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Abstract
In this paper, we address the issue of whether to optimize or satisfice in model-based engineering design. When dealing with 
operations research problems in the context of engineering design, one may encounter (i) nonlinear, nonconvex objectives 
and constraints, (ii) objectives with different units, and (iii) computational models that are abstractions of reality and fidel-
ity, Seeking a single-point optimal solution that meets the necessary and sufficient Karush–Kuhn–Tucker (KKT) conditions 
makes it impossible to obtain a solution that satisfies all the targeted goals. Instead, a method to identify satisficing solutions 
that satisfies necessary KKT condition but not the sufficient condition is proposed. These solutions are relatively robust, easy 
to acquire, and often good enough. In this paper, we demonstrate the combined use of the compromise Decision Support 
Problems and the adaptive linear programming algorithm, as proposed by Mistree and co-authors. This method is appropriate 
in formulating design problems and obtaining solutions that satisfy only the necessary KKT condition. Further, the use of 
the proposed method circumvents complications associated with the use of gradient-based optimization algorithms typically 
used to solve optimization problems. We discuss the efficacy of our proposed method using four test problems to illustrate 
how the satisficing strategy outperforms the optimizing strategy in model-based engineering design.

Keywords Satisficing · Karush–Kuhn–Tucker conditions · Model-based design

1  Frame of reference

Engineering design of complex systems typically requires a 
team of designers from multiple disciplines or backgrounds 
to discover intertwined alternatives and select among them 
(Reich et al. 2010). When selecting the most appropriate 
solution among alternatives using well-defined or fuzzy 
criteria, most designers cannot avoid relying on the utility 
function, no matter how the utility function is abstracted 
into a specific mathematical equation or tactically formed. 
There are different ways to identify and refine a utility func-
tion that facilitates decision making: through game theory 

(Vincent 1983), analytic hierarchy process (AHP) (Saaty 
1994), expert-team discussion tools with evaluation matrices 
such as the Pugh controlled convergence method (Frey et al. 
2009), voting theory (Arrow 2012), Pareto comparisons 
(Sen 2018), etc. Hazelrigg has pointed out the limitations 
of these methods and made clear why these methods are 
inappropriate for use in design (Hazelrigg 2010). Hazelrigg 
advocates the use of utility theory and the use of voting and 
social choice, the effectiveness and accuracy of shortcuts 
in engineering, possible risks of poor decision making, and 
the role of the nature of preferences, etc. Among the util-
ity theory-based methods, optimization is one method that 
enables designers to select among alternatives. For example, 
using the simplex algorithm to identify vertex solutions and 
selecting the optimal one.

The simplex algorithm, proposed by Dantzig (Dantzig 
et al. 1955; Dantzig 1990), is used to identify solutions at 
the vertices as possible solutions. The vertices being tested 
are the vertices of a convex polyhedral set, usually bounded 
by the constraints and bounds of variables, which is known 
as the feasible space of a linear programming problem. The 
simplex algorithm is used to search vertices in this way: 
given the current vertex, identify the adjacent vertex that 
on the trajectory that makes the greatest contribution in 
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optimizing the objective function. The algorithm performs 
this search iteratively until none of the adjacent vertices can 
be used to further optimize the objective, then the current 
vertex is returned as the optimal solution.

Not all design problems can be solved using utility the-
ory-based optimization, especially the gradient-based opti-
mization methods. In this paper, we focus on the problems 
that can be managed using mathematical programming, that 
is, the problems that can be abstracted and solved by mini-
mizing an objective through determining the value of deci-
sion variables while system constraints and bounds on the 
variables wherein the utility function serves as the objective. 
In modeling the objective using utility theory we assume 
that all decision makers are rational and that the objective is 
perfect. Frequently this is not the case in engineering design.

The mathematical models of engineering design prob-
lems often have: (i) nonlinear, nonconvex objectives and 
constraints, (ii) multiple objectives with different units and 
scales, and (iii) computational models that are abstractions 
of reality and fidelity,. In spite of this, these problems are 
frequently addressed using gradient-based optimization tech-
niques, although the mathematical requirements for optimi-
zation, the Karush–Kuhn–Tucker (KKT) conditions are not 
met. Further, an engineering system comprises of several 
subsystems. Even if a solution converges for a subsystem, 
it is unlikely to be a true optimal solution for the system.

Recognizing that mathematical models are abstractions of 
reality, and the objective function may not be exact in design, 
in this paper, we offer an alternate approach that involves 
satisficing. Therefore, instead of using an optimization strat-
egy, we propose using a satisficing strategy that results in 
solutions that meet an acceptable threshold and are satisfac-
tory, but not necessarily optimal (Simon 1956, 1996). With 
the satisficing strategy, we account for the inaccuracy of the 
utility function, and we do not rely on utility theory (Byron 
1998). We recognize the mathematical difficulties with opti-
mization and instead use the compromise decision support 
problem (cDSP) construct which is solved using the adaptive 
linear programming algorithm (ALP), as developed by Mis-
tree et al. (1993). The ALP algorithm is incorporated in the 
DSIDES software (Hajihashemi 2023). To obtain a satisfic-
ing solution, we relax the requirement for satisfying both the 
necessary and sufficient KKT conditions and require only the 
necessary condition to be satisfied. This approach allows us 
to obtain fairly rapid solutions to problems that are character-
ized by the difficulties described above (Guo and Chen 2023). 
The speed with which answers can be obtained allows us to 
search large regions of design space. Further information is 
available in the work of Guo (Guo 2021). The satisficing 
strategy is also used to select a solution from alternatives, but 
the criteria are different from optimization so that the pool 
of solution finalists are larger, diverse, and easier to acquire, 
because a satisficing solution only meets the necessary KKT 

conditions. The foundation of the satisficing strategy is no 
longer maximizing the utility of a design but identifying 
“good enough” solutions that are feasible, enable the goals 
to achieve their targets to an acceptable extent, and are rela-
tively insensitive to uncertainties due to the nonlinear, multi-
objective nature of the design. In essence, our focus, in line 
with many engineering designers’ interests, is in identifying 
a range of solutions that are useful, feasible, and relatively 
insensitive to uncertainty (this results in changes in model 
structure, boundary, feasibility, and dimension). If a designer 
wants to find a single-point optimal solution using models 
that are abstractions of reality, then the alternate approach 
proposed in this paper should not be used.

Optimizers and satisficers in engineering design are 
from different cultures. They view engineering design from 
two very different perspectives. They subscribe to different 
premises, and, in our opinion, the twain shall never meet. 
Hence, the title of this paper Optimize or satisfice in engi-
neering design?

In Section 2, we describe the formulation of an optimi-
zation problem and a satisficing problem, the KKT condi-
tions, and the assumptions underlying the KKT conditions. 
In Section 3, four test problems are presented to illustrate 
the efficacy of adopting the satisficing strategy in the model-
based design of complex engineering systems. We end with 
some closing remarks in Section 5.

2  The formulation of optimization problems 
and satisficing problems

There are differences between the optimizing and satisfic-
ing strategies These include differences in problem formu-
lation, approximation, exploration, and evaluation which 
are important activities in engineering design (Guo 2021). 
These differences are embodied in the formulation construct, 
(the compromise decision support problem or cDSP), the 
approximation algorithm (the adaptive linear programming 
algorithm or ALP), exploration mechanism (the XPLORE 
function), and the evaluation method and are implemented 
in the DSIDES software (decision support in the design of 
engineering systems).

2.1  The differences and similarities 
in the formulation of the two strategies

For a given function f (x) , the Euler–Lagrange equations, 
developed by Leonhard Euler and Joseph–Louis Lagrange 
(Euler 1755, 1766), form a system of second-order ordi-
nary differential equations ∇2

xx
f (x) . The solutions to ∇2

xx
f (x) 

are stationary points of f (x) . Using the Euler–Lagrange 
equations, one can solve optimization problems which 
consist of variables that are to be minimized or maximized 
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within set F  , where F  is the feasible set of solutions to the 
problem, bounded by constraints and bounds. An optimi-
zation problem � is represented as follows.

The mathematical form of an optimization problem �:
Given

Find

Any point x that is a local extrema of the set mapped by 
multiplying active equations with a non-negative vector is 
a local optima of � (Courant and Hilbert 1953), denoted 
as x∗ . The elements of such a non-negative vector are 
Lagrange multipliers, � and � . An optimization strategy 
is, “formulating an optimization problem and obtaining 
optimal solutions.”

