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Abstract. Decomposing the design (or documentation) of large systems is a practical necessity but finding com-
positional development methods for concurrent software is technically challenging. This paper includes the devel-
opment of a difficult example in order to draw out lessons about such methods. The concurrent garbage collector
development is interesting in several ways; in particular, the final step of its development appears to be just be-
yond what can be expressed by rely/guarantee relations. This prompts an exploration of the limitations of this
well-known method. Although the rely/guarantee approach is used, most of the lessons are more general.
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1. Introduction

The aim of this paper is to contribute to discussion about compositional development for concurrent programs.
Much of the paper is taken up with the development, from an abstract specification, of a concurrent garbage
collector but the important messages are by no means confined to the example and are identified as lessons.

The rely/guarantee approach (see Sect. 1.2 below) provides a compositional development method for many
applications. The specific garbage collector algorithm is intricate in the sense that the Collector and Mutator
routines were clearly thought out together. The final step of the development of the algorithm challenges the
expressiveness of rely/guarantee conditions. Viewed positively, this makes it possible to explore the limits of
the method and compare various possible extensions. Furthermore, the example points to a precise test for
when auxiliary (or ghost) variables are needed and offers another application of the possible values notation (see
Sect. 2.1).

Apart from the general lessons, the exploration of what is meant by “compositional” development should
interest the reader.
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1.1. Compositional methods

To clarify the notion of “compositional” development of concurrent programs, it is worth beginning with some
observations about the specification and design of sequential programs. A developer faced with a specification for
Smightmake the design decision to decompose the task using two components that are to be executed sequentially
(S1; S2); that top-level step can be justified by discharging a proof involving only the specifications of S, S1 and
S2. Moreover, the developer of either of the sub-components need only be concerned with its specification—not
that of its sibling nor that of its parent S. This not only facilitates separate development, it also increases the
chance that any subsequent modifications are isolated within the boundary of one specified component.

Lesson I “Compositionality” is best understood by thinking about a development process in which, faced with
a specified task (module), the developer proposes a decomposition (combinator), specifies sub-tasks and then
proves the decomposition correct with respect to (only) the specifications. (The same process is then repeated
on the sub-tasks.) Such specifications should genuinely insulate components from one another and from their
context.

As far as is possible, the advantagesof compositional development shouldbe retained for concurrent programs.
Because of the interference inherent in concurrency, compositionality is not easy to achieve and, clearly, (pre/)post
conditions will not suffice. However, numerous examples exist to indicate that rely/guarantee conditions (see
Sect. 1.2) facilitate the required separation where a designer chooses a decomposition of S into shared-variable
sub-components that are to be executed concurrently (S1 || S2).

1.2. Rely/guarantee thinking

The origin of the rely/guarantee (R/G)work goes back to [Jon81] andwas published in [Jon83a, Jon83b]. The basic
idea is simple: in addition to pre conditions (predicates over states) and post conditions (relations over initial and
final states), information about interference during a specified operation is recorded. Rely conditions record the
interference that the operation can tolerate and guarantee conditions record the interference that the operation
can inflict on the environment. See Fig. 1. It is important to remember that pre and rely conditions are information
to an implementer of a component –they define the contexts in which the final code must run– whereas guarantee
and post conditions are obligations on the execution of the code. Some 20 theses have developed the original idea;
for example: [Stø90, Xu92] address progress arguments, [Din00] moves in the direction of a refinement calculus
form of R/G, [Pre01] provides an Isabelle-checked soundness proof of a slightly restricted form of R/G rules,
[Col08] revisits the soundness of general R/G rules, [Pie09] addresses usability and [Vaf07, FFS07] explore ways
to combine R/G thinking with Separation Logic. Furthermore, a number of Separation Logic (see below) papers
also employ R/G reasoning (e.g. [BA10, BA13]) and [DFPV09, DYDG+10] from separation logic researchers
build on R/G. Any reader who is unfamiliar with the R/G approach can find a brief introduction in [Jon96].1

The literature contains many diverse examples of R/G developments including:

• SusanOwicki’s [Owi75] verifies a program that finds theminimum index i to an array A such that A(i) satisfies
a given predicate p; a development of such a program is tackled using R/G thinking in [HJC14]

• a staple of R/G presentations is a concurrent version of the Sieve of Eratosthenes introduced in [Hoa72]—see
for example [JHC15]

• parallel “cleanup” operations in theFisher/Galler algorithm for the so-called union/find problem are developed
in [CJ00]

• a development of Simpson’s 4-slot algorithm is given in [JP11]—an even nicer specification using “possible
values” (see Sect. 2.1) is contained in [JH16]

The first two are examples in which the R/G conditions are symmetric in the sense that the concurrent sub-
processes have the same specifications; the last two items and the concurrent garbage collector presented below
are more interesting because the concurrent processes need different specifications.

1 Fuller sets of references are contained in [HJC14, JHC15].
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Fig. 1. R/G

Lesson II While acknowledging Lesson I, there does have to be some description of acceptable interference. By
using relations to express interference, R/G conditions offer a plausible compositional approach to concurrency
with a balance of expressiveness versus tractability—see Sects. 4 and 5.

The original way of writing R/G specifications displayed the predicates of a specification delimited by key-
words; some subsequent papers (notably those concerned with showing the soundness of the Proof Obligations
(POs)) present specifications as five-tuples. The reformulation in [HJC14, JHC15, HJ18] employs a refinement
calculus format [Mor90, BvW98] in which it is natural to investigate algebraic properties of specifications. Since
some of the predicates for the garbage collection example are rather long, the keyword style is adopted in this
paper but algebraic properties (e.g. distributing rely and guarantee over sequential or parallel composition) are
used as required.

1.3. Challenges

The extent to which compositionality depends on the expressivity of the specification notation is an issue and
the “possible values” notation used in Sect. 2.1 provides an interesting discussion point. Much more telling is the
contrast with methods which need the code of sibling processes to reason about interference. For example, the
Owicki-Gries approach [Owi75, OG76] not only postpones a final interference freedom (einmischungsfrie) check
until the code of all concurrent processes is to hand but it also follows that this expensive test has to be repeated
when changes are made to any sub-component.

It is useful to distinguish progressivelymore challenging cases of interference and the impact that the difficulty
has on reasoning about correctness:

1. The term “parallel” is often used for threads that share no variables: threads are in a sense entirely independent
and only interact in that they overlap in time.Hoare [Hoa72] observes that, in this simple case, the conjunction
of the post conditions of the individual threads provides an acceptable post condition for their combination.

2. Over-simplifying, Hoare’s insight is a basis for concurrent separation logic (CSL). CSL [O’H07] and the many
related logics are, however, aimed at –and capable of– reasoning about intricate heap-based programs. See
also [Par10].

