
Vol.:(0123456789)

Research in Engineering Design
https://doi.org/10.1007/s00163-023-00431-5

ORIGINAL PAPER

Optimize or satisfice in engineering design?

Lin Guo1 · Janet K. Allen2 · Farrokh Mistree3

Received: 26 June 2022 / Revised: 11 September 2023 / Accepted: 20 December 2023
© The Author(s) 2024

Abstract
In this paper, we address the issue of whether to optimize or satisfice in model-based engineering design. When dealing with
operations research problems in the context of engineering design, one may encounter (i) nonlinear, nonconvex objectives
and constraints, (ii) objectives with different units, and (iii) computational models that are abstractions of reality and fidel-
ity, Seeking a single-point optimal solution that meets the necessary and sufficient Karush–Kuhn–Tucker (KKT) conditions
makes it impossible to obtain a solution that satisfies all the targeted goals. Instead, a method to identify satisficing solutions
that satisfies necessary KKT condition but not the sufficient condition is proposed. These solutions are relatively robust, easy
to acquire, and often good enough. In this paper, we demonstrate the combined use of the compromise Decision Support
Problems and the adaptive linear programming algorithm, as proposed by Mistree and co-authors. This method is appropriate
in formulating design problems and obtaining solutions that satisfy only the necessary KKT condition. Further, the use of
the proposed method circumvents complications associated with the use of gradient-based optimization algorithms typically
used to solve optimization problems. We discuss the efficacy of our proposed method using four test problems to illustrate
how the satisficing strategy outperforms the optimizing strategy in model-based engineering design.

Keywords Satisficing · Karush–Kuhn–Tucker conditions · Model-based design

1 Frame of reference

Engineering design of complex systems typically requires a
team of designers from multiple disciplines or backgrounds
to discover intertwined alternatives and select among them
(Reich et al. 2010). When selecting the most appropriate
solution among alternatives using well-defined or fuzzy
criteria, most designers cannot avoid relying on the utility
function, no matter how the utility function is abstracted
into a specific mathematical equation or tactically formed.
There are different ways to identify and refine a utility func-
tion that facilitates decision making: through game theory

(Vincent 1983), analytic hierarchy process (AHP) (Saaty
1994), expert-team discussion tools with evaluation matrices
such as the Pugh controlled convergence method (Frey et al.
2009), voting theory (Arrow 2012), Pareto comparisons
(Sen 2018), etc. Hazelrigg has pointed out the limitations
of these methods and made clear why these methods are
inappropriate for use in design (Hazelrigg 2010). Hazelrigg
advocates the use of utility theory and the use of voting and
social choice, the effectiveness and accuracy of shortcuts
in engineering, possible risks of poor decision making, and
the role of the nature of preferences, etc. Among the util-
ity theory-based methods, optimization is one method that
enables designers to select among alternatives. For example,
using the simplex algorithm to identify vertex solutions and
selecting the optimal one.

The simplex algorithm, proposed by Dantzig (Dantzig
et al. 1955; Dantzig 1990), is used to identify solutions at
the vertices as possible solutions. The vertices being tested
are the vertices of a convex polyhedral set, usually bounded
by the constraints and bounds of variables, which is known
as the feasible space of a linear programming problem. The
simplex algorithm is used to search vertices in this way:
given the current vertex, identify the adjacent vertex that
on the trajectory that makes the greatest contribution in

 * Janet K. Allen
 janet.allen@ou.edu

1 The Systems Realization Laboratory, Department
of Industrial Engineering, South Dakota School of Mines
and Technology, Rapid City, SD 57701, USA

2 The Systems Realization Laboratory, University
of Oklahoma, 202 West Boyd Street, Room 219, Norman,
OK 73019, USA

3 The Systems Realization Laboratory, University
of Oklahoma, 865 Asp Avenue, Room 306, Norman,
OK 73019, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s00163-023-00431-5&domain=pdf

 Research in Engineering Design

optimizing the objective function. The algorithm performs
this search iteratively until none of the adjacent vertices can
be used to further optimize the objective, then the current
vertex is returned as the optimal solution.

Not all design problems can be solved using utility the-
ory-based optimization, especially the gradient-based opti-
mization methods. In this paper, we focus on the problems
that can be managed using mathematical programming, that
is, the problems that can be abstracted and solved by mini-
mizing an objective through determining the value of deci-
sion variables while system constraints and bounds on the
variables wherein the utility function serves as the objective.
In modeling the objective using utility theory we assume
that all decision makers are rational and that the objective is
perfect. Frequently this is not the case in engineering design.

The mathematical models of engineering design prob-
lems often have: (i) nonlinear, nonconvex objectives and
constraints, (ii) multiple objectives with different units and
scales, and (iii) computational models that are abstractions
of reality and fidelity,. In spite of this, these problems are
frequently addressed using gradient-based optimization tech-
niques, although the mathematical requirements for optimi-
zation, the Karush–Kuhn–Tucker (KKT) conditions are not
met. Further, an engineering system comprises of several
subsystems. Even if a solution converges for a subsystem,
it is unlikely to be a true optimal solution for the system.

Recognizing that mathematical models are abstractions of
reality, and the objective function may not be exact in design,
in this paper, we offer an alternate approach that involves
satisficing. Therefore, instead of using an optimization strat-
egy, we propose using a satisficing strategy that results in
solutions that meet an acceptable threshold and are satisfac-
tory, but not necessarily optimal (Simon 1956, 1996). With
the satisficing strategy, we account for the inaccuracy of the
utility function, and we do not rely on utility theory (Byron
1998). We recognize the mathematical difficulties with opti-
mization and instead use the compromise decision support
problem (cDSP) construct which is solved using the adaptive
linear programming algorithm (ALP), as developed by Mis-
tree et al. (1993). The ALP algorithm is incorporated in the
DSIDES software (Hajihashemi 2023). To obtain a satisfic-
ing solution, we relax the requirement for satisfying both the
necessary and sufficient KKT conditions and require only the
necessary condition to be satisfied. This approach allows us
to obtain fairly rapid solutions to problems that are character-
ized by the difficulties described above (Guo and Chen 2023).
The speed with which answers can be obtained allows us to
search large regions of design space. Further information is
available in the work of Guo (Guo 2021). The satisficing
strategy is also used to select a solution from alternatives, but
the criteria are different from optimization so that the pool
of solution finalists are larger, diverse, and easier to acquire,
because a satisficing solution only meets the necessary KKT

conditions. The foundation of the satisficing strategy is no
longer maximizing the utility of a design but identifying
“good enough” solutions that are feasible, enable the goals
to achieve their targets to an acceptable extent, and are rela-
tively insensitive to uncertainties due to the nonlinear, multi-
objective nature of the design. In essence, our focus, in line
with many engineering designers’ interests, is in identifying
a range of solutions that are useful, feasible, and relatively
insensitive to uncertainty (this results in changes in model
structure, boundary, feasibility, and dimension). If a designer
wants to find a single-point optimal solution using models
that are abstractions of reality, then the alternate approach
proposed in this paper should not be used.

Optimizers and satisficers in engineering design are
from different cultures. They view engineering design from
two very different perspectives. They subscribe to different
premises, and, in our opinion, the twain shall never meet.
Hence, the title of this paper Optimize or satisfice in engi-
neering design?

In Section 2, we describe the formulation of an optimi-
zation problem and a satisficing problem, the KKT condi-
tions, and the assumptions underlying the KKT conditions.
In Section 3, four test problems are presented to illustrate
the efficacy of adopting the satisficing strategy in the model-
based design of complex engineering systems. We end with
some closing remarks in Section 5.

2 The formulation of optimization problems
and satisficing problems

There are differences between the optimizing and satisfic-
ing strategies These include differences in problem formu-
lation, approximation, exploration, and evaluation which
are important activities in engineering design (Guo 2021).
These differences are embodied in the formulation construct,
(the compromise decision support problem or cDSP), the
approximation algorithm (the adaptive linear programming
algorithm or ALP), exploration mechanism (the XPLORE
function), and the evaluation method and are implemented
in the DSIDES software (decision support in the design of
engineering systems).

2.1 The differences and similarities
in the formulation of the two strategies

For a given function f (x) , the Euler–Lagrange equations,
developed by Leonhard Euler and Joseph–Louis Lagrange
(Euler 1755, 1766), form a system of second-order ordi-
nary differential equations ∇2

xx
f (x) . The solutions to ∇2

xx
f (x)

are stationary points of f (x) . Using the Euler–Lagrange
equations, one can solve optimization problems which
consist of variables that are to be minimized or maximized

Research in Engineering Design

within set F , where F is the feasible set of solutions to the
problem, bounded by constraints and bounds. An optimi-
zation problem � is represented as follows.

The mathematical form of an optimization problem �:
Given

Find

Any point x that is a local extrema of the set mapped by
multiplying active equations with a non-negative vector is
a local optima of � (Courant and Hilbert 1953), denoted
as x∗ . The elements of such a non-negative vector are
Lagrange multipliers, � and � . An optimization strategy
is, “formulating an optimization problem and obtaining
optimal solutions.”

One variant of optimization is goal programming. The
format of a goal programming problem �goal is represented
as follows. A target value T is predefined for the objective
function f (x) as the right-hand side value, so the objec-
tive becomes an equation, and we call it a goal (Charnes
et al. 1955). d− and d+ are deviation variable measuring
the underachievement and over-achievement of the goal
toward its target. The problem is solved by minimizing
the deviation variables, which is minimizing the difference
between f (x) and T . In other words, goal programming is
aimed at finding T ’s closest projection on F .

The mathematical form of a goal programming problem
�

goal:
Given

f ∶ ℝ
n
→ ℝ,F ⊆ ℝ

n,

F =
{
x ∈ ℝ

n|gi(x) ≥ 0, i = 1,… ,m, hj(x) = 0, j = 1,… , l
}
,

x∗:f (x∗)≻ f (x),∀x ∈

f ∶ ℝ
n
→ ℝ,F ⊆ ℝ

n

Find

F =
{
x ∈ ℝ

n|gi(x) ≥ 0, i = 1,… ,m, hj(x) = 0, j = 1,… , l, d− ∙ d+ = 0, 0 ≤ d∓ ≤ 1,Goal ∶ f (x) + d− − d+ = T
}
,

Another strategy, a satisficing strategy, is to formulate a prob-
lem using the compromise decision support problem (cDSP)
and obtain “good enough” but not necessarily optimal solutions
(Mistree et al. 1993). For a nonlinear cDSP, we first linearize the
nonlinear equations, including nonlinear constraints and non-
linear goal. Therefore, the nonlinear cDSP is approximated as a
linear problem with a linear goal Goalli , a linear feasible space
Fli bounded by linear constraints g(x)li ≥ 0 and h(x)li = 0 . Thus,
using the cDSP, we seek the closest projection from the linear
goal set onto a linear feasible set. We define the solution as a
satisficing solution, and we use xs to denote it. A cDSP, ℂ, is
represented as follows.

The mathematical form of a compromise decision support
problem (cDSP) ℂ:

Given

Find

x∗ ∶ ℙx∈F(Goal ∶ f (x) = T).

f :ℝn → ℝ, ⊆ ℝn,

Fli =

{
x ∈ ℝ

n|gi(x)li ≥ 0, i = 1,… ,m, hj(x)
li = 0, j = 1,… , l, d−

i
∙ d+

i
= 0, 0 ≤ d∓

i
≤ 1,Goalli ∶

f (x)li

T
+ d−

i
− d+

i
= 1

}
,

Fig. 1 Relationship among optimal, satisficing, and near-optimal
solutions

 Research in Engineering Design

A solution to a cDSP ℂ is a satisficing solution denoted
by xs . To understand the difference between x∗ and xs , the
KKT conditions are used. The relationship among optimal
solutions, satisficing solutions, and near-optimal solutions
is illustrated in Fig. 1.

2.2 The necessary and sufficient Karush–Kuhn–
Tucker (KKT) conditions

In 1951, Harold W. Kuhn and Albert W Tucker proposed
the Kuhn–Tucker conditions that are foundational to opti-
mization (Kuhn and Tucker 1951). Later it was found that
William Karush had summarized the necessary conditions
in 1939 (Karush 1939). So, the Kuhn–Tucker conditions are
now called the Karush–Kuhn–Tucker (KKT) conditions. The
KKT approach is a generalization of the method of Lagrange
multipliers (Lange 2013). A nonlinear problem with con-
straints can be represented as a Lagrange equation. The opti-
mal point of the Lagrange function is a saddle point, so the
KKT approach is also known as the saddle-point theorem
(Hartley 1960).

The KKT conditions include first-order necessary condi-
tions and second-order sufficient conditions. For an optimi-
zation problem � , suppose that x∗ is an optimal solution and
�i and �j are Lagrange multipliers, the first-order necessary
KKT conditions are represented in Eqs. 1–5.

Stationarity

Primal feasibility

xs ∶ ℙx∈Fli

(
Goalli ∶ f (x)li = T

)
.

