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Abstract
Changes and modifications to existing products, known as engineering changes (EC), are common in complex product 
development. They require appropriate implementation planning and supervision to mitigate the economic downsides due to 
complexity. These tasks, however, take a high administrative toll on the organization. In response, automation by computer 
tools has been suggested. Due to the underlying process complexity, the application of artificial intelligence (AI) is advised. 
To support research and development of new AI-artifacts for EC management (ECM), a knowledge base is required. Thus, 
this paper aims to gather insights from existing approaches and discover literature gaps by conducting a systematic literature 
review. 39 publications applying AI methods and algorithms in ECM were identified and subsequently discussed. The analysis 
shows that the methods vary and are mostly utilized for predicting change propagation and knowledge retrieval. The review’s 
results suggest that AI in EC requires developing distributed AI systems to manage the ensuing complexity. Additionally, five 
concrete suggestions are presented as future research needs: Research on metaheuristics for optimizing EC schedules, testing 
of stacked machine learning methods for process outcome prediction, establishment of process supervision, development of 
the mentioned distributed AI systems for automation, and validation with industry partners.

Keywords Artificial intelligence · Engineering Change · Automation · Engineering Change Management · Machine 
Learning

1 Introduction

Changes to products are a rule rather than an oddity (Eckert 
et al. 2004). Without innovating and adopting products, com-
panies risk losing market share and revenue (Balakrishnan 
and Chakravarty 1996; Eckert et al. 2004). These changes to 
the behavior, function, or structure of a technical component 
are generally known as engineering changes (EC) (Hamraz 
et al. 2013). With estimated costs per change accumulat-
ing to 20,000–50,000 € and an average of 1,000 changes 
per month at a German automotive OEM (Wasmer et al. 
2011), the economic implications of EC and its manage-
ment (ECM) are large. Failing to respond to the challenges 
has been attributed to costs as high as 30% of a component’s 
price (Iakymenko et al. 2020a), a 20% increase in warranty 
charges (Capistrano Burgos et al. 2022), and an additional 

15% in cost for redesign (Eckert et al. 2004). Within com-
plex industries, such as aviation and automotive, the number 
of ECs have been shown to have increased in the past (Eckert 
et al. 2011), a trend which is expected to continue with the 
shift toward highly iterative product development (Schuh 
et al. 2018). Since change is inevitable, its efficient handling 
is a key competitive edge.

However, the EC process is complex and versatile. The 
process flow is not linear, but iterative (Fricke et al. 2000), 
with frequent loops and extensive communication in interde-
partmental teams (Clark and Fujimoto 2005). Additionally, 
a change to one component may induce changes to other 
components, spreading throughout the entire product. This 
phenomenon of change propagation (Clarkson et al. 2004) 
and the anticipation of the potential economic impact is at 
the core of ECM research (Jarratt et al. 2005). Furthermore, 
from a supply chain perspective, even if an EC affects only 
one component, it can invoke an avalanche of logistical tasks 
(Diprima 1982). As a result, contributions to EC and ECM 
focused on controlling the EC process and managing its 
complexity (Hamraz et al. 2013).
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Another source of shortcomings for adequate ECM is 
limited capacity. Occurring ECs have to compete with regu-
lar tasks for resources (Wänström and Jonsson 2006), and 
thus, capacity is too limited to control all ECs adequately 
(Wänström et al. 2006). Up to 30% of an engineer’s capac-
ity (Fricke et al. 2000) and 70% of manufacturing capacity 
are consumed by EC (Ullah et al. 2016). Furthermore, due 
to change propagation, it is near impossible for even experi-
enced staff to anticipate all effects of an EC on the finished 
product (Eckert et al. 2004). The reduced predictability of 
EC effort is further exacerbated by fluctuations in supply 
chains (Capistrano Burgos et al. 2022) and the increasing 
complexity of products (Schuh et al. 2015).