3. It is argued in [JY15] that careful use of abstraction can serve the purpose of reasoning about some forms of
separation.

4. The interference in the Owicki example referred to in the preceding section is non-trivial because one thread
affects a variable used to control repetition in the other thread. It would be possible to reason about the
development of this example using “auxiliary” (aka “ghost”) variables. The approach in [Owi75] actually
goes further in that the code of the combined system is employed in the final Einmischungsfrei PO. Using the
compositional R/G approach in [HJC14], however, the interference is adequately characterised by relations.

5. There are other examples in which relations alone do not appear to be enough. This is true of even the early
stages of development of the concurrent garbage collector below. A notation for “possible values” [JP11,
HBDJ13, JH16] obviates the need for auxiliary variables in some cases, see Sect. 2.1

6. The question of whether some examples require ghost variables is open and this discussion is resumed in
Sect. 5. That their use is tempting in order to simplify reasoning about concurrent processes is attested to by
the number of proofs that employ them.
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2. Preliminary development

This section builds up to a specification of concurrent garbage collection that is then used as the basis for
development in Sects. 3–6. The main focus is on the Collector but, since this runs concurrently with some form
of Mutator , some assumptions have to be recorded about the latter.

2.1. Abstract specification

It is useful to pin down the basic idea of inaccessible addresses (aka “garbage”) before worrying about details of
heap storage (see Sect. 2.2) and marking (Sect. 3). The set of addresses (Addr ) is assumed to be some arbitrary
but finite set; it is not to be equated with natural numbers since that would suggest that addresses could have
arithmetic operators applied to them. (There is one point in Sect. 5 where it is important that the cardinality of
Addr is at least two—this is assumed where needed since it is pointless carrying such a low lower bound through
all of the development.) Abstract states contain two sets of addresses: those that are in use (busy) and those
that have been collected into a free set. It is, of course, an essential property that the sets busy/free are always
disjoint. (VDM types are restricted by datatype invariants and the set �0 only contains values that satisfy the
invariant.)2

�0 :: busy : Addr -set
free : Addr -set

where

inv-�0(mk-�0(busy, free)) � busy ∩ free � {}

There can however be elements of Addr that are in neither set—such addresses are to be considered as “garbage”
and the task of a garbage collector is to add such addresses to free.

Lesson III The use of abstract datatypes can clarify key concepts prior to discussion of implementation details.
Implementations are then viewed as “reifications” that achieve the same effect as the abstraction. Formal POs
are given, for example, in [Jon90]. This is commonplace for sequential programs but it has yet greater force for
concurrent program development (where it is perhaps underemployed bymany researchers). For example, in R/G
examples such as [JP11], such abstractions make it possible to address interference and separation at early stages
of design. Furthermore, in the example below, important issues such as invariant preservation on abstract states
yield real insights into the abstract algorithm before they become clouded by details of the representation.

Effectively, theGCprocess is an infinite loop repeatedly executing theCollector operationwhose specification
is on the left here:

Collector
ext wr free

rd busy
pre true
rely free′ ⊆ free ∧ (busy′ − busy) ⊆ free
guar free ⊆ free′

post (Addr − busy) ⊆ ⋃
˜free

Mutator
ext wr busy, free
pre true
rely guar -Collector ∧ busy′ � busy
guar rely-Collector
post true

2 The use of VDM notation should present the reader with no difficulty since it has been widely used for decades and is the subject of an
ISO standard; one useful reference is [Jon90]. Comments are however added for the less common notation. For example, X -set is a type
which admits only finite sets (but since here Addr is finite, power set could have been used). Record types are as in McCarthy’s abstract
syntax notation [McC66] but in VDM a record definition such as that for �0 implicitly defines a constructor function (mk-�0) and selectors
(σ.busy, σ.free); furthermore, where the constructor appears in a parameter list, it names the values of the fields in an obvious way.



Investigating the limits of rely/guarantee relations based on a concurrent garbage collector example 357

The predicate guar -Collector reassures the designer of Mutator that a chosen free cell will not disappear.
Operation specifications (in VDM) define their frames which are the state components that an implementation
can read (rd) or change (wr). For concurrent operations, these provide a convenient way of expressingwhat cannot
change (e.g the Collector is not allowed to change the busy data that is at the heart of the Mutator application).
Thus the additional conjunct recorded in the rely condition of the Mutator given on the right above is matched
by the fact that the Collector has only read access to busy rather than being an explicit conjunct in the guarantee
condition of theCollector (guar -Collector ). These abbreviations become important below where there are more
state components but they must be explicitly expanded for any mechanical proof such as in Isabelle.

The rely conditionassures thedeveloper ofCollector that –although theMutator can consume freeaddresses–
nothing in the environment of the Collector can flag addresses as being free. A developer of Collector also needs
to know that the only place from where the environment acquires new addresses is the set free—in other words,
the Mutator cannot take garbage and use it directly in busy. Notice that the post-Mutator indicates that it is
free to do whatever is required by the application providing its steps respect guar -Mutator .

Given that the Mutator can remove addresses from free, recording a post condition for Collector is not quite
trivial. In a sequential setting, it would be correct to write:

free′ � (Addr − busy)

but the concurrent Mutator might be removing addresses from the free set so the best that the Collector can
promise is to place all addresses that are originally garbage into the free set at some point during execution. This
gives rise to the first use of the “possible values” notation in this paper. To cope with the fact that a concurrent
Mutator can acquire addresses from free, the correct statement is that all unreachable addresses should be
members of a value of the variable free at some point in the execution of Collector . The notation discussed
in [JP11, HBDJ13, JH16] for the set of possible values is ˜free. Because the values of free are sets (of Addr ),
post-Collector takes the distributed union of ˜free.

The POs requiring that the guarantee conditions of each process imply the rely condition of the other process
are, at this stage, trivial. Strictly, there is in VDM a “satisfiability” PO that requires that, for any valid initial state,
it is possible to construct a final sate that satisfies the post condition. This is vacuously true for the Mutator and
–as is often the case– proving this for the Collector is essentially done by constructing an implementation.

Lesson IV The “possible values” notation is a useful addition to the R/G style of specification. Since the values
of variables that are visible to concurrent threads is a natural consequence of concurrency, some notation for
possible values is likely to be of wider use.

2.2. The heap

This section introduces a model of the heap. The set of addresses that are busy can now be defined to be those
that are reachable from a set of roots by tracing all of the pointers in a heap (hp).