One variant of optimization is goal programming. The 
format of a goal programming problem �goal is represented 
as follows. A target value T  is predefined for the objective 
function f (x) as the right-hand side value, so the objec-
tive becomes an equation, and we call it a goal (Charnes 
et al. 1955). d− and d+ are deviation variable measuring 
the underachievement and over-achievement of the goal 
toward its target. The problem is solved by minimizing 
the deviation variables, which is minimizing the difference 
between f (x) and T  . In other words, goal programming is 
aimed at finding T  ’s closest projection on F .

The mathematical form of a goal programming problem 
�

goal:
Given

f ∶ ℝ
n
→ ℝ,F ⊆ ℝ

n,

F =
{
x ∈ ℝ

n|gi(x) ≥ 0, i = 1,… ,m, hj(x) = 0, j = 1,… , l
}
,

x∗:f (x∗)≻ f (x),∀x ∈ 

f ∶ ℝ
n
→ ℝ,F ⊆ ℝ

n

Find

F =
{
x ∈ ℝ

n|gi(x) ≥ 0, i = 1,… ,m, hj(x) = 0, j = 1,… , l, d− ∙ d+ = 0, 0 ≤ d∓ ≤ 1,Goal ∶ f (x) + d− − d+ = T
}
,

Another strategy, a satisficing strategy, is to formulate a prob-
lem using the compromise decision support problem (cDSP) 
and obtain “good enough” but not necessarily optimal solutions 
(Mistree et al. 1993). For a nonlinear cDSP, we first linearize the 
nonlinear equations, including nonlinear constraints and non-
linear goal. Therefore, the nonlinear cDSP is approximated as a 
linear problem with a linear goal Goalli , a linear feasible space 
Fli bounded by linear constraints g(x)li ≥ 0 and h(x)li = 0 . Thus, 
using the cDSP, we seek the closest projection from the linear 
goal set onto a linear feasible set. We define the solution as a 
satisficing solution, and we use xs to denote it. A cDSP, ℂ, is 
represented as follows.

The mathematical form of a compromise decision support 
problem (cDSP) ℂ:

Given

Find

x∗ ∶ ℙx∈F(Goal ∶ f (x) = T).

f :ℝn → ℝ, ⊆ ℝn,

Fli =

{
x ∈ ℝ

n|gi(x)li ≥ 0, i = 1,… ,m, hj(x)
li = 0, j = 1,… , l, d−

i
∙ d+

i
= 0, 0 ≤ d∓

i
≤ 1,Goalli ∶

f (x)li

T
+ d−

i
− d+

i
= 1

}
,

Fig. 1  Relationship among optimal, satisficing, and near-optimal 
solutions
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A solution to a cDSP ℂ is a satisficing solution denoted 
by xs . To understand the difference between x∗ and xs , the 
KKT conditions are used. The relationship among optimal 
solutions, satisficing solutions, and near-optimal solutions 
is illustrated in Fig. 1.

2.2  The necessary and sufficient Karush–Kuhn–
Tucker (KKT) conditions

In 1951, Harold W. Kuhn and Albert W Tucker proposed 
the Kuhn–Tucker conditions that are foundational to opti-
mization (Kuhn and Tucker 1951). Later it was found that 
William Karush had summarized the necessary conditions 
in 1939 (Karush 1939). So, the Kuhn–Tucker conditions are 
now called the Karush–Kuhn–Tucker (KKT) conditions. The 
KKT approach is a generalization of the method of Lagrange 
multipliers (Lange 2013). A nonlinear problem with con-
straints can be represented as a Lagrange equation. The opti-
mal point of the Lagrange function is a saddle point, so the 
KKT approach is also known as the saddle-point theorem 
(Hartley 1960).

The KKT conditions include first-order necessary condi-
tions and second-order sufficient conditions. For an optimi-
zation problem � , suppose that x∗ is an optimal solution and 
�i and �j are Lagrange multipliers, the first-order necessary 
KKT conditions are represented in Eqs. 1–5.

Stationarity

Primal feasibility

xs ∶ ℙx∈Fli

(
Goalli ∶ f (x)li = T

)
.

(1)∇f (x∗) +
∑m

i=1
�i∇gi(x

∗) −
∑l

j=1
�j∇hj(x

∗) = 0.

(2)gi(x
∗) ≥ 0,∀i = 1,… ,m,

Dual feasibility

Complementary slackness

These first-order conditions are necessary conditions for 
optimality; at an optimal solution x∗ , Eqs. 1–5 are always 
met. However, meeting Eqs. 1–5 does not guarantee that 
a solution is optimal. To guarantee optimality, the second-
order sufficient conditions must also be met (Eqs. 6–8):

Equations 1–8 hold at an optimal solution x∗ ; whereas 
only Eqs. 1–5 hold for a satisficing solution xs.

2.3  The analytical geometric meaning of the Kuhn–
Tucker conditions

The analytical geometric meaning of the necessary condi-
tions is that at the solution point x∗ , where both the primal 
and the dual are feasible, the gradient vector of the objec-
tive ∇f (x∗) can be represented as the non-zero linear com-
bination of the gradient matrix of all equality constraints 

(3)hj(x
∗) = 0,∀j = 1,… , l.

(4)�i ≥ 0,∀i = 1,… ,m.

(5)�igi(x
∗) = 0,∀i = 1,… ,m.

(6)L(x, �,�) = f (x) +

m∑

i=1

�igi(x) −

�∑

j=1

�jhj(x),

(7)=> sT∇2
xx
L(x∗, 𝜆∗,𝜇∗)s ≥ 0, where s ≠ 0,

(8)
[
∇xgi(x

∗),∇xhj(x
∗)
]T
s = 0.

Fig. 2  The first-order necessary Kuhn–Tucker conditions are satisfied at x∗
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∇hj(x
∗) and all the active inequality constraints1 ∇gi(x∗) for 

i iff gi(x∗) = 0 ; Fig. 2.
The analytical geometric meaning of the sufficient 

condition is that at the solution point x∗ , there exists a 

non-zero vector, s, that is orthogonal to the gradient matrix 
of all active inequality constraints and equality constraints, 
such that the second-order matrix of the Lagrange equa-
tion with respect to decision variables, x∗, is condition-
ally positive semidefinite: sT∇2

xx
L(x∗, �∗,�∗)s ≥ 0 , ∀s ∈ S . 

In other words, the sufficient condition requires that the 

Fig. 3  The convexity requirements for satisfying the second-order 
sufficient Kuhn–Tucker condition—when the degree of convexity of 
the objective does not exceed at least one non-negative linear combi-
nation of constraints. a Is when a linear combination of constraints is 

convex, and the contours of f(x) are concave. b Is when both of them 
are  convex, but the degree of convexity of a  linear combination of 
constraints is larger than the degree of convexity of the contours of 
f(x)

Fig. 4  An optimal solution cannot be identified by Lagrange multipliers—when the convexity degree of the objective is higher than any non-zero 
linear combination of constraints

1 In this paper, we define an active constraint (or an active inequality 
constraint) as the constraint with zero slack or surplus at the solution 
point.
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Lagrange equation is convex at x∗ , that is, in a relatively 
small range containing x∗ , the degree of convexity2 of the 
objective should not exceed the degree of convexity of the 
constraints combined by Lagrange multipliers; see Fig. 3. 
However, the sufficient condition significantly reduces the 
possibility of achieving a solution for problems with an 
objective with a relatively higher degree of convexity, that 
is, problems in which the degree of convexity of the objec-
tive is higher than the degree of convexity of any non-zero 
linear combination of constraints, Fig. 4.

Design problems typically embody a highly convex 
objective, or a nonconvex and non-concave objective mak-
ing it virtually impossible to find a solution using gradient-
based optimization algorithms. To improve the design to: 
(i) closely achieve the target of the goals, and (ii) be robust 
to uncertainties that may cause variations to the boundary 
of the feasible set, F  , designers need to explore satisficing 
solutions. That is why we propose a satisficing strategy to 
deal with engineering design problems.

2.4  Assumptions when using the KKT conditions

There are assumptions when applying the necessary 
and sufficient KKT conditions to solve an optimization 
(nonlinear programming) problem. These assumptions 
also provide mathematical requirements for the problem 
in order to use the KKT conditions to obtain an optimal 
solution.