As a response, researchers suggested computational 
tools to support, anticipate, and automate EC-related tasks. 
Barzizza et al. (2001) for instance devised an optimization 
method to calculate stock-optimal effectivity dates, whereas 
Clarkson et al. (2004) developed computational methods to 
predict change propagation paths. To augment computa-
tional ECM support, research suggests addressing two key 
challenges: Flexibility due to the complex nature of EC (Liu 
et al. 2004) and dynamic decision-making due to change 
propagation (Yeasin et al. 2020) and supply chain uncer-
tainty (Shivankar and Deivanathan 2021). These challenges 
for advanced computational support of the EC process can 
be translated to the ability of flexible, human-like decision-
making, which is the scientific research area of artificial 
intelligence (AI). By applying AI, new possibilities to auto-
mate EC tasks arise (Zheng et al. 2019), for instance, auto-
matic design adaptations (Sharp et al. 2021) and problem 
identification (Camarillo et al. 2017). However, these AI-
methods are not only capable of support for single tasks but 
moreover increasingly able to manage and control complex 
processes (Burggräf et al. 2021). Thus, targeting the future 
of cyber production systems (Burggräf et al. 2021), it is sug-
gested to automate the entire EC process by researching new 
AI-artifacts.

Research of new AI-artifacts falls into the domain of 
information systems (IS), where design science research 
(DSR) has established itself as the predominant research 
paradigm (Baskerville et al. 2018). To ensure scientific rigor 
and equally focus on practical appliance, the DSR frame-
work by Hevner et al. (2004) is commonly used as a guiding 
methodology (Peffers et al. 2018; vom Brocke et al. 2020). 
Hence, as IS and ECM research are both rooted in practical 
appliances requiring scientific rigor, we suggest applying 
the above DSR framework for future research on AI-artifacts 
for ECM. Accordingly, these new artifacts should be based 
on business needs from the environment, supported by a 
knowledge base from theoretical foundations and available 
methodologies within the domain. These four business needs 
for ECM were defined by Radisic-Aberger et al. (2022) as 
automation, decision support, optimization, and supervision. 

Current literature reviews, however, have not covered how 
current AI-methods in ECM address these business needs.

Thus, this study aims to establish a knowledge base for 
research and development of new AI-artifacts for EC control 
by systematically reviewing published AI-related contribu-
tions in the domain of ECM. As a review procedure, we 
apply the framework for IS literature reviews by vom Brocke 
et al. (2009). In this context, the necessary knowledge base 
is built on insights and identified research gaps and incor-
porates experiences, expertise, and existing artifacts from 
the application domain (Hevner 2007). Hence, our review 
of AI-artifacts within the EC domain is driven by two main 
research questions (RQ):

• RQ1: What insights can be gathered from AI applications 
in the EC domain?

• RQ2: What future research is necessary for AI-supported 
ECM?

The remainder of the contribution is structured as fol-
lows: Sect. 2 defines the business needs in the application 
environment of ECM and provides a review of existing lit-
erature. In Sect. 3, the systematic literature review method is 
described before discussing the results in Sect. 4. Section 5 
answers RQ1 by providing the insights derived, which are 
the base for providing the research gaps and answering RQ2 
in Sect. 6. Finally, a conclusion and outlook are provided in 
Sect. 7.

2  Background and related work

To answer the RQs and subsequently establish a knowl-
edge base for developing future AI-artifacts for ECM, two 
background concepts are described which are later used for 
organizing the literature: (1) the four business needs identi-
fied for EC control and how they are currently addressed, 
and (2) related EC literature reviews and their framework.

2.1  Business needs for AI‑supported processing 
of engineering changes

Although ECM research is driven by the five overarching 
goals of less, more effective, more efficient, earlier, and 
better (Fricke et al. 2000), publications along the core EC 
process focus on earlier, more effective, and more efficient 
EC handling (Hamraz et al. 2013). The goal of increased 
efficiency is commonly interpreted as the reduction of 
EC-related costs (Wänström et al. 2006) and the best use 
of resources (Iakymenko et al. 2020b). Effectiveness is 
improved by decision-making support, while earliness is 
improved by predicting problems before they occur. It is 
generally recommended to involve downstream process 
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partners as soon as an EC is requested (Ouertani and Grebici 
2008). However, decision-making with partial knowledge, 
lengthy processes, and a multi-departmental environment 
without visible ownership cause ECs to become a bottleneck 
process instead of an enabler for product maturity (Potdar 
and Jonnalagedda 2018). Thus, Radisic-Aberger et al. (2022) 
suggest research on new AI methods based on four identified 
business needs which have been simplified to:

• Business need 1: Automation
• Business need 2: Decision support
• Business need 3: Optimization
• Business need 4: Supervision

The first business need targets the main challenges of 
complexity control and capacity increase, which emerge 
due to the EC process itself. Past literature mainly resolved 
the issue with qualitative solutions. For instance, Liu et al. 
(2004) conclude that the complexity of the EC process 
requires a flexible workflow system such as Petri-nets, while 
Bhuiyan et al. (2006) have elaborated that introducing mul-
tiple ECs simultaneously as a ‘batch’ is superior to indi-
vidual introduction. This batch idea was further discussed 
by Wynn et al. (2010) and Ahmad et al. (2010) who provide 
methods to identify optimal frequencies and batch sizes for 
EC scheduling.

The second business need has been addressed in several 
contributions by simulations or rule-based methods. Wän-
ström et al. (2006), for instance, suggested a decision tree 
model for application with various logistic EC variables. 
Similarly, Li and Moon (2011) provide a model to address 
company-dependent decision-making suggestions by inte-
grating various data sources. Ouertani (2009) as well as 
Reddi and Moon (2011) show that predicting the impact of 
changes is effective for conflict resolution and effectiveness 
in EC.

Business need 3 is more related to later phases of the 
EC process, with several publications concerning effectivity 
date optimization, e.g., (Barzizza et al. 2001; Shiau 2011) 
and optimal test schedules (Kukulies et al. 2016), but also 
optimization of change propagation paths (Haibing et al. 
2021). Although differing in their goal, the overall proce-
dure is similar: An optimization function is solved for a set 
of variables and based on the nature and different strategies 
based on the EC trigger suggested. Lastly, due to the EC 
process being lengthy and problems occurring unexpect-
edly (Diprima 1982), the entire process should be monitored 
dynamically resulting in business need 4.

2.2  Artificial intelligence

AI is a vast research area, composed of six main disciplines 
along the total touring test: natural language processing 

(NLP), knowledge representation, automated reason-
ing, machine learning (ML), computer vision, and robot-
ics (Russell and Norvig 2010). Furthermore, the algo-
rithms developed in AI research are often applied in other 
domains, which leads to confusion on what is and what is 
not AI (Bzdok et al. 2018). For our review, we only con-
sider methods as AI, if they fit into the definition given by 
Russell and Norvig (2010): ‘AI is the study of agents, that 
receive percepts from the environment and perform actions 
based on them’. What characterizes AI algorithms from 
simple input–output algorithms, is the ability to improve 
performance by receiving feedback on the actions they took 
towards a specific goal. We give a brief introduction of the 
algorithms in the discussion section for those algorithms, 
which are used in ECM. For a discussion of other AI meth-
ods, we refer to classical AI literature such as Nilsson (2010) 
and Russell and Norvig (2010).

The application of algorithms is neither limited to their 
AI discipline nor the domain of AI. For instance, computer 
vision often utilizes the ML algorithm convolutional neu-
ral networks, NLP approaches employ recurrent neural 
networks and some algorithms find application in other 
domains such as data mining (Ertel 2016; Russell and Nor-
vig 2010) or dependency modeling (Kumar and Ratneshwer 
2016). Thus, AI algorithms are often not classified by their 
discipline, but rather by the task, they were initially devel-
oped for. For this, Russell and Norvig (2010) classify tasks 
into five types: Problem-solving (PS); knowledge, reasoning, 
and planning (KRP); uncertain knowledge and reasoning 
(UKR); ML; and communication, perceiving, and acting 
(CPA).

2.3  Related literature reviews and the holistic ECM 
literature framework

With the abundant amount of data recorded in the EC pro-
cess, it becomes apparent that AI-supported handling of 
EC might help control complexity and mitigate the pains 
in ECM. However, although several literature reviews in 
the domain of EC exist, none focuses on AI applications. 
Whereas Jarratt et al. (2011) focused more on standardizing 
terminology, Hamraz et al. (2013) sorted literature into a 
holistic framework (Figs. 1, 2), which we are later adapt-
ing in Sect. 3.4 for classifying AI applications in the ECM 
domain. This framework by Hamraz et al. (2013) is espe-
cially effective at identifying research gaps in the literature, 
as it builds on the generalized EC process (Jarratt et al. 
2005). Within this framework, group ‘A’ consists of litera-
ture focusing on the pre-change phase, dedicated to minimiz-
ing the number of changes. Group ‘B’ considers literature 
explaining and developing methods and tools to improve 
the in-change tasks and processes. Analogous to group ‘A’, 
group ‘C’ embodies research exploring the post-change 
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stage of changes. The residual group ‘D’ covers publica-
tions on general topics and surveys in the field of ECM and 
related research areas. Additionally, Hamraz et al. (2013) 
identified groups ‘B, ‘C, and sub-group ‘D2’ as the core 
areas of ECM research, with the others crossing domains 
with product design and project management.

