support a wide variety of schemes
involving hiding of communications and renaming.

FDR4 captures components of a concurrent systems using labelled transition systems. We use £ to denote the
finite universal set of visible events, Tt & &£ the invisible event, and v' € £ the termination signal.

Definition 1 A labelled transition system (LTS) is a 4-tuple (S5, £, A, §) where S is a non-empty set of states,
Y C £ U {r}is the alphabet, A C S x X x S is a transition relation, and 5 € S is the starting state.

.....

existence of a path from s to s’ with a sequence of events (ay, ..., a,), namely, there exist s, ..., s, such that for
allie{0...n—1}, 8 =5 s;41,and sp = sand s, = 5.

Instead of using the SOS (Structured Operational Semantics) rules to explicitly generate the LTS of a system
[Plo81], FDR4 relies on a combinator-based operational semantics (see [Ros10]) that represents systems as super-
combinator machines. A supercombinator machine represents a concurrent system by the LTSs of component
processes and a set of rules that set out how these components can interact. Any combinator semantics can be
translated into a SOS one.

Definition 2 A single-format supercombinator machine is a pair (L, R) where:

e L=(Ly,...,Ly,)isasequence of component LTSs;
e R is a set of rules of the form (e, a) where:

— e € (£ U {r,—})" specifies the event that each component must perform, where — indicates that the
component performs no event. At least one component must perform an event.

— a € £U{r} is the event the supercombinator machine performs.

FDR4 works with a version of a supercombinator machine that might have multiple formats. Formats are
partitions of the machine’s rules. For these machines, each rule is associated with a format and rule application
triggers a (possible) change of format. In this work, however, we have the restriction that we only deal with single-
format machines. Note, however, that a multi-format machine can be translated into a single-format machine
with an equivalent behaviour in polynomial time. This translation would involve adding a new component to
track the system’s current format and modifying the machine’s rules to comply with format restrictions and to
perform format changes. Nevertheless, we impose this restriction because the techniques we propose should be
better suited to handle systems that are naturally described by single-format machines. This artificial translation
into a single-format machine is likely to damage the precision of our techniques in capturing the behaviour of the
original non-single-format system. In practice, many systems are naturally modelled by single-format machines;
systems that are constructed in CSP using the replicated-alphabetised-parallel operator, for instance, are naturally
represented in this way.

The frameworks that we propose in this work are intended to be more precise when applied to machines that
are not only single-format but also triple-disjoint.

Definition 3 A supercombinator machine (L, R) with n components is triple disjoint if and only if for all pairs
(e, a) € R, e is triple disjoint, that is, at most two components participate in a rule.

triple_disjoint(e) =Vi,j,kef{l...n} |[i#jAj#kAniFke(e,=—)V(e=—)V (e =—)

Triple disjointness is a restriction but a single-format machine can also be translated in polynomial time
into a triple-disjoint single-format machine. This translation is more complicated than the previous one and
involves the creation of new components, one per rule of the original machine, to emulate rule application.
Again, we impose this restriction because we believe the frameworks we propose should, in general, analyse more
accurately this type of machines. We also point out that many supercombinator machines are naturally triple
disjoint. Moreover, triple disjointness is also a restriction imposed by many notations and frameworks that are

Efficient verification of concurrent systems using local-analysis-based approximations and SAT solving 381

Ci+1,0

Ci+1,1

Fig. 1. LTS for components L; and that of Syss,

similar to ours[Ram11, Mar96, AC05, FOSC16, AOS™ 14, ASW14]. Henceforth, we use the term supercombinator
machine instead of single-format triple-disjoint supercombinator machine.
We illustrate the notion of a supercombinator machine with an example.

Example 1 We construct a 2-place buffer, which stores boolean values 0 and 1, by putting together two 1-place
buffers depicted by components Ly and L in Fig. 1. In our model, event ¢; ,, (¢;+1,,) represents the input (output)
of value v by component i. The system implementing our 2-place buffer is represented by the supercombinator
machine Syrs, = {(Lo, L1), R}, where R requires the synchronisation of shared events:

R = {((co,0, =), c0.0), ((co,1, =), co.1), ((c1,0, €1,0)s €1,0), ((c1.1, €1,1), c1.1), (=, €2,0), 2.0), (=, €2,1), €2,1)}-

A supercombinator machine is an implicit representation of a system in the sense that it induces a LTS
representing its behaviour. The LTS induced by Sasg,, for instance, is presented in Fig. 1; we use s; ; to denote
state (s;, s;). Note that this very trivial example already gives rise to a state space that is a quite hard to read and
understand. Hence, the need for sound automatic tools for the analysis of concurrent systems.

Definition4 Let S = ((Ly,..., L,), R) be a supercombinator machine where L, = (S5;, ¥;, A;, ;). The LTS
induced by S is the tuple (S, Z, A, §) such that:

e S=35 x-x 8

e X={al(e,a) e R}

o A= {((s1,---s8n) a, (s, ...,) 1 3er,....en),a) eReVie(l...n}e

(ei=—=As;=8)V (e % — A(si, €, 8,) € A
e 5=(5,...,8n)
In this work, we use system state (component state) to designate a state in the system’s (component’s) LTS.

From now on, we refer to a system and its supercombinator machine interchangeably. According to our definition

of a system’s induced LTS, a state might be reachable or not. We assume, however, that all states in a component
LTS are reachable.

Definition 5 For induced LTS (S5, X, A, §), state s € S is reachable if and only if reachable(s) holds, where
reachable(s) =dp e X* e 5 5 s,

382 P. Antonino et al.

The reason for choosing supercombinator machines to reason about concurrent and distributed systems
is two-fold. Firstly, these machines are simple and can seamlessly capture the behaviour of systems described
in many common formalisms. Even though we rely on CSP to model systems and FDR4 to compile them
into supercombinator machines in our implementation later on, our framework should be easily adaptable to
similar formalisms; a new compilation procedure to transform systems described in this new formalism into
supercombinator machines should be the only requirement for this adaptation. Secondly, this operational notion,
as intended, provides a system description that is fairly simple to implement and manipulate when constructing
analysis tools.

FDRA4 is a fully-automatic verification tool that checks properties about CSP systems. In this work, we are
concerned with the problem of verifying deadlock and local-deadlock freedom. We introduce these problems,
discuss whether/how FDR4 tackles them, and show that they are PSPACE-complete. Currently, there is no
known algorithm that can solve such problems in polynomial time, and the common belief is that there is none.
In fact, it is widely believed that PSPACE-complete problems can only be solved in at least exponential time.

To show PSPACE-hardness, we rely on reductions from the single-component traces-refinement problem. For
a specification LTS L, and an implementation LTS L;, both of which are finite, this problem asks whether

Ly, ©¢ Ly holds, where Ly, T Ly ifand onlyif traces(Ly) C traces(Lgp), traces(L) = {tr |Is e S e § LN s},

and s = s holds when #ris a trace leading L from s to &, that is, there exist a path s Lol o such that fr s the

sequence of events resulting from removing all t-occurrences from (qay, ..., a,). Intuitively, an implementation
L; refines a specification L, in the traces model, namely, Ly, E7 L; holds, if the implementation can only
perform behaviours (i.e. traces) that are allowed (i.e. are performed) by the specification. This is why the traces of
specification and implementation are related in the opposite way: traces(Lsp) 2 traces(Ly). This problem has
been shown to be PSPACE-complete in [KS90]:

Lemma 1 Given a specification LTS L, and an implementation LTS L;, the problem of checking that L, Cr L;
holds is PSPACE-complete.

Moreover, we also use the following lemma, a direct consequence of Savich’s theorem [Sav70], in proving
PSPACE membership. Savich’s theorem provides a construction to translate a non-deterministic algorithm that
uses polynomial space into a deterministic procedure with a quadratic space increase.

Lemma 2 NPSPACE = PSPACE.

For the sake of decidability, we only consider supercombinator machines with a finite number of components,
which are themselves represented by finite LTSs. Intuitively, the need to explore induced LTSs and their state-space
explosion can be seen as the cause for this problem’s membership to PSPACE. We use the following definitions
for the size of a supercombinator machine and a LTS.

Definition 6 Let L = (5,2, A,8)bea LTSand S = ({Ly, ..., L,), R) a supercombinator machine:
o the size of S is given by S| = (O ;1. 1LiD) + (n - [R]);
e the size of Lis given by |L| = | S| + |A|.

A system deadlocks when it reaches a state in which it becomes blocked, namely, unable to perform any further
event. So, a system is deadlock free if no such state exists.

Definition 7 Given a supercombinator machine S, the deadlock-freedom problem asks whether S’s induced LTS
L=(S,Z, A, 3)isdeadlock free, namely, whether =3 s € S e deadlock(s) holds.

e deadlock(s) = reachable(s) A blocked(s)
o blocked(s) = —(s —>), where s —> holds if and onlyif e € T o 5 -

Deadlock-freedom is a very important property in practice. Checking this property is often considered the
first step towards showing that a concurrent/distributed system is correct. Moreover, many safety properties can
be reduced to verifying deadlock freedom of modified systems [GW93].

This problem’s PSPACE-completeness means that automatic verification techniques usually struggle to show
deadlock freedom even for systems with a rather small number of components. FDR4 has a built-in assertion
that checks deadlock freedom. It implements a breadth-first-search algorithm to explicitly explore the induced
LTS of a system, looking for a deadlock.

Efficient verification of concurrent systems using local-analysis-based approximations and SAT solving 383

Theorem 1 The deadlock-freedom-checking problem is PSPACE-complete.

Proof We prove that the deadlock-freedom-checking problem is (i) in PSPACE and (ii) PSPACE-hard.

Firstly, we show (i) by providing a high-level description for a non-deterministic Turing machine (NTM) that
uses polynomial space to check deadlock freedom.

Let S = ((Ly,..., L,), R) be the supercombinator machine we try to show to be deadlock free, where
L; =(S;,Z;,A4,8),and L = (5, X, A, 5) is its induced LTS. We call NTM CHECK in Algorithm 1 with input
(S, 5,181), where | S| = [[;c(1..n |Sil- If it accepts this input, S has a deadlock, if it rejects, S is deadlock free.
This machine accepts some input if some branch yields accept, and rejects it if all branches yield reject. Each
guess creates a branch that has to store the supercombinator S, a state s, a number n, and some extra space
to calculate blocked(s) and sucessor(s), namely, the memory used is proportional to the size of S. So, it uses
polynomial space.

Moreover, it correctly decides deadlock-freedom. If a deadlock exists, it must be at most |.S| transitions away
from 3, since there must be a simple path in L leading to it, and our procedure goes through all paths of length
at most |S|.

Algorithm 1 NTM to check for a deadlock for machine S.

1: function CHECK(S, s, n)

2 if n > 0 then

3 if blocked(s) then accept

4 else guess s’ € successors(s) :
5: CHECK(S, s, n — 1)

6 end if

7 else reject

8 end if

9: end function

Secondly, we show (ii) by providing a polynomial-time reduction from the single-component traces-refinement
problem to the deadlock-freedom checking problem.

Let Ly, = (Ssp, Tsp, Asp, ap), Where Sg, = {s1, ..., s}, be a specification LTS and L; an implementation
LTS with alphabet X ;. We assume, without loss of generality, that L, and L; are t-free and v ¢ X; U X,; we
could run a r-elimination procedure that runs in polynomial time on L, and L; and creates a traces-equivalent
t-free LTS. We propose the creation of the supercombinator machine 7 (L, L), described next, as a means
of reducing the verification of single-component traces refinement between these LTSs to checking deadlock
freedom for this machine. Components S;, C; and CC are described below.

T(Lsp’ LI) = ((Sh 017 ey Sna Cn’ CC: Lf)a R)

Much like checking language containment for non-deterministic automata, traces refinement is usually carried
out by exploring the product space of the determinised specification and the implementation. This product
space matches pairs of states that can be reached via the same trace and the exploration checks whether the
implementation state can perform a subset of the events the specification state can. The reason for determinising
the specification is to avoid having to compare an implementation state with (possibly) multiple specification
states; non-determinism causes a LTS to reach two different states with the same trace. The determinisation
procedure creates states that correspond to sets of states of the original specification.

In this reduction, we cannot afford determinising the specification upfront, as this would lead to an exponential
time reduction. Instead, we create a supercombinator machine that can be understood as behaving like the same
specification-implementation product LTS but it carries out a sort of lazy determinisation.

The machine 7 (Lsp, Ly) runs components (Si, Cy, ..., S,, C,, CC, L) in parallel. The components S,
..., S,, C, account for the determinised behaviour of the specification, L; is the implementation compo-
nent, and CC'is a central controller that ensures specification and implementation reach trace-matching states.
Furthermore, C'C also goes into a deadlock state, causing the entire machine to deadlock, if a pair of violating
states is found, namely, a pair of specification and implementation states where the implementation can perform
an event not allowed by the specification.

Component CC, roughly speaking, reads an event the currently-being-visited implementation state can
perform and tries to see if the determinised specification counterpart state can perform it too. If so, it moves

384 P. Antonino et al.

on to next pair of states to be visited. On the other hand, if the specification cannot perform this event it goes
into a deadlock state, which leads the entire system into a deadlock. In this machine, in addition to the original
events e, we use fresh events e’ (and €’) to denote that the determinised specification can (resp. cannot) give rise
to event e, respectively. C'C' definition is given next, and we provide a sketch of its graphical representation in
Fig. 2.

CcC =(S,X%, A, s)where

— S = {start, good, bad, idle} U {s. | e € X}

— X = {ready, reset} U {e, ¢, ¢’ | e € 1}

— A = {(start, e, s.) | e € 1)} U{(start, T, start)}
U{(se, €', good), (se, €, bad) | e € X1)}
U{(good, reset, idle), (idle, ready, start)}

— § = start

We use components 5, ..., S, to represent a state of the determinised specification. Component S; accounts
for the behaviour of state s; in Ls,. S;’s states on and off tell whether s; is part of the determinised state currently
being visited, whereas states s, and s, serve to update what the next determinised state should be based on the
successors of s; for event-e transitions in Ls,. We use the fresh event suc, to carry out this update as we explain
later. We provide a definition for this component next, and a sketch of its graphical representation in Fig. 2.