Assumption 1: The mathematical models of the con-
straints and goals used to model a design problem are com-
plete and accurate representations of reality, namely the 
physical problem. This is to ensure that the optimal solution 
to a design problem is also optimal for the corresponding 

physical system. To use Lagrange functions to solve nonlin-
ear problems, one must assume that the mathematical mod-
els accurately capture all the necessary details of the physi-
cal problem. Thus, an optimal solution to an engineering 
design problem is also optimal for its corresponding physical 
problem. As George Box said, “all models are wrong, but 
some are useful,” (Box 1979), models are sometimes simpli-
fied, or, perhaps, not simplified correctly, and this may not 
be noticeable. When designing a system, there also may be 
information that cannot be captured and abstracted, such as 
hidden variables, implicit functional relationships among 
variables, factors defined as decision variables which cannot 
be fully controlled by designers, etc. Therefore, the optimal 
solution to an engineering design problem formulated as 
an optimization problem is unlikely to be optimal for the 
physical system.

Assumption 2: All equations of the problem are dif-
ferentiable. Although according to the KKT conditions, it 
is only required that, within a small finite area around the 
optimal solution, the objective function, active constraints, 
and equality constraints should be differentiable, but, as we 
need to solve the Lagrange function globally, it is required 
that all equations should be differentiable.

Assumption 3: The degree of convexity of at least one 
non-zero linear combination of all constraints is higher than 
the degree of convexity of the objective. This assumption is 
critical to meet the KKT sufficiency condition. This condi-
tion guarantees finding an optimal solution to the design 
problem shown in Fig. 3 but cannot identify an optimal solu-
tion to the problem in Fig. 4.

When using an optimizing strategy, all three assumptions 
are applied, whereas when using the satisficing strategy, only 
the second assumption is applied; see Fig. 5.

2.5  Definition of robustness

There are several definitions of “robustness” in the engineer-
ing design literature. Carlson and Doyle define robustness as 

Fig. 5  The assumptions when 
using the optimizing strategy 
and the satisficing strategies

2 We define “convexity degree” as the average value of the diagonal 
terms of thee Hessian matrix of a function.



Research in Engineering Design 

a system’s capacity to maintain some typical features under 
variations in the behavior of its components and environ-
ment (Carlson and Doyle 2002). After reviewing more than 
170 papers, Beyer and Sendhoff summarize that, “the appeal 
of robust design is that its solutions and performance results 
remain relatively unchanged when exposed to uncertain con-
ditions” (Beyer and Sendhoff 2007). Magni and co-authors 
indicate that, “robustness is the capacity of a controlled sys-
tem working satisfactorily under the circumstances it may 
encounter in practice” (Magni et al. 1997). The performance 
of a solution algorithm is usually assessed by optimality, 
diversity of solutions, and the computational complexity of 
the algorithm (Soltani et al. 2002; Guo et al. 2022). Based on 
these ideas, in this paper, we consider robustness in model-
based engineering design to have three components: (i) the 
capability of a method to identify feasible solutions given 
certain complexities, (ii) the capability of a model to main-
tain a solution under specific uncertainties, and (iii) a diver-
sity of solutions for various representative design scenarios. 
Explanations of each robustness goal are as follows.

Robustness goal 1: Minimize the probability of having 
an empty satisficing set S ≠ ∅ , given complexities ç; see 
Eq. 9. ç may include nonlinear and nonconvex equations, 
multiple goals (objectives) with different units or scales, and 
the targets of the multiple goals having different levels of 
achievability.

Robustness goal 2: Maximize the probability of main-
taining a good enough (satisficing) solution xs , under 
uncertainty P . The representation or result of uncertainty 
P is the variation of the feasible set F̃  . Unlike some other 
methods that focus on eliminating uncertainties or mini-
mizing model variations under uncertainties, that is to 
minimize Pr(P) or Pr

(
F̃|P

)
 , we acknowledge that model 

variations due to uncertainties may not be under a design-
ers’ control or awareness, and the optimal solution, x∗, may 
not be optimal with model variations, that is x∗ ∉ F̃  or 
f (x∗)  f (x) , so we want to have a relatively high chance 
of maintaining a satisficing solution xs ; see Fig. 10.

Robustness goal 3: Maximize the diversity of solutions. 
Why should the diversity of solutions be associated with 
robustness? “Considering the goodness of a solution set 

regarding its distribution quality is key to multi-objective 
problems” (Farhang-Mehr and Azarm 2002). It is impor-
tant to balance the convergence of the search algorithm 
and the diversity of solutions for multi-objective prob-
lems (Xu et al. 2022). Engineering designers often need 
different solutions under multiple design scenarios that 
represent their various design preferences among the mul-
tiple goals, meanwhile the diversity of solutions brought 
about by different solution processes, such as different 
search starting points, should be minimized. When design 
preferences evolve, solutions can be adapted. High solu-
tion diversity means that range and richness of solutions 
has been expanded therefore accommodating evolving 
design preferences. Therefore, we desire a large the sum 
of squares of solutions under all design scenarios SSDS but 
a small sum of squares of solutions for all starting points 
SSSP ; see Eq. 11. This idea is based on ANOVA F-test (Wu 
and Hamada 2011).

In Section  3, we use four test problems to demon-
strate using the cDSP and the ALP (Mistree 1993) to 

(9)Robustness goal 1 ∶ Minimize Pr
(
S ≠ �|ç

)
,

(10)Robustness goal 2 ∶ Maximize Pr(xs|P),

(11)Robustness goal 3 ∶ Maximize SSDS∕SSSP.

Table 1  Challenges in the model-based design of complex engineering systems and discussion of advantage

Challenge surmounted Discussion of advantage

Formulation Using Goals and Minimizing Deviation Variables Instead of Objectives Discussed in Section 3.5 and Table 12
Approximation Using second-order sequential linearization Discussed in Section 3.4 and Table 9

Using accumulated linearization Discussed in Section 3.4 and Table 9
Exploration Combining interior-point search and vertex search Discussed in Section 3.3 and Table 6
Evaluation Allowing some violations of soft requirements, such as the bounds of deviation 

variables
Discussed in Section 3.6 and Table 15

Table 2  The features of the test problems (TP)

Test problem (TP) TP-I TP-II TP-III TP-IV

Feature
 Multiple objectives * * * *
 Nonlinear * * * *
 Nonconvex * * *
 Objectives with various 

units (scales)
* *

 Goal targets with 
various degrees of 
achievability

*
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realize the satisficing strategy by removing Assumptions 
1 and 3 (Fig. 5) and better achieving the robustness goals 
(Eqs. 9–11).

3  Advantages of using the satisficing 
strategy in engineering design

We use four test problems TP-I, TP-II, TP-III, and TP-IV 
(Table 2 and Sections 3.3–3.6), to demonstrate differences 
between the satisficing strategy and optimizing strategy. 
The satisficing strategy, in this paper, is accomplished by 
using the cDSP (the formulation construct) (Mistree et al. 
1993), ALP (the solution algorithm) (Mistree et al. 1981, 
1993), and DSIDES (the computational platform) (Ming 
et al. 2018). In this section, we introduce the challenge sur-
mounted by using the cDSP and ALP in four stages of engi-
neering design listed in Table 1, using test problems. We 
discuss the advantage of surmounting each challenge in the 
subsection and table association with the challenge.

3.1  Some typical features of engineering design 
problems

Key challenges in the model-based design of complex engi-
neering systems? Janet K. Allen and Farrokh Mistree’s 
design experience includes the co-design of materials (Sinha 
et al. 2013; Nellippallil et al. 2020; Messer et al. 2010), 
products (McDowell et al. 2010; Simpson et al. 2001; Ped-
ersen et al. 2013; Choi et al. 2005), and associated manu-
facturing processes (Nellippallil et al. 2017, 2019, 2020), 
the design of mechanical, thermal, and structural systems 
(Nellippallil et al. 2019; Samadiani et al. 2010; Panchal 
et al. 2005); ships (Mistree et al. 1990) and aircraft (Chen 
et al. 2000; Simpson et al. 2001) and engineered networks 
(Milisavljevic-Syed et al. 2020) Based on this experience, 
in Table 1, we list 5 challenges for consideration. The test 
problems are very simple, in other words, they are just toy 
problems (Table 2). Why do we use toy problems instead of 

more complicated problems? Our rationale for using simple 
toy problems is: i) to easily visualize the goals and con-
straints on a two-dimension plane, ii) to demonstrate that 
some hyperparameters of NSGA II may impact the results 
(but we do not focus on accurately quantifying how each 
hyperparameter affects the results), and iii) these toy prob-
lems, although quite simple, do have typical complexities 
that engineering design problems may have3.