�1 :: roots : Addr -set
hp : Heap
free : Addr -set

where

inv-�1(mk-�1(roots, hp, free)) � free ∩ reach(roots, hp) � {}

The invariant now defines the upper bound for garbage collection by saying that in no state should a reachable
node appear in free. (It is assumed that roots �� {}.) Because neither Collector nor Mutator has write access
to roots, it remains constant (which is not recorded in the rely conditions). The Heap links an address to the
addresses to which it can be considered to point. This is modelled as a mapping from Addr and an index to
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Addr .3 The set I ndex is deliberately undefined—were it natural numbers, it would possible to think of mapping
addresses to lists of addresses. The chosen model can be thought of as lists with gaps.

Heap � (Addr × I ndex)
m−→ Addr

The reach function computes the relational image (with respect to its first argument) of the transitive closure
(R∗) of the heap:

reach : Addr -set × Heap → Addr -set

reach(s, hp) � rel-image(child-rel(hp)�, s)

The following is a definition of the relational image operator (which is not part of standard VDM).

rel-image : (A × B)-set × A-set → B-set

rel-image(r , s) � {b | ∃a ∈ s · (a, b) ∈ r}

The child-rel function extracts the relation over addresses from the heap (i.e. ignoring indexed positions).4

child-rel : Heap → (Addr × Addr )-set

child-rel(hp) � {(a, b) | ∃a, b ∈ Addr · b ∈ kids(a, hp)}

The function kids is obvious but notice that kids(a, hp) � {} if there is no position i such that (a, i) ∈ dom hp ,

kids : Addr × Heap → Addr -set

kids(a, hp) � {hp(a, i) | ∃ i ∈ I ndex · (a, i) ∈ dom hp}

A useful lemma states that starting from some set s, if there is an element a reachable from s that is not in s,
then there must exist a path that contains an address not in s (but notice that hp(b, j) might not be a).

Lemma 1

(∃a · a ∈ reach(s, hp) ∧ a �∈ s) ⇒ ∃ (b, j) ∈ dom hp · b ∈ s ∧ hp(b, j) �∈ s

Proof This can be proved by induction on the number of steps (over hp) from the set s to the Addr a. �

The argument that this reification gives the same behaviour as in Sect. 2.1 is based on:

retr0 :�1 → �0

retr0(mk-�1(roots, hp, free)) � mk-�0(reach(roots, hp), free)

3 In VDM D
m−→ R is a type whose values are finite functions from D to R; the domain of a map m is written domm; the only unusual

operator used below is s −� m whose value is all of the pairs in m whose first elements are not in the set s.
4 Several alternative modelling decisions were considered. For example, viewing the Heap as a relation would simplify notation but it was
felt that the notions of one node pointing more than once to the same Addr and the need to destroy links should be represented explicitly.
Also it is tempting tomake the free pointer one of the roots because it merges operations—this was not done because it is useful to distinguish
the Malloc and Redirect operations (see Sect. 4.3 below).
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VDM’s data reification POs require that the representation is adequate in the sense that there exists an element
of the more concrete type that corresponds (under the retrieve function) to any element of the abstract type. This
is technically important because it makes it possible to argue that the concrete and abstract operations commute
by quantifying over the concrete type.

Theorem 2 Adequacy

∀σ0 ∈ �0 · ∃σ1 ∈ �1 · retr0(σ1) � σ0

Proof It is easy to construct representative elements of roots/hp corresponding to any busy set. �

The specification of Collector on �1 is:

Collector

ext wr free
rd roots, hp

pre true
rely free′ ⊆ free ∧

(reach(roots, hp′) − reach(roots, hp)) ⊆ free
guar free ⊆ free′

post (Addr − reach(roots, hp)) ⊆ ⋃
˜free

The invariant inv-�1 establishes the upper bound of garbage collection; it is post-Collector that fixes the lower
bound.

The specification of the Mutator is again the reflection of that for the Collector (here, it is the constancy of
hp that follows from the read access in the Collector .

TheVDMPOs for data reification require that each concrete operation commutes (under the retrieve function)
with its abstract counterpart.

Theorem 3 The commutativity proof for the Collector simply expands retr0; commutativity for the Mutator it
is trivial because the its post condition is true.5

3. Marking

The intuition behind the garbage collection (GC) algorithm in [BA84] is to mark all addresses reachable over the
relation defined by the Heap from roots then sweep any unmarked addresses into free. The states �2 add the
marked field to �1:

�2 :: roots : Addr -set
hp : Heap
free : Addr -set
marked : Addr -set

where

inv-�2(mk-�2(roots, hp, free,marked)) �
free ∩ reach(roots, hp) � {} ∧
(roots ∪ free) ⊆ marked

5 The advantage of a careful layering of abstractions is that most POs turns out to be relatively straightforward to discharge—see Sect. 7 for
plans to check the proofs with Isabelle [NPW09].
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In addition to bringing forward from inv-�1 the need to keep used and free addresses disjoint, inv–�2 requires
that all addresses in (roots ∪ free) are always marked. The adequacy PO is trivial with a retrieve function that
simply drops the marked field of �2 but in this proof –and when proving satisfiability of the operations– the type
limitation given by the invariant must be respected.

For R/G, the interesting issues arise where the garbage collection runs concurrently with a Mutator which
can both take free addresses (linking them into the set reachable from roots) and give rise to garbage that is
no longer accessible from roots. A fully concurrent garbage collector is covered below (see Sects. 4 and 5). This
section introduces code that can be viewed as sequential in the sense that the Mutator would have to pause.
Importantly this same code satisfies specifications for two concurrent situations that are both more challenging
and interesting.

3.1. Sequential algorithm

Without interference, rely-Collector says that the none of the state variables are changed. The POs required to
prove that code satisfies the restricted specification illustrate some points that are useful below; in particular, there
are some interesting observations to be made about loop reasoning. The simpler setting also clarifies terminology
(e.g. the upper bound for garbage follows from the lower bound for marking).

The Collector can be split into three phases. Providing the invariant is respected, the initial marking is not
critical but, thinking of the Collector being run intermittently, it is reasonable to start by removing any stale
marks.

Collector � (Unmark; Mark; Sweep)

The operation names are decorated below with subscripts to distinguish the sequential (here), atomic (Sect. 4)
and truly concurrent (Sect. 5) versions; in this section, the subscript s marks them as sequential versions.

Unmarks
ext wr marked

rd roots, free
pre true
rely marked � marked ′ ∧ free′ � free
guar true
post marked ′ � (roots ∪ free)

Marks
ext wr marked

rd hp
pre true
rely marked ′ � marked ∧ hp′ � hp
guar true
post marked ′ � reach(marked, hp)

Sweeps
ext wr free

rd marked
pre marked � reach((roots ∪ free), hp)
rely marked ′ � marked ∧ free′ � free
guar true
post free′ � free ∪ (Addr − marked)
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Fig. 2. Code for Mark

The specification of Sweeps illustrates the point in Lesson III about important issues being addressed before
they are obfuscated by details. The taxing part of the specification of Sweeps is the preservation of inv-�2; in
particular the separation of free from addresses reachable from roots. For this operation, the pre condition is
vital so the satisfiability PO is spelled out in detail.