Si = (5, X, A, 5) where

— S ={on, off} U {se | sii>}
— X = {ready, on;} U {suc., ¢, € | s; 5}
— A = {(off. ons, on), (off. ready, off)} U {(off. €', of). (off. &', off) | s;: >}
U{(on, on;, on), (on, ready, on)} U {(on, €, s¢) | $; 51
U{(se, reset, s.), (s,, suce, off) | s —e>}
— §=onif 5, = s;, and 5 = off, otherwise
Component C; is a simple controller to S;. It keeps information about whether this state should be part
of the next determinised state being visited, namely, whether S; should be “turned on”. The definition for this
component is given next. Also, we provide its graphical representation in Fig. 2.
C; = (5, %, A, s5) where
— 5 ={on, off}
— X = {ready, on;, start;}

— A = {(off, start;, on), (off, ready, off)}
U{(on, ony, off), (on, start;, on)}

- §=off
Finally, we describe, as follows, the rules that regulate the interaction between components in this machine.
We use the set {(71, a1), ..., (%m, @)} as an alternative way to represent the tuple (ey, ..., e,) where e;, = a;

if the pair (4;, a;) belongs to the set and — otherwise. Moreover, we use the name of components to represent
their position in a rule’s event tuple: S; = 2i — 1, C; = 24, CC = 2n + 1, Ly = 2n + 2. For instance, the rule
({(¢, ready) | © € {1...2n + 1}}, ready) requires all components of 7(Ls,, L) except for L; to synchronise on
event ready leading to system event ready, whereas the rule ({(.S;, on;), (C;, on;)}, on;) requires components S;
and C; to synchronise on on; to produce the system event on;.

R ={({(4, ready) | i € {1...2n + 1}}, ready), ({(CC, 1)}, 1)}
UA{({(S:, ony), (Cy, ony)}, ong) | i € {1...n}}
U {({(CC, 6), (LI? 6)}9 6) | e e 21}
U {({(S;, reset) | i € {1...n}} U{(CC, reset)}, reset)}
U{({(Si, e ie{l...n} A s SYU{(CC, e, e)| ee)
U{({(Si, &) |ie{l...n} A s; S}U{(CC,E)), &) | ee X}
U{({(C}, start) | j € {l...n} A s; 5 5;} U{(Ss, suce)}, suce) | i€ {l...n} Aee Xy}

Efficient verification of concurrent systems using local-analysis-based approximations and SAT solving 385

e e
1 my
reset p
ready, on; reset @ start;

e on; start;
reset on;
SUCe,
@ — ready

SuCe,,,
ready, reset, e, €}, .. e, &,

Fig. 2. LTS sketches of component CC for 1 = {ey, ..., em} and of component S; with {e | s; i)} = {e1 ... em,}, and LTS of component
C}, respectively

All but the last set in this definition require components to synchronise in shared events. The last set, however,
triggers the creation of the next determinised specification state to be visited. Given the event performed by the
implementation, our machine has to update the determinised specification state accordingly. Assuming that e
was performed by the implementation, this update involves “activating”, for each state s; (i.e. component S;)

active in the current determinised state, all successor state s; (i.e. component .S;) such that s; 5 s;j in Lgy,. The
rules in this last set mimic this behaviour; component .5; performing suc, triggers start; to be performed by all
C; associated with s;’s successors.

To conclude our proof, we show that (iii) this machine is deadlock-free iff L, =1 L; holds and that (iv) it
can be constructed in polynomial time.

As our machine is built to mirror the behaviour of the product space of the determinised specification and
implementation, (iii) holds. Note that C'C' only reaches state bad iff Ly, E7 L; does not hold, as per Lemma 3,
and making CC reach bad is the only way our machine can deadlock, as per Lemma 4. By the definitions of
the components in this machine and its rules, it should be clear that (iv) holds. Each component C; can be
constructed in constant time, components Sy, ..., S, can be constructed in time proportional to | L, |, and CC
can be constructed in time proportional to |L;|. QED O

Lemma 3 CC reaches state bad within 7 (L, L) iff Ls, &1 Ly does not hold.

Proof The system T (L, L;) mirrors the behaviour of a refinement checking precedure for specification Ly,
and implementation L;. A refinement checking procedure would, first, create L4+ a determinised version of L.
In this determinised version, no two different states can be reached via the same trace and determinised states
correspond to set of states of the original specification. For instance, if states s; and s, are reached (only) via ¢r in
L,,, the state {s;, s} must be reached via ¢r in L. A refinement checking procedure explores the product LTS
Lixger of Ly and Lge;. Let (s, Sge¢) be astate of Ly ges (1.€. in the product space of Ly and L4,) that is reached via
trace tr, the procedure checks if there isan event e € initialsz, (sr) thatisnotin any initialsy , (s;) where s; € sgeq.
If there is such an event, it reports that the trace ¢r"(e) is a traces-refinement violation. Otherwise, it explores

. . o, o, . e .
the successors of state (s, Sget) I Ly e+ teached via an e-transition. A transition (sz, Sget) — (87, Sj,;) €Xists

in Ljyges iff 57 —> spand s, = {s' | s € S4et A s <5 ¢in L, }; this transition definition matches a state
sy reached in L; via tr with the set of states reached in L, via the same trace ¢r. The initial state of Ly g 18
(31, {5sp}) where 5; and 3, are the initial states of L; and L, respectively. Therefore, the refinement-checking
exploration starts in this state.

Our system mirrors exactly this behaviour by using components 5i, ..., S, to capture determinised states,
and component C'C to guide the search and check pairs of states in this product space. Let us call the states of
T (Lsp, L) where CC is in start, checkpoint states. Moreover, for a state s of 7(Lsp, Lr) and {sy, ..., s,} the states
of Ly, we use det(s) to represent the set {s; | s; € {s1,..., s,} A S; isin state on in s}; the function det outputs
the determinised state given by which components S; are on. Also, we use /() to give the state of component L;
in the state s of 7(Lgp, L7). The following mirroring holds:

386 P. Antonino et al.

i. (87, Sdet) SN (87, Sije) N Ly e if and only there is a path s 2y & in the LTS induced by 7(Lsyp, Lr) such
that tr [X; = (e), s and s’ are checkpoint states, sqer = det(s), st = I(s), s, = det(s’), and s; = I(s").
While 3; gives the alphabet of Ly, tr [X gives rise to the trace resulting from removing all occurrences of
events not in X; from ¢r.

First we show the direction (=); we assume that (a) (s7, Sqet) SN (87, Sijep) 1s a transition of Ljy e and
that (b) s is a state of 7(Lsp, Ly) such that s is a checkpoint state, sqc: = det(s) and s; = I(s), and show that
there is path engaging on a trace ¢r and leading to a state s’ such that s’ is a checkpoint state, tr [Z; = (e),
8o = det(s’), and s; = I(s’). From (b), we must have that in state s, CC'isin start, all C, ..., C, arein off, L;
isin s; and the components .S; that are turned on capture the determinised state s4.¢. From (a), we know that (c)
Ly has an e-transition from s; to s; and, hence, L; and CC can synchronise on e, leading CC' to s, and L; to
s7. At this point, all S; components that can perform an e’ transition can synchronise with C'C'. This leads CC
to good, the S; components that can engage on ¢’ and are turned on move to their state s, whereas the ones that
are turned off remain so. Note that there might be S; components that are on and cannot engage on ¢’; these
components remain on after this synchronisation. Then, all .S; components synchronise with C'C' on reset. This
move CC to idle and the components S; in s, to s., whereas the .S; components in on or off move to off. Then,

each component §; that is in s/, is ready to activate the components C; for which s; SN sj in Lgp; this occurs
thanks to the synchronisation between suc,. for S; and all start; for components C;. While the synchronisations
on suc, turn off the remaining S; components still not in off, the synchronisations on on; for C; and S; (leading
Cj to off and §; to on) re-activate the components S; that will form the next determinised state. Once all such
synchronisations occur, the next determinised state has been set and components CC, S, C, ..., S,, C, are
ready to synchronise on ready, which makes C'C' move to state start and so a new checkpoint state s’ is reached.
Given that events suc, activate the right successors S; for S;, we have that s/, = det(s’), also s; = I(s') as per
(¢), and since e was the only event in X; that the system engaged on to reach s’, we have that & [Z; = (e).

A very similar argument can be used to show the opposite direction, namely, that given a path s X ¢ in
the LTS induced by 7(Ls,, L1) such that ¢r [£; = (e), s and s" are checkpoint states, and a state (s;, Sqet) of

Ly qe: such that sg.; = det(s) and s; = I(s), there must be a transition (s, Sqet) SN (87 She) In Ly ger Where
Sher = det(s'), and s; = I(s').

Now we can prove our theorem using (i). Firstly, we show that if 7(Ls,, L;) reaches a state s” where CC
is in bad then Ly, E¢ Ly does not hold. To reach such a state, 7(Ls,, L) has to engage on a path with trace
tr'(e, €'). The trace tr leads the system to a checkpoint state, from which it engages on an event e and then an
event e’. Since 7 (L, L) and Ly qe start from states satistying the condition in (i), after ¢r and ¢r [X; they
reach mirrored states s’ and (s, s/;,,), respectively, such that det(s’) = s, and I(s") = s;. From checkpoint
state s’ to state s”, 7 (L, L) engages on e (synchronisation of L; and CC'in e) and then &’ (synchronisation of
all S; that can perform ¢’ but are in off and CC in €’). This means that the implementation component L; can
perform e but all components .S; that can perform e’ are off. As the components .5; mirror determinised states
of L4et, it means that after ¢r [X, L; can reach a state where it can perform e whereas L .; reaches a state in
which no specification state can perform e. Therefore, (¢ [X;)Y(e) represents a violation for Ly, T Lj.

We can also use (i) to prove the opposite direction of our theorem, namely, if Ly, Cr L; does not hold
then 7 (L, Ly) reaches a state s” where CC'is in bad. Let us assume without loss of generality that ¢r'(e) is a
violation to L, E¢ Ly, where ¢r is a trace that L, can perform. We can use (i) to show that there is a trace ¢’
where ¢’ [X = tr, and such that ¢’ and ¢r lead 7(Lsp, L) and Ly qe; to mirrored states s” and (s7, s,,),
respectively. Since e leads to a violation of Ly, E¢ Ly, it must be that after tr, Ly 4+ reach state (s7, sj,,) such
that L; can engage on e from s; and L, cannot engage on e from any of the specification states in s/;_,. Hence,
as per the definition of 7 (L, L), from s’, the component L; can synchronise with CC in event e, and then, as
all components S; that can perform e’ must be off, they synchronise with C'C' in event e’. This leads the system
to state s”. QED |

Lemma 4 7(Ls,, L;) only deadlocks when C(C'is in state bad.

Proof As we have explained in the proof of the previous lemma, the components in 7(Ls,, L;) behave in
a way that Sy, Cy,...,S,, C, and L; can always synchronise with CC' and make the system progress. L
might refuse to synchronise with CC if it reaches a sink state (i.e. without outgoing transitions). This can
only occur, however, when CC' is in start. Note that in this state CC has a t self loop which makes CC

Efficient verification of concurrent systems using local-analysis-based approximations and SAT solving 387

advance individually and the system progress. All the other components (S;, Ci, ..., S,, C,) do not have sink
states, hence they can always synchronise with CC'. Nevertheless, CC' might transition to bad, at which point, it
refuses to synchronise with all other components and blocks the entire system. QED O

Local-deadlock freedom is another property that we are interested in. We want to show that no subsystem can
become irreversibly blocked. In many cases, instead of deadlock freedom, system designers are actually interested
in achieving local-deadlock freedom. As opposed to creating systems where a single component makes the system
progress while others are forever stuck, it seems more reasonable to have all components effectively interacting
and contributing to the overall behaviour of the system. Deadlock freedom is often checked of concurrent systems
as a way to check for basic design flaws. Local deadlock freedom is a more discerning way of doing so. Note
that while local-deadlock freedom ensures that each (subsystem) state has some outgoing transition, starvation
freedom requires components to eventually participate on a possible system transition, namely, a component
cannot be prevented from engaging on some system transition because of some poor scheduling that favours
other components in spite of this one [BK91, HS08]. The techniques that we propose in this work are meant to
tackle safety properties, namely, they can show that a bad state cannot be reached. Therefore, they can prove
deadlock and local-deadlock freedom. On the other hand, they were not designed to and cannot generally prove
progress/liveness properties such as starvation freedom.

We determine whether a subsystem ss is irretrievably blocked by examining transitions derived from the
projected set of system rules R ;. It projects the rules in R which require the participation of some component
i € ss (predicate on captures that) in a way that the projected rule r | ss disregards (does not require) the
participation of system components not in ss.

Definition 8 Given a supercombinator machine S = (£, R) where £ = (L4, ..., L), the local-deadlock-freedom
problem asks whether there exists a system state s such that local-deadlock(s) holds.

o local-deadlock(s) = reachable(s) A locally-blocked(s)
e Jocally-blocked(s) = dss e P({1...n}) | ss % 0 e blockedss(s)

o blockedss(s) = —s R—) where s =2 is the predicate s —> as per Definition 7 for the LTS induced by
(£, Rss)-

— Rss={r|ss|reRAon(r,ss)}
For the following two definitions, let = ((ey, - .., €,), a).

—on(r,ss)=3i € ssee; #—
— r | ss gives rise to tuple ((e, ..., €,), a) where e, = ¢; if i € ss and e] = — otherwise.

Note that this property establishes that all (exponentially many) subsystems are not blocked. As most tradi-
tional verification frameworks do not explicitly handle this sort of quantification, one normally has to explicitly
devise exponentially many separate checks to analyse all subsystems. Moreover, local-deadlock freedom implies
deadlock freedom as the entire system is indeed one of the analysed subsystems. Of course, the converse does
always not hold.

Lemma 5 A local-deadlock-free system must also be deadlock free.

The problem of deciding whether a system is free of local deadlocks is also PSPACE-complete. Note that
FDR4 does not have a built-in assertion for local-deadlock freedom and to do so would seemingly require a
separate provision for each subsystem.

Theorem 2 The local-deadlock-freedom-checking problem is PSPACE-complete.

Proof We prove that the local-deadlock-freedom-checking problem is (i) in PSPACE and (i1)) PSPACE-hard.

Firstly, we show (i) using NTM CHECK’ in Algorithm 2, which checks local-deadlock freedom using polynomial
space.