The methods used in optimizing and satisficing strategies 
are listed in Table 3. For optimizing methods, we used the 
“SciPy.optimize” package4. There are ten algorithms in the 
package, but only three are used to solve the test problems. 
The algorithms that are not used are: the Nelder–Mead, Pow-
ell (Powell’s conjugate direction method), (Powell 1964), 
CG (conjugate gradient methods), (Straeter 1971), and the 
BFGS, (Broyden–Fletcher–Coldfarb–Shannon algorithm) 
(Fletcher 1987) cannot easily manage problems with con-
straints. Newton-CG (Newton conjugate gradient method) 
(Khosla and Rubin 1981; Nash 1984), L-BFGS-B (an exten-
sion BFGS for large-scale, bounded problems) (Zhu et al. 
1997), and TNC (truncated Newton method or Hessian-free 
optimization) (Zhu et al. 1997). These methods either can-
not deal with problems without Jacobians5 or return infea-
sible solutions without recognizing that they are infeasible. 

Table 3  Methods for comparison of the optimizing and satisficing strategies

Strategy Optimizing Satisficing

Item
 Model formulation construct Mathematical programming

Goal programming
Compromise 

Decision 
Support 
Problem

 Solution algorithms Constrained Optimization by Linear Approximation (COBYLA) algorithm Adaptive Lin-
ear Program-
ing (ALP) 
algorithm

Trust-region constrained (trust-constr) algorithm
Sequential Least Squares Programming (SLSQP) algorithm
Nondominated Sorting Generation Algorithm II/III (NSGA II)

 Solver Python SciPy.optimize DSIDES

3 There are practical, complicated engineering design problems dealt 
with by the cDSP and ALP, and they cannot be solved using opti-
mization, for example, hot rod rolling design ***(Nellippallil et  al. 
2017), reconfigurable manufacturing systems, architecting fail-safe 
supply networks (Rezapour et al. 2018). Those problems incorporate 
one or more of the typical features as listed in Table  1. We choose 
not to use those complicated problems as test problems in this paper 
because describing the problems clearly would require a lot of space 
and it is difficult to visualize the objectives, feasible space, and solu-
tions for those high dimension problems.
4 https:// docs. scipy. org/ doc/ scipy/ refer ence/ optim ize. html
5 When using Newton-CG, even setting the Jacobian as false, the 
algorithm may not work without a partially provided Jacobian 
because the default temporary memory of Jacobian cannot be cleared; 
see: https:// stack overf ow. com/ quest ions/ 33926 357/ jacob ian- is- requi 
red- for- newton- cg- method- when- doing-a- appro ximat ion- to-a- jaco

https://docs.scipy.org/doc/scipy/reference/optimize.html
https://stackoverflow.com/questions/33926357/jacobian-is-required-for-newton-cg-method-when-doing-a-approximation-to-a-jaco
https://stackoverflow.com/questions/33926357/jacobian-is-required-for-newton-cg-method-when-doing-a-approximation-to-a-jaco
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Therefore, in SciPy we use COBYLA, (the constrained opti-
mization by linear approximation algorithm) (Powell 1989, 
2007), Trust-constr6, and SLSQP, (sequential least squares 
programming)7 to solve the test problems.

3.2  Verification method: NSGA II

As NSGA II (non-dominated sorting genetic algorithm II) 
(Deb et al. 2002) can be used to solve problems with all 
five features listed in Table 2, therefore, we use NSGA II in 
MATLAB, as NSGA II can converge near-optimal solutions 
to engineering design problems with the five typical features 
we identified (in Table 2). Why is it necessary to study a 
satisficing algorithm to solve engineering design problems? 
The reason is that we observe that NSGA II has the fol-
lowing drawbacks that may prevent engineering designers 
from acquiring insight to improve the design formulation 
and exploring the solutions space:

NSGA II cannot give designers insight into possible ways 
to improve the model. NSGA II uses metaheuristics to 
search for solutions that generationally improve the opti-
mality and diversity of the solutions, but information such 
as the bottlenecks in the model, the sensitivity of each 
segment of the model, the rationality of the dimensions 
of the model, or anything else that may indicate model 
improvement, are not provided with an NSGA II search.
The performance of NSGA II, including convergence 
speed, optimality of solutions, and diversity of solutions, 
is sensitive to hyperparameter settings. Typical hyper-
parameters, such as the population size and generation 
number, must be predefined. However, usually designers 
assume that a larger population size or a larger number 
of generations returns better solutions, but they may not 
know how large is adequate, see TP-II and TP-III.
NSGA II requires more computational power than the 
satisficing algorithms.

Why do we use NSGA II as a verification algorithm if 
its performance depends on hyperparameter settings? By 
using a sufficient number of scenarios for hyperparameter 
settings, we may find the best result, and using that, we can 
verify the solutions obtained from the ALP are also near 
optimal. However, although NSGA II can be used to verify a 
test problem, when managing engineering designs, designers 
may be not able or willing to invest the effort in running a 
number of scenarios. The sensitivity to hyperparameter set-
ting is a weakness of NSGA II since not every designer is 

aware of how sensitive it can be and how many scenarios are 
sufficient as the size, complexity, and nature of each problem 
may have different demands for determining the sufficient 
number of scenarios. Therefore, given that not all designers 
have the ability or patience to try a number of scenarios, 
we suggest that there is some uncertainty in NSGA II as to 
whether it can deliver an optimum solution. NSGA II has 
been used to verify the solutions to the test problems and we 
have invested the necessary effort to ensure that the solution 
is indeed an optimum.

3.3  Advantage of problem exploration: combining 
interior‑point searching and vertex searching

We use a multi-objective, nonlinear test problem (TP-I), to 
demonstrate the advantages of problem exploration using 
the cDSP and ALP, which makes designers less reliant on 
Assumption 1 and are better achieve Robustness Goal 3.

Formulation: The optimization model and the corre-
sponding cDSP of TP-I are shown in Table 4. For the cDSP, 
a target value is assigned to each objective. Solving the prob-
lem requires minimizing the deviation between the achieved 
value and the goal target while satisfying all constraints and 
bounds.

Table 4  The optimization and satisficing models of TP-I

Strategy Optimizing Satisficing

TP
TP-I Objective Functions

f1(x) = (x1 − 1)2 + (x2 − 1)2 + 3 ∙ x1 ∙ x2

f2(x) =
1
2
∙ (x1 − 2)

2

+ (x2 − 2)2 + x1 ∙ x22

Constraints and Bounds

s.t.

⎧
⎪
⎨
⎪
⎩

x1 ∙ x2 ≤ 1

0 ≤ x1 ≤ 2

0 ≤ x2 ≤ 2

Combination of Objective 
Functions

Max
∑2

i=1
wi ∙ fi(x)

Given
x1, x2, d1

±
, d2

±

f1(x) =(x1 − 1)2 + (x2 − 1)2

+ 3 ∙ x1 ∙ x2

f2(x) =
1
2
∙ (x1 − 2)

2

+ (x2 − 2)2

+ x1 ∙ x22

Find
x1, x2, d1

∓
, d2

∓

Satisfy
Goals:
f1(x)

14
+ d1

− − d1
+=1

f2(x)

8
+ d2

− − d2
+=1

Constraints:
x1 ∙ x2 ≤ 1

di
− ∙ di

+ = 0, i = 1, 2

Bounds:
0 ≤ x1, x2 ≤ 2

0 ≤ di
±
≤ 1

Minimize
Z =

∑2
i=1wi

∙ (di− + di+)

6 https:// docs. scipy. org/ doc/ scipy/ refer ence/ optim ize. minim ize- trust 
constr. html
7 https:// docs. scipy. org/ doc/ scipy/ refer ence/ optim ize. minim ize- slsqp. 
html

https://docs.scipy.org/doc/scipy/reference/optimize.minimize-trustconstr.html
https://docs.scipy.org/doc/scipy/reference/optimize.minimize-trustconstr.html
https://docs.scipy.org/doc/scipy/reference/optimize.minimize-slsqp.html
https://docs.scipy.org/doc/scipy/reference/optimize.minimize-slsqp.html
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Weights (weight vectors or weight scenarios): the prob-
lem has two goals (objectives) but the preferences for the 
goals are unknown. So, we use an Archimedean strategy 
(scalarization) (Jahn 1985; Lin 1976; Mistree et al. 1993) 
to combine the goals and use different weights to explore 
various preferences and understand the tradeoffs among 
the goals. We apply five weight scenarios, as listed in the 
“Weight” column in Table 5. Why do we use multiple weight 
scenarios? Suppose that we do not know how to set the 
weight—this happens quite often in multi-goal engineering 
designs—so we need to explore different weight scenarios 
and associate them with design preferences. We apply the 
weight generation method in (Messac and Mattson 2002) 
and use the version customized to engineering design prob-
lems (Guo et al. 2021) to obtain weight scenarios. For exam-
ple, for a two-goal problem, due to the non-orthogonality 
between the two goals and the variation in sensitivity of each 

goal along each dimension, the weight scenario (0.5, 0.5) 
may neither allow the two goals to be equally prioritized, 
nor allow the two goals to be achieved halfway through to 
targets. A weight scenario (0.7, 0.3) does not mean that Goal 
1’s target can be achieved 70% whereas Goal 2’s target can 
be achieved 30%. In short, the weight for each goal is not 
linear with the rate of achieving their targets. Therefore, we 
try multiple weight scenarios to realize different design pref-
erences. Why do we use five scenarios? First, we start with 
two weight scenarios, (0, 1) and (1, 0) as “parents.” If the 
solution to the two weight scenarios are different, we choose 
another weight scenario as a “child” weight scenario, laying 
between the parents, for example (0.5, 0.5). This process is 
repeated until the new child weight scenario has the same 
solution as one of its parents. For Test Problem 1 (TP-I), 
using this method, we stop introducing more weight sce-
narios when five scenarios have been used.