(1)∇f (x∗) +
∑m

i=1
�i∇gi(x

∗) −
∑l

j=1
�j∇hj(x

∗) = 0.

(2)gi(x
∗) ≥ 0,∀i = 1,… ,m,

Dual feasibility

Complementary slackness

These first-order conditions are necessary conditions for
optimality; at an optimal solution x∗ , Eqs. 1–5 are always
met. However, meeting Eqs. 1–5 does not guarantee that
a solution is optimal. To guarantee optimality, the second-
order sufficient conditions must also be met (Eqs. 6–8):

Equations 1–8 hold at an optimal solution x∗ ; whereas
only Eqs. 1–5 hold for a satisficing solution xs.

2.3 The analytical geometric meaning of the Kuhn–
Tucker conditions

The analytical geometric meaning of the necessary condi-
tions is that at the solution point x∗ , where both the primal
and the dual are feasible, the gradient vector of the objec-
tive ∇f (x∗) can be represented as the non-zero linear com-
bination of the gradient matrix of all equality constraints

(3)hj(x
∗) = 0,∀j = 1,… , l.

(4)�i ≥ 0,∀i = 1,… ,m.

(5)�igi(x
∗) = 0,∀i = 1,… ,m.

(6)L(x, �,�) = f (x) +

m∑

i=1

�igi(x) −

�∑

j=1

�jhj(x),

(7)=> sT∇2
xx
L(x∗, 𝜆∗,𝜇∗)s ≥ 0, where s ≠ 0,

(8)
[
∇xgi(x

∗),∇xhj(x
∗)
]T
s = 0.

Fig. 2 The first-order necessary Kuhn–Tucker conditions are satisfied at x∗

Research in Engineering Design

∇hj(x
∗) and all the active inequality constraints1 ∇gi(x∗) for

i iff gi(x∗) = 0 ; Fig. 2.
The analytical geometric meaning of the sufficient

condition is that at the solution point x∗ , there exists a

non-zero vector, s, that is orthogonal to the gradient matrix
of all active inequality constraints and equality constraints,
such that the second-order matrix of the Lagrange equa-
tion with respect to decision variables, x∗, is condition-
ally positive semidefinite: sT∇2

xx
L(x∗, �∗,�∗)s ≥ 0 , ∀s ∈ S .

In other words, the sufficient condition requires that the

Fig. 3 The convexity requirements for satisfying the second-order
sufficient Kuhn–Tucker condition—when the degree of convexity of
the objective does not exceed at least one non-negative linear combi-
nation of constraints. a Is when a linear combination of constraints is

convex, and the contours of f(x) are concave. b Is when both of them
are convex, but the degree of convexity of a linear combination of
constraints is larger than the degree of convexity of the contours of
f(x)

Fig. 4 An optimal solution cannot be identified by Lagrange multipliers—when the convexity degree of the objective is higher than any non-zero
linear combination of constraints

1 In this paper, we define an active constraint (or an active inequality
constraint) as the constraint with zero slack or surplus at the solution
point.

 Research in Engineering Design

Lagrange equation is convex at x∗ , that is, in a relatively
small range containing x∗ , the degree of convexity2 of the
objective should not exceed the degree of convexity of the
constraints combined by Lagrange multipliers; see Fig. 3.
However, the sufficient condition significantly reduces the
possibility of achieving a solution for problems with an
objective with a relatively higher degree of convexity, that
is, problems in which the degree of convexity of the objec-
tive is higher than the degree of convexity of any non-zero
linear combination of constraints, Fig. 4.

Design problems typically embody a highly convex
objective, or a nonconvex and non-concave objective mak-
ing it virtually impossible to find a solution using gradient-
based optimization algorithms. To improve the design to:
(i) closely achieve the target of the goals, and (ii) be robust
to uncertainties that may cause variations to the boundary
of the feasible set, F , designers need to explore satisficing
solutions. That is why we propose a satisficing strategy to
deal with engineering design problems.

2.4 Assumptions when using the KKT conditions

There are assumptions when applying the necessary
and sufficient KKT conditions to solve an optimization
(nonlinear programming) problem. These assumptions
also provide mathematical requirements for the problem
in order to use the KKT conditions to obtain an optimal
solution.

Assumption 1: The mathematical models of the con-
straints and goals used to model a design problem are com-
plete and accurate representations of reality, namely the
physical problem. This is to ensure that the optimal solution
to a design problem is also optimal for the corresponding

physical system. To use Lagrange functions to solve nonlin-
ear problems, one must assume that the mathematical mod-
els accurately capture all the necessary details of the physi-
cal problem. Thus, an optimal solution to an engineering
design problem is also optimal for its corresponding physical
problem. As George Box said, “all models are wrong, but
some are useful,” (Box 1979), models are sometimes simpli-
fied, or, perhaps, not simplified correctly, and this may not
be noticeable. When designing a system, there also may be
information that cannot be captured and abstracted, such as
hidden variables, implicit functional relationships among
variables, factors defined as decision variables which cannot
be fully controlled by designers, etc. Therefore, the optimal
solution to an engineering design problem formulated as
an optimization problem is unlikely to be optimal for the
physical system.

Assumption 2: All equations of the problem are dif-
ferentiable. Although according to the KKT conditions, it
is only required that, within a small finite area around the
optimal solution, the objective function, active constraints,
and equality constraints should be differentiable, but, as we
need to solve the Lagrange function globally, it is required
that all equations should be differentiable.

Assumption 3: The degree of convexity of at least one
non-zero linear combination of all constraints is higher than
the degree of convexity of the objective. This assumption is
critical to meet the KKT sufficiency condition. This condi-
tion guarantees finding an optimal solution to the design
problem shown in Fig. 3 but cannot identify an optimal solu-
tion to the problem in Fig. 4.

When using an optimizing strategy, all three assumptions
are applied, whereas when using the satisficing strategy, only
the second assumption is applied; see Fig. 5.

2.5 Definition of robustness

There are several definitions of “robustness” in the engineer-
ing design literature. Carlson and Doyle define robustness as

Fig. 5 The assumptions when
using the optimizing strategy
and the satisficing strategies

2 We define “convexity degree” as the average value of the diagonal
terms of thee Hessian matrix of a function.

Research in Engineering Design

a system’s capacity to maintain some typical features under
variations in the behavior of its components and environ-
ment (Carlson and Doyle 2002). After reviewing more than
170 papers, Beyer and Sendhoff summarize that, “the appeal
of robust design is that its solutions and performance results
remain relatively unchanged when exposed to uncertain con-
ditions” (Beyer and Sendhoff 2007). Magni and co-authors
indicate that, “robustness is the capacity of a controlled sys-
tem working satisfactorily under the circumstances it may
encounter in practice” (Magni et al. 1997). The performance
of a solution algorithm is usually assessed by optimality,
diversity of solutions, and the computational complexity of
the algorithm (Soltani et al. 2002; Guo et al. 2022). Based on
these ideas, in this paper, we consider robustness in model-
based engineering design to have three components: (i) the
capability of a method to identify feasible solutions given
certain complexities, (ii) the capability of a model to main-
tain a solution under specific uncertainties, and (iii) a diver-
sity of solutions for various representative design scenarios.
Explanations of each robustness goal are as follows.

Robustness goal 1: Minimize the probability of having
an empty satisficing set S ≠ ∅ , given complexities ç; see
Eq. 9. ç may include nonlinear and nonconvex equations,
multiple goals (objectives) with different units or scales, and
the targets of the multiple goals having different levels of
achievability.

Robustness goal 2: Maximize the probability of main-
taining a good enough (satisficing) solution xs , under
uncertainty P . The representation or result of uncertainty
P is the variation of the feasible set F̃ . Unlike some other
methods that focus on eliminating uncertainties or mini-
mizing model variations under uncertainties, that is to
minimize Pr(P) or Pr

(
F̃|P

)
 , we acknowledge that model

variations due to uncertainties may not be under a design-
ers’ control or awareness, and the optimal solution, x∗, may
not be optimal with model variations, that is x∗ ∉ F̃ or
f (x∗) f (x) , so we want to have a relatively high chance
of maintaining a satisficing solution xs ; see Fig. 10.

Robustness goal 3: Maximize the diversity of solutions.
Why should the diversity of solutions be associated with
robustness? “Considering the goodness of a solution set

regarding its distribution quality is key to multi-objective
problems” (Farhang-Mehr and Azarm 2002). It is impor-
tant to balance the convergence of the search algorithm
and the diversity of solutions for multi-objective prob-
lems (Xu et al. 2022). Engineering designers often need
different solutions under multiple design scenarios that
represent their various design preferences among the mul-
tiple goals, meanwhile the diversity of solutions brought
about by different solution processes, such as different
search starting points, should be minimized. When design
preferences evolve, solutions can be adapted. High solu-
tion diversity means that range and richness of solutions
has been expanded therefore accommodating evolving
design preferences. Therefore, we desire a large the sum
of squares of solutions under all design scenarios SSDS but
a small sum of squares of solutions for all starting points
SSSP ; see Eq. 11. This idea is based on ANOVA F-test (Wu
and Hamada 2011).

In Section 3, we use four test problems to demon-
strate using the cDSP and the ALP (Mistree 1993) to

(9)Robustness goal 1 ∶ Minimize Pr
(
S ≠ �|ç

)
,

(10)Robustness goal 2 ∶ Maximize Pr(xs|P),

(11)Robustness goal 3 ∶ Maximize SSDS∕SSSP.

Table 1 Challenges in the model-based design of complex engineering systems and discussion of advantage

Challenge surmounted Discussion of advantage

Formulation Using Goals and Minimizing Deviation Variables Instead of Objectives Discussed in Section 3.5 and Table 12
Approximation Using second-order sequential linearization Discussed in Section 3.4 and Table 9

Using accumulated linearization Discussed in Section 3.4 and Table 9
Exploration Combining interior-point search and vertex search Discussed in Section 3.3 and Table 6
Evaluation Allowing some violations of soft requirements, such as the bounds of deviation

variables
Discussed in Section 3.6 and Table 15

Table 2 The features of the test problems (TP)

Test problem (TP) TP-I TP-II TP-III TP-IV

Feature
 Multiple objectives * * * *
 Nonlinear * * * *
 Nonconvex * * *
 Objectives with various

units (scales)
* *

 Goal targets with
various degrees of
achievability

*

 Research in Engineering Design

realize the satisficing strategy by removing Assumptions
1 and 3 (Fig. 5) and better achieving the robustness goals
(Eqs. 9–11).

3 Advantages of using the satisficing
strategy in engineering design

We use four test problems TP-I, TP-II, TP-III, and TP-IV
(Table 2 and Sections 3.3–3.6), to demonstrate differences
between the satisficing strategy and optimizing strategy.
The satisficing strategy, in this paper, is accomplished by
using the cDSP (the formulation construct) (Mistree et al.
1993), ALP (the solution algorithm) (Mistree et al. 1981,
1993), and DSIDES (the computational platform) (Ming
et al. 2018). In this section, we introduce the challenge sur-
mounted by using the cDSP and ALP in four stages of engi-
neering design listed in Table 1, using test problems. We
discuss the advantage of surmounting each challenge in the
subsection and table association with the challenge.

3.1 Some typical features of engineering design
problems

Key challenges in the model-based design of complex engi-
neering systems? Janet K. Allen and Farrokh Mistree’s
design experience includes the co-design of materials (Sinha
et al. 2013; Nellippallil et al. 2020; Messer et al. 2010),
products (McDowell et al. 2010; Simpson et al. 2001; Ped-
ersen et al. 2013; Choi et al. 2005), and associated manu-
facturing processes (Nellippallil et al. 2017, 2019, 2020),
the design of mechanical, thermal, and structural systems
(Nellippallil et al. 2019; Samadiani et al. 2010; Panchal
et al. 2005); ships (Mistree et al. 1990) and aircraft (Chen
et al. 2000; Simpson et al. 2001) and engineered networks
(Milisavljevic-Syed et al. 2020) Based on this experience,
in Table 1, we list 5 challenges for consideration. The test
problems are very simple, in other words, they are just toy
problems (Table 2). Why do we use toy problems instead of

more complicated problems? Our rationale for using simple
toy problems is: i) to easily visualize the goals and con-
straints on a two-dimension plane, ii) to demonstrate that
some hyperparameters of NSGA II may impact the results
(but we do not focus on accurately quantifying how each
hyperparameter affects the results), and iii) these toy prob-
lems, although quite simple, do have typical complexities
that engineering design problems may have3.