Let S = ({L1, ..., L,), R) be the supercombinator machine we trying to show to be free of local deadlocks,
where L; = (S5;, 2;, Ay, &), and L = (5, Z, A, 3) is its induced LTS. We call NTM CHECK’ in Algorithm 2
with input (S, §, |S|). If it accepts this input, S has a local deadlock, if it rejects, S is deadlock free. Each
branch that has to store the supercombinator S, a state s, a number 7, some space to compute blockedss(s)
and sucessor(s). To compute blockedss(s), we create and store the projected rules R,,. Note that this set

388 P. Antonino et al.

is, at most, as big as R. Also, obviously, we reuse memory between blockedss(s) computations. So, the space
used by this machine is proportional to (and polynomial in) the size of S.

Moreover, it correctly decides local-deadlock freedom, as a local-deadlock must be reachable by a simple path
of L of length at most | S|, and our machine examines all such paths.

Algorithm 2 NTM to check for a local deadlock for machine S.

1. function CHECK'(S, s, n)
2: if n > 0 then

3: forall ss C{l...n}|ss# @ do
4; if blockedss(s) then accept
5: end if

6: end for

7: guess s’ € successors(s) :

8: CHECK’(S, s',n — 1)

9: else reject

10: end if

11: end function

Secondly, we prove (ii) by proposing a reduction of the deadlock-freedom-checking problem to the local-
deadlock-freedom-checking one.

Let S = ({(L1,..., L,), R) be the supercombinator machine we try to show to be deadlock free, where
L; = (5;, 2, Ay, 8),and L = (5, X, A, §) its induced LTS. We can check deadlock freedom for S by checking
local-deadlock freedom for supercombinator machine 77(S), which we describe next.

T(S)=(L,.... L), R)

We construct 7’(S) in a way that for any subsystem ss C {1...n}, blockedss(s) = false. We enforce this
by always making sure some projected rule can be triggered when ss C {1...n}. On the other hand, when
ss = {1...n}, blockedy. ny (Which is equivalent to blocked) for 7'(S) coincides with blocked for S. Therefore,
checking local-deadlock freedom for 77(S) yields the same result as checking deadlock freedom for S. Machine
T'(S) modifies each component so that component i can always offer the fresh event ¢;. Note, in particular, that
C; 75 Cj if 4 75]

L = (Si, Zi U {ci}, A U{(s, ¢, 8) | s € Si},)

Then, 77(S) creates new system rules for performing events ¢;. Each component 4 is only allowed to engage
on ¢; (producing a system-level event ¢;) if some other component also offers ¢;.

R=Ru U }{({(i»ci)a(jaci)}»ci)ljE{1~-~n}/\j7éi}

ie{l..n

For 77(S), when considering a subsystem ss where j ¢ ss for some j € {l...n}, all components i € ss can
perform ¢; (triggering a system-level ¢;) according to the projected rules R',,. Note that for each component 4,
there is a rule » = ({(4, ¢;), (4, ¢;)}, ¢;) € R’ that requires ¢ and j to offer ¢; and yield system-level event ¢; as
per the definition of R'. If j & ss and ¢ € ss, r gives rise to a projected rule ' = ({(7, ¢;)}, ¢;) € R, that only
requires the participation of 7. As component i can offer event ¢; in all of its states, it can perform ¢; and trigger
7’ in any of its states, making the system progress and, hence blockedss such that ss # {1 ... n} maps any system
state to false. Thus, no subsystems ss of 7(S) where ss # {1 ...n} admits a local deadlock.

On the other hand, if ss = {1...n}, we have that blocked,; ., for 7'(S) coincides with blocked for S. We
have that R" = R/, for ss = {1...n}. Moreover, note that the extra rules that R’ have with respect to R, i.e.,
rules ({(4, ¢;), (J, ¢;)}, ¢;) where ¢ and j are components of the system such that j # 4, require component ¢ to
synchronise with another component j in event ¢;. However, component j can never engage in ¢; (it can engage,
instead, in event c;). Hence, none of these rules can be triggered when ss = {1...n}. Since these extra rules in
‘R’ cannot be triggered by 77(S) when ss = {1 ... n}, blocked,; .,y can be calculated based on the applications of
rules in R alone. Thus, blocked for S (which considers the application of rules in R) coincides with blocked;; .)
for 7'(S) (which considers the application of rules R’ but we know that rules in R’ \ R cannot be applied).

Efficient verification of concurrent systems using local-analysis-based approximations and SAT solving 389

Systems S and 77(S) can reach the same states, as the alterations performed in S to create 7'(S) do not
affect reachability. The extra system rules requiring the participation of components in ¢; events would trigger
the self-loop ¢;-transitions we add to components, hence creating system (loop) transitions that cause the system
to remain in the same state. So, our modified system 77(S) can only explore new system states by applying the
original rules R of S; the extra rules R’ \ R make 7'(S) stay in the same state.

Finally, the creation of L, only involves the addition of |.S;|-many edges, whereas R’ involves the addition of
O(n?)-many rules, for each ¢; event it creates n — 1-many new rules. Thus, machine 77(S) can be constructed in
time polynomial on the size of S. QED O

4. Approximate reachability using local analysis

One way to cope with the complexity of verification problems is by proposing approximate verification frame-
works. As many verification tasks rely on proving that some defined set of bad states is not reachable (that is, they
are based around reachability analysis), we focus on studying and proposing reachability over-approximations;
approximate frameworks naturally arise from replacing exact reachability by our approximations in the verifi-
cation task at hand. In this section, we study how local analysis and the invariants they capture can be used to
create such approximations.

Often, a system property can be proved by local invariants deduced from the way small subsystems behave. In
these cases, verification frameworks could benefit from examining only these subsystem instead of carrying out
the costly analysis of the entire system’s behaviour. This sort of analysis of some small subsystems to ensure a given
property is commonly called local analysis. The first kind of reachability approximation that we propose in this
work is based on the behaviour of a system’s subsystem. A subsystem is given by a non-empty set of indices that
denotes participating components. The notion of subsystem reachability is intended to be a means to capture and
implement local analysis. We analyse the behaviour of a subsystem based on the following subsystem projection.

Definition9 Let S = ((Ly, ..., L,), R) be a supercombinator machine, (L, ..., L,)ss the sequence of compo-
nents resulting from removing the elements for which indices are not in ss, and e, the event tuple resulting from
removing e; if ¢ & ss. The subsystem projection of machine S over subsystem ss C {1...n} | ss # @ is given by
the following supercombinator machine:

Sss = (L1, ...y Ly)ss, {(ess, a) | (e,a) e RATiessee, #—})

This machine allows components in this subsystem to run independently from the rest of the system. Note
that the projection of system rules, caused by ey, allows a subsystem’s components to ignore any need for
synchronisation with components that are not part of this subsystem.

We use this projection to define subsystem reachability.

Definition 10 Let S, be a supercombinator machine, resulting from the projection of S on subsystem ss, and
(Sss» Zss» Ass, 8ss) itsinduced LTS. We define reachabless(s), for s € Sy, as the reachability predicate considering
this projection’s induced LTS.

Subsystem reachability can be used to over-approximate a system’s reachability. If a subsystem projection
cannot reach a state, it must be the case that any system state that extends this projection state is unreachable. A
system state extends a projection state, involving subsystem ss, if they share the same component states for the
components in ss. We use predicate reachss(s), defined next, to capture this approximation.

Definition 11 Let S be a supercombinator machine, (5, X, A, §) its induced LTS, and ss a given subsystem of
S. For s € S, we define reachss(s) as reachabless(sss). It lifts the predicate reachabless which applies to states
of subsystem ss to the states of the system S itself. For s = (sq, ..., s,), Sss creates a state-tuple with the |ss|
elements s; where ¢ € ss.

The over-approximating nature of this predicate is a consequence of our projection’s rules discarding the
participation of components outside the subsystem. This discarding can be seen as placing the subsystem in an
ideal synchronisation context, where the original components outside the subsystem are replaced by components
that always offer all events. So, if a projection cannot reach a state with all this help, no combination of components
(and, in particular, the original components outside the subsystem) can help the subsystem in reaching this state.
By contraposition, it must be the case that if a state is reached by the system, the projected state must be reachable
in the context of the projection.

390 P. Antonino et al.

Lemma 6 reachable(s) = reachss(s)

Proof This can be proved by induction on the size of the path § 5 5. We use ss to denote the projection’s
subsystem and — ,, to denote the path predicate for the LTS induced by this projection. The base case is trivial

PV ~ () ~ N tr R tr! . tria) .
as § — sand S35 — s Sss. For the inductive case, assuming (i.h.) § — s = 555 —> 55 Sss and § —— s, we split

our proof into two cases:

e Some component in ss participates in performing event a. Let us assume without loss of generality that r
is the rule that involves components in ss and leads to the performance of a. According to our projection
definition, there must be a projected rule r’ that requires the same event for these components in ss and also

. .t
performs a. So, by (i.h.), we can deduce that 5 ﬂns Sss-

e No component in ss participates in performing event a. Let us assume without loss of generality that § LN
s’ 5 s. Since no component in ss participates on performing a, s,, = Sg5. S0, by (4.h.) 855 t—r>ss Sgs.-

QED O

We use subsystem reachability to systematically create a family of reachability over-approximations. For
integer £ > 1, we propose the notion of k-reachability that combines subsystem-reachability approximations for
some (up-to-)k-sized subsystems. The approximations in this family should be reasonably precise and could be
readily used to construct a fully automatic verification framework. Instead of placing the burden of choosing the
subsystems that are pertinent in proving a given property on the user, this family should offer some guidance in
(and a ready-to-use strategy for) picking some generally relevant sets of subsystems. We choose the subsystems
that take part in our k-reachability approximation based on how components are connected. To analyse these
connections, we rely on the system’s communication graph.

Definition 12 Let S be a supercombinator machine with n components and rules R. S’s communication graph
CG 1is an undirected graph where nodes are component indices and there is an edge between two component
indices if they participate together on a rule: CG = ({1...n},{(i,7) | i,7 € {1...n} A((e1,...,¢ep),a) € R A
e #— A e #—)).

We use connections to identify which components interact (and, consequently, directly interfere) with each
other. So, we pick sets of & closely-interacting components, namely, we choose all k-sized subsystems for which
component indices induce a connected communication subgraph. It does not make sense to analyse a subsystem
that induces a disconnected communication graph because the same reachability guarantees can be obtained by
analysing the connected subcomponents of this graph separately. Since these two subcomponents do not share
rules, they engage on transitions completely independently. Also, examining these subcomponents independently
leads to a more efficient reachability analysis. Moreover, note that if some (graph-theoretic) connected component!
of the communication graph involves only nc < k system components, the system components in this subgraph
can never be part of a set of k closely-interacting system components. Hence, in such cases, we add the nc-sized
set of system components in this subgraph to our analysis. We collect subsystems in the set SSy.

Definition 13 Let S be a supercombinator machine, C'G its communication graph, { CGy, ..., CG,,} this graph’s
connected components where CG; = (V;, E;), and k; = min(| V|, k). SSy, selects closely-interacting subsystems
of size (up-to-)k:

ssk=|J Ss6)
ie{l...m}
o SS(i) ={ss|ss C V; Alss| = k; A CGss is connected }
e (CGy;, gives the subgraph of CG involving vertices in ss

We conjoin the reachability approximations for all these subsystems in an effort to create a tight approximation
for the entire system. For a given k, this combination gives rise to the approximation (and predicate) reachy,, which
captures our notion of k-reachability.

' A connected component of an undirected graph is a subgraph for which all nodes are mutually reachable through a path and disconnected
from any other nodes of the underlying undirected graph.

Efficient verification of concurrent systems using local-analysis-based approximations and SAT solving 391

Definition 14 Let S be a supercombinator machine, and S5}, its set of subsystems involving closely-interacting
components.

reachy(s) = /\ reachss(s)
sseSSy

The fact that this predicate soundly approximates reachability for the systems under analysis follows from
Lemma 6 and the fact that a conjunction of over-approximations is also an over-approximation.

Lemma 7 reachable(s) = reachy(s)

We can test whether reachy(s) holds for a given state s and integer k in polynomial time on the size of the
supercombinator machine being analysed.

Lemma 8 Let S be a supercombinator machine with n components and rules R, and Lj;,, be the component
with the largest LTS. For a given state s of this system and an integer k, we can test reachy(s) in time O(n* -
|LMa;L'|k+1 : |R|)

Proof There are at most (Z) € O(n*) subsystems in SS%; this maximum is reached for systems that have a
fully-connected communication graph. Depth-first search can be used to find the subsystems in SSj.

For a ss € SSj,, we can test reachss(s) in time O(([[, [Lil) - IRl - (32,css |Lil)) by explicitly constructing
and exploring the state space of this subsystem’s projection. We can do that by enumerating its states and using
rule application to create its transitions. A rule application takes O(}_,_,, |L;|) time; to check whether it can
be applied to a given state, we might need to check each transition of each component. So, checking all rule
applications for a given state should take O(|R|-(3_,... |Li|)) time. Enumerating all states of this projection takes
O(I],css | Lil). To create all transitions, we might need to carry out these rule applications for all states and that
takes O((Hiess |LZ|) “IR|- (Ziess |Lz|)) time.

Therefore, it takes O - g5, (I Ticss [LiD) - IRI- (D 45 1Li]))) time to test reachss(s) for all ss € SSy.. As|SSk|
is bounded by n*, [T,... 1Li| by | Lazaz ", and 3, .. |Li| by k+| Lazas |, testing reachy (s) takes O(n* -| Lazae |**1-|R)
time. QED O

Itis also the case that the higher the £ is, the more precise is the reachability approximation reachy,. Intuitively,
by taking larger subsystems, this approximation can support a better understanding of the overall behaviour of
the system at the expense of more calculations.