Starting points: To test the sensitivity of each solution 
algorithm to starting points, we intuitively select three start-
ing points that are vertices of the feasible space bounded by 
the constraint and bounds.

Results are listed in Table 5. Using five weight sce-
narios and trying three starting points, for every solution 
algorithm, three solutions are obtained (only the best solu-
tions among all starting points are shown in Fig. 6), as 
visualized on objective space in Fig. 6 and on x- f (x) Space 
in Fig. 7. As TP-I is to maximize f1(x) and f2(x) , in Fig. 6, 
ideal solutions should be close to the upper right corner of 
the objective space, and in Fig. 7, the value of the objec-
tive function should be as large as possible. For TP-I, the 
solutions using different algorithms are identical.

Observation: For a test problem with nonlinear con-
straints and multiple objectives, the same solutions are 
obtained using the optimizing and satisficing strate-
gies. The results of the optimizing solution algorithms 

Fig. 6  The solution points to TP-I on the objective space using five 
algorithms: all the five solution algorithms return the same three solu-
tion points

Fig. 7  The solution points to TP-I on the x-f(x) space. a Is the 3D illustration of f1(x) . b Is the 3D illustration of f2(x)
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(COBYLA, Trust-constr, and SLSQP) are sensitive to the 
starting point. In other words, using the satisficing strat-
egy, Robustness Goal 3 is better achieved versus using 
optimizing strategy; Eq. 12. If the model is incomplete or 
of low fidelity, avoiding being trapped in a local optimum 
allows an engineering designer to have a better chance of 
obtaining a solution for the physical system, which means 
that Assumption 1 is less important.

Why are the solutions insensitive to the starting point 
when using the cDSP and ALP? This is the result of the 
combination of interior-point searches and vertex searches 
in the “XPLORE” module in the DSIDES software. In 
Fig. 8, we illustrate the “XPLORE” procedure to identify 
appropriate starting points for approximation and solution 
search. “m” points within the bounds of each variable are 
chosen randomly. Then, the value of the goal and the fea-
sibility at “m” points are computed. The feasible points are 
ranked and “n” of them with the lowest deviation from the 
goal are selected as starting points and used sequentially. 
The nonlinear equations are approximated as linear equa-
tions around a starting point using second-order sequential 
linearization, and then the linear problem is solved using 
the revised dual simplex algorithm (Ignizio 1985). Usu-
ally “m” is chosen to be a number in [800, 1200], and 
“n” is chosen to be a number in [5, 20]. Therefore, using 
“XPLORE,” the feasible points with relatively good goal-
achievement values are selected as starting points. To 
some extent this reduces the chances of returning a local 
optimum.

We summarize the advantages in exploration and fill in 
the corresponding blank in Table 1 which becomes Table 6.

(12)
[
SSDS∕SSSP

]
Satisficing

≥
[
SSDS∕SSSP

]
Optimizing

.

3.4  Advantage in approximation: using 
second‑order sequential linearization 
and constraint accumulation

The test problem II (TP-II), a multi-objective problem with a 
nonconvex equation, is used to demonstrate how Assumption 
3 is removed and robust goals 1 and 3 are achieved better. 
The formulations of TP-II using the different strategies are 
in Table 7. The solutions are listed in Table 8. The best solu-
tions (among different starting points) of each design sce-
nario are visualized on objective space and x- f (x) Space in 
Figs. 9 and 10, respectively. When using NSGA II to verify 
the results, we use two values of the population size hyper-
parameter. With a population of 50, solutions are closer to 
the upper right corner, so only the results of using NSGA II 
with a population of 50 are presented here.

Observation: Using the cDSP and ALP, we obtain more 
diverse solutions closer to the upper right corner, that is, 
more satisficing solutions are obtained when changing 
design scenarios. Using the satisficing strategy, Robust-
ness Goal 1 is better achieved for nonconvex problems; see 
Eq. 13. Therefore, designers can manage nonconvex prob-
lems, especially when the degree of convexity of a goal 
exceeds the degree of convexity of the linear combinations 
of constraints in a local area, which makes designers rely 
less on Assumption 3.

NSGA II solutions are sensitive to hyperparameter set-
ting but can return non-dominated solutions if the hyper-
parameter is set appropriately; however, the solutions are 
not diverse. DSIDES can return satisficing and relatively 

(13)

[

Pr( ≠ ∅|Nonconvexity)
]

Satisficing

≥
[

Pr(( ≠ ∅|Nonconvexity)
]

Optimizing.

Fig. 8  Using the “XPLORE” module in DSIDES to identify the best starting points
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diverse solutions and robustness goal 3 is better achieved 
using satisficing; see Eq. 14.

Why does the cDSP and ALP manage nonconvex prob-
lems and return solutions close to the non-dominated solu-
tions (the solutions returned by NSGA II)? Two mechanisms 
in the ALP make it possible to linearize the nonconvex func-
tion relatively accurately and converge with diverse solu-
tions—using second-order sequential linearization and the 
accumulation of the linear constraints.

The ALP algorithm incorporates a local approximation 
algorithm (Mistree et al. 1981, 1993; Chen et al. 1996), in 
which a secant plane of the paraboloid (with the second-
order derivatives at the starting point as the coefficients) 
replaces the original nonlinear function, as in Fig. 11, in 
which two dimensions of a problem being approximated in 
two iterations (synthesis cycle) is shown. The weighted-sum 
of the goals is 

∑
k∈KWk ∙ Gk . The starting point X0

0
 may not 

be in the feasible region. A random search or a Hook-Jeeves 
pattern search can be invoked to identify a point X0

1
 in the 

feasible area. In the first iteration, the problem is linearized 
at X0

1
.

In iteration i, Fig. 11a, a nonlinear constraint NFj is lin-
earized at X0

i
 , so an approximated linear constraint LFi,j is 

obtained. Doing this for all nonlinear functions and framing 
a linear model, the revised simplex dual algorithm is used 
to obtain Solution X∗

i
 . Using the reduced move coefficient 

(14)
[
SSDS∕SSSP

]
Satisficing

≥
[
SSDS∕SSSP

]
NSGAII

.
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3 Table 7  The optimization model and compromise DSP of the TP-II

Strategy Optimizing Satisficing

TP
 II Objective Functions

f1(x) = ���
(
x1

2 + x2
3
)

f2(x) =
1
2
∙ (x1 − 2)

3

+ (x2 − 2)3 + x1 ∙ x22

Constraints and Bounds

s.t.

