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Abstract
This paper aims to explore metrics for evaluating the effectiveness of functional decomposition methods regarding problem 
space exploration at the early design stage. Functional decomposition involves breaking down the main purpose of a complex 
problem or system into a set of more manageable sub-functions, leading to a clearer understanding of the problem space and 
its various aspects. While various metrics have been used to evaluate functional decomposition outcomes, little literature has 
focused on assessing its effectiveness in problem space exploration. To address the gap, this research introduces three met-
rics for problem space evaluation defined by functional models: quantity of unique functions (M1), breadth and depth of the 
hierarchical structure (M2), and relative semantic coverage ratio of the problem space (M3). An example study is conducted 
to illustrate the evaluation process, comparing functional analysis with and without explicit human-centric considerations 
using a power screwdriver as a case product. The analysis in the example study reveals that the breadth of the hierarchical 
structure (part of M2) is marginally larger in the condition with explicit human-centric considerations (Condition A) com-
pared to the condition without such considerations (Condition B). However, no significant differences are observed in terms 
of other metrics. The qualitative analysis based on semantic comparisons suggests that Condition A facilitates participants 
in generating a diverse set of functions supporting user safety requirements more effectively than Condition B. Overall, the 
example study demonstrates the evaluation process for each metric and discusses their nuances and limitations. By proposing 
these metrics, this research contributes to benchmarking and evaluating the effectiveness of different methods in promoting 
functional analysis in engineering design. The metrics provide valuable insights into problem space exploration, offering 
designers a better understanding of the efficacy of their functional decomposition methods in early design stages. This, in 
turn, fosters more informed decision-making and contributes to the advancement of functional analysis methodologies in 
engineering design practices.

Keywords Functional decomposition · Function model · Metric · Problem space exploration

1  Functional decomposition and problem 
space exploration

Functional decomposition in a design task, also known as 
functional analysis, is the process or activity that identifies 
functions of a product to be designed that meet specified cus-
tomer requirements (Hirtz et al. 2002; Pahl et al. 2007). Rep-
resentations of functional modeling outcomes vary, ranging 
from a simple hierarchical function tree (Booth et al. 2015c) 
to a black box functional structure converting inputs to out-
puts (Malmqvist 1995; Robotham 2010; Shankar et al. 2020; 
Patel et al. 2020). This process allows designers to view the 
design problem based on its primary purpose, breaking it 
down into manageable sub-functions, and, if needed, their 
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interconnectivity until each sub-function becomes amenable 
to simple designs (Ullman 2017). The thorough considera-
tion of functions is pivotal for achieving high-quality design 
outcomes (Hubka and Eder 2001) and potential redesign of 
product variants (Wong and Wynn 2023). In addition, an 
empirical study has shown that function trees help reduce 
fixation and increase quality during idea generation (Atilola 
et al. 2016).

However, it has been observed that novice designers often 
encounter challenges in their functional analysis, display-
ing limited breadth (focusing on partial design problems) 
or limited depth (superficial decomposition or lacking 
insights) (Björklund 2013). To foster problem space explo-
ration, researchers have extensively investigated interven-
tions (Schön 2017; Henderson et al. 2019; Ignacio 2022), 
with functional analysis emerging as a valuable approach 
facilitating the understanding of problem space (Gray et al. 
2015). Several functional analysis methods have been devel-
oped, and some have been integrated into engineering design 
curriculum (Nagel and Bohm 2011; Booth et al. 2015c; 
Eisenbart et al. 2017; Yildirim and Campean 2020; Van Eck 
and Weber 2021; She et al. 2022; Reeling and She 2023). 
Moreover, recent research has demonstrated the integration 
of functional analysis with requirements analysis better sup-
ports systematic thinking across diverse disciplines, particu-
larly for complex products (Krüger et al. 2023).

Problem space in early-stage design refers to a landscape 
in which a problem can be explored and solved, typically 
encompasses the initial conditions, the desired outcomes, 
and the possible actions in between (Simon 1973; Goel and 
Pirolli 1989, 1992). Problem space exploration through 
function analysis introduces a measure of a designer’s holis-
tic thinking in addressing customer needs in a design task, 
which provides a way to record and communicate primary 
goals and possible actions needed from the desired prod-
ucts before jumping into the design of physical principles, 
working principles, embodiment, or details. It requires both 
abstract (breadth) and concrete (depth) thinking at a func-
tional level, not a morphological level, i.e., form-independ-
ent (Pahl et al. 2007; Ulrich et al. 2020). Abstract thinking is 
core to defining the problem space while concrete thinking 
of how to support an abstract function contributes to a better 
conceptual understanding of the function as a whole, i.e., the 
skeleton elements needed to define a design. This duality in 
thinking is pivotal in scaffolding subsequent morphological 
design for elemental functions and synthesis for the whole 
solution concepts, as illustrated in the descriptive design 
process model in Majumder et al. (2023). Consequently, 
this work argues that problem space explored by functional 
decomposition should be considered when evaluating the 
effectiveness of a functional analysis method.

However, there remains a notable gap in research, as only 
very few studies explore metrics to assess the effectiveness 

of functional analysis methods in problem space explora-
tion in one aspect or another. Previous attempts to measure 
the shape or geometry of hierarchical function structures 
in product dissection tasks (Eckert et al. 2011; Booth et al. 
2015c) have limitations. The geometry-based approach relies 
solely on external observations and can be influenced by dif-
ferent interpretations of functions, leading to variations in 
structural representations. As a result, it fails to capture the 
full essence of problem space exploration and the effective-
ness of functional decomposition methods solely by itself. 
In the context of product dissection, Eckert et al. (2011) 
proposed to compare participants’ functional representations 
to a detailed representation for the purpose of pinpointing 
challenges in identifying functions. Sen et al. (2010a) pro-
posed a general metric to evaluation of information content 
using an information theoretic approach. While it can be 
applied to compare competing function models from a syn-
tactic point of view, they also pointed out that a complete 
evaluation of the semantic content of the model needs to be 
developed to assess the quality of a function model. Gerick 
and Eisenbart (2017) undertook a comparison between two 
functional modeling approaches based on a set of reasoning 
characteristics they identified. Their examination highlighted 
the advantages of each approach and suggested that integrat-
ing various information led to more comprehensive support 
for functional analysis. Nevertheless, it is crucial to acknowl-
edge that this recommendation was drawn from the authors’ 
qualitative comparisons in an example decomposition task, 
without any quantitative measures.