The methods used in optimizing and satisficing strategies
are listed in Table 3. For optimizing methods, we used the
“SciPy.optimize” package4. There are ten algorithms in the
package, but only three are used to solve the test problems.
The algorithms that are not used are: the Nelder–Mead, Pow-
ell (Powell’s conjugate direction method), (Powell 1964),
CG (conjugate gradient methods), (Straeter 1971), and the
BFGS, (Broyden–Fletcher–Coldfarb–Shannon algorithm)
(Fletcher 1987) cannot easily manage problems with con-
straints. Newton-CG (Newton conjugate gradient method)
(Khosla and Rubin 1981; Nash 1984), L-BFGS-B (an exten-
sion BFGS for large-scale, bounded problems) (Zhu et al.
1997), and TNC (truncated Newton method or Hessian-free
optimization) (Zhu et al. 1997). These methods either can-
not deal with problems without Jacobians5 or return infea-
sible solutions without recognizing that they are infeasible.

Table 3 Methods for comparison of the optimizing and satisficing strategies

Strategy Optimizing Satisficing

Item
 Model formulation construct Mathematical programming

Goal programming
Compromise

Decision
Support
Problem

 Solution algorithms Constrained Optimization by Linear Approximation (COBYLA) algorithm Adaptive Lin-
ear Program-
ing (ALP)
algorithm

Trust-region constrained (trust-constr) algorithm
Sequential Least Squares Programming (SLSQP) algorithm
Nondominated Sorting Generation Algorithm II/III (NSGA II)

 Solver Python SciPy.optimize DSIDES

3 There are practical, complicated engineering design problems dealt
with by the cDSP and ALP, and they cannot be solved using opti-
mization, for example, hot rod rolling design ***(Nellippallil et al.
2017), reconfigurable manufacturing systems, architecting fail-safe
supply networks (Rezapour et al. 2018). Those problems incorporate
one or more of the typical features as listed in Table 1. We choose
not to use those complicated problems as test problems in this paper
because describing the problems clearly would require a lot of space
and it is difficult to visualize the objectives, feasible space, and solu-
tions for those high dimension problems.
4 https:// docs. scipy. org/ doc/ scipy/ refer ence/ optim ize. html
5 When using Newton-CG, even setting the Jacobian as false, the
algorithm may not work without a partially provided Jacobian
because the default temporary memory of Jacobian cannot be cleared;
see: https:// stack overf ow. com/ quest ions/ 33926 357/ jacob ian- is- requi
red- for- newton- cg- method- when- doing-a- appro ximat ion- to-a- jaco

https://docs.scipy.org/doc/scipy/reference/optimize.html
https://stackoverflow.com/questions/33926357/jacobian-is-required-for-newton-cg-method-when-doing-a-approximation-to-a-jaco
https://stackoverflow.com/questions/33926357/jacobian-is-required-for-newton-cg-method-when-doing-a-approximation-to-a-jaco

Research in Engineering Design

Therefore, in SciPy we use COBYLA, (the constrained opti-
mization by linear approximation algorithm) (Powell 1989,
2007), Trust-constr6, and SLSQP, (sequential least squares
programming)7 to solve the test problems.

3.2 Verification method: NSGA II

As NSGA II (non-dominated sorting genetic algorithm II)
(Deb et al. 2002) can be used to solve problems with all
five features listed in Table 2, therefore, we use NSGA II in
MATLAB, as NSGA II can converge near-optimal solutions
to engineering design problems with the five typical features
we identified (in Table 2). Why is it necessary to study a
satisficing algorithm to solve engineering design problems?
The reason is that we observe that NSGA II has the fol-
lowing drawbacks that may prevent engineering designers
from acquiring insight to improve the design formulation
and exploring the solutions space:

NSGA II cannot give designers insight into possible ways
to improve the model. NSGA II uses metaheuristics to
search for solutions that generationally improve the opti-
mality and diversity of the solutions, but information such
as the bottlenecks in the model, the sensitivity of each
segment of the model, the rationality of the dimensions
of the model, or anything else that may indicate model
improvement, are not provided with an NSGA II search.
The performance of NSGA II, including convergence
speed, optimality of solutions, and diversity of solutions,
is sensitive to hyperparameter settings. Typical hyper-
parameters, such as the population size and generation
number, must be predefined. However, usually designers
assume that a larger population size or a larger number
of generations returns better solutions, but they may not
know how large is adequate, see TP-II and TP-III.
NSGA II requires more computational power than the
satisficing algorithms.

Why do we use NSGA II as a verification algorithm if
its performance depends on hyperparameter settings? By
using a sufficient number of scenarios for hyperparameter
settings, we may find the best result, and using that, we can
verify the solutions obtained from the ALP are also near
optimal. However, although NSGA II can be used to verify a
test problem, when managing engineering designs, designers
may be not able or willing to invest the effort in running a
number of scenarios. The sensitivity to hyperparameter set-
ting is a weakness of NSGA II since not every designer is

aware of how sensitive it can be and how many scenarios are
sufficient as the size, complexity, and nature of each problem
may have different demands for determining the sufficient
number of scenarios. Therefore, given that not all designers
have the ability or patience to try a number of scenarios,
we suggest that there is some uncertainty in NSGA II as to
whether it can deliver an optimum solution. NSGA II has
been used to verify the solutions to the test problems and we
have invested the necessary effort to ensure that the solution
is indeed an optimum.

3.3 Advantage of problem exploration: combining
interior‑point searching and vertex searching

We use a multi-objective, nonlinear test problem (TP-I), to
demonstrate the advantages of problem exploration using
the cDSP and ALP, which makes designers less reliant on
Assumption 1 and are better achieve Robustness Goal 3.

Formulation: The optimization model and the corre-
sponding cDSP of TP-I are shown in Table 4. For the cDSP,
a target value is assigned to each objective. Solving the prob-
lem requires minimizing the deviation between the achieved
value and the goal target while satisfying all constraints and
bounds.

Table 4 The optimization and satisficing models of TP-I

Strategy Optimizing Satisficing

TP
TP-I Objective Functions

f1(x) = (x1 − 1)2 + (x2 − 1)2 + 3 ∙ x1 ∙ x2

f2(x) =
1
2
∙ (x1 − 2)

2

+ (x2 − 2)2 + x1 ∙ x22

Constraints and Bounds

s.t.

⎧
⎪
⎨
⎪
⎩

x1 ∙ x2 ≤ 1

0 ≤ x1 ≤ 2

0 ≤ x2 ≤ 2

Combination of Objective
Functions

Max
∑2

i=1
wi ∙ fi(x)

Given
x1, x2, d1

±
, d2

±

f1(x) =(x1 − 1)2 + (x2 − 1)2

+ 3 ∙ x1 ∙ x2

f2(x) =
1
2
∙ (x1 − 2)

2

+ (x2 − 2)2

+ x1 ∙ x22

Find
x1, x2, d1

∓
, d2

∓

Satisfy
Goals:
f1(x)

14
+ d1

− − d1
+=1

f2(x)

8
+ d2

− − d2
+=1

Constraints:
x1 ∙ x2 ≤ 1

di
− ∙ di

+ = 0, i = 1, 2

Bounds:
0 ≤ x1, x2 ≤ 2

0 ≤ di
±
≤ 1

Minimize
Z =

∑2
i=1wi

∙ (di− + di+)

6 https:// docs. scipy. org/ doc/ scipy/ refer ence/ optim ize. minim ize- trust
constr. html
7 https:// docs. scipy. org/ doc/ scipy/ refer ence/ optim ize. minim ize- slsqp.
html

https://docs.scipy.org/doc/scipy/reference/optimize.minimize-trustconstr.html
https://docs.scipy.org/doc/scipy/reference/optimize.minimize-trustconstr.html
https://docs.scipy.org/doc/scipy/reference/optimize.minimize-slsqp.html
https://docs.scipy.org/doc/scipy/reference/optimize.minimize-slsqp.html

 Research in Engineering Design

Ta
bl

e
5

 S
ol

ut
io

ns
 to

 T
P-

I (
do

m
in

at
ed

 so
lu

tio
ns

 fo
r e

ac
h

w
ei

gh
t a

re
 in

 it
al

ic
s)

W
ei

gh
t

St
ar

tin
g

po
in

t
CO

BY
LA

Tr
us

t-c
on

str
SL

SQ
P

A
LP

N
SG

A
 II

So
lu

tio
n

∑
2 i=
1
w
i
∙
f i
(x
)

So
lu

tio
n

∑
2 i=
1
w
i
∙
f i
(x
)

So
lu

tio
n

∑
2 i=
1
w
i
∙
f i
(x
)

So
lu

tio
n

∑
2 i=
1
w
i
∙
f i
(x
)

So
lu

tio
n

∑
2 i=
1
w
i
∙
f i
(x
)

(1
, 0

)
(0

.5
, 1

)
(2

, 0
.5

)
4.

25
(2

,0
.5

)
4.

25
(2

,0
.5

)
4.

25
(2

,0
.5

)
4.

25
(2

,0
.5

)
4.

25
(0

, 0
)

(0
, 0

)
2

(0
, 0

)
2

(0
, 0

)
2

(2
, 0

.5
)

(2
, 0

.5
)

4.
25

(2
,0

.5
)

4.
25

(2
,0

.5
)

4.
25

(0
, 1

)
(0

.5
, 1

)
(0

.5
, 2

)
3.

13
(0

, 0
)

6
(0

, 0
)

6
(0

, 0
)

6
(0

, 0
)

6
(0

, 0
)

(0
, 0

)
6

(2
, 0

.5
)

(2
, 0

)
4

(0
.5

,0
.5

)
(0

.5
, 1

)
(0

.5
, 2

)
3.

69
(0

.5
 2

)
3.

69
(0

.5
,2

)
3.

69
(0

.5
,2

)
3.

69
(0

, 0
)

4
(0

, 0
)

(0
, 0

)
4

(0
, 0

)
4

(0
, 0

)
4

(2
, 0

.5
)

(2
, 0

.5
)

3.
5

(2
,0

.5
)

3.
5

(2
,0

.5
)

3.
5

(0
.7

,0
.3

)
(0

.5
, 1

)
(0

.5
, 2

)
3.

91
(0

.5
,2

)
3.

91
(0

.5
,2

)
3.

91
(0

.5
,2

)
3.

91
(0

.5
,2

)
3.

91
(0

, 0
)

(0
, 0

)
3.

2
(0

, 0
)

3.
2

(0
, 0

)
3.

2
(2

, 0
.5

)
(2

, 0
.5

)
3.

8
(2

,0
.5

)
3.

8
(2

,0
.5

)
3.

8
(0

.3
,0

.7
)

(0
.5

, 1
)

(2
, 0

)
3.

4
(0

, 0
)

4.
8

(0
, 0

)
4.

8
(0

, 0
)

4.
8

(0
, 0

)
4.

8
(0

, 0
)

(0
, 0

)
4.

8
(2

, 0
.5

)
(2

, 0
.5

)
3.

2
(2

,0
.5

)
3.

2
(2

,0
.5

)
3.

2

Research in Engineering Design

Weights (weight vectors or weight scenarios): the prob-
lem has two goals (objectives) but the preferences for the
goals are unknown. So, we use an Archimedean strategy
(scalarization) (Jahn 1985; Lin 1976; Mistree et al. 1993)
to combine the goals and use different weights to explore
various preferences and understand the tradeoffs among
the goals. We apply five weight scenarios, as listed in the
“Weight” column in Table 5. Why do we use multiple weight
scenarios? Suppose that we do not know how to set the
weight—this happens quite often in multi-goal engineering
designs—so we need to explore different weight scenarios
and associate them with design preferences. We apply the
weight generation method in (Messac and Mattson 2002)
and use the version customized to engineering design prob-
lems (Guo et al. 2021) to obtain weight scenarios. For exam-
ple, for a two-goal problem, due to the non-orthogonality
between the two goals and the variation in sensitivity of each

goal along each dimension, the weight scenario (0.5, 0.5)
may neither allow the two goals to be equally prioritized,
nor allow the two goals to be achieved halfway through to
targets. A weight scenario (0.7, 0.3) does not mean that Goal
1’s target can be achieved 70% whereas Goal 2’s target can
be achieved 30%. In short, the weight for each goal is not
linear with the rate of achieving their targets. Therefore, we
try multiple weight scenarios to realize different design pref-
erences. Why do we use five scenarios? First, we start with
two weight scenarios, (0, 1) and (1, 0) as “parents.” If the
solution to the two weight scenarios are different, we choose
another weight scenario as a “child” weight scenario, laying
between the parents, for example (0.5, 0.5). This process is
repeated until the new child weight scenario has the same
solution as one of its parents. For Test Problem 1 (TP-I),
using this method, we stop introducing more weight sce-
narios when five scenarios have been used.

Starting points: To test the sensitivity of each solution
algorithm to starting points, we intuitively select three start-
ing points that are vertices of the feasible space bounded by
the constraint and bounds.

Results are listed in Table 5. Using five weight sce-
narios and trying three starting points, for every solution
algorithm, three solutions are obtained (only the best solu-
tions among all starting points are shown in Fig. 6), as
visualized on objective space in Fig. 6 and on x- f (x) Space
in Fig. 7. As TP-I is to maximize f1(x) and f2(x) , in Fig. 6,
ideal solutions should be close to the upper right corner of
the objective space, and in Fig. 7, the value of the objec-
tive function should be as large as possible. For TP-I, the
solutions using different algorithms are identical.