⎧
⎪
⎨
⎪
⎩

x1 ∙ x2 ≤ 1

0 ≤ x1 ≤ 2

0 ≤ x2 ≤ 2

Combination of Objective 
Functions

Max
∑2

i=1
wi ∙ fi(x)

Given
x1, x2, d1

±
, d2

±

f1(x) = cos
(

x12 + x23
)

f2(x) =
1

2
∙ (x1 − 2)

3

+(x2 − 2)3 + x1 ∙ x2

Find
x1, x2, d1

∓
, d2

∓

Satisfy
Goals:
f1(x)

1.2
 +d1− − d1

+=1
f2(x)

8
 +d2− − d2

+=1
Constraints:
x1 ∙ x2 ≤ 1

di− ∙ di+ = 0, i = 1, 2
Bounds:
0 ≤ x1, x2 ≤ 2

0 ≤ d1
±
, d2

±
≤ 1

Minimize
Z =

∑2
i=1wi ∙ (di− + di+)
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(RMC) to linearly combine X0
i
 and X∗

i
 , we find the starting 

point of the next iteration X0
i+1

. In Iteration i+1, Fig. 11b, the 
approximated linear constraints of all previous iterations (in 
Fig. 11, we only show LFi,j and LFi+1,j) are accumulated, and 
a solution X∗

i+1
 , is returned and the starting point of iteration 

i+2 , X0
i+2

 , is obtained using the RMC to linearly combine 
X0
i+1

 and X∗
i+1

 . This procedure is iterated for n times.
We use Fig. 12a to illustrate the second-order sequen-

tial linearization used in the ALP. In Iteration i, first, NFj 
(Paraboloid ABC) is approximated to NFi,j” (Paraboloid 
AB*C*) with the diagonal terms of its Hessian matrix at X0

i
  

as coefficients. Then, NFj” is approximated to a secant Plane 
LFi,j (Plane AB*C*). NFj” and LFi,j are computed as follows.

NFi,j” is obtained using the second-order full derivatives 
at X0

i
 , Eq. 15, because the second-order partial derivatives 

have limited impact on the gradient (Mistree et al. 1981).
Fig. 9  The solution points to TP-II on the objective space—solutions 
returned by ALP are relatively close to the upper right corner and 
diverse

Fig. 10  The solution points to TP-II on the x-f(x) space—using trust-constraint and SLSQP fall into local optima. a Is the 3D illustration of f1(x). 
b Is the 3D illustration of f2(x)

Fig. 11.  The approximation 
and solution using ALP in two 
iterations. a Is Iteration i. b Is 
Iteration i+1
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From Fig. 15, for the pth dimension, the quadratic to be 
solved to obtain 

(
xip − x0

ip

)
 is:

If Fig. 16 has real roots, as is the situation in Fig. 12a, by 
solving Eq. 16 and selecting the root between Eqs. 17 and 
18 with the smaller absolute value for each dimension, we 
obtain an intersection that is closer to the paraboloid in each 
dimension, that is B* and C*.

If Eq. 16 has no real roots, as is the case in Fig. 12b, NFi 
does not intersect with Plane x, and the first-order derivative 
at X0

i
 is used, as in Eq. 19.

(15)

NFi,j′′ =NFj
(

X0
i

)

+
∑n

p=1

(

xip − x0ip
)

(

�NFj
�xip

)

0

+ 1
2
∑n

p=1

(

xip − x0ip
)2

(

�2NFj
�xip2

)

0
.

(16)

NFj

(
X0
i

)
+
(
xip − x0

ip

)(�NFj

�xip

)

0

+
1

2

(
xip − x0

ip

)2

(
�2NFj

�xip
2

)

0

= 0.

(17)
(
�NFj

�xip

)∗

0

=

−NFj

(
X0

i

)( �2NFj

�xip
2

)

0

−

(
�NFj

�xip

)

0

−

√(
�NFj

�xip

)2

0

− 2NFj

(
X0

i

)( �2NFj

�xip
2

)

0

,

(18)
(�NFj

�xip

)∗

0
=

−NFj
(

X0
i

)

(

�2NFj

�xip2

)

0

−
(

�NFj

�xip

)

0
+
√

(

�NFj

�xip

)2

0
− 2NFj

(

X0
i

)

(

�2NFj

�xip2

)

0

.

(19)
(
�NFj

�xip

)∗

0

=

(
�NFj

�xip

)

0

.

Based on the intersections in each dimension, for exam-
ple, B* and C* we get LFi.

If the degree of convexity of NFj is positive or slightly 
negative (greater than − 0.015) at the starting point of the ith 
iteration, and if the constraint is active in the (i-1)th iteration, 
that is, X∗

i−1
 is on the surface of NFj ,, then the accumulated 

constraints replace NFj , Eq. 21; otherwise, the single linear 
constraint in the ith iteration replaces NFj, Fig. 22.

Constraint Accumulation Algorithm
In the ith iteration
for every j in J

if       degreeconvexity =
1

n

n∑
p=1

�2NFj

�x2
ip

≤ −0.015

and NFj

(
X∗
i−1

)
= 0

else

Then, the revised simplex dual algorithm is invoked to 
solve the linear problem PL

i
, so a solution X∗

i
 is obtained. 

A point X0
i+1

 , which is a point between the starting point X0
i
 

and the solution X∗
i
 , becomes the starting point of the next 

iteration.
Constraint accumulation is only used when the local con-

vexity of an equation is greater than − 0.015, which is a 
value determined by experiments and heuristics. When the 
degree of convexity of an equation around the starting point 
is greater than − 0.015, the equation at the linearization 
point is convex or slightly concave, as the example shown in 

(20)LFi,j =
∑n

p=1
xip

( �NFj

�xip

)∗

0
−

(

∑n
p=1

x0ip

( �NFj

�xip

)∗

0
− NFj

(

X0
i
)

)

.

(21)LFi,j, = LFi−1,j ∪ LFi,j

(22)LFi,j, = LFi,j

Fig. 12  The two-step linear approximation methods using the ALP. a 
Illustrates the situation when the second-order paraboloid of the orig-
inal nonlinear constraint has intersection with plane x1 − x2. b Illus-

trates the situation when the second-order paraboloid of the original 
nonlinear constraint has no intersection with plane x1 − x2



Research in Engineering Design 

Fig. 13  Using accumulated constraints from multiple linearization iterations for a convex equation (a) or slightly nonconvex equation (b) and 
using a single linearized constraint for a significantly nonconvex constraint (c)

Table 9  Summary of advantages in approximation

Stage Feature Advantage Assumption removed Test problem (TP) Robustness goal Introduction

Approximation Using second-
order 
sequential 
linearization

Designers can balance 
between linearization 
accuracy and computa-
tional complexity

Assumption 3 TP-II Robustness Goal 1 and 3 Section 3.4

Using accu-
mulated 
linearization

Designers can manage 
nonconvex problems and 
deal with highly convex, 
nonlinear problems rela-
tively more accurately
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Fig. 13a and b, or as the contours of f (x) in Fig. 3a and b, so 
the approximated linear equations from multiple iterations 
are accumulated to replace the nonlinear equation. However, 
if the local convexity of an equation is below − 0.015, as 
shown in Fig. 13c, or as the contours of f (x) in Fig. 3, the 
equation is nonconvex, we only use a single linearized con-
straint in each iteration to avoid cutting off too much of the 
feasible space. Using accumulated constraints, designers can 
manage nonconvex problems accurately.

The advantages in the approximation are summarized and 
filled into the corresponding blank in Table 1 to become 
Table 9.

3.5  Advantage in formulation: minimizing 
deviation functions instead of objectives

We adjust the scale of f2(x) in TP-II and add the lower bounds 
to the two objectives to avoid negative values, so this becomes 
TP-III; see Table 8. We use TP-III to show how one can manage 
problems with large differences in the scale of multiple objec-
tives using the cDSP and ALP, this removes Assumptions 1 and 
3 and better achieves Robust Goals 1 and 2. The solutions are 
given in Table 10 and visualized on objective space and x- f (x) 
Space in Figs. 14 and 15. The three optimization algorithms 
cannot return any feasible solutions. Due to the difference in 

the scale of the two objectives, one cannot use optimizing 
algorithms to solve the problem by linearly combining them, 
because: i) the objective with the largest scale dominates the 
other objective(s), and ii) a linearized function of the weighted-
sum objective at a local area can be singular (Table 11).

When using NSGA II to solve the problem, we use 
two values to the population size, 20 and 50 - one of 
the hyperparameters, because when we use these values, 
the solution returned is also changed. There are multiple 
hyperparameters that need to be tuned when using NSGA 
II. However, since we are not aiming to identify all the 
hyperparameters that may affect solutions and demon-
strate how and how much each hyperparameter affects 
solutions, we only use “population” as an example to 
illustrate that different values of a hyperparameter have 
an impact on the solutions.

Observation: For a multi-objective (multi-goal) prob-
lem with nonconvex functions, when the scale of the 
objectives varies largely, optimizing algorithms cannot 
return feasible solutions, whereas a satisficing strategy 
may allow designers to identify adequate solutions. This 
is explained using the KKT.

When using optimizing algorithms to solve optimiza-
tion problems, the first-order derivative of Lagrange 
equation with respect to decision variable x, which is a 
function of the parameters P of the model (the coeffi-
cients in objectives and constraints), decision variables x 
(if any objective or constraint is nonlinear), Lagrange 
multipliers � and � , and weights √ that combining the 

multiple goals is shown in Eq. 25.