Inspired by the above work, the authors aim to fill the 
gap in terms of evaluating problem exploration effective-
ness of functional decomposition methods in design tasks. 
The approach is to explore the evaluation quantitatively, 
semantically, and qualitatively in the context of functional 
analysis that supports product design to meet customer 
requirements. Specifically, the authors will examine the 
possibilities of deriving quantitative and semantic metrics 
of problem space exploration, as well as some suggestions 
to analyze the breadth and depth of the problem space explo-
ration qualitatively based on the measure. While this paper 
does not focus on empirically validating the metrics, it uses 
an example study in order to walk through the exploration 
and discussion.

It is worth to mention the scopes of this manuscript. First, 
the evaluation explored does not mean to be comprehensive 
for all kinds of functional decomposition models. It mainly 
focuses on models that are represented as a hierarchical 
structure (see Fig. 1 for some examples), and only considers 
functions, not the means how to realize functions.

Second, it should be acknowledged that directly assess-
ing problem space exploration is a nuanced endeavor, as 
there is no single ideal function model even for the same 
set of customer requirements, and the classification of some 
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functions might be ambiguous in a model. Thus, the authors 
are exploring initial work toward this endeavor through the 
identification of the characteristics of relative problem space 
coverage that design researchers can use when comparing 
the effectiveness of different functional modeling methods, 
or evaluating relative functional thinking abilities within a 
candidate pool. It can also be used by educators as a tool to 
curve the assessment of engineering student learning out-
comes on this topic.

Next, Sect. 2 delves into the existing literature on the 
evaluation of functional decomposition, setting the stage for 
our contribution. In Sect. 3, we introduce our proposed met-
rics for evaluating the effectiveness of problem exploration 
in functional decomposition. Section 4 presents an example 
study, guiding readers through the application, calculation, 
and analysis of these metrics in an early-stage design con-
text. We then engage in a critical discussion in Sect. 5, where 
we dissect the subtleties encountered during the evaluation 
process, acknowledge the limitations of our study, and out-
line avenues for future research. Section 6 summarizes the 
main contribution of our work and underscores its practical 
implications, aiming to inform and advance the practice of 
functional decomposition in design.

2  Functional decomposition evaluation

As there are infinitely possible functional model variations 
for any product, evaluating them becomes difficult. While 
the authors tried their best to review metrics in the litera-
ture, they must acknowledge that what is summarized in 
the paper might not be a complete list. Moreover, not many 
studies directly compare and quantify the effectiveness of 
functional analysis methods (Booth et al. 2015c). These met-
rics are sorted into several categories that evaluate different 
aspects of functional models. For example, the shape metrics 
can evaluate level of detail, breadth, and depth, while the 
rubric measures how well participants adhered to a specific 
functional analysis method (Booth et al. 2013; Nagel et al. 
2015). As this study focuses solely on the functional analysis 

effectiveness on its immediate outcome (i.e., problem space 
exploration), metrics that compare the model effect on ideas 
generated and final designs (e.g., Booth et al. 2015a; Atilola 
et al. 2016),  existing products (McAdams et al. 1999; Dong 
2017), or engineer behaviors in the modeling processes 
(Summers et al. 2017; Patel et al. 2020) are not considered.

2.1  Raw count

Total count is the total number of expressions in a func-
tion model (Eckert et al. 2011; Booth et al. 2015c). It does 
not describe shape, quality, nor account for redundancy or 
incorrect functions. The raw count alone gives no indica-
tion of abstraction level or solution-dependency. In proto-
col analysis, sometimes the total count is split into written 
and spoken functions giving more insight into participants’ 
analysis process (Eckert et al. 2011).

2.2  Uniqueness

This category contains both a raw count of unique func-
tions and a ratio with the total number of functions, which 
describes how efficiently the participant conveyed informa-
tion and how well they understood the product (Booth et al. 
2015c). Uniqueness was determined by semantic similarity 
rather than exactly identical phrasing to allow for similar 
functions with different parts and purposes (Booth et al. 
2015c). This metric is more subjective, as the semantic simi-
larity relies on evaluators’ interpretations about participants’ 
meaning. Similar to the raw count, these uniqueness metrics 
do not acknowledge if the functions are correct in phrasing 
or sense.

2.3  Errors

The syntax error metric is a raw count of errors that do not 
follow the standard “verb-noun” format, whereas the error 
ratio measures the percentage of errors with respect to the 
total number of functions generated in a function model. 
Generic and non-descriptive verbs, such as “to be”, are 

Fig. 1  Schematic illustrations of some example functional modeling representations. “F”—functions, “m”—means to realize a function
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considered as errors (Booth et al. 2015c). Other errors such 
as not-solution-neutral (She et al. 2022) or unrelated func-
tions also happen in the modeling process, but are less com-
monly evaluated. In addition, these metrics only consider 
the phrasing of the function compared to the rubric that also 
examines whether participants correctly used the method 
and that the functions make sense (Tomko et al. 2017).

2.4  Shape

The shape metrics evaluate both the breadth and depth of a 
hierarchical function model. When interpreting each met-
ric individually, the hierarchical levels relate the levels of 
abstraction, i.e., how deep the function model goes, while 
the number of functions on each layer communicates the 
level of breadth at each abstraction level (Eckert et al. 2011; 
She et al. 2022) Similarly, in Booth et al. (2015c), the maxi-
mum and average geodesic distances were used to quantify 
the “bushiness” and density of the tree while remaining use-
ful for participants who represented the models with network 
maps instead of hierarchical tree structures.