Most literature reviews that followed afterward are based 
on one or both major publications described above. Of the 
seven literature reviews identified after (Hamraz et al. 2013), 
none discusses AI application in ECM extensively. While 
change propagation understanding and impact prediction are 
discussed in (Helms et al. 2014; Ullah et al. 2015, 2016) as 
well as (Masmoudi et al. 2018), (Tale-Yazdi et al. 2018) is a 
review on data usage in ECM. Literature reviews focusing 

on EC implementation discuss the applicability of ECM 
research in engineer-to-order industries (Iakymenko et al. 
2018) or classify EC research towards production, prod-
uct design, and logistics (Balakrishnan and Suresh 2022). 
Among the reviews identified, (Colombo et al. 2017) stands 
out as a meta-study toward standardizing the language used 
in ECM. Finally, the review on change propagation analysis, 
its use-cases, and associated data representation by Brahma 
and Wynn (2022) touched on the application of AI-methods, 
although they did not discuss AI-methods for other EC tasks.

In conclusion, although several literature reviews have 
been conducted in the past within ECM, none has widely 
discussed the application of AI. Hence, to close this research 
gap and provide a knowledge base for future AI-based 
research, we present the results of a literature review on AI 
applications in ECM.

3  Method and Materials

To achieve a reproducible result, a systematic literature 
review according to the IS literature review procedure by 
vom Brocke et al. (2009) was conducted. The methodology 
is split into five steps as follows:

• Defining the review scope (cf. sec. 3.1)
• Conceptualization of topic (cf. sec. 3.2)
• Literature search (cf. sec. 3.3)
• Literature analysis and synthesis (cf. sec. 4)

Fig. 1  The holistic ECM literature framework of Hamraz et al. (2013) 

Fig. 2  Conceptualization of the topic according to (Rowley and Slack 
2004), with the main search string S1, and screening filter criteria F1 
and F2
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• Research agenda (cf. sec. 5 and sec. 6)

3.1  Review scope

As our research domain, we focus on EC in the context of 
goods-producing manufacturing industries. This excludes 
EC in the context of civil engineering, service industries, 
and software engineering, as these have essential differences 
in the production system and separate research streams. 
Furthermore, we exclude EC for electric circuit layout 
design. This stems from the extensive literature available in 
this area, as VLSI layout problem solving via AI has been 
researched since the 1980s (Russell and Norvig 2010), and 
has dedicated reviews (e.g., (Singh et al. 2016)).

The scope of our research was further classified accord-
ing to (Cooper 1988) as an exhaustive review with selective 
citation, focusing on practices or applications in the ECM 
domain represented by descriptions of a sample. The over-
arching goal is a descriptive review of AI literature in the 

domain of ECM with the identification of central issues, 
coming from a neutral point of view, with a special focus on 
EC. It is organized conceptually in a framework (Figs. 3, 4, 
5, 6, 7, 8), grouping publications by methodological applica-
tions, and targeted toward specialized scholars.

3.2  Conceptualization of the topic

A wide conceptualization of the topic was done to get a 
broad understanding and an overview of current trends in 
the scientific community. This step was done by consult-
ing standard literature in the field of ECM, such as books 
for basic definitions and other literature reviews to identify 
current ideas. Gaining a broad understanding and looking 
for synonyms of the topic, a concept map as suggested by 
Rowley and Slack (2004) was drawn (Fig. 2).