Lemma 9 reachi+1(s) = reachi(s)

Proof We prove this by contradiction. Let us assume that s = (sy, ..., $,) is a system state such that reachy+1(s)
and —reachi(s). Since —reachy(s), let us say ss € SSy is a subsystem such that (i) —reachss(s). There are two
cases to consider: either ss € SSi+; (if components in ss are disconnected from the other components of the
system), or there is some ss’ such that ss C ss’ and ss’ € SSi+; (if components in ss are connected to another
component). In case ss € SSy+1, (1) trivially implies —reachy+1(s), contradicting our assumption. In the other
case, let us say that ss’ is a subsystem such that (ii) ss C ss” and (iii) ss’ € SSg+1. Our projection definition ensures
that if ss C ss’, —reachss(s) implies —reachgy(s). So, thanks to (i) and (ii), —reachsy(s) holds, and (iii) implies
that —reachy+1(s), a contradiction. QED

Any approximation in this family, other than k£ equalling the size of the system (or more precisely the size of
the largest component of the communication graph), is intrinsically incomplete/imprecise thanks to the pure use
of local analysis. For any given k, our notion of k-reachability is unable to show that a system respects a given
property if it emerges from the behaviour of a subsystem of size greater than k. This limitation is inherent to
any verification framework purely on local analysis; this limitation is acceptable as long as k-reachability gives
rise to an efficient verification framework. Since it is difficult to generally anticipate what is the lowest & such
that k-reachability can prove the property at hand, one could, in practice, devise a heuristic by which a few
increasingly large ks are chosen and the corresponding reachability predicate constructed. If none of them give
rise to a reachability predicate that is strong enough to prove the property at hand, a precise approach is used
instead.

392 P. Antonino et al.

Fig. 3. LTSs of components L;, L, and L3, respectively

5. Pair: 2-reachability for deadlock and local-deadlock freedom

In this section, we demonstrate how local analysis can be used to create an effective verification framework.
We use 2-reachability to verify deadlock and local-deadlock freedom for concurrent systems. We chose £ = 2
as l-reachability is too coarse and should not be able to prove interesting properties of concurrent systems; 1-
reachability does not account for interactions between components so it can only prove properties that emerge
from the individual behaviour of components. We call our framework Pair, as it is based on the analysis of pairs
of components to approximate reachability. Instead of looking for cycles of dependencies between components
of a system as traditional approximate frameworks do, Pair looks for states of the system that are 2-reachable and
in which all further actions are blocked (or, locally blocked); a system state of this sort is considered a potential
deadlock (or, local deadlock) and we call it a Pair candidate (or, Pair local candidate).

Definition 15 Let S = ((Ly, ..., L,), R) be a supercombinator machine, and (S, X, A, §) its induced LTS. A
state s = (s1, ..., 8,) € S'is:

e a Pair candidate if and only if pair_candidate(s) = reachy(s) A blocked(s) holds;
e a Pair local candidate if and only if pair_local_candidate(s) = reachy(s) A locally_blocked(s) holds.

As a Pair candidate is also a Pair local candidate, the following holds.
Lemma 10 If a system is free of Pair local candidates, it must also be free of Pair candidates.

Our framework is sound, as absence of Pair candidates implies deadlock freedom; the same holds for local
candidates and local-deadlock freedom. This follows from the fact that reachy(s) approximates reachability as
per Lemma 7.

Theorem 3 Let S = ((Ly, ..., L,), R) be a supercombinator machine and (5, X, A, §) its induced LTS. If S
is Pair-candidate free, it must be also deadlock free. Similarly, if S is Pair-local-candidate free, it must be also
local-deadlock free.

These criteria will be shown to be more accurate than many of the conditions checked by current approximate
frameworks, but it remains incomplete as it relies on local analysis to approximate reachability; there may well
be some Pair (local-)candidate that is not actually reachable.

Example 2 Let S = ((L1, Ly, L3), R) be the supercombinator machine such that the components are described
graphically in Fig. 3 and they must synchronise on shared events. That is, R = {((a,—, a), a),
((b, b, =), b), ((—, ¢, ¢), ¢)}. For this system, the state (py, q, 73) is 2-reachable and blocked, and consequently
locally blocked, but not reachable. Thus, it constitutes both a Pair candidate and local candidate but not a true
deadlock or a local deadlock.

Our framework looks for a blocked (locally blocked) state amongst the system states that are 2-reachable
instead of going through the system’s exact state space. Since we exactly check whether a state is blocked (locally-
blocked), our method is imprecise only as far as reachability is concerned. So, false negatives can only arise from
the fact that 2-reachability was unable to prove that a candidate (local-candidate) is unreachable.

Efficient verification of concurrent systems using local-analysis-based approximations and SAT solving 393

5.1. Precision of Pair

In this section, we analyse the precision of our approach by comparingit to the traditional approximate approaches
that are based on the detection of cycles of dependencies between components. We compare Pair against the
SDD framework developed by Martin in [Mar96]. We chose Martin’s SDD framework for four reasons. Firstly,
it inspired our study on over-approximations for deadlock-freedom checking and the creation of Pair. Secondly,
it is a typical example of a framework based on proving absence of ungranted-requests (i.e. dependencies) cycles.
Thirdly, its underlying formalism is very close to ours. Finally, it can show absence of such cycles (and consequently
local-deadlock and deadlock freedom) for some relevant classes of systems. Martin has shown, for instance, that
his framework can prove local-deadlock freedom for some systems implementing two very well-known interaction
paradigms: the resource-allocation and client-server paradigms.

In that work, the local properties are derived from the analysis of pairs of components through the following
supercombinator machine.

Definition 16 Let S = ((L1, ..., L,), R) be a supercombinator machine. The pairwise machine S; ; is used to
analyse the interactions of components ¢ and ;.

Sij=(Li. Lj). {((€ir). a) | (e, a) e R A (&5 % — V ¢ # —)})

In Martin’s approach, a dependency digraph is constructed and then analysed for absence of cycles. The
dependency digraph constructed has a node for each state of each component, and an edge from a state s of
component 4 to a state s’ of component j if and only if reachable; ;((s, s")) and ungranted_request; ;(s, s’) hold,
where reachable; ; denotes the reachable predicate for the LTS induced by S; ;, and ungranted_request; ;(s, s”)
holds when, in their respective states (i in s and j in s’), component ¢ is willing to interact (i.e. engage on a rule)
with j (according to S; ;) but j is unable to do so.

Under the assumption that components neither terminate nor deadlock, a cycle of ungranted requests is a
necessary condition for a (local) deadlock. Hence, the absence of cycles in the dependency digraph is a proof of
local-deadlock freedom, whereas a cycle represents a potential (local) deadlock which we call a SDD candidate.

Definition 17 LetS = ((Ly, ..., L,), R) be a supercombinator machine, where L; = (5;, X;, A;, 5;). LetU be the
disjoint union of all S; and s; ; denotes state j of the component i. A SDD candidate is a sequence of component
states ¢ € U* where for all i € {0...|c| — 1}, given that ¢; = s; 1 and cig1 = $i,m., reachable; 1((s; k, S1,m)) and
ungranted_request; 1(s; 1, s1,m) hold, where @ is addition modulo |c|.

This method can show (local-)deadlock freedom very efficiently: we can decide whether or not a digraph
has cycles in linear time using a modified depth-first search. This efficiency, however, comes with a price as the
use of such a cycle as a candidate makes this method imprecise in several ways. Firstly, a cycle might not be
consistent with basic sanity conditions such as necessarily having a single node per component—after all, no
component can be in two different states in a single (local-)deadlock. Secondly, a cycle is only partially consistent
with the local reachability and local blocking properties derived from the analysis of pairs of components. Note
that only adjacent elements in the cycle are guaranteed to be pairwise reachable and pairwise blocked. So, there
may be local properties of non-adjacent (cycle-wise) component states not tested for that might eliminate some
SDD candidate. For instance, a cycle where two non-adjacent component states are not mutually reachable
(or, alternatively can actually synchronise with each other) cannot represent a true (local-)deadlock and so it
should not be considered a SDD candidate. Finally, a cycle, as a necessary condition, is bound to arise in some
(local-)deadlock-free systems. Thus, in such cases, this framework is ineffective. The reason why these sources of
imprecision are not addressed is that these methods look for polynomially checkable conditions for guaranteeing
(local-)deadlock freedom and tackling any of these sources of imprecision is likely to make the problem of finding
a candidate NP-hard.

The combination of 2-reachability and exactly checking for blocked system states makes Pair’s analysis
of reachability and the blocking conditions more precise than SDD’s. Pair uses an exact characterisation for
blocked states instead of the imprecise cycle-of-dependencies one. As for reachability, SDD only requires pairs
of component states adjacent in the cycle to be mutually reachable. Pair, however, enforces this for all pairs
of components in a blocked system state. The improvement in precision means that none of the potential
sources of imprecision highlighted in the previous paragraph affects Pair. In fact, only its reachability analysis

394 P. Antonino et al.

isimprecise. The use of 2-reachability means that it cannot prove (local-)deadlock freedom if this property depends
on some reachability invariant of triples or larger combinations of components.

This informal comparison can be formalised to show that in fact Pair is strictly more precise than SDD. For
this comparison, as required by SDD, we assume that supercombinator machines’ components are deadlock free.
Under this assumption, in a blocked state, all components must be willing to interact with another component
that, in turn, does not want to interact back. So, each component state in this blocked system state must be the
origin of some ungranted request leading to another component state in this system state. As we only have finitely
many component states in this system state, there must be a cycle amongst them.

Lemma 11 (Strengthening of Theorem 1 in [Mar96]) If blockedss(s) holds for some system state s = (sq, ..., Sp)
and subsystem ss, there must be a cycle of ungranted requests amongst (induced by) component states s; for
1 € SS.

It follows from this lemma and the fact that Pair local candidates are 2-reachable that a Pair local candidate
must induce a SDD candidate. Being locally blocked, this system state must induce a cycle of ungranted requests
for which pairs of components are pairwise reachable as per 2-reachability.

Lemma 12 If a system state s is a Pair local candidate, its component states must induce a SDD candidate.
As a Pair candidate is also a Pair local candidate, it follows that it also induces a SDD candidate.
Corollary 1 A Pair candidate induces a SDD candidate.

Moreover, this lemma also implies by contraposition that a SDD-candidate-free system must also be Pair-
local-candidate free and, consequently, Pair-candidate free.

Corollary 2 If a system is SDD-candidate free, it must also be free of Pair candidates and local-candidates.

These results prove that our framework shows local-deadlock and deadlock freedom for any system SDD
does. Hence, we can reuse any result about the precision (i.e. relative completeness) of SDD for Pair. For example,
Martin has proposed a number of design rules, based on [RD87], that can be used to construct local-deadlock-free
systems which can be proved so by SDD. We briefly and informally introduce two classes of systems, namely,
resource-allocation and client-server systems, that can be constructed using these rules. For more details on these
rules see [Mar96].

The resource-allocation rule can be used to create systems where some user components need to acquire some
shared resources in order to carry out a task. This rule ensures that users never get blocked due to some cyclic
wait: a user is waiting for another user to release a resource that in turn is waiting for another user leading all
the way back to the initial waiting user. It ensures users respect a linear order in acquiring resources so no cyclic
wait, and consequently no local-deadlock, can arise. This rule was initially proposed by the operating-system
community to prevent deadlocks due to the ill allocation of operating system’s resources to system processes
[CESTI].

A system in this class is composed of user and resource components. Resources can be acquired and released
by users and users can acquire resources respecting a linear order on resources. A user only tries to acquire
resources that are higher in this order than the ones it already holds. In such a system, cycles of dependencies
are broken, and consequently a local-deadlock is prevented, by the acquisition of resources respecting this linear
order. This rule has been similarly formalised in other works [SD82, RD87].

The client-server rule can be used to create systems where components interact in a request-response fashion.
This rule ensures that components never get blocked due to some cyclic wait of the form: a component is waiting
for some server component that in turn is waiting for another server component leading all the way back to the
initial waiting component. To prevent this sort of cyclic wait, it ensures components only make requests to other
components respecting an underlying request-response structure that must be cycle free.

Each component in such a system can alternate in behaving as a client or a server performing request and
response actions. As a client the component must be able to request some of its server after which it must be ready
to receive any response back, and as a server it must be waiting for a request from any of its clients after which
it can issue some response. Also, the client-to digraph must be cycle free; this digraph has an arrow from i to j if
component 4 can behave as a client (i.e. make a request) to j. In such a system, an ungranted request coincides
with edges of the client-to digraph and hence cannot be part of a cycle.

Efficient verification of concurrent systems using local-analysis-based approximations and SAT solving 395

sits; picksup; ; picksup; i1 putsdown;; putsdown; ;g1
é
getsup;

Fig. 4. LTS of philosopher ¢

The results presented so far show that Pair is at least as accurate as SDD; we extend them to show that
Puair is strictly more precise than SDD. This strict improvement can be informally deduced from the way these
frameworks operate. While SDD looks through cycles of ungranted requests to show they do not constitute a real
(local-)deadlock by finding a pair of adjacent component states that is mutually unreachable, Pair looks through
(locally-)blocked system states and show they are not true (local-)deadlocks by finding any pair of component
states that is mutually unreachable. So, for instance, a system that possesses a cycle of ungranted requests where
all adjacent pairs of component states are mutually reachable but a pair of non-adjacent component states can
interact or are mutually unreachable is proved (local-)deadlock free by Pair but not by SDD.

This analysis points to a class of relevant systems that can be proved local-deadlock free by Pair but not by
SDD: the class of non-hereditary deadlock-free systems. These systems have a subsystem that can deadlock and
a guard-like component that leads the subsystem away from this blocked state. SDD cannot show such systems
local-deadlock free since if a subsystem deadlocks then there must exist a cycle of ungranted requests between
the states of components in this subsystem that constitutes a SDD candidate as per Lemma 12. While SDD only
allows cycles of ungranted requests to be broken (i.e. prevented from occurring) by component states within the
cycle, Pair can be understood as allowing also component states outside the cycle to break it, hence its ability to
tackle such systems. Roughly speaking, SDD can be seen as a method designed to verify hereditary deadlock-
free systems, whereas our method can prove (local-)deadlock freedom for both hereditary and non-hereditary
deadlock-free systems, such as in the following example.

While local-deadlock freedom examines whether subsystems are blocked in the context of the system, hered-
itary deadlock freedom asks whether subsystems are deadlock free by themselves. So, a subsystem state where
it deadlocks is a violation for hereditary deadlock freedom, regardless of whether a component external to this
subsystem can prevent this deadlock. Local-deadlock freedom, on the other hand, accounts for possible external
components that can prevent such a deadlock. Note that hereditary deadlock freedom implies local deadlock
freedom. Furthermore, hereditary deadlock freedom is not really useful other than as a piece of system analysis,
whereas local deadlock freedom is an important practical property. Finally, we point out that many concurrent
systems are not hereditary deadlock free; systems that have components implementing mutual exclusion algo-
rithms or semaphores to prevent some subsystem from reaching undesired states are fairly commonplace in the
concurrency literature.