2.5  Other measures

This category collects other metrics found in the literature. 
The first metric is a loose evaluation of overall quality. The 
categorical evaluation of low, medium, and high quality is 
simple when dealing with a broad range of models. Still, it 
allows considerable subjectivity among evaluators by not 
refining the criteria for low, medium, and high (Booth et al. 
2015b). For the energy-flow method, there is a rubric with 
questions about syntax, nonsensical flows, conservation, and 
other energy-flow rules. The rubric addresses some aspects 
of the previous metric categories (such as verb + noun syn-
tax) and evaluates whether the user correctly follows the 
rules of the method and the quality of the model (Nagel 
et al. 2015; Tomko et al. 2017). The completeness assess-
ment presents several challenges. The goal is to measure 
how well the function diagram represents the whole product 
and all its operations. Eckert et al. (2011) compares par-
ticipant models to a detailed model, but Booth et al. argues 
against that method as there is no perfect individual function 
model to use as a reference (Booth et al. 2013). Furthermore, 
Kroll uses the fact that so many different models can be cre-
ated in such a formal analysis process to criticize functional 
decomposition in general (Kroll 2013). This raises concerns 
about how to ensure the reference model is adequate and 
whether or not it is appropriate to use a reference to meas-
ure problem exploration. In addition, Gerick and Eisenbart 
(2017) qualitatively discussed the models’ comprehensive-
ness based on their observations. Hubka and Eder (2001) 
suggested eight categories of functions based on their pur-
poses (e.g., system purpose functions, assisting functions, 

production functions, esteem functions). They commented 
that they can act as checklists to verify if the considerations 
during designing have been as complete as possible, with 
the hope of leading to “right-first-time” designing. A metric 
for computing the information content was also proposed 
from the syntactic point of view (Sen et al. 2010a). Table 1 
summarizes the metrics briefed above and the references 
that used the metrics.

3  Method: proposed problem exploration 
effectiveness metrics

In functional modeling research, it is necessary to develop 
appropriate metrics in terms of which the effectiveness of 
the modeling methods in enabling problem space explora-
tion can be evaluated and compared. This purpose involves 
two issues: what to measure and how to measure. In addi-
tion, it is reasonable to consider evaluating the processes and 
the outcome, i.e., the functional model generated. Cogni-
tive processes need to be observed to evaluate the modeling 
process while a group of designers or individual designers 
construct functional models using a specific method. It is 
common to use protocol studies for this purpose (Shah et al. 
2000; Patel et al. 2017, 2020; Summers et al. 2017). How-
ever, it might be difficult and time-consuming to observe 
and analyze these cognitive processes (Shah et al. 2000, 
2001), which involves a high degree of subjectivity (Dorst 
and Cross 1995). Therefore, this initial exploration focuses 
on evaluating the outcome only.

When evaluating problem space exploration, examin-
ing how well a function model expands the problem space 
(breadth) and how well it explores this space (depth) is 
typical. To prioritize the direct comparison between dif-
ferent function model approaches in problem space explo-
ration, the metrics should be quantitative, objective, and 
independent of specific vocabularies (i.e., not considering 
vocabulary requirements such as syntax and solution-neu-
tral, even though they are also important). Considering the 
nuanced nature of problem space exploration (as discussed 
in Sect. 1), it is hard to have absolute measures of how well 
a space is explored. Instead, relative metrics could be useful 
in comparing functional modeling approaches.

When transitioning from an intangible problem space to 
a concrete functional representation, assessing the represen-
tation using multiple metrics is important. These metrics 
could include a simple count of functions, a 2D measure 
of the space represented (similar to length and width in a 
space), and the specificity of elements within this space 
(how accurately the generated functions target the desired 
functions). The number of functions could be an overall indi-
cator, especially the number of unique functions (Metric 1, 
or M1), since it is possible that generating a larger number 
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of functions might increase the chances of more aspects or 
more variations of one aspect being considered than fewer 
functions. In addition, the spatial geometry can be simpli-
fied into a box model to represent a top-down hierarchical 
structure (Metric 2, or M2), where “depth” represents the 
distribution (mode, mean, median, or maximum) of levels, 
and “breadth” represents the distribution of functions across 
the levels. Both the count of unique functions and the box 
model serve as rough estimates of the extent of exploration, 
with little to no consideration of the semantic meanings of 
individual functions. To address this, a third metric (M3) 
evaluates the semantic coverage of the exploration: a bench-
mark function model is established, against which each par-
ticipant model is compared to calculate a semantic coverage 
ratio, essentially quantifying how well the problem space is 
semantically represented. Figure 2 illustrates the intercon-
nections among the three metrics, which we will examine 
in more detail later. Examples illustrating these metrics are 
provided in Sect. 4.2 for M1 and M2 and Sect. 4.3 for M3.

3.1  M1. Quantity of unique functions

The quantity of unique functions is the total number of 
unique functions generated, no matter if it is relevant to the 
design problem or uses the right syntax. A function is con-
sidered unique if it is different from others semantically. This 
will be based on some subjective interpretations; therefore, 
discrepancies might happen in the counting. Discussions to 
resolve the discrepancies are expected.

3.2  M2. Geometric depth and breadth

Depth is measured by the number of levels. Breadth is 
measured by the number of functions on a level. They are 
both discrete quantitative data. If a researcher cares more 

about the central tendency of a function model, then the 
summary statistics that represent the typical values can be 
used: mean, median, or mode (Manikandan 2011a, b) (i.e., 
depth—mean, median, or mode of the number of functions 
on a branch in a function tree; breadth—mean, median, or 
mode of the number of functions on a level in a function 
tree). If a researcher is interested in the extremes a model 
can go, then the maximum number of levels or functions on 
a tree can be considered. However, the statistical maximum 
is more sensitive and might be biased due to outliers in this 
context, as it is less likely to analyze and remove outliers 
for individual function models before measuring the depth 
and breadth of each function structure. Therefore, measures 
of central tendency are suggested. Mean is the most well-
known average value and is less affected by the number of 
data available while subject to skewed distribution compared 
to the median and mode. Median and mode are less accu-
rate than mean when the data size is small, e.g., less than 
25 (Hozo et al. 2005). Overall, median and mode are rec-
ommended for both Depth and Breadth in M2 if a function 
model is complicated (e.g., has more than 25 levels and more 
than 25 functions per level) to reduce the effect of possible 
skewness. Otherwise, mean is recommended to reduce inac-
curacy caused by limited data size.

3.3  M3. Relative semantic coverage ratio

The relative semantic coverage ratio assesses how compre-
hensively a functional model captures the range of mean-
ings and implications within the problem space relative to 
a benchmark model. It measures the extent to which the 
decomposed functions cover the semantic breadth of the 
user needs and requirements, with the benchmark model 
as a datum. This ratio would reflect relevance of the func-
tions identified, indicating how well they correspond to the 
various facets of the problem being solved. Examples are 
provided in Sect. 4.3 for a better understanding this metric.