Lemma 4

∀σ ∈ �2 · pre-Sweeps(σ ) ⇒ ∃σ ′ ∈ �2 · post-Sweepa(σ, σ ′)

Proof Addresses added to free′ are disjoint from reach((roots ∪ free), hp) by the pre condition. �

In the sequential case, the composition PO only has to establish that the combination of the three sub-
operations has the effect required of Collector ; the fact that pre-Sweeps must always be true also has to be
established (the other pre conditions are identically true).

Theorem 5 The POs for sequential composition are:

∀σ, σ ′, σ ′′ ∈ �2 · post-Unmarks(σ, σ ′) ∧ post-Marks(σ ′, σ ′′) ⇒ pre-Sweeps(σ ′′)

∀σ, σ ′, σ ′′, σ ′′′ ∈ �2 ·
post-Unmarks(σ, σ ′) ∧ post-Marks(σ ′, σ ′′) ∧ post-Sweeps(σ ′′, σ ′′′) ⇒ post-Collector (σ, σ ′′′)

Proof Without interference, the proofs are straightforward. For the second, substitute σ ′′′.free for ˜free in
post-Collector . �

Themain interest is in themarking phase.As shown inFig. 2, the outer looppropagates awave ofmarking over
the hp relation; it iterates until no new addresses are marked.6 The inner Propagate iterates over all addresses7:
for each address that is itself marked, all of its children are marked.

In the case when the code runs without interference, R/G reasoning is not required: the specification of Marks
and proof that the code in Fig. 2 satisfies that specification are straightforward. (In fact, they are simplified cases
of what follows in Sect. 4.) When the same code is placed in environments that admit interference, R/Gs and
different POs are needed (see Sects. 4 and 5). The relation between the three sets of R/G conditions is itself
enlightening.

The outer loop (cf. Fig. 2) propagates a wave of marking over the hp relation; the specification of the body of
the outer loop is:

6 Notation: card s gives the cardinality of set s.
7 It would be more elegant to write:

Propagate: for all x ∈ Addr if x ∈ marked then Mark-kids(x) else skip fi

but the set consid is useful to express some assertions below. Using the more implicit repetition construct would require a special PO.



362 C. B. Jones and N. Yatapanage

Propagates
ext wr marked

rd hp
pre true
rely marked ′ � marked ∧ hp′ � hp
guar true
post marked ′ � marked ∪ ⋃{kids(a, hp) | a ∈ marked}
To establish the lower marking bound (i.e. must mark everything that is reachable from roots), a to-end

induction is employed;8 essentially the to-ends relation states that the remaining iterations of the loop will mark
everything reachable from what is already marked:

to-ends :�2 × �2 → B

to-ends(mk-�2(roots, hp, free,marked),mk-�2(roots ′, hp′, free′
,marked ′)) �

roots ′ � roots ∧ hp′ � hp ∧ free′ � free ∧
marked ′ � marked ∪ reach(marked, hp)

Lemma 6 Thus:

∀σ, σ ′, σ ′′ ∈ �2 ·
post-Propagates(σ, σ ′) ∧ card σ.marked < card σ ′.marked ∧ to-ends(σ ′, σ ′′) ⇒

post-Marks(σ, σ ′′)

Proof The proof follows by straightforward substitution. �
The body of the inner loop (cf. Fig. 2) has to satisfy:

Mark-kidss (x : Addr )
ext wr marked

rd hp
pre true
post marked ′ � marked ∪ kids(x, hp)

Lemma 7 With:

so- f ars :�2 × �2 → B

so- f ars(mk-�2(roots, hp, free,marked),mk-�2(roots ′, hp′, free′
,marked ′)) �

roots ′ � roots ∧ hp′ � hp ∧ free′ � free ∧
marked ′ � marked ∪ ⋃{kids(a, hp) | a ∈ (marked ∩ consid ′)}

∀σ, σ ′, σ ′′ ∈ �2, x ∈ Addr ·
so- f ars(σ, σ ′) ∧ x ∈ (Addr − σ ′.consid) ∧ post-Mark-kidss(σ ′, x, σ ′′) ⇒ so- f ars(σ, σ ′′)

Proof The proof is straightforward. �

Theorem 8 Finally:

∀σ, σ ′ ∈ �2 · so- f ars(σ, σ ′) ∧ consid ′ � Addr ⇒ post-Propagates(σ, σ ′)

8 There is an interesting point here. In many presentations of Floyd-Hoare axioms, post conditions are predicates of a single state. As soon
as they are viewed (as in VDM) as relations, it becomes clear that the invariant relation can be composed on the left or the right of the post
condition of the body of the loop. Left composition (as in so- f ar ) corresponds most closely to standard loop invariants; right composition
(as in to-end) is convenient where reasoning reflects the remaining computation. This is illustrated in [Jon90] with two versions of computing
factorial where the version proved with to-end overwrites the initial value.
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Proof The proof is immediate because marked ⊆ Addr . �

Lesson V Considering the sequential case is useful because the simpler conditions make it possible to note how
the rely condition (nothing changes) and the guarantee condition (true) need to be changed to handle concurrency.

As becomes clear in the following sub-sections, the interesting facet of the development is that the code for
the Collector matches different sets of R/G conditions.

4. Concurrent GC with atomic interference

The complication in the concurrent case is that the Mutator can redirect pointers and this interferes with the
marking strategy of the Collector . If however the Mutator marks the target address whenever it makes a change,
the Collector code of Fig. 2 can be shown to satisfy a revised specification.

The development is tackled in two stages: firstly, this section assumes aMutator that atomically both redirects
a pointer and marks the new target; Sect. 5 shows that even separating the two steps still allows the Collector
code of Fig. 2 to achieve the lower bound of marking but the argument is more delicate and indicates a limitation
of the expressive power of R/G relations. The argument to establish the upper bound for marking (and thus the
lower bound of garbage collection) is separate and is given in Sect. 6.

If theMutator were able to update andmark atomically, specifications and proofs would be relatively straight-
forward; although this atomicity assumption is unrealistic, it is informative to compare the simpler R/Gs with
those in Sect. 5. As proposed in Sect. 1, the argument is split into a justification of the parallel decomposition
(Sect. 4.1) and the decompositions of the Collector/Mutator sub-components; these are addressed in Sects. 4.2
and 4.3 respectively.