Example 3 This well-known system is composed of three different types of components: forks, philosophers and
a butler. We parametrise our system with N, which denotes the number of philosophers in the system.

A philosopher has access to a table at which it can pick up two forks to eat: one at its left-hand side and the
other at its right-hand side. A fork is placed, and shared, between philosophers sitting adjacently in the table.
The behaviour of philosopher (fork) 7 is depicted in Fig. 4 (5). We use & to denote addition modulo N.

Given that these components synchronise on their shared events, the philosophers and forks can reach a
deadlock state in which all philosophers have acquired their left-hand side forks and, as a consequence, no right-
hand side fork is left to be acquired. The butler is introduced to prevent all the philosophers from sitting at the
table at the same time, thereby precluding this deadlock state. We use bg to depict the state in which the butler
has allowed the philosophers in S to the table. So, the butler states space is given by the set of all bg where
SeP{l... Nh\{{1...N}}. Its transitions are created as depicted in Fig. 5, and its initial state is given by by.

The complete system has N philosophers, N forks and a butler, and these components synchronise on their
shared events. Despite being (local-)deadlock free, this system has a cycle of component states that forms a SDD
candidate, namely, where all the philosphers have acquired their left-hand fork:

(P2, fils P12y ooty - s DN=2,25 fN=1,1s PN—1,25 fo.1)

396 P. Antonino et al.

, @ sits;
picksup; ; bS >
ifig SA|IS|<N
putsdown; ;
—
@ picksup;gp1,i
b getsup;
putsdown;g, S P >
et @ iftesS

Fig. 5. LTS of fork 7 and transitions of the butler process

However, this SDD candidate cannot be extended to a Pair candidate, because the latter would have to include
a butler state, and no butler state is consistent with this combination of philosopher states.

Even though the Pair method is better than traditional approximate methods for checking deadlock freedom,
it is, nonetheless, still an approximate framework in itself. Pair is unable to show that a system is (local-)deadlock
free if (local-)deadlock freedom depends on some reachability invariant of triples or larger combinations of
components. That is, if a blocked system state is found and it can only be shown unreachable due to the combined
behaviour of some subsystem involving more than a pair of components, then Pair will fail to rule this state out
as (local-)deadlock candidate and to show, consequently, that the system is (local-)deadlock free.

5.2. Complexity of Pair

The improvement in precision that Pair makes over traditional approximate techniques comes with a price.
While detecting Pair candidates and Pair local candidates are NP-hard problems, traditional approaches detect
candidates in polynomial time. Addressing any of the sources of imprecision that Pair tackles with respect to
SDD, for instance, is likely to turn candidate detection into a NP-hard problem. This argument seems to be
the reason behind traditional frameworks not attempting to address any of them. Moreover, unsurprisingly, the
use of reachability approximations instead of exact reachability makes this problem more tractable than exact
(local-)deadlock checking.

Next, we show that the problem of detecting a Pair candidate is NP-complete, whereas its counterpart for
Puair local candidates is NP-hard, and we discuss some implications of these results.

Theorem 4 Let S be a supercombinator machine and (S, X, A, §) its induced LTS. The problem of deciding
Js € S e pair_candidate(s) is NP-complete.

Proof We show that this problem is (i) in NP and (ii) NP-hard.

We show (i) by establishing that, for a given system state s, pair_candidate(s) can be verified in O(n?-| Lysaz | -
|R|) time, where n and R give the number of components and the rules of the system, respectively, and |Lpzq;|
the size of the largest component LTS. reach, can be checked in O(n? - | Lyjqz |’ - | R|) time, as per Lemma 8, while
blocked(s) can be checked in O(|R| - n - | Lpae|) time. To check blocked(s), one can simply check whether a rule
can be applied to s.

To demonstrate (ii), we present a polynomial-time reduction from the CNF-SAT problem to our Pair-
candidate detection problem. To begin with, we introduce the CNF-SAT problem and some useful notation.

Definition 18 Givena CNF (i.e. Conjunctive Normal Form) boolean formula F with boolean variables z;, . . ., Z,,,
the CNF-SAT problem consists of finding an assignment to the m boolean variables so that F holds, i.e.: checking
dax, ...,z € {true, false} o F.

Let F be a CNF boolean formula with m boolean variables zy, . . ., z,, and n clauses Fi, ..., F,,, where clause
F; has n; literals F; 1, ..., F; »,. We assume without loss of generality that this formula has at least one clause
and that all variables are present in some clause of the formula. Our reduction translates this formula into the
following triple-disjoint supercombinator machine such that it has a Pair-candidate if and only if the formula is
satisfiable.

S=(<F19""Fn7X]7"‘9Xm>7R)

Efficient verification of concurrent systems using local-analysis-based approximations and SAT solving 397

Zq

e *;@j

Fig. 6. LTSs F; and X, respectively

In this machine, component F; captures the satisfiability of clause F;, whereas component X; models the
assignment of boolean variable z;. We use literals z; and —z; as events that denote whether variable z; has been
assigned to true and false, respectively. In particular, F; ; are events. Satisfiability of F; is captured by creating a
transition, in F;, with event z; (—;) to a terminal deadlocked state for each literal z; (—z;) in F;. So, a terminal
state is only reached if the clause has been satisfied (i.e. a literal has been satisfied). Next, we present the definitions
of component F; and X; and their graphical representation in Fig. 6.

F; =(S, X%, A, 5), where:

-85 ={s0,-.., 80}
— E:{fi,j |]e{lnz}}u{r}
- A ={(50,7,80)} U{(s0, Fsj,8) 17 e{l...n}}

— § = S50
X; =(S5, X%, A, 3), where:
- 5 = {50, 51, %}

-X= {T’ xuﬁxt}
- A = {(305 T, 51)7 (305 T, 52)7 (815 Tiy Sl)? (827 T, 82)}
- 5= S0

The set of rules provided enables the synchronisation between variable components and clauses components
so that the satisfiability of the clauses is guided by the assignment of variables. We represent an event tuple as a
set of pairs. Also, we use F; = 4 and X; ; = n + m,; ; to denote the positions of components in the event tuple,
where m; ; denotes the index of the boolean variable in literal F; ;, so if F; ; = a3, or F; j; = —a;, then m; ; = k.
Therefore, for instance, the rule ({(4, 7)},) triggers the system event t if component i performs t, whereas the
rule ({(F;, Fi ;) (Xi 5, Fij)}, Fi ;) requires components F; and X; ; to synchronise on event F; ; to produce the
system event F; ;.

R={{G}1)|ie{l...n+m}}
U U {((Fi, Fij). (Xi5, Fiph Fij) g e{l...n}}

ie{l..n}

From &’s definition, we can see this supercombinator machine can be constructed in polynomial time on
the size of the formula F. All components can be constructed in time proportional to |F|. Each component X;
can be constructed in time O(1), whereas components F; can be constructed in time O(|F;|). Rules R can be
constructed in time O(|F]), as it creates a rule per literal and a t-rule per component.

This machine also precisely captures satisfiability for the associated boolean formula, namely, there is a Pair
candidate for this supercombinator machine iff the corresponding boolean formula is satisfiable.

If the formula is satisfiable, S has a Pair-candidate. Let A be a satisfying assignment for the formula.
System S can reach a state where components X; are in states respecting their valuation A(z;), and components
F; are in terminal states. This state is reachable as components X; can simply t-transition to their respective

398 P. Antonino et al.

valuation states, and because A is a satisfying assignment, each component F; must be able to synchronise with
some X; to reach a terminal state. If a state is reachable it is also 2-reachable. This state is also blocked since
all F; components are in terminal states and all components X; are in states that can only trigger system rules
involving the participation of at least one F; component.

If S has a Pair candidate, then the formula is satisfiable. Let s be the state representing a Pair candidate.
Based on the definition of S and since it is blocked, it must have all components X; in some valuation state and
all components F; in a terminal state. The 2-reachability enforces that whichever transition F; took to reach its
terminal state, it must have been in agreement with the corresponding valuation state of X; in s. Therefore, since
all components F;; are in terminal states thanks to the valuation states of components X;, the valuation states of
components X; provide a satisfying assignment to 7. QED]

The hardness part of this proof can be generalised, leading to some interesting results. For the system that we
propose in that reduction, reach,(s) precisely captures reachability. Therefore, any approximation more precise
than reachy(s) also precisely determines reachability, and that same reduction can be used to show that the
problem of detecting deadlock candidates for any candidate definition where we replace reachy(s) by a better
approximation must be NP-hard.

Corollary 3 Let reach(s) be a reachability over-approximation. If reach(s) = reachy(s) then the problem of
detecting a deadlock candidate s such that reach(s) A blocked(s)is NP-hard.

This corollary, Lemma 8 and the fact that blocked(s) can be decided in polynomial time, as shown in the
above proof, imply that any deadlock candidate formulation using k-reachability, for £ > 2, instead of exact
reachability gives rise to an NP-complete candidate detection problem.

Corollary 4 For integer k£ > 2, the problem of detecting a deadlock candidate s such that reachy(s) A blocked(s)
is NP-complete.

For the problem of detecting Pair local candidates, we only show NP-hardness.

Theorem 5 Let S be a supercombinator machine and (S, X, A, §) its induced LTS. The problem of deciding
ds € S e pair_local_candidate(s) is NP-hard.

Proof To show that this problem is NP-hard, we reduce detecting a Pair candidate to it. In fact, we can achieve
this reduction by detecting Pair local candidates using the modified machine 7'(S) introduced in the proof of
Theorem 2. As we discuss there, this modified machine can be created in polynomial time on the size of S and the
modifications it performs on S make the notion of locally blocked for this modified machine coincide with the
notion of blocked for the original one. Moreover, they do not affect reachability or 2-reachability. So, checking
for Pair local candidates for this modified machine must yield the same result as checking for Pair candidate on
the original one. QED O

These results build on our precision discussion. While traditional approaches are based on a polynomially
checkable detection problem, Pair is based on a co-NP-hard problem: showing the absence of Pair candidates
and local candidates. So, our frameworks should prove (local-)deadlock freedom for a different class of deadlock-
free systems. Furthermore, as exact deadlock-freedom checking is PSPACE-complete and our Pair candidate
detection is only NP-complete, it should be (and it is) the case our frameworks proves deadlock freedom for
a different (and smaller) class of deadlock-free systems. Furthermore, given our general current understanding
about these complexity classes, the computational tractability of our Pair-candidate detection problem should
be in between candidate detection for traditional approaches, such as SDD, and precise deadlock detection.

5.3. Pair-candidate detection via SAT solving

The problem of detecting a Pair (local) candidate is NP-hard. So, currently, we only know of deterministic
procedures that take exponential time to solve it. There have been, however, some remarkable advances in
proposing efficient procedures to solve the propositional satisfiability (SAT) problem. So, in an attempt to
efficiently tackle Pair-(local-)candidate detection, we propose an implementation for our framework where
we translate Pair-(local-)candidate detection into propositional satisfiability, which can later be checked by a
SAT solver.

Efficient verification of concurrent systems using local-analysis-based approximations and SAT solving 399

Given a supercombinator machine as an input, our procedure creates propositional formule Candidate
or LocalCandidate, depending on whether deadlock freedom or local-deadlock freedom, respectively, is being
checked. They rely on variables st; s to capture whether state s of component i is part of a Pair (local) candidate:
the variables st; s assigned to true in a satisfying assignment correspond to a combination of component states that
is a Pair (local) candidate. If Candidate (LocalCandidate) is unsatisfiable, however, the input system must be Pair-
candidate (Pair-local-candidate) free. In this section, we assume that S = (£, R) is the input supercombinator
machine we are translating, where £ = (Ly, ..., L,) and L; = (S;, X;, A4, &).

Formule Candidate and LocalCandidate are composed of three sub-formula each.

Candidate = State A Reachy A Blocked

LocalCandidate = State A Reachy A LocallyBlocked
The sub-formula State simply ensures that the variables st; ; assigned to true form a valid system state, i.e.
one component state per component is assigned to true.

State = /\ (\/ stis) A /\ (/\ (—stis V sl o))
} }

ie{l..n} seS; ie{l..n} s,s'€S;As#s’

Sub-formula Reach, captures the approximation reach,. To describe this sub-formula (and the next one),
we introduce the following notation for convenience. Sy gives the state space of subsystem ss. We represent
subsystem states sst € S by a set of pairs, as opposed to the traditional tuple representation, where (7, s) € sst
denotes that state s of component ¢ belongs to this subsystem state. To capture Reach,, we examine the state space
of subsystems in S5, (i.e. subsystems involving at most 2 components) and disallow unreachable combinations

of component states.
Reachy = /\ /\ (\/ —st;)

ss€8S) ssteSss A (i,s)esst
—reachabless(sst)

The sub-formula Blocked captures the blocked predicate. We assume triple-disjointness of the input system in
encoding this sub-formula; this is the only definition in our framework that formally depends on this assumption.
Thanks to triple disjointness, we can capture whether a system state is blocked by analysing only individual and
pairs of components—after all, system transitions only involve either the participation of a single component or
a pair of them. To encode this blocking requirement, we use yet a different set of projected rules: R | ss =
{(e,a) | (e,a) e RAVie{l...n}e(i&ssAe =—)V (i€ ss A e # —)}; we analyse this projection for
subsystems with an individual (ss € SS)) or a pair of communicating components (ss € 55,). Unlike the other
projections, this one does not truncate rules; it exactly projects (copies) rules that require the exact participation of

components in ss. We use s 1% to denote the existence of a transition from s in the LTS induced by (£, R | ss).
Our formula forbids component states that can participate in some rule from holding simultaneously. Note that

to calculate s <5 we examine the state space of individual and pairs of components, as ss € SS; U 59,.

Blocked = /\ /\ (\/ —sti)

5s€SSIUSS, ssteSssA (4,8)esst

Rlss
sst—>

To encode LocallyBlocked sub-formule, we introduce new variables p; for ¢ € {1...n} to account for the
participation of component ¢ in the subsystem being analysed: assigning p; to true means component 4 is part of
the subsystem under analysis. So, the sort of existential quantification SAT does on p; variables translates to the
quantification on subsystems our locally-blocked requires; we add constraint \/,_,; ., p: to prevent quantification
over the empty subsystem. For subsystem ss, it captures the blockeds predicate, i.e. component states assigned
to true in a satisfying assignment form a state in which subsystem ss is blocked.