First, a benchmark model is needed to evaluate the 
relative coverage ratio of the problem space semantically. 
Researchers can collect all functions generated by all par-
ticipants, affinitize the functions conservatively (put the two 
into the same group only if their semantic meanings and the 
abstraction levels are the same), identify unique function cat-
egories, and then organize these into a model. Next, experts 
review the function model against the problem statement 
and add additional functions to support customer require-
ments better. Limitations need to be noted. The benchmark 
function depends on the participant pool’s performance 
and the experts’ expertise. Further, there is no single func-
tion model even based on the same set of functions, as the 
order of the functions or the placement of a function on a 
hierarchical structure might be different. Second, evalua-
tors or raters compare each participant’s model against the 

Fig. 2  The relationships between the proposed three quantitative met-
rics to compare different function model approaches in problem space 
exploration
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benchmark and then count how many benchmark functions 
appear in a participant’s model. Note that one function from 
a participant’s model can only be used once in the com-
parison and is mapped to the closest benchmark function. 
Discussions are needed to resolve discrepancies in compari-
sons. Even though the frequency of a function in a model 
might make its importance different, such as appearing only 
once vs. ten times, the frequency is not considered in this 
evaluation. The main goal of the metric is to evaluate space 
exploration, i.e., the areas that are considered in explor-
ing the problem. Similar to what other researchers did in 
externalizing design space considered by teams, only the 
unique concepts were included in creating the design space 
map (Gero and Milovanovic 2023). Third, dividing the total 
count by the total number of benchmark functions leads to a 
percentage, the quantified semantic relative coverage ratio. 
The higher the percentage is, the higher the coverage of the 
space semantically.

Both M1 and M3 involve a little bit of subjectivity when 
evaluating if a function is unique (M1: 1 = unique, 0 = not 
unique) or if a function in the benchmark model is included 
in a participant model (M3: 1 = included, 0 = not included). 
The quality of the metrics is essential to make the compari-
sons meaningful. In many assessments that involve evalua-
tors or raters, it is typical to use standard inter-rater reliabil-
ity and inter-rater agreement to measure evaluation quality. 
The former is about inter-rater consistency in ratings, which 
quantifies the reliability with a correlation coefficient, such 
as Cronbach’s alpha (Cronbach and Shavelson 2004), with a 
possible range from 0 to 1.0. A higher coefficient indicates a 
higher reliability of the evaluations. The latter is about inter-
rater consensus, which examines how often the evaluators/
raters give the same results, as quantified by the percent-
ages of the same results (Fleenor et al. 1996). When one is 
interested in the absolute value of the ratings, it is necessary 
to measure inter-rater agreement (Fleenor et al. 1996). To 
derive M1 and M3, the rating values are 0 or 1. Therefore, 
reporting inter-rater agreements and resolving discrepancies 
makes more sense. Section 4 will discuss the evaluation pro-
cess in the context of an example study.

After introducing each measure, the next question is if 
these measures should be consolidated into an overall effec-
tiveness metric for problem space exploration. The authors 
would propose not, as there are several problems with such a 
synthesized metric. First, each of the three is a different type 
of value on a different scale (M1 is a one-dimensional total 
number, M2 can be considered as a two-dimensional pair 
that describes the length and height of a rectangular shape, 
and M3 is a percentage) and adding them directly makes it 
difficult to interpret. Normalizing them before adding other 
ways of synthesizing will make it difficult to understand the 
meaning of the unified metric. In addition, it is not always 
the case that all three are applicable to all functional model 

representations. For example, M2 does not make sense for 
an energy-flow diagram model, while it suits a hierarchical 
model like a function tree well.

4  Example study walkthrough

4.1  Data from the case study

The authors will walk through the evaluation with the data 
collected in an experiment reported in She et al. (2022) for 
a different research purpose. Using functional models in 
the industry for real-life designs to increase face validity is 
ideal. However, the extent to which functional modeling is 
being used in industry may be limited and varied, and access 
to such information might also be limited for privacy rea-
sons. Therefore, the example study used a made-up design 
problem solved by groups of novice engineers in a design 
classroom setting, like how the evaluation metrics for idea-
tion methods were discussed in the design literature (Shah 
et al. 2000).

This manuscript primarily demonstrates how the met-
rics can be applied to evaluate functional models created by 
engineers. This evaluation aims to highlight differences in 
exploring problem spaces under various conditions. How-
ever, the focus of this work is not on any specific conditions, 
nor does it claim that as its main contribution. The example 
study details for illustration purposes will be briefly summa-
rized below, but for a comprehensive understanding, readers 
are encouraged to consult the detailed study in She et al. 
(2022). This referenced study explores a straightforward 
approach for incorporating user considerations into func-
tional analysis, addressing challenges often faced by novice 
engineers at early design stages.

In this example study, 38 sophomore engineering students 
from a U.S. public university participated. All participants 
had prior knowledge of functional decomposition. After 
excluding data from participants who did not provide con-
sent forms, data from 32 respondents (27 male, 5 female) 
were analyzed. Participants were randomly divided into two 
groups: one focusing on human-centric condition (Condition 
A) and a baseline group without this focus (Condition B). 
Both groups received the same basic information, including 
a persona and product requirements. However, Condition 
A also included these requirements within a user workflow, 
emphasizing user-centric considerations more prominently. 
As emphasized in She et al. (2022), the requirements pro-
vided in the two conditions were exactly the same, except 
for the representation format, embedded into user workflow 
(Condition A) vs. a list (Condition B).

The task involved designing a power screwdriver, focus-
ing on decomposing its primary function of “driving screws” 
into sub-functions (see Fig. 3 for more information). This 
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decomposition was to be as thorough as possible, resulting 
in a function tree where the simple design components could 
fulfill the lowest level sub-functions. Participants could use 
any method or combination of methods learned in class 
(such as energy flow, top-down, and enumeration) for gen-
erating these function tree structures. Importantly, each sub-
function was to be represented by “verb-noun” pairs and be 
independent of specific forms. A post-study survey gathered 
additional data on each participant’s background, including 
their familiarity with functional analysis, challenges faced 
during the process, and demographic information. Figure 4 
depicts an overview of the study process. For a detailed 
description of the stimuli used and a comprehensive over-
view of the study process, readers should refer to She et al. 
(2022) and the figures included in our manuscript.

All function trees were transcribed into spreadsheets. 
One researcher reviewed the transcribed data and the raw 
data to ensure no information loss or change. See Fig. 5 for 
an example of the raw functional model data and the tran-
scribed data.