Observation: For a test problem with nonlinear con-
straints and multiple objectives, the same solutions are
obtained using the optimizing and satisficing strate-
gies. The results of the optimizing solution algorithms

Fig. 6 The solution points to TP-I on the objective space using five
algorithms: all the five solution algorithms return the same three solu-
tion points

Fig. 7 The solution points to TP-I on the x-f(x) space. a Is the 3D illustration of f1(x) . b Is the 3D illustration of f2(x)

 Research in Engineering Design

(COBYLA, Trust-constr, and SLSQP) are sensitive to the
starting point. In other words, using the satisficing strat-
egy, Robustness Goal 3 is better achieved versus using
optimizing strategy; Eq. 12. If the model is incomplete or
of low fidelity, avoiding being trapped in a local optimum
allows an engineering designer to have a better chance of
obtaining a solution for the physical system, which means
that Assumption 1 is less important.

Why are the solutions insensitive to the starting point
when using the cDSP and ALP? This is the result of the
combination of interior-point searches and vertex searches
in the “XPLORE” module in the DSIDES software. In
Fig. 8, we illustrate the “XPLORE” procedure to identify
appropriate starting points for approximation and solution
search. “m” points within the bounds of each variable are
chosen randomly. Then, the value of the goal and the fea-
sibility at “m” points are computed. The feasible points are
ranked and “n” of them with the lowest deviation from the
goal are selected as starting points and used sequentially.
The nonlinear equations are approximated as linear equa-
tions around a starting point using second-order sequential
linearization, and then the linear problem is solved using
the revised dual simplex algorithm (Ignizio 1985). Usu-
ally “m” is chosen to be a number in [800, 1200], and
“n” is chosen to be a number in [5, 20]. Therefore, using
“XPLORE,” the feasible points with relatively good goal-
achievement values are selected as starting points. To
some extent this reduces the chances of returning a local
optimum.

We summarize the advantages in exploration and fill in
the corresponding blank in Table 1 which becomes Table 6.

(12)
[
SSDS∕SSSP

]
Satisficing

≥
[
SSDS∕SSSP

]
Optimizing

.

3.4 Advantage in approximation: using
second‑order sequential linearization
and constraint accumulation

The test problem II (TP-II), a multi-objective problem with a
nonconvex equation, is used to demonstrate how Assumption
3 is removed and robust goals 1 and 3 are achieved better.
The formulations of TP-II using the different strategies are
in Table 7. The solutions are listed in Table 8. The best solu-
tions (among different starting points) of each design sce-
nario are visualized on objective space and x- f (x) Space in
Figs. 9 and 10, respectively. When using NSGA II to verify
the results, we use two values of the population size hyper-
parameter. With a population of 50, solutions are closer to
the upper right corner, so only the results of using NSGA II
with a population of 50 are presented here.

Observation: Using the cDSP and ALP, we obtain more
diverse solutions closer to the upper right corner, that is,
more satisficing solutions are obtained when changing
design scenarios. Using the satisficing strategy, Robust-
ness Goal 1 is better achieved for nonconvex problems; see
Eq. 13. Therefore, designers can manage nonconvex prob-
lems, especially when the degree of convexity of a goal
exceeds the degree of convexity of the linear combinations
of constraints in a local area, which makes designers rely
less on Assumption 3.

NSGA II solutions are sensitive to hyperparameter set-
ting but can return non-dominated solutions if the hyper-
parameter is set appropriately; however, the solutions are
not diverse. DSIDES can return satisficing and relatively

(13)

[

Pr(≠ ∅|Nonconvexity)
]

Satisficing

≥
[

Pr((≠ ∅|Nonconvexity)
]

Optimizing.

Fig. 8 Using the “XPLORE” module in DSIDES to identify the best starting points

Research in Engineering Design

diverse solutions and robustness goal 3 is better achieved
using satisficing; see Eq. 14.

Why does the cDSP and ALP manage nonconvex prob-
lems and return solutions close to the non-dominated solu-
tions (the solutions returned by NSGA II)? Two mechanisms
in the ALP make it possible to linearize the nonconvex func-
tion relatively accurately and converge with diverse solu-
tions—using second-order sequential linearization and the
accumulation of the linear constraints.

The ALP algorithm incorporates a local approximation
algorithm (Mistree et al. 1981, 1993; Chen et al. 1996), in
which a secant plane of the paraboloid (with the second-
order derivatives at the starting point as the coefficients)
replaces the original nonlinear function, as in Fig. 11, in
which two dimensions of a problem being approximated in
two iterations (synthesis cycle) is shown. The weighted-sum
of the goals is

∑
k∈KWk ∙ Gk . The starting point X0

0
 may not

be in the feasible region. A random search or a Hook-Jeeves
pattern search can be invoked to identify a point X0

1
 in the

feasible area. In the first iteration, the problem is linearized
at X0

1
.

In iteration i, Fig. 11a, a nonlinear constraint NFj is lin-
earized at X0

i
 , so an approximated linear constraint LFi,j is

obtained. Doing this for all nonlinear functions and framing
a linear model, the revised simplex dual algorithm is used
to obtain Solution X∗

i
 . Using the reduced move coefficient

(14)
[
SSDS∕SSSP

]
Satisficing

≥
[
SSDS∕SSSP

]
NSGAII

.

Ta
bl

e
6

 S
um

m
ar

y
of

 a
dv

an
ta

ge
s i

n
ex

pl
or

at
io

n

St
ag

e
Fe

at
ur

e
A

dv
an

ta
ge

A
ss

um
pt

io
n

re
m

ov
ed

Te
st

pr
ob

le
m

 (T
P)

Ro
bu

stn
es

s g
oa

l
In

tro
du

ct
io

n

Ex
pl

or
at

io
n

C
om

bi
ni

ng
 in

te
rio

r-p
oi

nt
 se

ar
ch

 a
nd

 v
er

te
x

se
ar

ch
D

es
ig

ne
rs

 c
an

 av
oi

d
ge

tti
ng

 tr
ap

pe
d

in
 lo

ca
l

op
tim

a
to

 so
m

e
ex

te
nt

 a
nd

 id
en

tif
y

sa
tis

fic
in

g
so

lu
tio

ns
 w

hi
ch

 a
re

 re
la

tiv
el

y
in

se
ns

iti
ve

 w
he

n
th

e
st

ar
tin

g
po

in
ts

 c
ha

ng
in

g

A
ss

um
pt

io
n

1
TP

-I
Ro

bu
stn

es
s G

oa
l 3

Se
ct

io
n

3.
3 Table 7 The optimization model and compromise DSP of the TP-II

Strategy Optimizing Satisficing

TP
 II Objective Functions

f1(x) = ���
(
x1

2 + x2
3
)

f2(x) =
1
2
∙ (x1 − 2)

3

+ (x2 − 2)3 + x1 ∙ x22

Constraints and Bounds

s.t.

⎧
⎪
⎨
⎪
⎩

x1 ∙ x2 ≤ 1

0 ≤ x1 ≤ 2

0 ≤ x2 ≤ 2

Combination of Objective
Functions

Max
∑2

i=1
wi ∙ fi(x)

Given
x1, x2, d1

±
, d2

±

f1(x) = cos
(

x12 + x23
)

f2(x) =
1

2
∙ (x1 − 2)

3

+(x2 − 2)3 + x1 ∙ x2

Find
x1, x2, d1

∓
, d2

∓

Satisfy
Goals:
f1(x)

1.2
 +d1− − d1

+=1
f2(x)

8
 +d2− − d2

+=1
Constraints:
x1 ∙ x2 ≤ 1

di− ∙ di+ = 0, i = 1, 2
Bounds:
0 ≤ x1, x2 ≤ 2

0 ≤ d1
±
, d2

±
≤ 1

Minimize
Z =

∑2
i=1wi ∙ (di− + di+)

 Research in Engineering Design

Ta
bl

e
8

 S
ol

ut
io

ns
 to

 T
P-

II
—

do
m

in
at

ed
 so

lu
tio

ns
 o

f e
ac

h
w

ei
gh

t a
re

 in
 it

al
ic

s;
 fo

r e
ac

h
m

et
ho

d,
 th

e
be

st
so

lu
tio

n
of

 e
ac

h
de

si
gn

 sc
en

ar
io

 is
 m

ar
ke

d
us

in
g

a
ca

pi
ta

l l
et

te
r (

A
, B

, C
, D

, E
, F

, G
, H

,
an

d
J)

W
ei

gh
t

St
ar

tin
g

po
in

t
CO

BY
LA

Tr
us

t-c
on

str
SL

SQ
P

A
LP

N
SG

A
 II

So
lu

tio
n

∑
2 i=
1
w
i
∙
f i
(x
)

So
lu

tio
n

∑
2 i=
1
w
i
∙
f i
(x
)

So
lu

tio
n

∑
2 i=
1
w
i
∙
f i
(x
)

So
lu

tio
n

∑
2 i=
1
w
i
∙
f i
(x
)

So
lu

tio
n

∑
2 i=
1
w
i
∙
f i
(x
)

(1
, 0

)
(0

.5
, 1

)
A

 (0
, 0

)
1

A
 (0

, 0
)

1
A

 (0
, 0

)
1

F
(0

.5
,1

.8
4)

0.
97

A
 (0

, 0
)

1
(0

, 0
)

(2
, 0

.5
)

(2
, 0

.5
)

−
 0

.5
5

(2
, 0

.5
)

−
 0

.5
5

(0
, 1

)
(0

.5
, 1

)
B

 (0
.5

, 2
)

0.
31

B
 (0

.5
, 2

)
0.

31
B

 (0
.5

, 2
)

0.
31

G
 (0

.5
1,

 1
.9

6)
0.

31
B

 (0
.5

, 2
)

0.
31

(0
, 0

)
(2

, 0
.5

)
(2

.0
, 0

.5
)

-2
.8

8
(0

.5
, 0

.5
)

(0
.5

, 1
)

(0
.9

, 1
.1

2)
−

 0
.4

2
D

 (0
.9

, 1
.1

2)
−

 0
.4

2
(0

.9
, 1

.1
2)

−
 0

.4
2

H
 (0

.5
2,

 1
.8

7)
0.

54
C

 (0
.5

5,
 1

.8
2)

0.
64

(0
, 0

)
C

 (0
.5

5,
 1

.8
2)

0.
64

(2
, 0

.5
)

C
 (0

.5
5,

 1
.8

2)
0.

64
(2

, 0
.5

)
−

 1
.7

1
(0

.7
, 0

.3
)

(0
.5

, 1
)

C
 (0

.5
5,

 1
.8

2)
0.

79
E

(0
.7

3,
 0

.8
8)

−
 0

.3
1

(0
.7

3,
 0

.8
8)

-0
.3

1
F

(0
.5

, 1
.8

4)
0.

68
J (

0.
56

, 1
.8

)
0.

79
(0

, 0
)

C
 (0

.5
5,

 1
.8

2)
0.

79
(2

, 0
.5

)
(0

.7
3,

 0
.8

8)
−

 0
.3

1
(2

, 0
.5

)
−

 1
.2

5
(2

, 0
.5

)
−

 1
.2

5
(0

.3
, 0

.7
)

(0
.5

, 1
)

C
 (0

.5
5,

 1
.8

2)
0.

5
C

 (0
.5

5,
 1

.8
2)

0.
5

C
 (0

.5
5,

 1
.8

2)
0.

5
C

 (0
.5

5,
 1

.8
2)

0.
5

C
 (0

.5
5,

 1
.8

2)
0.

5
(0

, 0
)

(2
, 0

.5
)

(2
, 0

.5
)

−
 2

.1
8

Research in Engineering Design

(RMC) to linearly combine X0
i
 and X∗

i
 , we find the starting

point of the next iteration X0
i+1

. In Iteration i+1, Fig. 11b, the
approximated linear constraints of all previous iterations (in
Fig. 11, we only show LFi,j and LFi+1,j) are accumulated, and
a solution X∗

i+1
 , is returned and the starting point of iteration

i+2 , X0
i+2

 , is obtained using the RMC to linearly combine
X0
i+1

 and X∗
i+1

 . This procedure is iterated for n times.
We use Fig. 12a to illustrate the second-order sequen-

tial linearization used in the ALP. In Iteration i, first, NFj
(Paraboloid ABC) is approximated to NFi,j” (Paraboloid
AB*C*) with the diagonal terms of its Hessian matrix at X0

i

as coefficients. Then, NFj” is approximated to a secant Plane
LFi,j (Plane AB*C*). NFj” and LFi,j are computed as follows.