LocallyBlocked = /\ /\ on(ss) = (\/ (pi A —stis))
$s€SSIUSS, ssteSgsA (7,s8)esst
§9tM

The constraint on(ss) = \/,.,, pi ensures that we only consider rules for which some component in ss
is involved: if that is not the case, the rule cannot trigger a subsystem transition as we discuss in Sect. 3.
Unlike the other sub-formule, LocallyBlocked is not in CNF. There is, however, a well-known transformation
that, for any input boolean formula, creates an equisatisfiable CNF formula in polynomial time [Tse68].

400 P. Antonino et al.

We use the triple-disjoint assumption to create a more compact encoding for this predicate. Therefore, this
encoding, and consequently our implementation of Pair, can only be soundly applied to triple-disjoint systems. It
should be noted, however, that a blocked constraint that does not rely on triple-disjointness could be constructed
in polynomial time by encoding how components can trigger (participate on) system rules.

This translation only takes polynomial time as it only requires the explicit analysis of subsystems of size at
most 2. Moreover, since each sub-formula captures its corresponding counterpart in our Pair-(local-)candidate
definition, our encoding soundly captures Pair-(local-)candidate detection. Therefore, a satisfying assignment
found by these formulae gives rise to a valid (corresponding) Pair (local) candidate, whereas unsatisfiability
implies Pair-(local-)candidate freedom and, in turn, (local-)deadlock freedom.

5.4. Practical evaluation

In this section, we evaluate our framework, which is implemented in our Dead/Ox tool. This tool and the models
used in this section are available at [AGRR18] It uses output from FDR4 to generate our SAT encoding which
is then checked by the Glucose 4.0 solver [AS09]. FDR4 is used as a library to translate/compile CSP models
into supercombinator machines. We use CSP as an input language because we believe it provides concise and
simple descriptions for concurrent systems. However, any other language could be used if a translation into
supercombinator machines is provided. We extend the input language of FDR4 with annotation : [Pair] that
should be added to a (local-)deadlock free assertion; it tells FDR4 to use our Pair technique instead of explicit
state exploration to check the assertion. We added the assertion : [sublock free [F]], which checks for local-
deadlock freedom and can only be used with the Pair annotation. For instance, a distributed system described
by process SYSTEM could be checked using Pair by the following assertions.

assert SYSTEM :[deadlock free [F]] :[Pair]

assert SYSTEM :[sublock free [F]] :[Pair]

Our experiment evaluates deadlock and local-deadlock freedom for some triple-disjoint deadlock-free sys-
tems. The experiment was conducted on a dedicated machine with a quad-core Intel Core 15-4300U CPU @
1.90GHz, 8GB of RAM. We compare DeadlOx deadlock-checking (Pd) and local-deadlock-checking (P1) using
Pair against the Deadlock Checker [MJ97], FDR4’s deadlock freedom assertion (FDR) [GRABR14], and D-
Finder 2 [BGL*11]. Deadlock Checker implements the SDD framework, FDR4 is a complete/exact method with
explicit space exploration, and D-Finder 2 is an approximate approach that uses some tailored system invariants.
D-Finder 2 implements three techniques to calculate these invariants: a boolean-constraint-based (DF2pm), a
fixed-point-based (DF2fp), and an enumerative one (DF2I). Also, when appropriate, we combine FDR4’s ex-
plicit state exploration with partial order reduction (FDRp) [GRHRW15] or compression techniques (FDRc)
[RGG™'95]. While SDD proves a property that is stronger than local-deadlock freedom, D-Finder 2 and FDR4
methods check only for deadlock freedom. We know of no reasonable approach to checking local-deadlock free-
dom with these tools. In fact, hereditary deadlock freedom implies local-deadlock freedom, but we know of no
reasonable way to prove hereditary deadlock freedom either.

We chose eleven benchmark systems that are proved local-deadlock free by Pair. These systems implement
the alternating bit protocol (ABP), the asymmetric solution to the dining philosophers (Phils) and three versions
of the well-known butler solution (Butl, ButID, ButID2), a grid network implementing Tarry’s algorithm (Tarry)
[Tar95], a central lock system (Lock), and a grid network implementing a simplified implementation of Raymond’s
algorithm (Ray) [Ray89], a binary telephone switch (Tel), the mad postman routing algorithm (Rout) [YJ89,
Ros98], the sliding window protocol (SWP). Most of these models are introduced and discussed in [Ros10].
Tarry’s algorithm finds a spanning tree over the communication graph of a distributed system, and Raymond’s
algorithm is used to achieve mutual exclusion.

Table 1 presents the results for the hereditary deadlock-free systems. As for approximative methods,
these results suggest that our method scales similarly to SDD. Pair can show (local-)deadlock freedom for
both Tel and Tarry examples while SDD cannot. This demonstrates what we informally claimed when we
compared Pair and SDD, namely, Pair is better than SDD even for hereditary deadlock-free systems. D-
Finder 2’s approaches, although approximate, seem to be much less efficient than any other method, even
complete ones. It seems that the calculation of invariants this tool carries out is rather complex for these
examples. Also, it might be the case that our generation of BIP models (the input language for D-Finder 2)
from supercombinator machines does not provide an optimal encoding for BIP systems.

Efficient verification of concurrent systems using local-analysis-based approximations and SAT solving 401

As for exact methods, Pair fares better than FDR4’s techniques for most examples. For Lock, Tarry and SWP,
FDR4’s explicit exploration, however, fares better. For these examples, the system’s state space does not grow
so rapidly as the number of components increases, hence, FDR4’s good performance. For Tarry and SWP, the
state space of individual components grows rather drastically with the increase of N. Pair’s quadratic increase
in analysing pairs of components combined with this rapid growth is the reason behind Pair’s lack of scalability.
However, the combination of FDR4’s deadlock-free assertion with compression techniques can be remarkably
efficient for some systems. The use of compression, however, requires manually devising a compression strategy,
whereas all other methods are fully automatic. Also, a lot of skill is necessary in devising effective strategies.

For the Tarry example, our tool only manages to prove local-deadlock freedom for N = 5. The components
in this system are arranged in a 5x (N /5) grid that uses a token mechanism to construct a spanning tree for this
grid; there invariant that a token always exists in the system is fundamental to prove deadlock and local-deadlock
freedom. For N = 5, we have a 5 x 1-grid network where components can only communicate with their left and
right neighbours, whereas for N = 10, N = 12 and N = 15, we have a grid-like systems where components
can communicate additionally with up and down neighbours. For N = 5, the pairwise analysis (carried out by
reachy) can keep track of the token and show that subsystems are never blocked. For the other instances, however,
the routes the the token might take around the network are too unpredictable and so pairwise analysis cannot
capture the required token invariant.”

Table 2 presents the results for the non-hereditary deadlock-free systems. SDD (and any framework based
on the detection of cycles of ungranted requests) is unable to show (local-)deadlock freedom for systems in this
class. On the other hand, Pair can prove (local-)deadlock freedom for some systems in this class. It can show
(local-)deadlock freedom for these three variants of the butler solution to the dining philosophers problem. Butl
is a solution with a single butler that allows only N — 1 philosophers to sit at the table, where N is the total
number of philosophers, and it does that by keeping track of the identity of philosophers sat at the table. Hence,
the state space of this butler component grows exponentially as N increases. This growth is the reason why Pair
does not scale for this example. ButID circumvents this problem by having N — 1 butlers each of which allow
a philosopher to the table. Pair does not scale well for this example either. As N grows, the size of individual
components increases linearly, the number of components increase linearly, and the number of egdes in the com-
munication graph grows quadratically. So, Pair’s lack of scalability comes from the fact that it needs to analyse
a quadratic number of pairs of components and each of these analyses creates a constraint that is quadratic in
the size of the components. Finally, ButID2 creates a solution that is more amenable to Pair. In this solution, we
have N — 1 butlers but each of them only takes care of 5 fixed philosophers. In this setting, as NV grows, the size
of components remains constant, the number of components increases linearly, and the number of connections
in the communication graph grows linearly.

These solutions are different from the more traditional one where a butler simply counts the number of philoso-
phers sat at the table regardless of their identity. This traditional solution, however, cannot be proved deadlock
free by Pair as it requires global analysis of the system. Intuitively, by adding the identity of philosophers we
transform the global invariant “a philosopher must be left out of the table at all times” into a pairwise one that
Pair can capture. To illustrate this difference let us assume we have a system with 3 philosophers and 3 forks. In the
counting-butler case, each pair butler-philosopher can reach the state where the butler has counted until 2 and the
philosopher is sat at the table; this philosopher and another one could have sat at the table. Hence, 2-reachability
cannot discharge (i.e. prove unreachable) the system state where the butler has counted until 2 and all philosophers
are sat at the table simultaneously. In the case where the butler identifies philosophers, however, 2-reachability
does discharge system states where all philosophers are sat at the table simultaneously. We represent butler states
using bg where S is a set representing the philosophers sat at the table; we have that S C {0, 1, 2},and 0, 1,and 2 are
the identifiers of our philosophers. From the analysis of the pair composed of the butler and philosopher ¢ where
1 € {0, 1, 2}, we can capture that philosopher i cannot be sat at the table when the butler is in a state .S such that
1 ¢ S. Thus, from the analysis of these pairs, 2-reachability can deduce that the only way all philosophers can sit
at the table simultaneously is if the butler reaches state {0, 1, 2}. This state, however, is not part of the butler’s state
space, since it is exactly the state it is trying to prevent. Example 3 gives a more detailed account of the dining-
philosophers system with a butler that identifies philosophers.

2 We present in other works techniques that specifically captures this sort of token-based invariants.

402 P. Antonino et al.

Table 1. Results for hereditary deadlock-free systems

Approximate Exact
Example N SDD Pl Pd DF2pm DF2fp DF2l1 FDR FDRc FDRp
ABP 10 0.15 0.06 0.06 * 276.52 * 0.46 \ 0.11
30 0.23 0.12 0.06 * * * 0.16 \ 0.16
50 0.38 0.11 0.11 * * * 0.31 \ 0.16
70 0.53 0.17 0.16 * * * 1.17 \ 0.21
Lock 50 0.23 0.78 0.11 * * * 0.11 \ 0.11
100 0.33 0.22 0.21 * * * 0.11 \ 0.41
200 0.68 0.67 0.62 * * * 0.16 \ 3.67
500 5.04 4.82 4.71 * * * 0.31 \ 100.50
Phils 50 0.28 0.11 0.12 * * * * 1.47 0.52
100 0.38 0.22 0.16 * * * * 13.29 5.47
200 0.53 0.37 0.31 * * * * 219.82 62.55
500 1.23 1.07 0.82 * * * * * *
Ray 10 0.48 0.06 0.26 * * * 0.12 \ 0.11
25 0.20 0.12 0.11 * * * 49.65 \ 18.39
50 0.23 0.22 0.11 * * * * \ *
100 0.33 0.32 0.21 * * * * \ *
SWP 3 1.23 0.21 0.67 * * * 0.41 0.27 0.51
4 38.21 2.17 2.02 * * * 2.87 1.07 6.22
5 * 145.23 57.44 * * * 47.51 4.02 97.14
Tarry 5 - 0.22 0.12 3.87 6.83 5.82 0.06 \ 0.06
8 - - 0.11 * * * 0.11 \ 0.11
12 - - 26.92 * * * 0.41 \ 0.57
15 — — * * * * 39.30 \ 48.61
Tel 4 - 0.11 0.11 * * * * 3.17 *
6 - 0.42 0.31 * * * * * *
8 - 3.67 2.68 * * * * * *
10 — 87.89 46.84 * * * * * *
Rout 5 0.86 0.11 0.57 * 44.20 * * 0.26 *
10 0.38 0.27 0.21 * * * * 0.71 *
20 0.98 0.92 0.82 * * * * 4.47 *
30 2.13 3.07 2.37 * * * * 16.25 *
N is a parameter that is used to alter the size of the system. We measure in seconds the time taken to check (local-)deadlock freedom for each
system

The symbol * means that the method took longer than 300 s, or some error occurred, such as running out of memory
The symbol — means that the method is unable to prove (local-)deadlock freedom
The symbol \ means that no efficient compression technique could be found

Unsurprisingly, Pair is not able to prove (local-)deadlock freedom when this property depends on some global
invariant preserved by the system (or perhaps by larger subsets of the system than the pairs used here). For instance,
proving (local-)deadlock freedom for Milner’s scheduler, which is a fairly simple well-known system, is out of our
method’s reach. The issue with Milner’s scheduler is that it is essentially a token ring for which (local-)deadlock
freedom depends on the fact that there is always precisely one token present; this latter property cannot be proved
by local analysis of the sort we employ. All the examples we tried D-Finder 2 on were disappointing. Last but
not least we want to highlight the somewhat surprising fact that checking local-deadlock freedom and deadlock
freedom via Pair scale similarly. One would perhaps expect local-deadlock freedom to be a lot harder to check
as it involves some (seemingly difficult) quantification over all subsystems of the system under analysis. It seems,
however, that the sort of existential quantification over our participation variables is no trouble for modern SAT
solvers.

6. PairPicking: Pair meets user’s picks

In this section, we introduce the PairPicking, a simple strategy that is meant to address some of Pair’s imprecision
at no substantial cost regarding scalability. This strategy is not a different framework in itself but a different way
in which Pair can be sharpened by some user input to tackle some of its imprecision.