4.1. Parallel decomposition

In this section, the operation names have the subscript a tomark that they are linked to the atomicity assumption.
Even given the atomicity assumption, an R/G specification of the collector is more complicated than that in
Sect. 2.2:

Collectora
ext wr free,marked

rd roots, hp
pre true
rely free′ ⊆ free ∧

(reach(roots, hp′) − reach(roots, hp)) ⊆ free ∧
marked ⊆ marked ′ ∧
∀(a, i) ∈ dom hp ·

hp′(a, i) �� hp(a, i) ∧ hp′(a, i) ∈ Addr ⇒ hp′(a, i) ∈ marked ′
guar free ⊆ free′

post (Addr − reach(roots, hp)) ⊆ ⋃
˜free

The third conjunct of rely-Collectora tells the developer that the environment will never delete markings. The
final conjunct of the rely condition is the key property that (for now) assumes that the environment (i.e. the
Mutator ) simultaneously marks any change it makes to the heap. This, in effect, provides an abstraction of the
more complicated case in Sect. 5.

The upper bound of addresses to be collected is constrained by the second conjunct of inv-�2. The lower
bound for garbage collection requires setting an upper bound for marking addresses; this topic is postponed to
Sect. 6.

Theorem 9 The corresponding specification of the Mutatora is again the reflection of that for Collectora (with
the addition of a rely condition that hp is unchanged). Since the R/G PO for concurrent processes requires that
each one’s guarantee condition implies the rely condition of the other(s) the result is immediate.
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4.2. Developing Collectora

What remains to be done for the Collectora is to show that its development satisfies its specification (in isolation
from that of the Mutatora)—i.e. the decomposition of the the Collectora into three phases (Unmarka ; Marka ;
Sweepa) satisfies the specification in Sect. 4.1.

The post condition for the sequential version ofUnmarks in Sect. 3.1 constrains marked ′ to be exactly equal
to roots ∪ free but now interference must be considered. The rely condition indicates that the environment can
mark addresses so whateverUnmarka removes from marked could be reinserted. The possible values notation is
again deployed so that post-Unmarka requires that, for every address outside those required by inv-�2, a possible
value of marked exists which does not contain that address. So far, so good but this post condition alone would
permit an implementation of Unmarka to first mark an address and then remove the marking; this erroneous
behaviour is ruled out by guar -Unmarka. The rely condition indicates that the free set can also change but, since
it can only reduce, this poses no problem. Relaxing the post condition is a classic example of Lesson VI.

Lesson VI A useful R/G development tactic is to split what is an equality in the specification of a sequential
component into lower and upper bounds; one of these is often presented as a guarantee condition.

The rely andguarantee conditions ofCollectora are distributed (with appropriateweakeningof rely conditions
or strengthening of guarantee conditions) over the three sub-components. More subtle is the form of distribution
required for the possible values concept: only the third component (Sweepa) has write access to the relevant
variable free.

Unmarka
ext wr marked

rd roots, free
pre true
rely free′ ⊆ free
guar marked ′ ⊆ marked

post ∀a ∈ (Addr − (roots ∪ free)) · ∃m ∈ ˚marked · a �∈ m

The post condition for Marka also has to cope with the interference absent from a sequential specification
and this requires more thought. In the sequential case, post-Marks can use a strict equality to require that all
reachable nodes are added to marked but here the equality is split into a lower and upper bound. The lower
bound for marking is crucial to preserve the upper bound of garbage collection (see the first conjunct of inv-�2).
This lower bound is recorded in post-Marka . (The use of hp′ is, of course, challenging but the post condition
is stable [CJ07, WDP10] under the rely condition—lost links can’t be traced—free is the only souce of new
addresses.) The “loss” (from the equality in the sequential case) of the other containment is compensated for by
setting an upper bound for marking (see no-mog in Sect. 6).

Marka
ext wr marked

rd hp
pre true
rely rely-Collectora
guar marked ⊆ marked ′
post reach(marked, hp′) ⊆ marked ′

Similar observations to those for Unmarka relate to the specification of Sweepa which becomes:

Sweepa
ext wr free

rd marked
pre reach((roots ∪ free), hp) ⊆ marked

rely marked ⊆ marked ′ ∧ free′ ⊆ free
guar free ⊆ free′
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post marked ∩ (free′ − free) � {} ∧
∀a ∈ (Addr − marked) · ∃ f ∈ ˜free · a ∈ f

Since any operation also has to respect the state invariant, Sweepa has to mark the newly freed addresses.

Theorem 10 The sequential composition POs are similar to those in Theorem 5.

∀σ, σ ′, σ ′′ ∈ �2 · post-Unmarka(σ, σ ′) ∧ post-Marka(σ ′, σ ′′) ⇒ pre-Sweepa(σ ′′)

∀σ, σ ′, σ ′′, σ ′′′ ∈ �2 ·
post-Unmarka(σ, σ ′) ∧ post-Marka(σ ′, σ ′′) ∧ post-Sweepa(σ ′′, σ ′′′) ⇒ post-Collector (σ, σ ′′′)

Proof Even with (atomic) interference, these proofs are straightforward. �
Turning to the decomposition of Marka to an iteration (see Fig. 2), in order to prove post-Marka, a specifi-

cation is needed for Propagatea that copes with interference:

Propagatea
ext wr marked

rd hp
pre true
rely rely-Collectora
guar marked ⊆ marked ′
post (∀a ∈ marked · kids(a, hp) ⊆ marked ′) ∧

(marked � marked ′ ⇒ reach(marked, hp′) ⊆ marked ′)

The first conjunct of the post condition indicates the progress required of the wave of marking but has to be
weakened (in comparison to post-Propagates) to a containment because the Mutator can add to marked. The
second conjunct records the fact that, if no marks are added in a pass, all required marking has been done. This
ensures that the outer loop terminates.