(23)∇xL(x,�, �) = y
(
P, x,�, �, p

)
.

Table 10  The optimization model and compromise DSP of TP-III

Strat-
egy

Optimizing Satisficing

TP
III Objective Functions

f1(x) = ���
(
x1

2 + x2
3
)

f2(x) =25 ∙ (x1 − 2)3

+ 50 ∙ (x2 − 2)3 + 50 ∙ x1 ∙ x22

Constraints and Bounds

s.t.

⎧
⎪
⎪
⎨
⎪
⎪
⎩

x1 ∙ x2 ≤ 1

f1(x) ≥ 0

f2(x) ≥ 0

0 ≤ x1 ≤ 2

0 ≤ x2 ≤ 2

Combination of Objective 
Functions

Max
∑2

i=1
wi ∙ fi(x)

Given
x1, x2, d1

±
, d2

±

f1(x) = cos
(
x1

2 + x2
3
)

f2(x) =25 ∙ (x1 − 2)3

+ 50 ∙ (x2 − 2)3 + 50 ∙ x1 ∙ x22

Find
x1, x2, d1

∓
, d2

∓

Satisfy
Goals:
f1(x)

1.2
 +d1− − d1

+=1
f2(x)

400
 +d2− − d2

+=1
Constraints:
x1 ∙ x2 ≤ 1

f1(x) ≥ 0

f2(x) ≥ 0

di
− ∙ di

+ = 0, i = 1, 2

Bounds:
0 ≤ x1, x2 ≤ 2

0 ≤ d1
±
, d2

±
≤ 1

Minimize

Z =
∑2

i=1
wi ∙ (di

− + di
+)

Fig. 14  The solution points to TP-III on objective space using two 
algorithms – solutions returned by NSGA II are more diverse but sen-
sitive to parameter settings and increasing the population and itera-
tions do not always produce better results
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For a satisficing strategy, the first-order derivative of 
the Lagrange equation contains only the coefficients of 
the deviation variables in the objective, since only devia-
tion variables d∓ constitute the objective (not the deci-
sion variables, x ). For a �-goal cDSP with m inequality 
constraints g(x) and l  equality constraints h(x) , if we 
use weights to combine the � goals G(x, d) , i.e., using 
the Archimedean strategy to manage a multi-goal cDSP, 
then the coefficients in the first-order Lagrange equation 
would be only the weights and � – � is the Lagrange mul-
tiplier of the goal functions; see Eq. 26.

When using optimization, the second-order Lagrange 
equation may still have parameters and decision variables 
due to nonlinearity; Eq. 27. For satisficing, the second-
order Lagrange equation with respect to deviation vari-
ables degenerates to zero because the objective of a cDSP 
is a linear combination of deviation variables; see Eq. 28. 
That is why satisficing solutions do not need to meet the 
second-order KKT conditions.

Although both optimal solutions x∗ and satisficing solu-
tions xs meet the first-order KKT conditions, the chance of 

(24)∇dL(x
s, d,�, �, �) = ∇dz(d) +

m∑

i=1

�i∇dgi(x
s) −

�∑

j=1

�j∇dhj(x
s) −

�∑

k=1

�k∇dG(x
s, d) = y(p, �).

(25)∇2
xx
L(x,�, �) = ∇xy

(
P, x,�, �, p

)
= y�

(
P�, x

)

(26)∇2
dd
L(xs, d,�, �, �) = ∇d

(
y(p, �)

)
≡ 0

maintaining the first-order KKT conditions for the two 
strategies under uncertainty varies. If any uncertainty with 
probability P takes place to an item ℑ in the first-order 
equation that destroys its equilibrium, we denote it as 
Pr

(
ℑ̃|P

)
 . For a N-dimension, Q-parameter8, and �-goal 

problem, using optimizing strategy, the source of ℑ̃ can be 
decision variables x̃n , Lagrange multipliers �̃i and �̃j , and 
weights √̃

k

 ; for the satisficing strategy, the source of ℑ̃ can 

only be the weights √̃
k

 and the Lagrange multipliers for 

the goals �̃k . If and only if none of the items under the 
uncertainty breaks the equilibrium of first-order equation, 
then the  opt imal /sat is f ic ing  so lut ion is  s t i l l 
optimal/satisficing under this uncertainty. For a N-dimen-
sion, Q-parameter, and �-goal problem, the probability of 
maintaining an optimal solution and a satisficing solution 
under Uncertainty P are given in Eqs.  29 and 30, 
respectively.

Fig. 15  The solution points to TP-III on the x- f (x) space. a Is the 3D illustration of f1(x). b Is the 3D illustration of f2(x). All solutions’ f1(x) val-
ues are close to 1 except B’ and H’; all solutions’ f2(x) values are between close to 18 except A’

8 Here, we define a coefficient or an intercept of a constraint or an 
objective as a parameter. A parameter has a given value (either a con-
stant value or a stochastic value) and the value does not depend on 
any decision variables.
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As the value of any probability is in the range of [0, 
1], the more items on the right-hand side we multiply 
(the more items the probability depends on), the lower 
the probability becomes. The items in Eq. 30 are fewer 
than those of Eq. 29. Hence, the chance of maintaining an 
optimal solution under Uncertainty P is often smaller than 
the chance of maintaining a satisficing solution with the 
same uncertainty; Eq. 31.

In summary, using the satisficing strategy, robustness 
goals 1 and 2 are better achieved for nonconvex problems 
with multiple objectives that have various scales; see 
Eqs. 32 and 33. Using satisficing, designers can deal with 
nonconvex, multi-objective problems that may be incom-
plete or inaccurate and with uncertainties, which helps 
remove Assumptions 1 and 3.

(27)

Pr(x∗|P) ≈
∏Q

q=1

[
1 − Pr

(
P̃q|P

)]

∏N

n=1

[
1 − Pr

(
x̃n|P

)]

∏m

i=1

[
1 − Pr

(
�̃i|P

)]∏l

j=1

[
1 − Pr

(
�̃j|P

)]

∏�

k=1

[
1 − Pr

(
√̃

k

|P
)]

,

(28)

Pr(xs|P) ≈
∏�

k=1

[
1 − Pr

(
√̃

k

|P
)]∏�

k=1

[
1 − Pr

(
�̃k|P

)]
.

(29)Pr(x∗|P) ≤ Pr(xs|P)
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5 Table 13  The compromise DSP of the TP-IV

TP The Compromise DSP

IV Given
x1, x2, d1

∓
, d2

∓

f1(x) = cos
(
x1

2 + x2
3
)

f2(x) = 25 ∙ (x1 − 2)3 + 50 ∙ (x2 − 2)3 + 50 ∙ x1 ∙ x2
2

Find
x1, x2, d1

∓
, d2

∓

Satisfy
Goals:
f1(x)

1.2
 +d1− − d1

+=1
f2(x)

400
 +d2− − d2

+=5
Constraints:
x1 ∙ x2 ≤ 1

di
− ∙ di

+ = 0, i = 1, 2

Bounds:
0 ≤ x1, x2 ≤ 2

0 ≤ d1
∓
, d2

∓
≤ 1

Minimize
Z =

∑2

i=1
wi ∙ (di

− + di
+)
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The advantages in formulation are summarized and 
filled into the corresponding blank in Table 1 so it becomes 
Table 12.

3.6  Advantage in evaluation: allowing violations 
of soft requirements while avoiding violations 
of rigid requirements

The advantages in a formulation using a satisficing strategy 
are shown in Section 3.5. One may wonder if optimizing 
algorithms are used to solve a cDSP, will the results be the 
same as the ALP? The answer is no, if the problem is non-
convex and the difficulty of achieving the multiple goals var-
ies greatly. To illustrate the advantage in evaluation using a 
satisficing strategy we use TP-IV—in which the difficulty of 
achieving each goal’s target varies enormously. This allows 
designers to rely less on Assumption 1 and better achieve 
robust goal 1. We formulate TP-IV into a cDSP and use 
both the optimizing and satisficing strategies to solve it and 
compare results. The cDSP, visualization of the two goals, 
solutions, and visualization of solutions on objective space 
and x- f (x) space of TP-IV are given in Table 13, Fig. 16, 
Table 14, Figs. 17 and 18, respectively.