Efficient verification of concurrent systems using local-analysis-based approximations and SAT solving 403

Table 2. Results for non-hereditary deadlock-free systems

Approximate Exact
Example N SDD Pl Pd DF2pm DF2fp DF21 FDR FDRc FDRp
ButID 3 - 0.06 0.11 6.38 * 9.03 0.11 0.11 0.11
5 - 0.17 0.11 * * * 0.26 0.67 0.16
7 - 0.22 0.16 * * * 284.81 40.74 15.14
10 - 66.14 71.00 * * * * * *
ButID2 3 - 0.06 0.46 13.19 * 36.58 0.11 0.17
5 - 0.17 0.11 * * * 0.31 0.67
10 - 0.22 0.11 * * * * *
50 - 0.82 0.62 * * * * * *
Butl 3 - 0.11 0.51 4.87 60.99 5.47 0.11 0.11 0.11
5 - 0.12 0.06 * * * 0.11 0.16 0.11
10 - 0.52 0.41 * * * 127.39 0.41 0.62
15 * * * * * * * 14.59 46.19

N is a parameter that is used to alter the size of the system. We measure in seconds the time taken to check deadlock freedom for each system
The symbol * means that the method took longer than 300, or some error occurred, such as running out of memory
The symbol — means that the method is unable to prove deadlock freedom

Puair is a fully automatic framework designed around the analysis of pairs of components, and, as such, it cannot
prove (local-)deadlock freedom when this property depends on the behaviour of triples or larger combinations of
components. In PairPicking, we try to tackle this imprecision by giving the user the ability to manually identify
some subsystems, involving more than two components, they believe are necessary in proving (local-)deadlock
freedom. The reachability approximation derived from these subsystems are combined with reach,. Unlike Pair,
we do not calculate the reachability approximation for a subsystem and lift it to the entire system. Instead, we
replace the chosen subsystems by their projections. We rely on the following supercombinator machine to carry
out this substitution. Note that the following definition requires rules to have distinct system events. A system
can be converted to this format by changing rules with the same system events, so they all have distinct ones. This
change does not introduce or remove deadlock states of the original system, and it can be carried out efficiently
by simply iterating over the system’s rules.

Definition 19 Let S = ((Ly, ..., L,), R) be a supercombinator machine where rules in R have distinct system
events (i.e. if (e, a) and (¢, a) are members of R then e = ¢’), and subsystems ss, ..., ss,, partitioning the
system, i.e. where Uie{l___m} ss; = {1...n} and ss; N ss; = @ for i # j hold. S, s, 1S the supercombinator
machine where the combination of components in each subsystem ss; is replaced by its projection’s LTS.

..... SSm — ((Lssl s ey Lssm>v R/) where

e L the LTS induced by S, as per Definition 9.
e R'={({(i,a)lie{l...m}ATjess;ee;# =}, a)|((er,...,e) a) € R}

Since we also make sure that rules are adapted to enforce the same interactions as the original ones, this
supercombinator machine has the same behaviour as the original one. So, it (local-)deadlocks whenever the
original does and, thus, we can freely replace a supercombinator machine by this modified version when checking
for (local-)deadlock freedom. In particular, we can apply Pair to this modified machine instead; this application
is exactly what constitutes the PairPicking strategy.

Theorem 6 LetS = ((Ly, ..., L,), R)beasupercombinator machine where rules in R have distinct system events,
and ssi, ..., ssp, a set of subsystems such that they partition the system. Sss, . ss,, has a (local-)deadlock iff S
does.

.....

Proof* This follows from our definition of Sy, s, using induction on the size of paths leading to a (local-)
deadlock. QED 0

This modified version of a supercombinator machine does not alter its behaviour but it does alter its structure.
When applied to this machine, Pair would consider, as this machine does, the parallel combination of components
in each subsystem as individual components. By analysing the overall behaviour of these combinations, Pair is

404 P. Antonino et al.

implicitly using reachability approximations induced by these subsystems. Therefore, the application of Pair to
such a modified machine where triples or larger combination of components are put together creates a framework
that precisely understands how these larger subsystems work and, thus, is more precise in showing (local-)deadlock
freedom.

In some cases when Pair fails to prove (local-)deadlock freedom for a system, it is easy to understand why it
fails and to recognise which triples or larger subsystems are additionally needed to prove this property. If triples
or larger combinations are reasonably small, we have the perfect setting to apply PairPicking. The user of this
strategy can create the proposed modified machine with these combinations and Pair will be able to verify it.

The complexity of this strategy can be as bad as explicit state space analysis of the entire system; after all we
do not forbid the user from choosing the entire system as a subsystem. So, given the size of the original machine
and the chosen subsystem, the problem of checking (local-)deadlock freedom using the PairPicking strategy with
unlimited subsystem size should also be PSPACE-complete. Nevertheless, it should be clear that by picking small
subsystems, this strategy is only explicitly analysing small state spaces. Hence, in practice, if small subsystems are
chosen, this strategy should considerably outperform explicit state-space exploration of the overall system.

Now, we introduce two families of systems and discuss how to apply PairPicking to them. We apply the
PairPicking strategy using our implementation of Pair and the built-in function explicate of FDR4. This
function constructs the induced LTS for a given subsystem. So, applying PairPicking involves using explicate
to create the modified system and Pair to check it for (local-)deadlock freedom.

These families of systems describe routing networks where messages are exchanged between small local
networks. Each of these local networks is composed of a fixed number of components which initially decide on a
single interface component for this local network. Local networks exchange messages only through their interface
components. Our two families of systems differ in the way local networks choose their interface component.

In the first family, a local network elects an interface component using a majority vote. Each component
in the local network has a single vote and they vote on each other until a component receives the majority of
votes, becoming the interface component. In the second family, components in a local network elects an interface
component based on a priority value they choose. Each component chooses a priority values that is sent around
the network. The component with the highest priority, where the component unique identifier is a tie-breaker, is
the elected interface component [Tel00].

Proving (local-)deadlock freedom for these routing systems rests on, among other invariants, the fact they
succeed in choosing an interface component. This invariant, however, cannot be captured by Pair alone for either
of these families. On the other hand, PairPicking can show (local-)deadlock freedom for these systems if we treat
local networks as individual components.

We applied PairPicking for systems in these two families; we replaced local networks by their induced LTSs.
For each family, we vary the number of components in a local network and the topology of connections between
local networks: they can be laid out as a chain, a grid or a fully-connected graph. This experiment was conducted
on a dedicated machine with a quad-core Intel Core 15-4300U CPU @ 1.90GHz, 8GB of RAM. We compare
PairPicking checking deadlock freedom (PPd) and local-deadlock freedom (PPl) against FDR4’s approaches
[GRABR14]. Pair and the Deadlock Checker’s SDD [MJ97] are left out because they cannot prove any of these
systems (local-)deadlock free. D-Finder 2 [BGL*11]’s approaches are also omitted because they either timeout
or cannot prove deadlock freedom for all these systems. FDR4 methods only check for deadlock freedom.

Table 3 presents the results for the voting-based family of systems, whereas Table 4 presents the results
for systems in the priority-based family. The name of each example describes the topology used to connect
local networks and the number of components in each of them. For instance, VGrid4 is the system where
local networks are connected in a grid-like fashion and each of them is composed of 4 components. These
results show that PairPicking is quicker in showing (local-)deadlock freedom for these systems than com-
plete approaches. FDR4’s assertion combined with compression techniques comes close to the sort of speed

Efficient verification of concurrent systems using local-analysis-based approximations and SAT solving 405

PairPicking achieves. In some cases, however, the sort of manual work needed to use PairPicking, namely, se-
lecting the subsystems that need to be explicit examined, is much less complex than the work needed to craft a
compression strategy.

These results also confirm the practical limitations of PairPicking. Since it performs explicit exploration
to create the LTSs of the chosen subsystems, it suffers with the state-space explosion problem. So, even for
small subsystems, the size of their LTSs tends to make the verification cost prohibitive—even for approximative
approaches such as Pair. Furthermore, these results also demonstrate how the topology affects the underlying
use of Pair. A system with a fully-connected topology normally suffers from two sources of complexity as the
number of components grows. Firstly, with the addition of a component, there is an increase in the complexity
of individual components as they have to account for the communication with this newly included component.
Secondly, the number of connections between components, and of the pairs of components to explicitly analyse,
grows quadratically with the linear increase of components. On the other hand, for communication topologies
where each component is connected to a fixed number of components, such as grids, rings or chains, neither of
these two problems arise. These factors help to explain the difference in scalability for the different systems (and
topologies) we have analysed. One could presumably use Pair to guide PairPicking in the sense that, when a Pair
candidate arises, one could examine which components prevent it from being a truly reachable state, if that is the
case, and input the subsystem involving them to PairPicking.

7. Conclusion

This paper’s main object of study is local analysis. We propose a way to capture and implement it, and we show
how it can enable effective verification frameworks.

We propose the notion of subsystem reachability as a means to capture and implement local analysis. It can
be used in its own right to approximate reachability but a question that arises is which subsystems one should
use to construct such an approximation. There is no easy answer to this question. It is fairly difficult to anticipate
which subsystem plays a role in enforcing a given property. Also, it might be the case that a property emerges
from the behaviour of not one but many small subsystems. To alleviate these problems, we propose the notion of
k-reachability. In a straight-forward way, it picks subsystems of size(-up-to) k£ to construct a reachability over-
approximation. These notions are in no way tied to a particular property such that they could be applied to any
verification that could be reduced to a reachability check.

We use 2-reachability to create Pair, an approximate framework that checks deadlock and local-deadlock
freedom. The use of this approximation tackles some sources of imprecision of traditional techniques that check
for cycles of dependencies. It improves the accuracy of current approximate techniques; in particular, some
non-hereditary deadlock-free systems, which are neglected by most approximate techniques, can be tackled by
our framework. This improvement comes at a price. The problems tackled by Pair are co-NP-hard, whereas
traditional approaches rely on conditions that can be checked in polynomial time. Still, Pair-(local-)candidate
detection should be easier to handle if compared to the PSPACE-completeness of exact (local-)deadlock checking.
Intuitively, Pair needs to analyse pairs of components to approximate reachability whereas exact frameworks need
to go over the system’s entire state space. Despite the inherent complexity of detecting Pair (local) candidates, SAT
checkers can efficiently implement our framework. Our implementation, which can only handle triple-disjoint
systems, is in most cases similarly efficient as traditional approximate techniques and much better than exact
frameworks. This is demonstrated by a series of practical experiments. Moreover, these solvers can even handle
the sort of (seemingly costly) quantification over subsystems that is necessary to show local-deadlock freedom.

We have not investigated the use of k-reachability where & > 2. Most of the examples we have worked with
were either proved (local-)deadlock free by local invariants calculated by pairwise analysis or by global invariants.
Also, we could not immediately think of a relevant class of systems that would require this sort of k-reachability.
Obviously, that does not mean such a class does not exist. Moreover, we have not investigated how our reachability
approximation fares in showing (local-)deadlock freedom for non-triple-disjoint systems. We hope that this paper
will encourage further work in this direction.

Pair cannot show (local-)deadlock freedom when it depends on some reachability invariant of triples or
larger combinations of components. To cope with that, we propose PairPicking, a strategy that combines the
reachability analysis of some hand-picked subsystems with Pair. The choosing of subsystems enables the user to
capture invariants of triples or larger combinations of components.

406 P. Antonino et al.

Table 3. Efficiency comparison for networks of voting-based local subnetworks

Approximate Exact
Example N PPl PPd FDR FDRc FDRp
VChain4 10 0.36 0.47 * 1.52 *
20 0.52 0.46 * 5.98 *
30 0.72 0.66 * 19.95 *
40 0.97 0.87 * 56.63 *
VGrid4 10 0.41 0.52 * * *
20 1.17 1.27 * * *
30 1.92 2.22 * * *
40 2.62 2.62 * * *
VFully4 5 0.42 0.61 * * 24.30
8 2.27 2.02 * * *
12 9.99 8.73 * * *
15 22.46 21.56 * * *
VChain5 10 1.02 1.22 * 27.92 *
20 2.12 2.07 * 69.40 *
30 3.32 3.12 * 135.98 *
40 4.47 4.27 * 266.88 *
VGrid5 10 1.92 1.82 * * *
20 5.48 5.58 * * *
30 9.03 8.98 * * *
40 12.99 12.39 * * *
VFully5 5 1.82 2.02 * * 118.33
8 8.98 8.53 * * *
12 41.70 39.29 * * *
15 105.48 97.15 * * *
VChain6 10 14.49 15.19 * * *
20 31.43 31.78 * * *
30 49.06 48.86 * * *
40 66.99 65.74 * * *
VGrid6 10 25.66 25.61 * * *
20 67.00 67.69 * * *
30 110.44 110.18 * * *
40 153.23 150.36 * * *
VFully6 5 21.36 20.70 * * *
8 89.89 85.03 * * *
12 289.84 282.70 * * *
* * * * *

15

N gives the number of local networks in the system. We measure in seconds the time taken to check (local-)deadlock freedom for each system
The symbol * means that the method took longer than 300s, or an error, such as running out of memory, occurred
The symbol — means that the method is unable to prove deadlock freedom

This strategy should be applied when these subsystems are small and easy to identify. Some works have
proposed the techniques to find global reachability invariants [Mar96, CK94, DCCN04, AGRR16b, AGRR17b].
In[AGRR16b, AGRR17b, Ant18], we propose some techniques to estimate global reachability and a framework
that integrates local analysis (in the form of 2-reachability) and these global-analysis techniques to verify systems.

Local analysis is a tool that can prove properties of systems emerging from small combination of components.
Hence, the frameworks proposed in this paper should not prove (local-)deadlock freedom if it depends on some
global invariant of the system. Nevertheless, our use of local analysis should make our frameworks, generally,
much quicker than exact techniques for verifying systems. So, they could be used as preliminary test for (local-
)deadlock freedom. Furthermore, despite being imprecise in the negative case, they still present a candidate
(local-)deadlock. Although it is not as useful as a true counter-example, this candidate can provide some insight
as to whether the system has a true (local-)deadlock or not. In some cases, it might be evident that the candidate
is actually reachable, and consequently, a real violation.