4.2  Quantity evaluations: M1 and M2

4.2.1  M1. Quantity of unique functions

In evaluating unique functions, the research team deemed 
the coding of 1 to represent unique functions and 0 to rep-
resent repeated functions. A function is considered unique 
if it has a different meaning from the other functions on the 
function tree. Two researchers separately coded the metric 
and then compared their coding to discuss and correct the 
discrepancies. One example case that caused different evalu-
ations is due to the commonly tied function pairs. For exam-
ple, some participants wrote power on/off as one function, 
while some wrote them as separate functions, power on and 
power off. The functions on and off are typically coupled 

Fig. 3  The design problem 
associated with the functional 
decomposition task

Fig. 4  The design problem 
associated with the functional 
decomposition task

Fig. 5  An example functional decomposition generated by Participant 
B18 and its corresponding transcribed data
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together; therefore, no matter if it is represented as one func-
tion (“on/off”) or two functions “on” and “off”), it is only 
counted as one unique function for equal comparison. Based 
on the criteria defined, M1 for the example function tree in 
Fig. 6 is 14. The functions “rotate w/ hand” and “rotate w/
power” were only counted once while “rotate forward” and 
“rotate backward” were considered as one unique function 
“rotate forward/backward”.

4.2.2  M2. Depth and breadth of geometry shape

To measure the geometry shape of a functional decomposi-
tion tree, statistics of central tendency are used as recom-
mended in Sect. 3. The number of functions on each level 
and each branch are counts, and can be considered discrete 
quantitative data. If the tree structure is simple, using the 
median to calculate depth and breadth is less representative, 
and the mean is preferred. For example, Fig. 6 illustrates a 
small-sized function tree, which has 11 branches with the 
number of functions along each branch as 2, 2, 3, 3, 3, 3, 2, 
2, 2, 2, and 2 respectively. Then, the mean depth of the entire 
tree is (2 × 7 + 3 × 4)/11 = 2.36. Note that the first func-
tion, drive screws, was given (not generated by participants). 
Therefore, it was not counted. For breadth, the number of 
functions is counted at each level, with 4, 9, and 4 at each 
level. Then, the mean of breadth is (4 + 9 + 4)/3=5.67.

4.3  Semantic coverage ratio evaluation: M3

4.3.1  Generate a benchmark model

In two steps, a benchmark functional decomposition of the 
power screwdriver was developed as a baseline for relative 
problem space coverage evaluation. First, individual func-
tions mentioned by all participants were affinitized by the 
authors based on their semantic meaning. It is noted a limita-
tion of this study, even though the authors were unaware of 
the conditions of the data they affinitized. Ideally, the affin-
ity activity could be conducted by independent people who 
understand the case product to reduce researcher bias. Fig. 7 

illustrates the affinity activity and the outcome. In the activ-
ity, teams recorded all participant functions on individual 
post-it notes, then grouped them for similarities and gave 
each group a name. Two functions were grouped if they (or 
the closest functions they imply) referred to the same func-
tion semantically at approximately the same abstract level 
(e.g., control speed vs. limit RPM to 200). Two functions 
were not grouped if they represented different hierarchical 
levels of a group of functions (e.g., provide controls vs. con-
trol power status on/off) or meant different design spaces 
for a higher level function (e.g., control power status on/
off and provide direction choices forward/backward were 
not grouped, even though they were both sub-functions of 
provide controls). Each group was given a function name 
to represent the group. The name was picked from the par-
ticipant phrases and refined by the authors to meet solution-
neutral criteria (i.e., how a function is expressed does not 
indicate a solution) and syntax correctness (i.e., functions 
are described in verb and noun pairs). Next, the authors put 

Fig. 6  An example function 
tree structure with 11 branches 
(indicated by a blue circle at 
the bottom of each branch), 
and three levels (indicated with 
a red line and a red rectangle 
on the right of each level). 
Depth is calculated as the mean 
number of functions across all 
11 branches, and breadth is cal-
culated as the mean number of 
functions across all three levels

Fig. 7  Generate the first version of the benchmark function model 
based on the participant data
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the newly generated function names into a tree diagram, 
serving as the benchmark function model against which 
to calculate each participant’s functional model’s relative 
semantic coverage ratio.

It is possible that participant data missed some informa-
tion based on their understanding in a limited time, even with 
all participant data considered. In the second step, to further 
solidify the functional model based on the best knowledge 
of the authors, the research team refined the benchmark tree 
before evaluating the space exploration coverage. The team 
recapped the prompts given to the participants and noted 
down function trees they would each individually gener-
ate to the best of their knowledge. They were asked to add 
additional functions if they identified anything new to the 
benchmark generated in Step 1. Then, each of the authors 
in She et al. (2022) reviewed a quarter of the participants’ 
function trees as assigned, and cross checked if any func-
tions were missing in the benchmark tree. Discussions were 
conducted at the end to consolidate the findings. Note that 
some functions from participants’ data were removed on the 
benchmark tree purposefully if they were not relevant to the 

customer requirements or the product under design as it is 
not fair to penalize others who did not include irrelevant or 
random functions for coverage completeness measures. For 
example, “add a magnetic property of the bit” was removed, 
as it is about bit design, and not relevant to a power screw-
driver design or the given customer requirements. Figure 8 
depicts the final benchmark function tree.

4.3.2  Evaluate each participant’s functional model 
against the benchmark model

Assessment of the problem space relative coverage com-
pared a participant’s tree to the benchmark tree based on 
functions’ semantic meaning. The assessment was docu-
mented in a template, as shown in Fig. 9. The left columns 
tabulated individual functions of the benchmark model. Each 
participant’s function tree was reviewed against the bench-
mark tree by two evaluators (one evaluator is not the author, 
but noted in the acknowledgment). A cell was marked as 
“1” if one function from the participant’s model could be 
mapped to the benchmark function in the corresponding 

Fig. 8  Benchmark function tree generated by the authors based on all participant data

Fig. 9  A screenshot of the 
partial completeness evaluation 
form
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row, marked as “0” otherwise. One function could only be 
used once, and mapped to the benchmark function that had 
the closest abstraction level. To calibrate the understand-
ing, all evaluators reviewed and discussed two function trees 
together before formal evaluation. The evaluations were 
compared to identify differences. Differences were discussed 
and resolved as a group.

4.3.3  Calculate the relative semantic coverage ratio (M3)

Semantic coverage was quantified by a percentage of bench-
mark functions covered in a participant’s model, i.e., Seman-
tic Coverage = total count of functions mapped to bench-
mark/32 (“32” represents the total number of functions in 
the benchmark model in this example study). Comparing 
the function tree in Fig. 6 generated by a participant to the 
benchmark function tree in Fig. 8 based on the semantic 
meaning of each function, we found that 11 out of the 32 
functions in Fig. 8 appeared in Fig. 6. Therefore, M3 for the 
function tree in Fig. 6 is 11/32=34%.