(30)

[
Pr

(
S ≠ ∅|

{
Nonconvexity

objectiveswithvariousscales

})]

Satisficing

≥

[
Pr

(
S ≠ ∅|

{
Nonconvexity

objectiveswithvariousscales

})]

Optimizing

,

(31)
[
Pr(xs|P)

]
Satisficing

≥
[
Pr(x∗|P)

]
Optimizing

.

Observation: cDSP and ALP are designed to formulate 
and explore engineering design problems with various 
levels of achievability of the goals, in other words, when 
f i(x)∕Ti ≫ f i(x)∕Ti for Goal i and Goal j, which often 
happens in engineering design, feasible solutions can be 
identified.

Using the ALP to solve the cDSP, satisficing solu-
tions (compared with the solutions from NSGA II) can be 
obtained, whereas using optimizing algorithms, no feasi-
ble solutions are returned. Why does using the ALP allow 
designers to obtain satisficing solutions to a cDSP with vari-
ous degrees of achievability of the goals, but optimizing 
algorithms do not?

When f i(x)∕Ti ≫ f i(x)∕Ti , especially when d−
j
 cannot 

meet its upper bound of d−
j
≤ 1 , its upper bound must be 

violated. However, optimization algorithms do not have a 
mechanism to violate the deviation bounds but not to violate 
other constraints or bounds. Because some optimization 
algorithms, such as Trust- constr and SLSQP, treat all con-
straint and bound priorities equally, if at least one of the 
constraints and bounds is violated, the solution point is con-
sidered to be infeasible.

Unlike those optimizing algorithms, using the ALP, the 
constraints, and the bounds of the decision variables x are 
the highest priority, and the bounds of the deviation vari-
ables d±

i
 are assigned second priority. If the violation of 

any deviation bound allows a point xs in the feasible area 
bounded by the constraints and the bounds of system vari-
ables to be found, then XS is returned as a solution. So, for 
an n-dimension, m-constraint (with p inequality constraints 
and m-p equality constraints), k-goal cDSP: xs is a satisfic-
ing solution,

Fig. 16  The left-hand side (objective function) and the right-hand side (target) of the two goals of TP-IV on the x- f (x) space. a Is the 3D illustra-
tion of f1(x). b Is the 3D illustration of f2(x)
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if and only if
fi(x

s)

Ti
+ d−

i
− d+

i
= 1, ∀i = 1,… k //Goal functions hold at 

xs , and
gi(x

s) ≥ 0, ∀i = 1,… p//Inequality constraints are satis-
fied at xs , and

hi(x
s) = 0, ∀i = p + 1,…m//Equality constraints are satis-

fied at xs , and
lowerbound ≤ xs ≤ upperbound , and
Minimize the violation of deviation bounds
In summary, for multi-objective, engineering design 

problems with nonlinear, nonconvex functions, goals with 
various scales, and the target of the goals with various 
degrees of achievability, using the cDSP and ALP allows 
designers to obtain satisficing solutions that are close to the 

non-dominated solutions obtained by using NSGA II; see 
Eq. 34. Multi-objective problems can be designed, espe-
cially when the scale of the goals varies largely, which helps 
remove Assumptions 1 and 3.

The advantages in the formulation are summarized and 
filled into the corresponding blank in Table 1 so it becomes 
Table 15.

We demonstrated the advantages of the cDSP and ALP in 
the four stages using four test problems. We summarize them 
by adding information to Table 1, so it becomes Table 16.

4  Computational efficiency

How does the computational efficiency of the ALP compare 
to the simplex algorithm and interior-point searching algo-
rithms such as NSGA II?

The ALP algorithm is used for linearizing the compro-
mise Decision Support Problems (cDSP) through second-
order sequential linearization and solving them with the 
revised dual simplex algorithm. Second-order sequential 
linearization requires multiple iterations. In each iteration, 
the nonlinear equation is linearized. Nonlinear constraints 

(32)

⎡
⎢
⎢
⎢⎣

Pr

⎛
⎜
⎜
⎜
⎝

S ≠ ∅�
⎧
⎪
⎨
⎪
⎩

Nonconvexity

Goalswithvariousscales

Goals′targetswithvariousachievabilities

⎫
⎪
⎬
⎪
⎭

⎞
⎟
⎟
⎟
⎠

⎤
⎥
⎥
⎥⎦Satisficing

≥

⎡
⎢
⎢
⎢⎣

Pr

⎛
⎜
⎜
⎜
⎝

S ≠ ∅�
⎧
⎪
⎨
⎪
⎩

Nonconvexity

Goalswithvariousscales

Goals′targetswithvariousachievabilities

⎫
⎪
⎬
⎪
⎭

⎞
⎟
⎟
⎟
⎠

⎤
⎥
⎥
⎥⎦Optimizing

.

Fig. 17  The solutions to TP-IV using the ALP and NSGA II—NSGA 
II finds more non-dominated solutions, whereas ALP finds solutions 
with better Z values (the weighted combination of deviations)

Fig. 18  The solutions to TP-IV on the x- f (x) space—there is little difference between ALP solutions and NSGA II solutions (the arrows are used 
to identify the solutions and their directions have no meaning). a Is the 3D illustration of f1(x). b Is the 3D illustration of f2(x)
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and nonlinear goals are included in a second-order equa-
tion by using the diagonal terms of the Hessian matrix of 
the equation at the linearization point as coefficients. This 
is used to solve the second-order equation and the solution 
with the lower absolute value is selected. Using this value 
and the linearization point as two points to determine a line, 
this line then becomes the linear equation. Then the problem 
becomes linear and is solved with the revised dual simplex 
algorithm. Then, the solution point becomes the lineariza-
tion point for the next iteration. The linear equations in each 
iteration are accumulated as linear equations in the linear 
problem in the latest iteration. The algorithm converges 
when the difference among the solutions of several iterations 
is smaller than a predefined threshold, or when the number 
of iterations reaches the predefined maximum number of 
iterations.

Suppose there are m equations in an n-dimensional design 
problem, and m′ of the equations are nonlinear. In Itera-
tion i , the computational complexity of linearizing the m′ 
equations into second-order equations is O(m� ∙ n) . Suppose 
that there are m′′

i
 linear equations – including the (m − m�) 

equations that are linear in the original design problem and 
(m��

i
− m + m�) equations that are linearized and accumulated 

from Iteration one to the current iteration, so the computa-
tional complexity of solving the linearized problem in Itera-
tion i is polynomial on average (Kelner and Spielman 2006) 
although the worst-case is O(2n) . Therefore, the computa-
tional complexity of the ALP is polynomial.

As the computational complexity of the simplex algo-
rithm is polynomial for the average-case (Spielman and Teng 
2004), the ALP has the same computational complexity as 
the Simplex algorithm. The computational complexity of 
NSGA II is O(k ∙ N2) , where k is the number of objective 
functions and N is the population size. The computational 
complexity of ALP and NSGA II depend on different param-
eters—the former depends on the dimension and the latter 
depends on the population size. Thus the computational cost 
of the ALP does not exceed that of NSGA II. As users usu-
ally set a population much larger than the dimension of a 
problem when using NSGA II, more often than not, NSGA 
II requires greater computational power than the ALP does.
(Spielman and Teng 2004).

5  Closing remarks

In this paper, in the context of the assumptions that are foun-
dational to the KKT conditions we describe the differences 
between adopting an optimizing strategy and a satisficing 
strategy when design complex engineering systems; see 
Section 2.4 To use the optimizing strategy, to obtain opti-
mal solutions, three assumptions are foundational to meet 
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both the necessary and sufficient KKT conditions. To use 
the satisficing strategy, to obtain satisficing solutions, only 
the necessary KKT condition is satisfied. We use four test 
problems to illustrate the different outcomes between the 
two strategies regarding three robustness goals (Section 2.5), 
namely, the chance of identifying satisficing solutions given 
certain complexities, the probability of maintaining a sat-
isficing solution under uncertainties that result in feasible 
space boundary change, and the diversity of solutions under 
multiple design scenarios. Given the characteristics of engi-
neering design problems—often having nonlinear, noncon-
vex goals and constraints, goals which may have different 
units, and the targets of goals may have different degrees of 
achievability, we find a satisficing strategy is more robust 
with respect to our three robustness goals. We verify the 
satisficing solutions by comparing them with NSGA II 
solutions. Thence, we conclude that adopting a satisficing 
strategy more robust and practical for use in model-based 
engineering design. To reinforce our conclusion, we offer the 
following references for consideration: Gautham et al. 2017; 
Nellippallil et al 2018; Pedersen et al. 2013; Samadiani et al. 
2010; Simpson et al. 2001.
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