NFi,j” is obtained using the second-order full derivatives
at X0

i
 , Eq. 15, because the second-order partial derivatives

have limited impact on the gradient (Mistree et al. 1981).
Fig. 9 The solution points to TP-II on the objective space—solutions
returned by ALP are relatively close to the upper right corner and
diverse

Fig. 10 The solution points to TP-II on the x-f(x) space—using trust-constraint and SLSQP fall into local optima. a Is the 3D illustration of f1(x).
b Is the 3D illustration of f2(x)

Fig. 11. The approximation
and solution using ALP in two
iterations. a Is Iteration i. b Is
Iteration i+1

 Research in Engineering Design

From Fig. 15, for the pth dimension, the quadratic to be
solved to obtain

(
xip − x0

ip

)
 is:

If Fig. 16 has real roots, as is the situation in Fig. 12a, by
solving Eq. 16 and selecting the root between Eqs. 17 and
18 with the smaller absolute value for each dimension, we
obtain an intersection that is closer to the paraboloid in each
dimension, that is B* and C*.

If Eq. 16 has no real roots, as is the case in Fig. 12b, NFi
does not intersect with Plane x, and the first-order derivative
at X0

i
 is used, as in Eq. 19.

(15)

NFi,j′′ =NFj
(

X0
i

)

+
∑n

p=1

(

xip − x0ip
)

(

�NFj
�xip

)

0

+ 1
2
∑n

p=1

(

xip − x0ip
)2

(

�2NFj
�xip2

)

0
.

(16)

NFj

(
X0
i

)
+
(
xip − x0

ip

)(�NFj

�xip

)

0

+
1

2

(
xip − x0

ip

)2

(
�2NFj

�xip
2

)

0

= 0.

(17)
(
�NFj

�xip

)∗

0

=

−NFj

(
X0

i

)(�2NFj

�xip
2

)

0

−

(
�NFj

�xip

)

0

−

√(
�NFj

�xip

)2

0

− 2NFj

(
X0

i

)(�2NFj

�xip
2

)

0

,

(18)
(�NFj

�xip

)∗

0
=

−NFj
(

X0
i

)

(

�2NFj

�xip2

)

0

−
(

�NFj

�xip

)

0
+
√

(

�NFj

�xip

)2

0
− 2NFj

(

X0
i

)

(

�2NFj

�xip2

)

0

.

(19)
(
�NFj

�xip

)∗

0

=

(
�NFj

�xip

)

0

.

Based on the intersections in each dimension, for exam-
ple, B* and C* we get LFi.

If the degree of convexity of NFj is positive or slightly
negative (greater than − 0.015) at the starting point of the ith
iteration, and if the constraint is active in the (i-1)th iteration,
that is, X∗

i−1
 is on the surface of NFj ,, then the accumulated

constraints replace NFj , Eq. 21; otherwise, the single linear
constraint in the ith iteration replaces NFj, Fig. 22.

Constraint Accumulation Algorithm
In the ith iteration
for every j in J

if degreeconvexity =
1

n

n∑
p=1

�2NFj

�x2
ip

≤ −0.015

and NFj

(
X∗
i−1

)
= 0

else

Then, the revised simplex dual algorithm is invoked to
solve the linear problem PL

i
, so a solution X∗

i
 is obtained.

A point X0
i+1

 , which is a point between the starting point X0
i

and the solution X∗
i
 , becomes the starting point of the next

iteration.
Constraint accumulation is only used when the local con-

vexity of an equation is greater than − 0.015, which is a
value determined by experiments and heuristics. When the
degree of convexity of an equation around the starting point
is greater than − 0.015, the equation at the linearization
point is convex or slightly concave, as the example shown in

(20)LFi,j =
∑n

p=1
xip

(�NFj

�xip

)∗

0
−

(

∑n
p=1

x0ip

(�NFj

�xip

)∗

0
− NFj

(

X0
i
)

)

.

(21)LFi,j, = LFi−1,j ∪ LFi,j

(22)LFi,j, = LFi,j

Fig. 12 The two-step linear approximation methods using the ALP. a
Illustrates the situation when the second-order paraboloid of the orig-
inal nonlinear constraint has intersection with plane x1 − x2. b Illus-

trates the situation when the second-order paraboloid of the original
nonlinear constraint has no intersection with plane x1 − x2

Research in Engineering Design

Fig. 13 Using accumulated constraints from multiple linearization iterations for a convex equation (a) or slightly nonconvex equation (b) and
using a single linearized constraint for a significantly nonconvex constraint (c)

Table 9 Summary of advantages in approximation

Stage Feature Advantage Assumption removed Test problem (TP) Robustness goal Introduction

Approximation Using second-
order
sequential
linearization

Designers can balance
between linearization
accuracy and computa-
tional complexity

Assumption 3 TP-II Robustness Goal 1 and 3 Section 3.4

Using accu-
mulated
linearization

Designers can manage
nonconvex problems and
deal with highly convex,
nonlinear problems rela-
tively more accurately

 Research in Engineering Design

Fig. 13a and b, or as the contours of f (x) in Fig. 3a and b, so
the approximated linear equations from multiple iterations
are accumulated to replace the nonlinear equation. However,
if the local convexity of an equation is below − 0.015, as
shown in Fig. 13c, or as the contours of f (x) in Fig. 3, the
equation is nonconvex, we only use a single linearized con-
straint in each iteration to avoid cutting off too much of the
feasible space. Using accumulated constraints, designers can
manage nonconvex problems accurately.

The advantages in the approximation are summarized and
filled into the corresponding blank in Table 1 to become
Table 9.

3.5 Advantage in formulation: minimizing
deviation functions instead of objectives

We adjust the scale of f2(x) in TP-II and add the lower bounds
to the two objectives to avoid negative values, so this becomes
TP-III; see Table 8. We use TP-III to show how one can manage
problems with large differences in the scale of multiple objec-
tives using the cDSP and ALP, this removes Assumptions 1 and
3 and better achieves Robust Goals 1 and 2. The solutions are
given in Table 10 and visualized on objective space and x- f (x)
Space in Figs. 14 and 15. The three optimization algorithms
cannot return any feasible solutions. Due to the difference in

the scale of the two objectives, one cannot use optimizing
algorithms to solve the problem by linearly combining them,
because: i) the objective with the largest scale dominates the
other objective(s), and ii) a linearized function of the weighted-
sum objective at a local area can be singular (Table 11).

When using NSGA II to solve the problem, we use
two values to the population size, 20 and 50 - one of
the hyperparameters, because when we use these values,
the solution returned is also changed. There are multiple
hyperparameters that need to be tuned when using NSGA
II. However, since we are not aiming to identify all the
hyperparameters that may affect solutions and demon-
strate how and how much each hyperparameter affects
solutions, we only use “population” as an example to
illustrate that different values of a hyperparameter have
an impact on the solutions.

Observation: For a multi-objective (multi-goal) prob-
lem with nonconvex functions, when the scale of the
objectives varies largely, optimizing algorithms cannot
return feasible solutions, whereas a satisficing strategy
may allow designers to identify adequate solutions. This
is explained using the KKT.

When using optimizing algorithms to solve optimiza-
tion problems, the first-order derivative of Lagrange
equation with respect to decision variable x, which is a
function of the parameters P of the model (the coeffi-
cients in objectives and constraints), decision variables x
(if any objective or constraint is nonlinear), Lagrange
multipliers � and � , and weights √ that combining the

multiple goals is shown in Eq. 25.

(23)∇xL(x,�, �) = y
(
P, x,�, �, p

)
.

Table 10 The optimization model and compromise DSP of TP-III

Strat-
egy

Optimizing Satisficing

TP
III Objective Functions

f1(x) = ���
(
x1

2 + x2
3
)

f2(x) =25 ∙ (x1 − 2)3

+ 50 ∙ (x2 − 2)3 + 50 ∙ x1 ∙ x22

Constraints and Bounds

s.t.

⎧
⎪
⎪
⎨
⎪
⎪
⎩

x1 ∙ x2 ≤ 1

f1(x) ≥ 0

f2(x) ≥ 0

0 ≤ x1 ≤ 2

0 ≤ x2 ≤ 2

Combination of Objective
Functions

Max
∑2

i=1
wi ∙ fi(x)

Given
x1, x2, d1

±
, d2

±

f1(x) = cos
(
x1

2 + x2
3
)

f2(x) =25 ∙ (x1 − 2)3

+ 50 ∙ (x2 − 2)3 + 50 ∙ x1 ∙ x22

Find
x1, x2, d1

∓
, d2

∓

Satisfy
Goals:
f1(x)

1.2
 +d1− − d1

+=1
f2(x)

400
 +d2− − d2

+=1
Constraints:
x1 ∙ x2 ≤ 1

f1(x) ≥ 0

f2(x) ≥ 0

di
− ∙ di

+ = 0, i = 1, 2

Bounds:
0 ≤ x1, x2 ≤ 2

0 ≤ d1
±
, d2

±
≤ 1

Minimize

Z =
∑2

i=1
wi ∙ (di

− + di
+)

Fig. 14 The solution points to TP-III on objective space using two
algorithms – solutions returned by NSGA II are more diverse but sen-
sitive to parameter settings and increasing the population and itera-
tions do not always produce better results

Research in Engineering Design

For a satisficing strategy, the first-order derivative of
the Lagrange equation contains only the coefficients of
the deviation variables in the objective, since only devia-
tion variables d∓ constitute the objective (not the deci-
sion variables, x). For a �-goal cDSP with m inequality
constraints g(x) and l equality constraints h(x) , if we
use weights to combine the � goals G(x, d) , i.e., using
the Archimedean strategy to manage a multi-goal cDSP,
then the coefficients in the first-order Lagrange equation
would be only the weights and � – � is the Lagrange mul-
tiplier of the goal functions; see Eq. 26.

When using optimization, the second-order Lagrange
equation may still have parameters and decision variables
due to nonlinearity; Eq. 27. For satisficing, the second-
order Lagrange equation with respect to deviation vari-
ables degenerates to zero because the objective of a cDSP
is a linear combination of deviation variables; see Eq. 28.
That is why satisficing solutions do not need to meet the
second-order KKT conditions.

Although both optimal solutions x∗ and satisficing solu-
tions xs meet the first-order KKT conditions, the chance of

(24)∇dL(x
s, d,�, �, �) = ∇dz(d) +

m∑

i=1

�i∇dgi(x
s) −

�∑

j=1

�j∇dhj(x
s) −

�∑

k=1

�k∇dG(x
s, d) = y(p, �).

(25)∇2
xx
L(x,�, �) = ∇xy

(
P, x,�, �, p

)
= y�

(
P�, x

)

(26)∇2
dd
L(xs, d,�, �, �) = ∇d

(
y(p, �)

)
≡ 0

maintaining the first-order KKT conditions for the two
strategies under uncertainty varies. If any uncertainty with
probability P takes place to an item ℑ in the first-order
equation that destroys its equilibrium, we denote it as
Pr

(
ℑ̃|P

)
 . For a N-dimension, Q-parameter8, and �-goal

problem, using optimizing strategy, the source of ℑ̃ can be
decision variables x̃n , Lagrange multipliers �̃i and �̃j , and
weights √̃

k

 ; for the satisficing strategy, the source of ℑ̃ can

only be the weights √̃
k

 and the Lagrange multipliers for

the goals �̃k . If and only if none of the items under the
uncertainty breaks the equilibrium of first-order equation,
then the opt imal /sat is f ic ing so lut ion is s t i l l
optimal/satisficing under this uncertainty. For a N-dimen-
sion, Q-parameter, and �-goal problem, the probability of
maintaining an optimal solution and a satisficing solution
under Uncertainty P are given in Eqs. 29 and 30,
respectively.

Fig. 15 The solution points to TP-III on the x- f (x) space. a Is the 3D illustration of f1(x). b Is the 3D illustration of f2(x). All solutions’ f1(x) val-
ues are close to 1 except B’ and H’; all solutions’ f2(x) values are between close to 18 except A’

8 Here, we define a coefficient or an intercept of a constraint or an
objective as a parameter. A parameter has a given value (either a con-
stant value or a stochastic value) and the value does not depend on
any decision variables.