Efficient verification of concurrent systems using local-analysis-based approximations and SAT solving 407

Table 4. Efficiency comparison for networks of priority-based local subnetworks

Approximate Exact
Example N PPI PPd FDR FDRc FDRp
PChain4 5 0.57 0.87 * 0.92 5.18
10 1.17 1.12 * 2.07 *
15 1.77 1.72 * 3.27 *
20 2.47 2.37 * 6.28 *
PGrid4 5 0.57 0.51 * 0.87 5.12
10 2.17 2.02 * * *
15 3.82 4.07 * * *
20 5.43 5.83 * * *
PFully4 3 0.46 0.67 18.95 1.87 0.22
5 1.67 1.62 * * 44.44
8 7.03 6.88 * * *
12 26.87 25.47 * * *
PChain5 5 4.62 4.87 * 7.73 35.47
10 10.69 10.74 * 18.05 *
15 16.75 16.80 * 29.62 *
20 22.96 2291 * 44.25 *
PGrid5 5 4.67 4.72 * 7.68 35.52
10 18.05 18.25 * * *
15 32.88 32.98 * * *
20 48.71 48.86 * * *
PFully5 3 3.57 3.72 * 41.19 0.71
5 14.64 14.54 * * 254.25
8 56.38 53.26 * * *
12 170.85 165.38 * * *
PChain6 5 46.56 47.55 * 278.26 234.85
10 106.78 107.92 * * *
15 167.39 169.48 * * *
20 229.36 229.17 * * *
PGrid6 5 46.46 47.30 * 259.57 235.38
10 173.76 173.46 * * *
15 * * * * *
20 & * & % %
PFully6 3 34.88 35.99 * * 3.90
5 130.22 128.18 * * *
8 * * * * *
12 % * % & %

N gives the number of local networks in the system. We measure in seconds the time taken to check (local-)deadlock freedom for each system
The symbol * means that the method took longer than 300s, or an error, such as running out of memory, occurred
The symbol — means that the method is unable to prove deadlock freedom

As future work, we plan to investigate a few points. Pair’s analysis simply enumerates pairs of components
states that cannot be reached. So, there may be a quadratic increase in the number of pairs to be analysed and in
their state space, leading to a substantial increase in the constraint we feed to the SAT solver. In some cases, this
increase hinders the efficiency of solvers. Therefore, we plan to investigate ways in which we can reduce the size
of this constraint. Perhaps, we could analyse fewer pairs of components and use a BDD representation to reduce
the final boolean constraint. In PairPicking, one avenue that we have not explored is the use of compression
techniques in the construction of LTSs of hand-picked subsystems. These techniques could greatly reduce these
LTSs making PairPicking much more scalable.

Acknowledgements

The first author is a CAPES (Coordenagao de Aperfeigoamento de Pessoal de Nivel Superior) Foundation
scholarship holder (Process No: 13201/13-1). The second and third authors are partially sponsored by EPSRC
(Engineering and Physical Sciences Research Council, UK) under Agreement No. EP/N022777, and

408 P. Antonino et al.

Innovate UK and the Aerospace Technology Institute via the SECT-AIR Project under Agreement No. 113099.
We thank the anonymous reviewers for their valuable comments that helped improve this paper.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and repro-
duction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were made.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

References

[ABB*13] Attie PC, Bensalem S, Bozga M, Jaber M, Sifakis J, Zaraket FA (2013) An abstract framework for deadlock prevention in
BIP. In: FORTE, number 7892 in LNCS. Springer, pp 161-177

[ABB*18] Attie PC, Bensalem S, Bozga M, Jaber M, Sifakis J, Zaraket FA (2018) Global and local deadlock freedom in BIP. ACM
Trans Softw Eng Methodol 26(3):9:1-9:48

[ABC*91] Avrunin GS, Buy UA, Corbett JC, Dillon LK, Wileden JC (1991) Automated analysis of concurrent systems with the con-
strained expression toolset. IEEE Trans Softw Eng 17(11):1204-1222

[ACO5] Attie PC, Chockler H (2005) Efficiently verifiable conditions for deadlock-freedom of large concurrent programs. In: VMCAL.
Springer, pp 465-481

[AFDR80] Apt KR, Francez N, De Roever WP (1980) A proof system for communicating sequential processes. ACM Trans Program
Lang Syst (TOPLAS) 2(3):359-385

[AGRR16a] Antonino P, Gibson-Robinson T, Roscoe AW (2016) Efficient deadlock-freedom checking using local analysis and SAT solving.
In: IFM, number 9681 in LNCS. Springer, pp 345-360

[AGRR16b] Antonino P, Gibson-Robinson T, Roscoe AW (2016) Tighter reachability criteria for deadlock freedom analysis. In: FM,
number 9995 in LNCS. Springer

[AGRR17a] Antonino P, Gibson-Robinson T, Roscoe AW (2017) The automatic detection of token structures and invariants using SAT
checking. In: TACAS, number 10206 in LNCS. Springer, pp 249-265

[AGRR17b] Antonino P, Gibson-Robinson T, Roscoe AW (2017) Checking static properties using conservative sat approximations for
reachability. In: Formal methods: foundations and applications. Springer, pp 233-250

[AGRR18] Antonino P, Gibson-Robinson T, Roscoe AW (2018) Experiment package. www.cs.ox.ac.uk/people/pedro.antonino/facpkg.
Zip

[Ant18] Antonino P (2018) Verifying concurrent systems by approximations. DPhil thesis, University of Oxford. https://ora.ox.ac.uk/
objects/uuid:f75¢782¢c-a168-49b3-bfed-e2715f027157

[AOS*14] Antonino P, Oliveira MM, Sampaio A, Kristensen K, Bryans J (2014) Leadership election: an industrial SoS application of
compositional deadlock verification. In: NFM, volume 8430 of LNCS, pp 31-45

[AS09] Audemard G, Simon L (2009) Predicting learnt clauses quality in modern SAT solvers. In: IJCAI’09, San Francisco, CA,
USA, pp 399-404.

[ASW14] Antonino P, Sampaio A, Woodcock J (2014) A refinement based strategy for local deadlock analysis of networks of CSP
processes. In: FM, volume 8442 of LNCS, pp 62-77

[BBL*16] Bensalem S, Bozga M, Legay A, Nguyen T-H, Sifakis J, Yan R (2016) Component-based verification using incremental design
and invariants. Softw Syst Model 15(2):427-451

[BCCZ99] Biere A, Cimatti A, Clarke E, Zhu Y (1999) Symbolic model checking without bdds. In: Tools and algorithms for the
construction and analysis of systems, pp 193-207

[BCM*92] Burch JR, Clarke EM, McMillan KL, Dill DL, Hwang L-J (1992) Symbolic model checking: 1020 states and beyond. Inf
Comput 98(2):142-170

[BGL*11] Bensalem S, Griesmayer A, Legay A, Nguyen T-H, Sifakis J, Yan R (2011) D-finder 2: towards efficient correctness of
incremental design. In: NFM, pp 453-458

[BKO1] Barghouti NS, Kaiser GE (1991) Concurrency control in advanced database applications. ACM Comput Surv 23(3):269-317
[BKO08] Baier C, Katoen J-P (2008) Principles of model checking (representation and mind series). The MIT Press

[BL99] Bensalem S, Lakhnech Y (1999) Automatic generation of invariants. Form Methods Syst Des 15(1):75-92

[BRO1] Brookes SD, Roscoe AW (1991) Deadlock analysis in networks of communicating processes. Distrib Comput 4:209-230
[CA95] Corbett JC, Avrunin GS (1995) Using integer programming to verify general safety and liveness properties. Form Methods

Syst Des 6(1):97-123

[CCO™05] ChakiS, Clarke E, Ouaknine J, Sharygina N, Sinha N (2005) Concurrent software verification with states, events, and deadlocks.
Form Asp Comput 17(4):461-483

[CES71] Coffman EG, Elphick M, Shoshani A (1971) System deadlocks. ACM Comput Surv (CSUR) 3(2):67-78

[CGI*00] Clarke E, Grumberg O, Jha S, Lu Y, Veith H (2000) Counterexample-guided abstraction refinement. In: Computer aided
verification. Springer, pp 154-169

[CK94] Cheung SC, Kramer J (1994) Tractable dataflow analysis for distributed systems. IEEE Trans Softw Eng 20(8):579-593

[Cor96] Corbett JC (1996) Evaluating deadlock detection methods for concurrent software. IEEE Trans Softw Eng 22(3):161-180

[DCCNO04] Dwyer MB, Clarke LA, Cobleigh JM, Naumovich G (2004) Flow analysis for verifying properties of concurrent software
systems. ACM Trans Softw Eng Methodol 13(4):359-430

http://creativecommons.org/licenses/by/4.0/
www.cs.ox.ac.uk/people/pedro.antonino/facpkg.zip
www.cs.ox.ac.uk/people/pedro.antonino/facpkg.zip
https://ora.ox.ac.uk/objects/uuid:f75c782c-a168-49b3-bfed-e2715f027157
https://ora.ox.ac.uk/objects/uuid:f75c782c-a168-49b3-bfed-e2715f027157

Efficient verification of concurrent systems using local-analysis-based approximations and SAT solving 409

[FOSC16] Conserva Filho MS, Oliveira MVM, Sampaio A, Cavalcanti A (2016) Local livelock analysis of component-based models.
In: ICFEM, pp 279-295

[GRABR14] Gibson-Robinson T, Armstrong P, Boulgakov A, Roscoe AW (2014) FDR3-—a modern refinement checker for CSP. In:
TACAS, volume 8413 of LNCS, pp 187-201

[GRHRWI15] Gibson-Robinson T, Hansen H, Roscoe AW, Wang Xu (2015) Practical partial order reduction for CSP. In: NFM, volume
9058 of LNCS. Springer, pp 188-203

[GW9I3] Godefroid P, Wolper P (1993) Using partial orders for the efficient verification of deadlock freedom and safety properties.
FMSD, 2(2):149-164

[Hoa85] Hoare CAR (1985) Communicating sequential processes. Prentice-Hall, Upper Saddle River

[HS08] Herlihy M, Shavit N (2008) The art of multiprocessor programming. Morgan Kaufmann Publishers Inc., San Francisco

[JL16] Jezequel L, Lime D (2016) Lazy reachability analysis in distributed systems. In: Desharnais J, Jagadeesan R (eds) CON-
CUR 2016, volume 59 of Leibniz international proceedings in informatics (LIPIcs). Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, Dagstuhl, Germany, 2016, pp 17:1-17:14

[KS90] Kanellakis PC, Smolka SA (1990) Ccs expressions, finite state processes, and three problems of equivalence. Inf Comput
86(1):43-68

[Lam77] Lamport L (1977) Proving the correctness of multiprocess programs. IEEE Trans Softw Eng (2):125-143

[LMCI11] Lambertz C, Majster-Cederbaum M (2011) Analyzing component-based systems on the basis of architectural constraints. In:
FSEN. Springer, pp 64-79

[Mar96] Martin Jeremy MR (1996) The design and construction of deadlock-free concurrent systems. Ph.D. thesis, University of
Buckingham

[MJ97] Martin JMR, Jassim SA (1997) An efficient technique for deadlock analysis of large scale process networks. In: FME *97, pp
418-441

[OAR*16] Oliveira MVM, Antonino P, Ramos R, Sampaio A, Mota A, Roscoe AW (2016) Rigorous development of component-based
systems using component metadata and patterns. Form Asp Comput 1-68

[OCS17] Otoni R, Cavalcanti A, Sampaio A (2017) Local analysis of determinism for CSP. In: Proceedings of formal methods:
foundations and applications—20th Brazilian symposium, SBMF 2017, Recife, Brazil, 29 November—1 December 2017, pp
107-124

[OPRW13] Ouaknine J, Palikareva H, Roscoe AW, Worrell J (2013) A static analysis framework for livelock freedom in CSP. LMCS, 9(3)

[Pel93] Peled D (1993) All from one, one for all: on model checking using representatives. In: Computer aided verification. Springer,
pp 409-423

[Plo81] Plotkin GD (1981) A structural approach to operational semantics. Technical report, DAIMI FN-19, Computer Science
Department, Aarhus University

[POR12] Palikareva H, Ouaknine J, Roscoe AW (2012) SAT-solving in CSP trace refinement. Sci Comput Program 77(10):1178-1197

[Ram11] Ramos RT (2011) Systematic development of trustworthy component-based systems. Ph.D. thesis, Universidade Federal de
Pernambuco

[Ray89] Raymond K (1989) A tree-based algorithm for distributed mutual exclusion. ACM Trans Comput Syst (TOCS) 7(1):61-77

[RD87] Roscoe AW, Dathi N (1987) The pursuit of deadlock freedom. Inf Comput 75(3):289-327

[RGG*95] Roscoe AW, Gardiner PHB, Goldsmith M, Hulance JR, Jackson DM, Scattergood JB (1995) Hierarchical compression for
model-checking CSP or how to check 102° dining philosophers for deadlock. In: TACAS, pp 133-152

[Ros98] Roscoe AW (1998) The theory and practice of concurrency. Prentice Hall, Upper Saddle River

[Ros10] Roscoe AW (2010) Understanding Concurrent Systems. Springer

[Sav70] Savitch WJ (1970) Relationships between nondeterministic and deterministic tape complexities. J Comput Syst Sci 4(2):177—
192

[SD82] Scholten CS, Dijkstra EW (1982) A class of simple communication patterns. Springer, New York, pp 334-337

[Tar95] Tarry G (1895) Le probleme des labyrinthes. Nouvelles annales de mathématiques. journal des candidats aux écoles polytech-
nique et normale 14:187-190

[Tel00] Tel G (2000) Introduction to distributed algorithms, 2nd edn. Cambridge University Press, Cambridge

[TGS17] Timm N, Gruner S, Sibanda P (2017) Model checking of concurrent software systems via heuristic-guided sat solving. In:
Dastani M, Sirjani M (eds) Fundamentals of software engineering. Springer, Cham, pp 244-259

[Tse68] Tseitin G (1968) On the complexity of derivation in propositional calculus. Stud Constrained Math Math Logic

[Val92] Valmari A (1992) A stubborn attack on state explosion. Form Methods Syst Des 1(4):297-322

[YJ89] Yantchev J, Jesshope CR (1989) Adaptive, low latency, deadlock-free packet routing for networks of processors. IEE Proc E
Comput Digit Tech 136(3):178-186

[YYO1] Yeh WJ, Young M (1991) Compositional reachability analysis using process algebra. In: Proceedings of the symposium on
testing, analysis, and verification. ACM, pp 49-59

Received 19 July 2018

Accepted in revised form 16 April 2019 by Eerke Albert Boiten
Published online 13 May 2019

	Efficient verification of concurrent systems using local-analysis-based approximations and SAT solving
	Abstract
	1 Introduction
	2 Related work
	3 Background
	4 Approximate reachability using local analysis
	5 Pair: 2-reachability for deadlock and local-deadlock freedom
	5.1 Precision of Pair
	5.2 Complexity of Pair
	5.3 Pair-candidate detection via SAT solving
	5.4 Practical evaluation

	6 PairPicking: Pair meets user's picks
	7 Conclusion
	Acknowledgements
	References