To prove the lower marking bound (i.e. must mark everything that is reachable from roots), an argument is
again used that composes on the right a relation that expresses the rest of the computation: essentially the to-end
relation states that the remaining iterations of the loop will mark everything reachable from what is already
marked:

to-enda :�2 × �2 → B

to-enda(mk-�2(roots, hp, free,marked),mk-�2(roots ′, hp′, free′
,marked ′)) �

roots ′ � roots ∧ hp′ � hp ∧ free′ � free ∧
reach(marked, hp′) ⊆ marked ′

Lemma 11 The PO is:

post-Propagatea(σ, σ ′) ∧ σ ′.marked �� σ.marked ∧ to-enda(σ ′, σ ′′) ⇒ post-Marka(σ, σ ′′)

Proof The proof is straightforward. �
The termination argument follows from there being a limit to the markable elements: a simple upper bound

is dom hp but there is a tighter limit (cf. Sect. 6).
Pursuing the decomposition of Propagatea to a nested iteration (again, see Fig. 2) needs an adjusted speci-

fication of the inner operation:

Mark-kidsa (x : Addr )
ext wr marked

rd hp
pre true
rely rely-Collectora
guar marked ⊆ marked ′
post kids(x, hp) ⊆ marked ′
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In this case, the proof is more conventional and a relation that expresses how far the marking has progressed
is composed on the left:

so- f ara :�2 × �2 → B

so- f ara(mk-�2(roots, hp, free,marked),mk-�2(roots ′, hp′, free′,marked ′)) �
roots ′ � roots ∧ hp′ � hp ∧ free′ � free ∧
∀a ∈ (marked ∩ consid ′) · kids(a, hp) ⊆ marked ′

Lemma 12 The relevant PO is:

∀σ, σ ′, σ ′′ ∈ �2 ·
so- f ara(σ, σ ′) ∧
x ∈ (Addr − σ ′.consid) ∧ post-Mark-kidsa(σ ′, x, σ ′′) ∧ σ ′′.consid � σ ′.consid ∪ {x} ⇒

so- f ara(σ, σ ′′)

whose discharge is obvious.

Theorem 13 The final obligation is to show:

so- f ara(σ, σ ′) ∧ σ ′.consid � Addr ⇒ post-Propagatea(σ, σ ′)

Proof The first conjunct of post-Propagatea is straightforward; the fact that (unless the marking process is
complete) some marking must occur in this iteration of Propagatea follows from Lemma 1. �

4.3. Checking Mutatora

The Mutator is viewed as an infinite loop non-deterministically selecting one of Redirect, Malloc and Zap as
specified below. At this stage, these are viewed as atomic operations so no R/Gs are supplied here: their respective
post conditions must be shown to imply rely-Marka :

Redirect (a: Addr , i : I ndex, b: Addr )
ext wr hp,marked

pre {a, b} ⊆ reach(roots, hp)
post hp′ � hp†{(a, i) �→ b} ∧ marked ′ � marked ∪ {b}

Lemma 14 Since b was reachable, it follows trivially that:

post-Redirect(σ, σ ′) ⇒ guar -Mutatora(σ, σ ′)

For this atomic case, the code could be written using multiple assignment and marking atomic execution with
< · · · > as follows:

< hp(a, i),marked :� b,marked ∪ {b} >

In addition to making the free address b the new value of hp′(a, i), the Malloc operation cleans up the
addresses reachable from the free chain element that is about to be used (notice also that b cannot be the same as
a because of inv-�2).

Malloc (a: Addr , i : I ndex, b: Addr )
ext wr hp, free
pre a ∈ reach(roots, hp) ∧ b ∈ free

post hp′ � {(b, j) | j ∈ I ndex} −� (hp†{(a, i) �→ b}) ∧ free′ � free − {b}
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Malloc preserves the invariant because inv-�2 insists that free addresses are always marked.

Lemma 15 It follows trivially that:

post-Malloc(σ, σ ′) ⇒ guar -Mutatora(σ, σ ′)

Zap removes a given pointer from the heap:

Zap (a: Addr , i : I ndex)
ext wr hp
pre a ∈ reach(roots, hp) ∧ (a, i) ∈ dom hp
post hp′ � {(a, i)} −� hp

Lemma 16 It again follows trivially that:

post-Zap(σ, σ ′) ⇒ guar -Mutatora(σ, σ ′)

The old value of hp(a, i) can become garbage if there are no other reachable pointers to the value.

5. Relaxing atomicity

The remaining challenge is to consider the impact of removing the unrealistic atomicity assumption about
Mutatora in Sect. 4.2. Splitting the atomic assignment on the two shared variables hp,marked in

< hp(a, i),marked :� b,marked ∪ {b} >

turns out to be delicate. The difficulty derives from the fact that the marking process is clearly designed so that
the collector and mutator collaborate. This makes meaningful separation (see Lesson I) extremely challenging;
some form of global argument is difficult to avoid. However, facing that challenge and looking at alternative
extensions to R/G thinking is informative and minimising this global argument is interesting. (In this section, the
subscript c on operations and their predicates marks the fact that they cover true concurrency.)

It is worth first disposing of a non-solution. One might think that performing the marking first would be safe
but Scenario A provides a counter-example that shows that this would not work.

Scenario A Suppose Collectorc executes Unmarkc immediately after Redirect marks hp(a, i) (but before it
changes hp(a, i) to point to, say, b). If the Collectorc moves on to its Markc phase and gets as far as a before
Mutatorc resumes, a can be added to consid before the pending update hp(a, i) ← b potentially introduces a link
that fails to get the b-rooted structure marked. This could result in active heap data being collected as garbage.

Having dismissed that ordering, the task is to show that the ordering:

< hp(a, i) ← b >;
< marked ← marked ∪ {b} >

is in fact safe.Thedifficultywith justifying the split of the larger atomic statement canbeunderstoodbyconsidering
the following scenario.

Scenario B Redirect can, at the point that it changes hp(a, i) to point to someaddressb, go to sleep before performing
the marking on which the Collectora of Sect. 4.2 relies. There is in fact no danger because, even if b was not marked
by Redirect , there must be another path to b (see pre-Redirect in Sect. 4.3) and the Collectora should perform
the marking when that path (say hp(c, j)) is encountered. Were it the case, however, that hp(c, j) could be destroyed
before Collectora gets to c, an incomplete marking would result that could cause live addresses to be collected as
garbage. What saves the day is that the Mutatorc cannot make another change without waking up and marking b.
(This rules out multiple Mutator threads.)

For the general lessons that this example illustrates, the interesting conclusion is that there appears to be no
way to maintain full compositionality (i.e. expressing everything that needs to be known about the mutator) with
standard rely relations. The three step argument in Scenario B pinpoints the limitation of using two state relations
in R/G reasoning. This section explores three alternative approaches for enhancing standard R/G thinking so as
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to be able to cope with the example in hand: Sect. 5.1 shows how an auxiliary variable can be used to overcome the
limitation of R/G expressiveness—this serves as a reference point for the next two approaches; Sect. 5.2 discusses
an alternative that suggests an extension to R/G; Sect. 5.3 outlines a way of avoiding a shared ghost variable but
still, in some sense, uses a non-compositional argument.

5.1. Using an auxiliary variable

Section 4.2 effectively provides a useful abstraction in which many of the problems of concurrent
execution of the Mutator and Collector are solved. The aim now must be to preserve as much as possible
of that justification whilst coping with the possibility that the Mutator pauses at the worst possible point in its
execution.