 Research in Engineering Design

Ta
bl

e
11

So

lu
tio

ns
 to

 T
P-

II
I—

do
m

in
at

ed
 so

lu
tio

ns
 o

f e
ac

h
w

ei
gh

t a
re

 in
 it

al
ic

s;
 fo

r e
ac

h
m

et
ho

d,
 th

e
be

st
so

lu
tio

n
of

 e
ac

h
de

si
gn

 sc
en

ar
io

 is
 m

ar
ke

d
us

in
g

a
ca

pi
ta

l l
et

te
r (

A’
, B

’,
C

’,
D

’,
E’

, F
’,

G
’,

H
’,

an
d

J’
)

W
ei

gh
t

St
ar

tin
g

po
in

t
CO

BY
LA

Tr
us

t-c
on

str
SL

SQ
P

A
LP

N
SG

A
 II

/II
I–

Po
pu

la
tio

n
(P

)=
20

/5
0

So
lu

tio
n

∑
2 i=
1
w
i
∙
f i
(x
)

So
lu

tio
n

∑
2 i=
1
w
i
∙
f i
(x
)

So
lu

tio
n

∑
2 i=
1
w
i
∙
f i
(x
)

So
lu

tio
n

∑
2 i=
1
w
i
∙
f i
(x
)

So
lu

tio
n

∑
2 i=
1
w
i
∙
f i
(x
)

(1
, 0

)
(0

.5
, 1

)
C

an
no

t m
an

ag
e

no
nc

on
ve

x
eq

ua
-

tio
ns

 w
ith

 b
ou

nd
s

A
ll

so
lu

tio
ns

 v
io

la
te

 o
ne

 o
r m

or
e

co
ns

tra
in

ts
A

ll
so

lu
tio

ns
 v

io
la

te
 o

ne
 o

r m
or

e
co

ns
tra

in
ts

A’
 (0

.5
1,

1.
82

)
1

P=
20

:
G

’ (
0.

55
, 1

.8
5)

P=
50

:
A’

 (0
.5

1,
 1

.8
2)

P=
20

:
0.

99
P=

50
:

1

(0
, 0

)
(2

, 0
.5

)

(0
, 1

)
(0

.5
, 1

)
B

’ (
0.

51
, 1

.9
6)

15
.2

7
P=

20
:

H
’ (

0.
52

, 1
.9

2)
P=

50
:

B
’ (

0.
51

, 1
.9

6)

P=
20

:
14

.8
6

P=
50

:
15

.3
6

(0
, 0

)
(2

, 0
.5

)

(0
.5

, 0
.5

)
(0

.5
, 1

)
C

’ (
0.

55
, 1

.8
2)

7.
5

P=
20

:
H

’ (
0.

52
, 1

.9
2)

P=
50

:
D

’ (
0.

53
, 1

.8
7)

P=
20

:
7.

69
P=

50
:

7.
78

(0
, 0

)
(2

, 0
.5

)

(0
.7

, 0
.3

)
(0

.5
, 1

)
C

’ (
0.

55
, 1

.8
2)

4.
9

P=
20

:
C

’ (
0.

55
, 1

.8
2)

P=
50

:
E’

 (0
.5

3,
 1

.8
8)

P=
20

:
4.

9
P=

50
:

5.
01

(0
, 0

)
(2

, 0
.5

)

(0
.3

, 0
.7

)
(0

.5
, 1

)
C

’ (
0.

55
, 1

.8
2)

10
.0

1
P=

20
:

J’
 (0

.5
4,

 1
.8

5)
P=

50
:

F’
 (0

.5
3,

 1
.8

9)

P=
20

:
10

.4
9

P=
50

:
10

.6

(0
, 0

)
(2

, 0
.5

)

Research in Engineering Design

As the value of any probability is in the range of [0,
1], the more items on the right-hand side we multiply
(the more items the probability depends on), the lower
the probability becomes. The items in Eq. 30 are fewer
than those of Eq. 29. Hence, the chance of maintaining an
optimal solution under Uncertainty P is often smaller than
the chance of maintaining a satisficing solution with the
same uncertainty; Eq. 31.

In summary, using the satisficing strategy, robustness
goals 1 and 2 are better achieved for nonconvex problems
with multiple objectives that have various scales; see
Eqs. 32 and 33. Using satisficing, designers can deal with
nonconvex, multi-objective problems that may be incom-
plete or inaccurate and with uncertainties, which helps
remove Assumptions 1 and 3.

(27)

Pr(x∗|P) ≈
∏Q

q=1

[
1 − Pr

(
P̃q|P

)]

∏N

n=1

[
1 − Pr

(
x̃n|P

)]

∏m

i=1

[
1 − Pr

(
�̃i|P

)]∏l

j=1

[
1 − Pr

(
�̃j|P

)]

∏�

k=1

[
1 − Pr

(
√̃

k

|P
)]

,

(28)

Pr(xs|P) ≈
∏�

k=1

[
1 − Pr

(
√̃

k

|P
)]∏�

k=1

[
1 − Pr

(
�̃k|P

)]
.

(29)Pr(x∗|P) ≤ Pr(xs|P)

Ta
bl

e
12

Su

m
m

ar
y

of
 a

dv
an

ta
ge

s i
n

fo
rm

ul
at

io
n

St
ag

e
Fe

at
ur

e
A

dv
an

ta
ge

A
ss

um
pt

io
n

re
m

ov
ed

Te
st

pr
ob

le
m

 (T
P)

Ro
bu

stn
es

s G
oa

l
In

tro
du

ct
io

n

Fo
rm

ul
at

io
n

U
si

ng
 G

oa
ls

 a
nd

 M
in

im
iz

in
g

D
ev

ia
tio

n
Va

ria
bl

es

In
ste

ad
 o

f O
bj

ec
tiv

es
A

t a
 so

lu
tio

n
po

in
t,

on
ly

 th
e

ne
ce

ss
ar

y
K

uh
n–

Tu
ck

er
 c

on
di

tio
ns

 a
re

 m
et

, w
he

re
as

 th
e

su
f-

fic
ie

nt
 K

uh
n–

Tu
ck

er
 c

on
di

tio
ns

 d
o

no
t h

av
e

to

be
 m

et
Th

er
ef

or
e,

 d
es

ig
ne

rs
 h

av
e

a
hi

gh
er

 c
ha

nc
e

of

fin
di

ng
 a

 so
lu

tio
n

an
d

a
lo

w
er

 c
ha

nc
e

of
 lo

si
ng

a

so
lu

tio
n

du
e

to
 p

ar
am

et
er

iz
ab

le
 a

nd
/o

r u
np

a-
ra

m
et

er
iz

ab
le

 u
nc

er
ta

in
tie

s

A
ss

um
pt

io
n

1
TP

-I
II

Ro
bu

stn
es

s G
oa

l 2
Se

ct
io

n
3.

5 Table 13 The compromise DSP of the TP-IV

TP The Compromise DSP

IV Given
x1, x2, d1

∓
, d2

∓

f1(x) = cos
(
x1

2 + x2
3
)

f2(x) = 25 ∙ (x1 − 2)3 + 50 ∙ (x2 − 2)3 + 50 ∙ x1 ∙ x2
2

Find
x1, x2, d1

∓
, d2

∓

Satisfy
Goals:
f1(x)

1.2
 +d1− − d1

+=1
f2(x)

400
 +d2− − d2

+=5
Constraints:
x1 ∙ x2 ≤ 1

di
− ∙ di

+ = 0, i = 1, 2

Bounds:
0 ≤ x1, x2 ≤ 2

0 ≤ d1
∓
, d2

∓
≤ 1

Minimize
Z =

∑2

i=1
wi ∙ (di

− + di
+)

 Research in Engineering Design

The advantages in formulation are summarized and
filled into the corresponding blank in Table 1 so it becomes
Table 12.

3.6 Advantage in evaluation: allowing violations
of soft requirements while avoiding violations
of rigid requirements

The advantages in a formulation using a satisficing strategy
are shown in Section 3.5. One may wonder if optimizing
algorithms are used to solve a cDSP, will the results be the
same as the ALP? The answer is no, if the problem is non-
convex and the difficulty of achieving the multiple goals var-
ies greatly. To illustrate the advantage in evaluation using a
satisficing strategy we use TP-IV—in which the difficulty of
achieving each goal’s target varies enormously. This allows
designers to rely less on Assumption 1 and better achieve
robust goal 1. We formulate TP-IV into a cDSP and use
both the optimizing and satisficing strategies to solve it and
compare results. The cDSP, visualization of the two goals,
solutions, and visualization of solutions on objective space
and x- f (x) space of TP-IV are given in Table 13, Fig. 16,
Table 14, Figs. 17 and 18, respectively.

(30)

[
Pr

(
S ≠ ∅|

{
Nonconvexity

objectiveswithvariousscales

})]

Satisficing

≥

[
Pr

(
S ≠ ∅|

{
Nonconvexity

objectiveswithvariousscales

})]

Optimizing

,

(31)
[
Pr(xs|P)

]
Satisficing

≥
[
Pr(x∗|P)

]
Optimizing

.

Observation: cDSP and ALP are designed to formulate
and explore engineering design problems with various
levels of achievability of the goals, in other words, when
f i(x)∕Ti ≫ f i(x)∕Ti for Goal i and Goal j, which often
happens in engineering design, feasible solutions can be
identified.

Using the ALP to solve the cDSP, satisficing solu-
tions (compared with the solutions from NSGA II) can be
obtained, whereas using optimizing algorithms, no feasi-
ble solutions are returned. Why does using the ALP allow
designers to obtain satisficing solutions to a cDSP with vari-
ous degrees of achievability of the goals, but optimizing
algorithms do not?

When f i(x)∕Ti ≫ f i(x)∕Ti , especially when d−
j
 cannot

meet its upper bound of d−
j
≤ 1 , its upper bound must be

violated. However, optimization algorithms do not have a
mechanism to violate the deviation bounds but not to violate
other constraints or bounds. Because some optimization
algorithms, such as Trust- constr and SLSQP, treat all con-
straint and bound priorities equally, if at least one of the
constraints and bounds is violated, the solution point is con-
sidered to be infeasible.

Unlike those optimizing algorithms, using the ALP, the
constraints, and the bounds of the decision variables x are
the highest priority, and the bounds of the deviation vari-
ables d±

i
 are assigned second priority. If the violation of

any deviation bound allows a point xs in the feasible area
bounded by the constraints and the bounds of system vari-
ables to be found, then XS is returned as a solution. So, for
an n-dimension, m-constraint (with p inequality constraints
and m-p equality constraints), k-goal cDSP: xs is a satisfic-
ing solution,

Fig. 16 The left-hand side (objective function) and the right-hand side (target) of the two goals of TP-IV on the x- f (x) space. a Is the 3D illustra-
tion of f1(x). b Is the 3D illustration of f2(x)

Research in Engineering Design

Ta
bl

e
14

So

lu
tio

ns
 to

 T
P-

IV
 (c

lo
se

-to
-n

on
-d

om
in

at
ed

 so
lu

tio
ns

 o
r g

oo
d

en
ou

gh
 so

lu
tio

ns
)

W
ei

gh
t

St
ar

tin
g

po
in

t
CO

BY
LA

Tr
us

t-c
on

str
SL

SQ
P

A
LP

N
SG

A
 II

 –
 P

op
ul

at
io

n
(P

)=
50

So
lu

tio
n

∑
2 i=
1
w
i
∙
f i
(x
)

So
lu

tio
n

∑
2 i=
1
w
i
∙
f i
(x
)

So
lu

tio
n

∑
2 i=
1
w
i
∙
f i
(x
)

So
lu

tio
n

∑
2 i=
1
w
i
∙
f i
(x
)

So
lu

tio
n

∑
2 i=
1
w
i
∙
f i
(x
)

(1
, 0

)
(0

.5
, 1

)
C

an
no

t m
an

ag
e

no
nc

on
ve

x
eq

ua
-

tio
ns

 w
ith

 b
ou

nd
s

A
ll

so
lu

tio
ns

 v
io

la
te

 o
ne

 o
r m

or
e

co
ns

tra
in

ts
A

ll
so

lu
tio

ns
 v

io
la

te
 o

ne
 o

r m
or

e
co

ns
tra

in
ts

A’
’ (

0.
53

,1
.7

5)
0.

8
D

’’
(0

.5
1,

 1
.8

8)
0.

81
(0

, 0
)

(2
, 0

.5
)

(0
, 1

)
(0

.5
, 1

)
B

’’
 (0

.5
1,

 1
.9

7)
16

.2
6

E’
’

(0
.5

1,
 1

.9
6)

15
.2

6
(0

, 0
)

(2
, 0

.5
)

(0
.5

, 0
.5

)
(0

.5
, 1

)
C

’’
(0

.5
7,

 1
.7

4)
7.

29
F’

’
(0

.5
3,

 1
.8

8)
7.

21
(0

, 0
)

(2
, 0

.5
)

(0
.7

, 0
.3

)
(0

.5
, 1

)
C

’’
(0

.5
7,

 1
.7

4)
4.

69
G

’’
(0

.5
7,

 1
.7

5)
4.

6
(0

, 0
)

(2
, 0

.5
)

(0
.3

, 0
.7

)
(0

.5
, 1

)
C

’’
(0

.5
7,

 1
.7

4)
9.

88
F’

’
(0

.5
3,

 1
.8

8)
10

.5
4

(0
, 0

)
(2

, 0
.5

)

 Research in Engineering Design

if and only if
fi(x

s)

Ti
+ d−

i
− d+

i
= 1, ∀i = 1,… k //Goal functions hold at

xs , and
gi(x

s) ≥ 0, ∀i = 1,… p//Inequality constraints are satis-
fied at xs , and

hi(x
s) = 0, ∀i = p + 1,…m//Equality constraints are satis-

fied at xs , and
lowerbound ≤ xs ≤ upperbound , and
Minimize the violation of deviation bounds
In summary, for multi-objective, engineering design

problems with nonlinear, nonconvex functions, goals with
various scales, and the target of the goals with various
degrees of achievability, using the cDSP and ALP allows
designers to obtain satisficing solutions that are close to the

non-dominated solutions obtained by using NSGA II; see
Eq. 34. Multi-objective problems can be designed, espe-
cially when the scale of the goals varies largely, which helps
remove Assumptions 1 and 3.