4.4  Metric analysis

4.4.1  Statistical tests between the groups

The metrics calculated in Sects. 4.2 and 4.3 can be analyzed 
and compared to quantitatively test the effectiveness of dif-
ferent functional analysis methods. Before analysis, outlier 
data of each metric were identified and removed. The selec-
tion of statistical tests was meticulously tailored to match 
the data distribution and the specific assumptions inher-
ent to each test. ANOVA tests were employed for metrics 
M2 Breadth and M3 Relative Coverage, as these metrics 
displayed a normal distribution and exhibited homogene-
ity of variance. Conversely, for other metrics that demon-
strated a non-normal distribution, Wilcoxon Rank Sum tests 
were utilized to appropriately address these data’s distinct 
characteristics.

It should be noted that conducting multiple tests on iden-
tical datasets simultaneously increases the risk of encoun-
tering a Type I error. The Bonferroni correction is often 
recommended as a solution, adjusting the level of statistical 

significance in direct relation to the quantity of hypotheses 
tested (for instance, adjusting the significance level to 0.0125 
from 0.05 when testing four hypotheses) (Emerson 2020). 
Nonetheless, this reduction in Type I error consequently 
heightens the possibility of a Type II error, which involves 
mistakenly accepting a false hypothesis as true (Bender and 
Lange 2001). The appropriateness of p value adjustments 
remains a contentious topic within statistical discussions 
(Perneger 1998; Bender and Lange 2001; Narum 2023). 
Although it introduces complexity and ambiguity, we took 
Narum’s suggestions to report raw p values (Narum 2023), 
followed by a discussion within the text. This strategy aims 
to provide readers with a thorough comprehension of the 
data, allowing them to draw their own conclusions, particu-
larly as this study demonstrates the analysis of various met-
rics. Recognizing that conventions regarding significance 
levels may vary across different fields is also important. Tra-
ditionally, significance levels for hypotheses are categorized 
as weak (0.1), moderate (0.05), and strong (0.01) without 
adjustments. However, upon applying corrections for mul-
tiple comparisons, these levels are recalibrated by dividing 
them by the total number of hypotheses tested, ensuring a 
more rigorous evaluation of statistical significance.

In this example study, the comparative impact of the two 
functional analysis methods (A vs. B) on the number of 
unique functions, geometric depth of the function structure, 
or relative semantic coverage ratio was trivial. However, a 
potential statistical difference in the breadth of functional 
decomposition was observed, even though at a marginal 
level (F(14, 17) = 3.45, p value < 0.1), depending on the 
significance level chosen as discussed above. See Table 2 
for a summary.

4.4.2  Qualitative analysis of individual functions 
and groups of functions

First, the total frequency of a function that appeared in a 
condition was counted and then normalized according to 
the number of participants (i.e., frequency of mentioning a 
function in a condition/total number of participants in the 
condition). The process was repeated for all functions in 
the benchmark model. Next, individual and group functions 

Table 2  Descriptive statistics 
summary

SD standard deviation, n number of observations used in analysis after removing outliers, F ANOVA test, 
W Wilcoxon rank sum test

Metrics Condition A Condition B Statistics p value

Mean ± SD n Mean ± SD n

M1: unique 14.10 ± 5.03 14 12.30 ± 2.93 18 W = 151 0.35
M2: breadth: MeanNFperL 5.17 ± 1.10 14 4.53 ± 0.82 17 F = 3.45 0.07
M2: depth: MeanOfDepth 2.05 ± 0.15 11 2.24 ± 0.40 17 W = 73 0.19
M3: relative coverage 0.31 ± 0.14 14 0.28 ± 0.08 18 F = 0.43 0.51
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were analyzed in two steps: (1) overall observations across 
both conditions and (2) relative comparisons between the 
conditions. Overall observations help evaluate the challenges 
in the chosen design problem, while the relative compari-
sons further differentiate the different performances between 
the conditions and support the observable effect of the other 
functional analysis methods on the individual functions or 
groups of functions. The paragraphs below will demonstrate 
the findings from the example study in these two steps.

4.5  Overall observations

It is helpful to review the data as a whole to identify which 
functions were recognized by most of the subjects and which 
functions were often missed in subjects’ function analysis 
in the context of a design task. Figure 10 depicts the total 
frequency mean of a function identified per subject in both 
conditions. The frequency of a function identified could 
indicate its easy or difficult identification. This helps to 
evaluate the design problem and customer requirements: 
identifying obviously included or easy-to-be-missed func-
tions and then mapping these to the needs indicates the 
challenging requirements to meet in the early design stage. 
The smaller the sum, the more difficult, or not obvious, to 
identify the corresponding functions overall across the two 
conditions, and vice versa. This information will further help 
to tailor design research to specific types of requirements or 
groups of needs to support a more comprehensive explo-
ration of the design space to meet customer requirements 
better. For example, in this case study, functions that are 
associated with interface with users (e.g., 0.3.3—communi-
cate status/information, 0.3.3.2—indicate selected direction, 

0.3.3.3—indicate power status), protect users (e.g., 0.4.3—
monitor temperature, 0.4.4—prevent stripping), and support 
use in tight space (e.g., 0.5.1—provide multiple positions of 
use) have obvious low occurrence in summary. It indicates 
that participants might have more difficulties in coming up 
with functions to support user interaction-related require-
ments (such as user-friendliness and accessibility) while 
less so for the device-centric functions (e.g., 0.1.1—accom-
modate different bits, 0.2.1—allow poser use, 0.2.2—allow 
manual use). This observed pattern calls for more research in 
supporting engineers, at least novice engineers, in functional 
analysis that considers user interactions.

4.6  Relative comparisons between the two 
conditions

A relative comparison between the two conditions was con-
ducted to understand which condition led to more frequent 
identification of specific functions, both individually and in 
groups. Such analysis can reveal patterns about the ease or 
difficulty of identifying certain functions. Figure 11 in our 
manuscript offers a qualitative comparison from the exam-
ple study, where orange bars represent the mean differences 
and green boxes categorize functions as per the benchmark 
model shown in Fig. 8.