It might surprise readers who have heard the current authors inveigh against ghost variables that the devel-
opment in this section does in fact use such a variable (see Lesson VII). There are several alternative choices
that could be made for a specific ghost variable.9 Here the state �2 is extended with a variable tbm that can
record an address as “to be marked”. It streamlines the assertions below for this to be a set with at most
one element (empty in the initial state). Essentially tbm records the delayed marking that is considered in
Scenario B.

The extended state has an extra conjunct in its invariant that establishes the fact that, when tbm is set, there
must be two paths to the address.

�3 :: roots : Addr -set
hp : Heap
free : Addr -set
marked : Addr -set
tbm : Addr -set

where

inv-�3(mk-�3(roots, hp, free,marked, tbm)) �
inv-�2(mk-�2(roots, hp, free,marked)) ∧
card tbm ≤ 1 ∧
∃ x ∈ tbm · x �∈ marked ⇒

∃{(a, i), (c, j)} ⊆ dom hp ·
{a, c} ⊆ reach(roots, hp) ∧ (a, i) �� (c, j) ∧ hp(a, i) � x ∧ hp(c, j) � x

Writing the first atomic step of Redirect as < hp(a, i), tbm :� b, {b} > falls foul of an end case where
Redirect(a, i, hp(a, i)) does not in fact leave a second path. Rather than add an artificial pre condition, the
effective skip case can be covered by adding the ghost variable to Redirect as follows:

< if hp(a, i) �� b then hp(a, i), tbm :� b, {b} fi >;
< marked, tbm :� marked ∪ b, {} >

Notice that the atomic brackets now only surround one shared variable in each case.

9 An anonymous referee argued for using a set that contains all of the addresses that will be marked; Sect. 4.2 has in fact created precisely
this as an abstraction. The choice here is to record the difference between what is actually marked and what will be marked.
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With the non-atomic interference from the Mutator , the rely condition used in Sect. 4 is replaced by:

rely-Collectorc :�3 × �3 → B

rely-Collectorc(mk-�3(roots, hp, free,marked, tbm),mk-�3(roots ′, hp′, free′
,marked ′, tbm ′)) �

free′ ⊆ free ∧
(reach(roots, hp′) − reach(roots, hp)) ⊆ free ∧
marked ⊆ marked ′ ∧
(∀(a, i) ∈ dom hp ·

hp′(a, i) �� hp(a, i) ∧ hp′(a, i) ∈ Addr ⇒
hp′(a, i) ∈ marked ′ ∨ tbm ′ � {hp′(a, i)}) ∧

(tbm �� {} ∧ tbm ′ �� tbm ⇒ tbm ⊆ marked ′ ∧ tbm ′ � {})

The fourth conjunct of rely-Collectorc records the fact that, if the Mutator has paused before marking hp′(a, i),
then tbm ′ has a note of the address to be marked; the final conjunct ensures that tbm transitions back to the
empty set at exactly the point in time when the delayed marking occurs.

Lemma 17 Looking at the non-atomic Mutator argument, the only real challenge is Redirect :10

Proof The extra conjuncts in inv-�3 are preserved by rely-Collectorc. �
Turning to thedevelopmentof the collector code, thismustbe justified relyingonlyon the revised rely-Collectorc.

The only challenge here is the mark phase whose specification is:

Markc
ext wr marked

rd hp, roots, free, tbm
pre true
rely rely-Collectorc
guar marked ⊆ marked ′
post reach(marked, hp′) ⊆ marked ′

The code for Marka is still that in Fig. 2—under interference, the post condition of Propagatec has to be
further weakened (from Sect. 4.2) to reflect that, if there is an address in tbm, its reach might not yet be marked.
Importantly, if the marking is not yet complete, there must have been some node marked in the current iteration:

Propagatec
ext wr marked

rd hp, tbm
pre true
rely rely-Collectorc
guar marked ⊆ marked ′
post (∀a ∈ marked · kids(a, hp) ⊆ marked ′ ∪ tbm ′) ∧

(marked � marked ′ ⇒ reach(marked, hp′) ⊆ marked ′)

Notice that post-Propagatec implies there can be at most one address whose marking is problematic; this fact
must be established using the final conjunct of the new rely-Collectorc.

The correctness of this loop is interesting—it follows the structure of that in Sect. 4.2 using a to-end relation
and, in fact, the relation is still:

to-endc(σ, σ ′) �
roots ′ � roots ∧ hp′ � hp ∧ free′ � free ∧
reach(marked, hp′) ⊆ marked ′

10 When removing a pointer, no tbm is set—see Zap(a, i) in Sect. 4.3; also no tbm is needed in the Malloc case because inv-�3 ensures that
any free address is marked.
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Lemma 18 The PO is now:

post-Propagatec(σ, σ ′) ∧ σ ′.marked ⊂ σ.marked ∧ to-endc(σ ′, σ ′′) ⇒ post-Markc(σ, σ ′′)

Proof In comparison with the PO in Sect. 4.2, the difficult case is where tbm ′ � {b} (in the converse case the
earlier proof suffices). What needs to be shown is that the stray address b will be marked: inv-�3 ensures there
is another path to b; this will be marked if there are further iterations of Propagate and these are ensured by
Lemma 1 which, combined with the second conjunct of post-Propagate, avoids premature termination. �

The code in Fig. 2 shows how Propagate uses Mark-kidsc in the inner loop.
Mark-kidsc (x : Addr )
ext wr marked

rd hp, tbm
pre true
rely rely-Collectorc
guar marked ⊆ marked ′
post kids(x, hp′) ⊆ marked ′ ∪ tbm ′

Again, the POs are as for the atomic case, but with:

so- f arc :�3 × �3 → B

so- f arc(mk-�3(roots, hp, free,marked, tbm),mk-�3(roots ′, hp′, free′
,marked ′, tbm ′)) �

roots ′ � roots ∧ hp′ � hp ∧ free′ � free ∧
∀a ∈ (marked ∩ consid ′) · kids(a, hp) ⊆ marked ′ ∪ tbm ′

As is normal, the ghost variable can be removed from the code and the conditional that avoids the skip in
Redirect can also be erased.

Lesson VII The use of “ghost” (aka “auxiliary”) variables presents a danger to compositional development
(cf. Lesson I). The case against is clear: in the extreme, ghost variables can be used to dictate the complete detail
about the environment of a process. Few researchers would go to this extreme but minimising the use of ghost
variables ought be an objective in compositional development.

Lesson VIII Auxiliary variables can undermine compositionality (cf. Lesson VII) because they eliminate the
desired separation between sibling processes. Where they are claimed to be essential, it would be useful to have a
test for this fact. The need for a “three-state” argument is such a test.

5.2. Exposing the order of steps of a process

This section shows that the auxiliary variable (tbm) of Sect. 5.1 can be avoided at the expense of saying more
explicit things about the order of the steps in the mutator. As conceded below, this still limits the separation
between the specifications of the collector and the mutator.