The advantages in the formulation are summarized and
filled into the corresponding blank in Table 1 so it becomes
Table 15.

We demonstrated the advantages of the cDSP and ALP in
the four stages using four test problems. We summarize them
by adding information to Table 1, so it becomes Table 16.

4 Computational efficiency

How does the computational efficiency of the ALP compare
to the simplex algorithm and interior-point searching algo-
rithms such as NSGA II?

The ALP algorithm is used for linearizing the compro-
mise Decision Support Problems (cDSP) through second-
order sequential linearization and solving them with the
revised dual simplex algorithm. Second-order sequential
linearization requires multiple iterations. In each iteration,
the nonlinear equation is linearized. Nonlinear constraints

(32)

⎡
⎢
⎢
⎢⎣

Pr

⎛
⎜
⎜
⎜
⎝

S ≠ ∅�
⎧
⎪
⎨
⎪
⎩

Nonconvexity

Goalswithvariousscales

Goals′targetswithvariousachievabilities

⎫
⎪
⎬
⎪
⎭

⎞
⎟
⎟
⎟
⎠

⎤
⎥
⎥
⎥⎦Satisficing

≥

⎡
⎢
⎢
⎢⎣

Pr

⎛
⎜
⎜
⎜
⎝

S ≠ ∅�
⎧
⎪
⎨
⎪
⎩

Nonconvexity

Goalswithvariousscales

Goals′targetswithvariousachievabilities

⎫
⎪
⎬
⎪
⎭

⎞
⎟
⎟
⎟
⎠

⎤
⎥
⎥
⎥⎦Optimizing

.

Fig. 17 The solutions to TP-IV using the ALP and NSGA II—NSGA
II finds more non-dominated solutions, whereas ALP finds solutions
with better Z values (the weighted combination of deviations)

Fig. 18 The solutions to TP-IV on the x- f (x) space—there is little difference between ALP solutions and NSGA II solutions (the arrows are used
to identify the solutions and their directions have no meaning). a Is the 3D illustration of f1(x). b Is the 3D illustration of f2(x)

Research in Engineering Design

and nonlinear goals are included in a second-order equa-
tion by using the diagonal terms of the Hessian matrix of
the equation at the linearization point as coefficients. This
is used to solve the second-order equation and the solution
with the lower absolute value is selected. Using this value
and the linearization point as two points to determine a line,
this line then becomes the linear equation. Then the problem
becomes linear and is solved with the revised dual simplex
algorithm. Then, the solution point becomes the lineariza-
tion point for the next iteration. The linear equations in each
iteration are accumulated as linear equations in the linear
problem in the latest iteration. The algorithm converges
when the difference among the solutions of several iterations
is smaller than a predefined threshold, or when the number
of iterations reaches the predefined maximum number of
iterations.

Suppose there are m equations in an n-dimensional design
problem, and m′ of the equations are nonlinear. In Itera-
tion i , the computational complexity of linearizing the m′
equations into second-order equations is O(m� ∙ n) . Suppose
that there are m′′

i
 linear equations – including the (m − m�)

equations that are linear in the original design problem and
(m��

i
− m + m�) equations that are linearized and accumulated

from Iteration one to the current iteration, so the computa-
tional complexity of solving the linearized problem in Itera-
tion i is polynomial on average (Kelner and Spielman 2006)
although the worst-case is O(2n) . Therefore, the computa-
tional complexity of the ALP is polynomial.

As the computational complexity of the simplex algo-
rithm is polynomial for the average-case (Spielman and Teng
2004), the ALP has the same computational complexity as
the Simplex algorithm. The computational complexity of
NSGA II is O(k ∙ N2) , where k is the number of objective
functions and N is the population size. The computational
complexity of ALP and NSGA II depend on different param-
eters—the former depends on the dimension and the latter
depends on the population size. Thus the computational cost
of the ALP does not exceed that of NSGA II. As users usu-
ally set a population much larger than the dimension of a
problem when using NSGA II, more often than not, NSGA
II requires greater computational power than the ALP does.
(Spielman and Teng 2004).

5 Closing remarks

In this paper, in the context of the assumptions that are foun-
dational to the KKT conditions we describe the differences
between adopting an optimizing strategy and a satisficing
strategy when design complex engineering systems; see
Section 2.4 To use the optimizing strategy, to obtain opti-
mal solutions, three assumptions are foundational to meet

Ta
bl

e
15

Su

m
m

ar
y

of
 a

dv
an

ta
ge

s i
n

ev
al

ua
tio

n

St
ag

e
Fe

at
ur

e
A

dv
an

ta
ge

A
ss

um
pt

io
n

re
m

ov
ed

Te
st

pr
ob

le
m

 (T
P)

Ro
bu

stn
es

s g
oa

l
In

tro
du

ct
io

n

Ev
al

ua
tio

n
A

llo
w

in
g

so
m

e
vi

ol
at

io
ns

 o
f s

of
t r

eq
ui

re
m

en
ts

,
su

ch
 a

s t
he

 b
ou

nd
s o

f d
ev

ia
tio

n
va

ria
bl

es
D

es
ig

ne
rs

 c
an

 m
an

ag
e

rig
id

 re
qu

ire
m

en
ts

 a
nd

so

ft
re

qu
ire

m
en

ts
 in

 d
iff

er
en

t w
ay

s t
o

en
su

re

fe
as

ib
ili

ty
A

s a
 re

su
lt,

 g
oa

ls
 a

nd
 c

on
str

ai
nt

s w
ith

 d
iff

er
en

t
sc

al
e

ca
n

be
 m

an
ag

ed

A
ss

um
pt

io
n

1
an

d
3

TP
-I

V
Ro

bu
stn

es
s G

oa
l 1

Se
ct

io
n

3.
6

 Research in Engineering Design

Ta
bl

e
16

Th

e
ad

va
nt

ag
es

 o
f t

he
 c

D
SP

 a
nd

 A
LP

 in
 th

e
fo

ur
 st

ag
es

 o
f e

ng
in

ee
rin

g
de

si
gn

St
ag

e
Fe

at
ur

e
A

dv
an

ta
ge

A
ss

um
pt

io
n

re
m

ov
ed

Te
st

pr
ob

le
m

 (T
P)

Ro
bu

stn
es

s g
oa

l
In

tro
du

ct
io

n

Fo
rm

ul
at

io
n

U
si

ng
 G

oa
ls

 a
nd

 M
in

im
iz

in
g

D
ev

ia
tio

n
Va

ri-
ab

le
s I

ns
te

ad
 o

f O
bj

ec
tiv

es
A

t a
 so

lu
tio

n
po

in
t,

on
ly

 th
e

ne
ce

ss
ar

y
K

uh
n–

Tu
ck

er
 c

on
di

tio
ns

 a
re

 m
et

, w
he

re
as

th

e
su

ffi
ci

en
t K

uh
n–

Tu
ck

er
 c

on
di

tio
ns

 d
o

no
t h

av
e

to
 b

e
m

et
Th

er
ef

or
e,

 d
es

ig
ne

rs
 h

av
e

a
hi

gh
er

 c
ha

nc
e

of
 fi

nd
in

g
a

so
lu

tio
n

an
d

a
lo

w
er

 c
ha

nc
e

of

lo
si

ng
 a

 so
lu

tio
n

du
e

to
 p

ar
am

et
er

iz
ab

le

an
d/

or
 u

np
ar

am
et

er
iz

ab
le

 u
nc

er
ta

in
tie

s

A
ss

um
pt

io
n

1
TP

-I
II

Ro
bu

stn
es

s G
oa

l 2
Se

ct
io

n
3.

5

A
pp

ro
xi

m
at

io
n

U
si

ng
 se

co
nd

-o
rd

er
 se

qu
en

tia
l l

in
ea

riz
at

io
n

D
es

ig
ne

rs
 c

an
 h

av
e

a
ba

la
nc

e
be

tw
ee

n
lin

ea
riz

at
io

n
ac

cu
ra

cy
 a

nd
 c

om
pu

ta
tio

na
l

co
m

pl
ex

ity

A
ss

um
pt

io
n

3
TP

-I
I

Ro
bu

stn
es

s G
oa

l 1
 a

nd
 3

Se
ct

io
n

3.
4

U
si

ng
 a

cc
um

ul
at

ed
 li

ne
ar

iz
at

io
n

D
es

ig
ne

rs
 c

an
 m

an
ag

e
no

nc
on

ve
x

pr
ob

le
m

s
an

d
de

al
 w

ith
 h

ig
hl

y
co

nv
ex

, n
on

lin
ea

r
pr

ob
le

m
s r

el
at

iv
el

y
m

or
e

ac
cu

ra
te

ly
Ex

pl
or

at
io

n
C

om
bi

ni
ng

 in
te

rio
r-p

oi
nt

 se
ar

ch
 a

nd
 v

er
te

x
se

ar
ch

D
es

ig
ne

rs
 c

an
 av

oi
d

ge
tti

ng
 tr

ap
pe

d
in

 lo
ca

l
op

tim
a

to
 so

m
e

ex
te

nt
 a

nd
 id

en
tif

y
sa

tis
fic

-
in

g
so

lu
tio

ns
 w

hi
ch

 a
re

 re
la

tiv
el

y
in

se
ns

i-
tiv

e
w

he
n

th
e

st
ar

tin
g

po
in

ts
 c

ha
ng

in
g

A
ss

um
pt

io
n

1
TP

-I
Ro

bu
stn

es
s G

oa
l 3

Se
ct

io
n

3.
3

Ev
al

ua
tio

n
A

llo
w

in
g

so
m

e
vi

ol
at

io
ns

 o
f s

of
t r

eq
ui

re
-

m
en

ts
, s

uc
h

as
 th

e
bo

un
ds

 o
f d

ev
ia

tio
n

va
ria

bl
es

D
es

ig
ne

rs
 c

an
 m

an
ag

e
rig

id
 re

qu
ire

m
en

ts

an
d

so
ft

re
qu

ire
m

en
ts

 in
 d

iff
er

en
t w

ay
s t

o
en

su
re

 fe
as

ib
ili

ty
A

s a
 re

su
lt,

 g
oa

ls
 a

nd
 c

on
str

ai
nt

s w
ith

 d
iff

er
-

en
t s

ca
le

 c
an

 b
e

m
an

ag
ed

A
ss

um
pt

io
n

1
an

d
3

TP
-I

V
Ro

bu
stn

es
s G

oa
l 1

Se
ct

io
n

3.
6

Research in Engineering Design

both the necessary and sufficient KKT conditions. To use
the satisficing strategy, to obtain satisficing solutions, only
the necessary KKT condition is satisfied. We use four test
problems to illustrate the different outcomes between the
two strategies regarding three robustness goals (Section 2.5),
namely, the chance of identifying satisficing solutions given
certain complexities, the probability of maintaining a sat-
isficing solution under uncertainties that result in feasible
space boundary change, and the diversity of solutions under
multiple design scenarios. Given the characteristics of engi-
neering design problems—often having nonlinear, noncon-
vex goals and constraints, goals which may have different
units, and the targets of goals may have different degrees of
achievability, we find a satisficing strategy is more robust
with respect to our three robustness goals. We verify the
satisficing solutions by comparing them with NSGA II
solutions. Thence, we conclude that adopting a satisficing
strategy more robust and practical for use in model-based
engineering design. To reinforce our conclusion, we offer the
following references for consideration: Gautham et al. 2017;
Nellippallil et al 2018; Pedersen et al. 2013; Samadiani et al.
2010; Simpson et al. 2001.

Acknowledgements Lin Guo and Janet K. Allen gratefully acknowl-
edge the financial support from the John and Mary Moore Chair at
the University of Oklahoma. Lin Guo and Farrokh Mistree gratefully
acknowledge financial support from the L.A. Comp Chair at the Uni-
versity of Oklahoma. Lin Guo acknowledges the financial support from
the Pietz Professorship and Start-Up Fund at the South Dakota School
of Mines and Technology

Author contributions This paper is based on Lin Guo's Ph.D. Disser-
tation. Farrokh Mistree and Janet K. Allen mentored her, supervised
her, and funded her. All three authors have contributed to what has
been submitted

Data availability The data supporting the findings of this study are
available within the article.