In this comparison, larger values indicate that a function 
was identified more frequently on average in Condition A 
compared to Condition B, and vice versa. It was observed 
that participants in Condition A more often identified func-
tions such as “0.1.2-attach/detach bits,” “0.1.3-secure bits,” 
“0.2.1.1-accept power,” “0.2.1.4-convert power to rotation,” 
and “0.3.3.1-indicate battery level.” Conversely, participants 

Fig. 10  The sum of mean 
frequencies of a function identi-
fied in Conditions A and B. 
The smaller the sum, the more 
challenging it is to identify the 
corresponding functions overall 
across the two conditions 
(e.g., functions 0.3.3, 0.3.3.2, 
0.3.3.3, 0.4.3, 0.4.4, and 0.5.1), 
and vice versa, the larger the 
sum, the easier to identify the 
corresponding functions (e.g., 
functions 0.1.1, 0.2.1, 0.2.2, 
0.3.1, 0.3.2.1, and 0.3.2.3)
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in Condition B were more adept at identifying functions 
such as “0.3.2.3-regulate or limit speed,” “0.4-protect 
users,” and “0.6.2-support easy assembly and disassembly.” 
Functions that scored close to zero indicated almost equal 
performance between the two conditions, examples being 
“0.5-support use in tight space,” “0.4.4-prevent stripping,” 
and “0.4.3-monitor temperature.”

Moreover, the pattern differences also reflected per-
formance variations at different levels of abstraction. For 
instance, in the category of user protection, participants 
in Condition B more frequently identified the higher level 
function “0.4-protect users,” but less so its sub-functions. 
This suggests a more abstract approach to fulfilling the user 
requirement of safety. In contrast, participants in Condi-
tion A identified a wider range of functions supporting user 
safety, indicating a more detailed and varied approach. This 
observation implies that different functional analysis meth-
ods might favor certain aspects; for example, the method 

in Condition A seems more effective in helping generate a 
diverse set of functions that support user safety requirements 
in functional analysis compared to the method in Condition 
B.

5  Discussion

This research explores metrics that compare functional mod-
els in hierarchical structures. The metrics are helpful for 
controlled studies that evaluate and especially compare the 
effectiveness of different functional decomposition methods 
in early-stage design tasks. Compared to other tasks such 
as product dissection or reverse engineering, early concep-
tual design is more driven by customer requirements and 
needs, with less concrete information about the product. In 
response to these differences, this paper proposes to measure 
the problem space exploration quantitatively, semantically, 

Fig. 11  Mean frequency differ-
ence of each individual function 
identified per subject in Condi-
tion A compared to Condition 
B. Orange bars indicate the 
mean difference. Green boxes 
indicate the function categories 
according to the benchmark 
model shown in Fig. 8. The 
larger the value (towards to 
the right side) means the more 
frequently that a function is 
identified on average by the 
subjects in Condition A than in 
Condition B (e.g., 0.1.2, 0.1.3, 
0.2.1.1, 0.2.1.4, 0.3.3.1), vice 
versa (e.g., 0.3.2.3, 0.4, 0.6.2). 
Closer to zero means that the 
two conditions have almost 
equal performance on that func-
tion (e.g., functions 0.5, 0.5.1, 
0.4.4, 0.4.3). See Fig. 8 for the 
meaning of each function ID
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and qualitatively through three metrics (the number of 
unique functions, geometric breadth and depth, and relative 
semantic coverage ratio) and qualitative analysis. The paper 
used an example study to explain further how to calculate 
and analyze each.

Uniqueness is a common measure in engineering design 
as the unique features, forms, or functions differentiate 
products, affecting customer adoption preferences (Lee 
et al. 2018). Researchers have used the quantity of unique-
ness and the ratio of unique to total functions to measure 
the richness of the functions generated (Booth et al. 2015c) 
but did not discuss the results in-depth as they were insig-
nificant in their comparison studies. Similarly, the statistical 
evaluation of uniqueness in the example study was neither 
significant between human-centric functional analysis (Con-
dition A) nor baseline functional analysis (Condition B). 
Considering that uniqueness is a metric that is easy to assess 
with less effort and is less tied to the specific representation 
format of the functional models, it is still recommended to 
include it as one quantitative metric. Uniqueness provides a 
one-dimensional assessment of the problem space explored. 
Other metrics are needed for in-depth analysis.

The second metric is the geometric breadth and depth. 
This is more restricted to functional models represented as 
hierarchical structures, such as function trees. It is suggested 
that measures of central tendency, such as mean, median, 
or mode for breadth and depth, be used instead of maxi-
mum counts to reduce biases due to outliers; see Sect. 3 for 
detailed reasoning. Selection of the specific central tendency 
measures depends on the data distribution, complexity of 
the models, and effort needed to obtain the metrics. When 
the function models are not complicated (e.g., fewer than 25 
branches or levels), the median or mode of the limited data is 
not accurate; instead, the mean number of branches and the 
mean number of levels are recommended. If the models are 
complicated, the median or mode can be used for efficiency 
and robustness, and they can be easily calculated either 
graphically or with the help of programming using a pre-
defined numeric coding structure of functions (e.g., Fig. 8).

In the example study, we chose a simple problem stra-
tegically aiming to illustrate the “bare bones” steps and 
effectiveness of these metrics in a controlled manner. All 
function trees under evaluation have fewer than 25 branches 
and levels in the study. Therefore, means were chosen for 
the depth and breadth measures. The comparison on M2 
found that Condition A generated function trees that might 
be broader than Condition B (depending on how strict the 
significance levels are), while there was no significant dif-
ference in the depth of the two conditions (Sect. 4.4.1). This 
indicates that the method in Condition A has the potential to 
help expand the breadth of functional decomposition in the 
design tasks. It might be beneficial in later morphological 
design stages to enhance the variety of ideas generated and 

thus expand the design space. The geometric breadth and 
depth further help space exploration assessment by reveal-
ing the outcome from two dimensions, breadth, and depth, 
which are both crucial factors for the subsequent designs. 
Note that it might be subject to how modelers put an indi-
vidual function onto a hierarchical structure, even though it 
is expected that more abstract functions should be at higher 
levels and sub-functions should be at lower levels.