Scenario B makes clear that it is necessary to rule out there being another change to the heap between
mr -1/mr -2

mr -1:< hp(a, i) ← b >;
mr -2:< marked ← marked ∪ {b} >

In Sect. 5.1, there are actually two roles for tbm in the definition of rely-Collectorc (Sect. 5.1): on the one
hand, tbm provides a way to refer to the value of an unmarked hp′(a, i); perhaps less obviously, the transitions
between empty and non-empty values of tbm pinpoint the crucial point in the execution betweenmr -1 andmr -2.
Lemma 17 uses tbm to identify the gap and the fact that there exists another path to an hp′(a, i) in such a gap.
This fact can be captured using the change in the value of hp(a, i) as follows:

∀(a, i) ∈ hp ·
hp′(a, i) �� hp(a, i) ∧ hp′(a, i) ∈ Addr ⇒

hp′(a, i) ∈ marked ′ ∨
∃ (b, j) ∈ dom hp′ · b ∈ reach(roots, hp) ∧ (b, j) �� (a, i) ∧ hp′(b, j) � hp′(a, i)
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One difficulty with using this relation as a rely condition is that it is local in the sense that it would not hold if
Unmark runs. Fortunately it does hold over one incarnation of Markc and such local rely conditions have been
studied in [JH16]. A second issue is the need to pinpoint that no changes to hp can be made between mr -1/mr -2.
The ability to locate assertions of this sort should be possible with RGITL [STER11].

Lesson IX Recording information about the order of steps in the environment is clearly non-compositional.

5.3. Abstracting interference with a predicate

The approaches in Sects. 5.1 and 5.2 rely on information from the mutator to help the designer of the collector
to complete proofs. The idea outlined in this section11 is that the developer of the mutator takes on an extra
reasoning task. The crucial observation (cf. Scenario B) is that the ability to complete the marking always holds
under interference from the mutator even if Mutatorc stalls at the critical point. The clue as to why this is the
case is the two-path property in Sect. 5.2.

A predicate can be defined that expresses the property that marking can be completed (i.e. it states that
Collectorc will always be able to mark all active Addrs). In essence, the to-endc relation of Sect. 5.1 is converted
into an invariant.

Thus, in this approach, the designer of the mutator has to reason explicitly about the preservation of this
property. In a sense, the designer of the mutator has to reason about the algorithm used in the collector. In
contrast to the approach in Sect. 5.1, this avoids sharing tbm—a similar variable is used in Mutatorc but it is
strictly local.

Lesson X There are several approaches to reasoning about closely intertwined algorithms. Avoiding shared ghost
variables is certainly desirable from a compositional point of view but creating a proof task for one process that
relies on the design of its environment is also a reduction of separation.

6. Lower limit of GC

Sections 4 and 5 address (under different assumptions) the lower bound for marking and thus ensure that no
active addresses are treated as garbage. Unless an upper bound for marking is established however, Mark could
mark every address and no garbage would be collected. TheR/G technique of splitting, for example, a set equality
into two containments often results in such a residual PO.

Addresses that were garbage in the initial state (Addr − (reach(roots, hp)∪ free)) should not be marked (thus
any garbage will be collected at the latest after two passes of the collector). A predicate “no marked old garbage”
can be used for the upper bound of marking:

no-mog : Addr -set × Heap × Addr -set × Addr -set → B

no-mog(r , h f ,m) � (Addr − (reach(r , h) ∪ f )) ∩ m � {}

The intuitive argument is simple: the Collector and Mutator only mark things reachable from roots and, while
the Mutator can change the reachable graph, it only links to addresses (from free or previously reachable from
roots) that were never “garbage”.

7. Related work and conclusions

An extensive book on garbage collection is [JHM16]. There also exist many papers on garbage collection algo-
rithms, where the verification is usually performed at the code level, e.g. [GGH07] and [HL10], which both use the
PVS theorem prover. In [TSBR08], a copying collector with no concurrency is verified using separation logic. The
approach presented in [ZCD+17] also uses rely-guarantee techniques to verify a concurrent garbage collector,

11 The full details of this approach are to be published in a separate paper by Yatapanage. There are several interesting technical points:
the idea of localising rely conditions is again used together with a universally quantified set that can be instantiated to the consid set of the
collector.
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but the verification is performed on an intermediate representation that is designed to be as close to the code level
as possible. Another significant difference is that, unlike Ben-Ari’s algorithm, the algorithm that they verify has
strong coupling between the mutator and collector, requiring both to communicate with each other via shared
variables to determine the other’s current status. Such tight communication avoids some of the challenges that
makes our example a useful study. It is interesting to note though that they still require the use of ghost variables.
They have, however, implemented their proofs using Coq.

An Owicki-Gries proof of Ben-Ari’s algorithm is given in [NE00]; while this examines multiple mutators, the
method results in very large numbers of POs. The proof of Ben-Ari’s algorithm in [vdS87], also using Owicki-
Gries, reasons directly at the code level without using abstraction. The research on RGSim [Lia14] is strongly
related to R/G thinking and [LFF14, §7.3] tackles a different GC algorithm that involves a “stop the world”
phase.

Perhaps the closest approach to the development of the current paper is contained in [PPS10], which presents
a refinement-based approach for deriving various GC algorithms from an abstract specification. This approach
is very interesting and for future work it is worth exploring how the approach given here could be used to verify
a similar family of algorithms. It would appear that the rely-guarantee method produces a more compositional
proof, as the approach in [PPS10] requires more integrated reasoning about the actions of the Mutator and
the Collector. Similarly, in [VYB06], a series of transformations is used to derive various concurrent garbage
collection algorithms from an initial algorithm. The alternative of tackling the development using, as in [Jon96],
the “fiction of atomicity” and “splitting atoms” does not appear to work on this example because the “atom” to
be split is in the wrong process.

The objective in the current paper to achieve a compositional development has been only partially achieved.
An unkind conclusion would be that this is because the authors chose to stay as close as possible to rely-guarantee
conditions expressed as relations. But in sodoing, both the inherent difficulty of the interconnectionof themutator
and collector algorithms has been exposed and a clear set of alternative extensions to the R/G approach have
been tabled. More experimentation should indicate the best way forward. Even if the alternative to use a shared
ghost variable is taken, a clear test is offered to reduce the danger that such variables are used superfluously with
the resulting diminution of separation between the concurrent processes.

It is hoped that the ten lessons are a transferable message of this paper even for approaches that do not use
R/G thinking. The (garbage collection) example illustrates and hopefully clarifies the lessons for the reader. The
current authors believe that examples are essential to drive such research.
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