Declarations

Conflict of interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Arrow KJ (2012) Social choice and individual values, 3rd edn. Yale
University Press, New Haven

Beyer H-G, Sendhoff B (2007) Robust optimization–a comprehensive
survey. Comput Methods Appl Mech Eng 196(33–34):3190–3218

Box GE (1979) All models are wrong, but some are useful. Robust
Stat 202(1979):549

Byron M (1998) Satisficing and optimality. Ethics 109(1):67–93
Carlson JM, Doyle J (2002) Complexity and robustness. Proc Natl

Acad Sci 99(suppl 1):2538–2545
Charnes A, Cooper WW, Ferguson RO (1955) Optimal estimation

of executive compensation by linear programming. Manag Sci
1(2):138–151

Chen W, Allen JK, Tsui K-L, Mistree F (1996) A procedure for robust
design: minimizing variations caused by noise factors and control
factors. ASME J Mech Des 118(4):478–485

Chen W, Allen JK, Mistree F (2000) Design knowledge development
techniques and applications in productivity enhancement in con-
current systems design. In: Leondes CT (ed) Knowledge based
systems techniques and applications. Academic Press, San Diego,
pp 1037–1060

Choi H-J, Austin R, Allen JK, McDowell DL, Mistree F, Benson DJ
(2005) An approach for robust design of reactive powder metal
mixtures based on non-deterministic micro-scale shock simula-
tion. J Comput Aided Mater Des 12:57–85

Courant R, Hilbert D (1953) Methods of mathematical physics. Inter-
science, New York

Dantzig GB (1990) Origins of the simplex method. Hist Sci Comput
5:141–151

Dantzig GB, Orden A, Wolfe P (1955) The generalized simplex method
for minimizing a linear form under linear inequality restraints. Pac
J Math 5(2):183–195

Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elit-
ist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol
Comput 6(2):182–197

Euler L (1755) Letter to Lagrange. Opera S. Iva 5:375–478
Euler L (1766) Eclaircissemens sur le Mouvement des Cordes

Vibrantes. Melanges de Philosophie et de la Mathematique de la
Societe Royale de Turin, pp 1–26

Farhang-Mehr A, Azarm S (2002) Diversity assessment of pareto
optimal solution sets: an entropy approach. Proc Congr Evolut
Comput 1:723–728

Fletcher R (1987) Practical methods of optimization, 2nd edn. John
Wiley and Sons, Hoboken

Frey DD, Herder PM, Wijnia Y, Subrahmanian E, Katsikopou-
los K, Clausing DP (2009) The Pugh controlled convergence
method: model-based evaluation and implications for design
theory. Res Eng Design 20(1):41–58 https:// doi. org/ 10. 1007/
s00163- 008- 0056-z

Gautham BP, Kulkarni NH, Panchal JH, Allen JK, Mistree F (2017)
A method for the preliminary design of gears using a reduced
number of American gear manufacturers association (AGMA)
correction factors. Eng Optim 49(4):565–582

Guo L (2021) Model evolution for the realization of complex systems.
The University of Oklahoma

Guo L, Chen S, Allen JK, Mistree F (2021) A framework for designing
the customer-order decoupling point to facilitate mass customiza-
tion. ASME J Mech Des 143(2):022002

Guo L, Milisavljevic-Syed J, Wang R, Huang Y, Allen JK, Mistree F
(2022) Managing multi-goal design problems using adaptive lev-
eling-weighting-clustering algorithm. Res Eng Design 34:39–60

Guo L, Chen S (2023) Satisficing strategy in engineering design. In:
International Design Engineering Technical Conferences and

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s00163-008-0056-z
https://doi.org/10.1007/s00163-008-0056-z

 Research in Engineering Design

Computers and Information in Engineering Conference, Boston,
MA, August 20-23, 2023, Paper Number. DETC2023-109302

Hajihasemi S (2023) A user friendly wrapper for DSIDES (Decision
Support in the Design of Engineering Systems), MS Thesis, Uni-
versity of Oklahoma

Hartley H (1960) Studies in linear and non-linear programming.
JSTOR 55(292):758–760

Hazelrigg GA (2010) The Pugh controlled convergence method: model-
based evaluation and implications for design theory. Res Eng Des
21(3):143–144. https:// doi. org/ 10. 1007/ s00163- 010- 0087-0

Ignizio JP (1985) Multiobjective mathematical programming via the
multiplex model and algorithm. Eur J Oper Res 22(3):338–346

Jahn J (1985) Scalarization in multi objective optimization. Math-
ematics of multi objective optimization international centre for
mechanical sciences. Springer, Vienna, pp 45–88

Karush W (1939) Minima of functions of several variables with
inequalities as side constraints. University of Chicago, Master’s
Thesis.

Kelner JA, Spielman DA (2006) A randomized polynomial-time sim-
plex algorithm for linear programming. In: Proceedings of the
Thirty-eighth Annual ACM Symposium on Theory of Computing,
Seattle, pp 51–60

Khosla P, Rubin S (1981) A conjugate gradient iterative method. Com-
put Fluids 9(2):109–121

Kuhn HW, Tucker A (1951) Nonlinear programming. Proceedings of
the second Berkeley symposium on mathematical statistics and
probability. University of California Press

Lange K (2013) Optimization. Springer, New York
Lin JG (1976) Maximal vectors and multi-objective optimization. J

Optim Theory Appl 18(1):41–64
Magni J-F, Bennani S, Terlouw J (1997) Robust fight control: a design

challenge. Springer, Berlin
McDowell DL, Panchal JH, Choi H-J, Seepersad CC, Allen JK, Mistree

F (2010) Integrated design of multiscale materials and products.
Elsevier, New York

Messac A, Mattson CA (2002) Generating well-distributed sets of
pareto points for engineering design using physical programming.
Optim Eng 3(4):431–450

Messer M, Panchal JH, Krishnamurthy C, Klein B, Yoder PD, Allen
JK, Mistree F (2010) Model selection under limited information
using a value-of-information-based indicator. ASME J Mech Des
132(12):1210008

Milisavljevic-Syed J, Allen JK, Commuri S, Mistree F (2020) Archi-
tecting networked engineered systems. Springer, Cham

Ming Z, Nellippallil AB, Yan Y, Wang G, Goh CH, Allen JK, Mistree
F (2018) PDSIDES—a knowledge-based platform for decision
support in the design of engineering systems. J Comput Inf Sci
Eng 18(4):041001. https:// doi. org/ 10. 1115/1. 40404 61

Mistree F, Hughes O, Phuoc H (1981) An optimization method for the
design of large, highly constrained complex systems. Eng Optim
5(3):179–197

Mistree F, Smith WF, Bras B, Allen JK, Muster D (1990) Decision-
based design: a contemporary paradigm for ship design. Trans Soc
Naval Archit Mar Eng 98:565–597

Mistree F, Hughes OF, Bras B (1993) Compromise decision support
problem and the adaptive linear programming algorithm. Progr
Astron Aeronaut 150:251

Nash SG (1984) Newton-type minimization via the lanczos method.
SIAM J Numer Anal 21(4):770–788

Nellippallil AB, Song KN, Goh C-H, Zagade P, Gautham B, Allen
JK, Mistree F (2017) A goal-oriented, sequential, inverse design
method for the horizontal integration of a multistage hot rod roll-
ing system. ASME J Mech Des 139(3):031403

Nellippallil AB, Rangaraj V, Gautham B, Singh AK, Allen JK, Mistree
F (2018) An inverse, decision-based design method for integrated

design exploration of materials, products, and manufacturing pro-
cesses. ASME J Mech Des 140(11):111403

Nellippallil AB, Ming Z, Allen JK, Mistree F (2019) Cloud-based
materials and product realization: fostering ICME via industry
4.0. Integr Mater Manuf Innov 8(2):107–121

Nellippallil AB, Mohan P, Allen JK, Mistree F (2020) An inverse,
robust design method for robust concept exploration. ASME J
Mech Des 142(8):081703

Panchal JH, Fernández MG, Allen JK, Paredis CJJ, Mistree F (2005)
Facilitating meta-design via separation of problem product and
process information. ASME International Mechanical Engineer-
ing Congress and Exposition, Orlando

Pedersen K, Messer M, Allen JK, Mistree F (2013) Hierarchical prod-
uct platform design: a domain-independent approach. Ships off-
Shore Struct 8(2):367–382

Powell MJ (1964) An efficient method for finding the minimum of
a function of several variables without calculating derivatives.
Comput J 7(2):155–162

Powell M (1989) A tolerant algorithm for linearly constrained optimi-
zation calculations. Math Progr 45(1):547–566

Powell MJ (2007) A view of algorithms for optimization without deriv-
atives. Math Today Bull Inst Math Appl 43(5):170–174

Reich D, Green RE, Kircher M, Krause J, Patterson N, Durand EY,
Viola B, Briggs AW, Stenzel U, Johnson PLF, Maricic T, Good
JM, Marques-Bonet T, Alkan C, Fu Q, Mallick S, Li H, Meyer M,
Eichler EE, Stoneking M, Richards M, Talamo S, Shunkov MV,
Derevianko AP, Hublin J-J, Kelso J, Slatkin M, Pääbo S (2010)
Genetic history of an archaic hominin group from Denisova Cave
in Siberia. Nature 468(7327):1053–1060. https:// doi. org/ 10. 1038/
natur e09710

Rezapour S, Khosrojerdi A, Rasoulifar G, Allen JK, Panchal JH, Srini-
vasan RS, Tew JD, Mistree F (2018) Architecting fail-safe supply
networks. CRC Press, Boca Raton

Saaty TL (1994) Highlights and critical points in the theory and
application of the Analytic Hierarchy Process. Eur J Oper Res
74(3):426–447. https:// doi. org/ 10. 1016/ 0377- 2217(94) 90222-4

Samadiani E, Joshi Y, Allen JK, Mistree F (2010) Adaptable robust
design of multi-scale convective systems applied to energy effi-
cient data centers. Numer Heat Transfer Part A 57(2):69–100

Sen A (2018) Collective choice and social welfare. Harvard University
Press

Simon HA (1956) Rational choice and the structure of the environment.
Psychol Rev 63(2):129

Simon HA (1996) The sciences of the artificial. MIT Press, Cambridge
Simpson TW, Maier JRA, Mistree F (2001) Product platform design:

method and application. Res Eng Design 13:2–22
Sinha A, Bera N, Allen JK, Panchal JH, Mistree F (2013) Uncertainty

management in the design of multiscale systems. ASME J Mech
Des 135(1):0011008

Soltani AR, Tawfik H, Goulermas JY, Fernando T (2002) Path plan-
ning in construction sites: performance evaluation of the Dijkstra,
A∗, and GA search algorithms. Adv Eng Inform 16(4):291–303

Spielman DA, Teng S-H (2004) Smoothed analysis of algorithms:
why the simplex algorithm usually takes polynomial time. JACM
51(3):385–463

Straeter TA (1971) On the extension of the davidon-broyden class
of rank one, quasi-newton minimization methods to an infinite
dimensional hilbert space with applications to optimal control
problems, PhD Dissertation in Mathematics, North Carolin State
University.

Vincent TL (1983) Game theory as a design tool. J Mech Transm
Autom Des 105(2):165–170. https:// doi. org/ 10. 1115/1. 32585 03

Wu CJ, Hamada MS (2011) Experiments: planning, analysis, and opti-
mization. John Wiley and Sons, Hoboken

https://doi.org/10.1007/s00163-010-0087-0
https://doi.org/10.1115/1.4040461
https://doi.org/10.1038/nature09710
https://doi.org/10.1038/nature09710
https://doi.org/10.1016/0377-2217(94)90222-4
https://doi.org/10.1115/1.3258503

Research in Engineering Design

Xu Y, Zhang H, Zeng X, Nojima Y (2022) An adaptive convergence
enhanced evolutionary algorithm for many-objective optimization
problems. Swarm Evol Comput 75:101180

Zhu C, Byrd RH, Lu P, Nocedal J (1997) Algorithm 778: L-BFGS-B:
Fortran subroutines for large-scale bound-constrained optimiza-
tion. ACM Trans Math Softw (TOMS) 23(4):550–560

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations

	Optimize or satisfice in engineering design?
	Abstract
	1 Frame of reference
	2 The formulation of optimization problems and satisficing problems
	2.1 The differences and similarities in the formulation of the two strategies
	2.2 The necessary and sufficient Karush–Kuhn–Tucker (KKT) conditions
	2.3 The analytical geometric meaning of the Kuhn–Tucker conditions
	2.4 Assumptions when using the KKT conditions
	2.5 Definition of robustness

	3 Advantages of using the satisficing strategy in engineering design
	3.1 Some typical features of engineering design problems
	3.2 Verification method: NSGA II
	3.3 Advantage of problem exploration: combining interior-point searching and vertex searching
	3.4 Advantage in approximation: using second-order sequential linearization and constraint accumulation
	3.5 Advantage in formulation: minimizing deviation functions instead of objectives
	3.6 Advantage in evaluation: allowing violations of soft requirements while avoiding violations of rigid requirements

	4 Computational efficiency
	5 Closing remarks
	Acknowledgements
	References