This manuscript proposed how to generate a benchmark 
function model by aggregating participants’ input, research-
ers’ expertise, and given requirements and further expanded 
the qualitative analysis to a quantitative metric–relative 
semantic coverage ratio, which can be used to compare the 
effectiveness of different functional modeling methods. The 
ratio supports researchers in analyzing semantic coverage 
quantitatively. Possible qualitative analyses based on the 
comparisons were also illustrated in Sect. 4.4.2. For exam-
ple, in the example study discussed in this paper, participants 
in both conditions (novice designers) struggle to identify 
user interaction-related functions. Moreover, Condition B 
identified protect users more commonly at a higher abstrac-
tion level, while Condition A identified more sub-functions 
to protect users. The observations revealed possible areas 
in which novice engineers need support (e.g., identifying 
user interaction-related functions), and also, the functional 
analysis method in Condition A might have helped par-
ticipants better decompose a higher level function (protect 
users) to more sub-functions that are easier to design (e.g., 
provide stability, monitor temperature, prevent stripping, 
and prevent unintentional use). It was acknowledged that 
the lack of details for a requirement or function prevents its 
proper utilization throughout the design process (Shankar 
et al. 2020). In future assessments, the scope of problem 
space coverage may be further refined into distinct cover-
age ratios. These ratios will align with specific categories of 
requirements intended for examination in functional analy-
sis. In addition, integrating Design for X (DFX) tools will 
enable a more focused enhancement of the design, such as 
design for circularity and durability (Mesa 2023; Mesa and 
González-Quiroga 2023). Thus, quantitative comparisons on 
each requirement category are possible if a specific category 
is of interest to the researchers.

While the proposed metrics provide a multi-dimen-
sional view of problem space exploration, there are some 
limitations to consider. The benchmark model’s subjec-
tivity and potential omission errors may affect the accu-
racy of the evaluation. In addition, the effort required 
to derive the relative coverage ratio is high, warranting 
further research to make this metric more cost-effective, 
potentially leveraging rubric or checklist approaches or 
AI algorithms. Furthermore, functions in a hierarchical 
structure have different importance in shaping a design 
space. For instance, the absence of a leaf function might 



Research in Engineering Design 

lead to a missing function of the product, whereas missing 
a mid-branch function still allows for the implementa-
tion of leaf functions. For another instance, missing a 
top-branch function (e.g., allow bit changes in Fig. 8) 
might lead to missing entirely unexplored aspects of the 
design. Using equal weights (not accounting for the dis-
tinct importance of each function) helps make a fast and 
frugal assessment, albeit potentially compromising accu-
racy. Future work should delve into enhanced coverage 
assessment that incorporates weighted considerations.

Future research should also broaden its scope to 
encompass a variety of products and functional analysis 
methods to refine problem space exploration assessment 
metrics. Delving into the nuances of function density in 
complex products and integrating the analysis of func-
tion repetition and frequency will enrich the assessment’s 
scope. It is equally important to consider the evolving 
nature of design, adapting to changes in problem defi-
nitions and shifting requirements, which adds a criti-
cal layer of depth to the evaluation. In addition, precise 
definition, thorough exploration, and robust validation 
of effectiveness metrics are important to advancing 
functional analysis method development and assessment. 
Extending the relevance of these metrics to different 
methods and accounting for outlier scenarios will enhance 
their utility.

In addition, there might be new opportunities for fur-
ther enhancing the metrics by integrating the geometric 
and semantic metrics proposed here with the topologi-
cal, graphical, and syntactic metrics found in existing lit-
erature (Sen et al. 2010a, b; Mathieson et al. 2012). For 
example, the information content metric measures relative 
information content, and information density based on 
the topological information, and can be used to evaluate 
the rate of the evolution of the design as well (Sen et al. 
2010a, b). The integration of these work might lead to 
a more comprehensive and nuanced approach to metric 
development.

The real-world testing of these metrics through empiri-
cal research and industry practice will ground theoreti-
cal analyses in practical reality. Comparing the problem 
exploration strategies of seasoned engineers and novices 
through these metrics can shed light on enhancing educa-
tional methods and developing supportive tools. Under-
standing the metrics’ applicability in different functional 
analysis tasks will guide tailoring approaches to specific 
design contexts.

Finally, optimizing the evaluation process through 
automation or semi-automation will streamline functional 
analysis evaluation and enhance productivity. Addressing 
these areas of future research will significantly contribute 
to advancing functional analysis methodologies and their 
broader implementation.

6  Conclusion remarks

6.1  Summary

This paper proposes a multi-dimensional approach to 
evaluate problem space exploration in functional mod-
eling during early-stage design, where the abstract nature 
of customer requirements and needs makes problem space 
exploration an important topic for design innovations. We 
propose three metrics: the number of unique functions, the 
geometric breadth and depth of the hierarchical structure, 
and the relative semantic coverage ratio, supplemented by 
qualitative analysis. These metrics provide a foundational 
assessment framework of functional decompositions, pro-
viding insights that are both broad in scope and specific in 
application and thus allowing for a deeper understanding 
of how different decomposition methods affect the explo-
ration of the problem space. Through an example study, 
the paper demonstrates the evaluation process for each 
metric and discusses its nuances, limitations, and poten-
tial applications. In the example study, the three metrics 
together assessed the problem space exploration in each 
functional analysis condition more comprehensively and 
provided multiple perspectives to examine the differences 
between the conditions. For example, the functional analy-
sis with explicit human-centric considerations (Condition 
A) could broaden the problem space considered, even 
though there was no significant influence on the depth of 
the space, the total number of unique functions, or the 
semantic coverage ratio. The qualitative semantic com-
parison also reveals the strength of Condition A in helping 
participants generate a diverse set of functions supporting 
user safety requirements.

6.2  Practical implications

The proposed metrics for assessing the effectiveness of 
problem space exploration in functional decomposition 
offer tangible benefits across different facets of engineer-
ing design. Using these metrics, design teams can criti-
cally assess their functional decomposition methods and 
choose more effective methods, thereby streamlining 
project workflows. Instructors can incorporate these met-
rics (e.g., M1 and M3) into design courses in education 
settings, allowing them to quantitatively assess students’ 
functional decomposition. This can help give students 
specific feedback by providing a clear framework for 
evaluating the thoroughness of their functional analyses. 
The metrics can also inspire the development of software 
tools that aid designers in functional decomposition by 
providing criteria for software algorithms to assess and 
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improve problem space exploration. In essence, these met-
rics provide a quantifiable means to assess the otherwise 
qualitative process of problem space exploration, thereby 
enhancing decision-making and supporting the creation 
of more innovative and successful methods to facilitate 
problem understanding.
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