With the key term of search string 1 (S1) being the tar-
get domain of ‘EC’, F1 represents the four business needs 
introduced before and their respective synonyms. Likewise, 
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F2 embodies the target solution principle of AI. Although 
Rowley and Slack (2004) suggest applying different com-
binations of the search strings to discover literature, not all 
are sensible. Terms F1 and F2 combined, as well as on their 
own, would result in unspecific general literature outside 
the target domain, thus, these were omitted. Initially, it was 
intended to apply only the full combination of the three 
strings. However, during keyword search of the major data-
bases ‘Scopus’, ‘IEEE’ and ‘WebofScience’, the results were 
comparatively low (< 100 results for S1 + F1 + F2 and < 250 
for S1 + F2), which is why we settled on searching with only 
string S1 to make sure, that any publication within ECM 
applying AI-research would not evade the search due to 
inconsistent wording.

Hence, according to the methodology of Rowley and 
Slack (2004), the search string was defined as S1: (“Engi-
neering Change” OR “Design Change” OR “Product 
Change” OR “Engineering Design Management” OR “Tech-
nical Change”). The additional strings of F1 and F2 were 
then used as filtering criteria during the manual screening 
of titles, abstracts, and the full text.

3.3  Literature search

To identify relevant databases, research by Gusenbauer 
and Haddaway (2020) was consulted. From their list of 
databases, we chose those that focus on ‘Engineering’, 
‘Computer Science’, or ‘Multidisciplinary’, and have a 
Boolean search logic and a repeatable search. The result 
of the initial search is presented in Table 1. To evaluate 
the relevance of these contributions, quality criteria (QC) 
for inclusion and exclusion had to be defined. These are, 
according to the goal and scope of the review (sec. 3.1), 
and the definition of AI given, as follows: 

• QC1: Only journal and conference papers were included. 
This excludes books and practitioners’ contributions, as 
the goal was to provide the state of the art in academia.

• QC2: The publication must focus on EC as defined in sec. 
1 in the context of manufacturing industries (sec. 3.1).

• QC3: To be relevant, the contribution must discuss the 
application of AI as defined in sec. 2.2.

Due to language restrictions, only German and English 
literature is included.

Adhering to the PRISMA (Moher et al. 2010) flow chart 
(shown in the appendix, Fig. 9), we filtered relevant con-
tributions for deeper investigation. Following the screen-
ing of titles and abstracts towards relevancy, 400 full-text 
entries were kept. After reading these 400 full-texts and 
applying the QCs, 28 publications on AI application in 
ECM remained and were considered for further discussion. 
To ensure we did not miss any publications, we further 
conducted a forward and backward citation search, based 
on the discovered 28 publications, as well as previous 
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literature reviews. As a result, twelve publications were 
added to the review.

3.4  Organizing the literature

Following the literature search, a three-criteria organizing 
system as suggested by Webster and Watson (2002) was 
developed. The criteria (2) and (3) are used for quantitative 
discussion and criterion (1) for synthesis of future research 
needs:

1. Primary business need addressed (Table 2, Fig. 5)
2. Primary EC research contribution (Fig. 3)
3. Primary AI method applied (Fig. 3)

With the main goal given as establishing a knowledge 
base of AI-based applications for implementation of ECs, the 
presented four business needs were defined as the primary 
criterion for identifying research gaps (Table 2, Sect. 6). As 
a second clustering criterion, we applied the holistic frame-
work by Hamraz et al. (2013) (cf. Section 2.3) to give an 
overview of where along the EC process AI methods are 
primarily researched and applied. Lastly, we differentiate the 
publications by primary AI task. To be considered as AI, we 
take the definition as presented in sec 2.2, and classify them 
into: PS, KPR, UKR, ML, CPA (Fig. 3).

4  Results and discussion

With the goal of an exhaustive review, the following sec-
tions provide the key findings of the literature research. The 
first section presents a quantitative elaboration of the discov-
ered literature, while in the following section a discussion 
of each AI method and related AI-publications in ECM is 
given. Each sub-section first introduces the basics of the 
given AI-method, discusses how the specific method was 
applied in ECM, and finally discusses each publication and 
their conclusions.

Afterward, form this analysis we draw the insights for 
RQ1 and in Sect. 5 and correspondingly an answer for RQ2 
in Sect. 6.

4.1  Overview of AI in ECM

Overall, AI-supported EC methods have been constantly 
researched, with most contributions being published after 
2012 (Fig. 4). As seen in Fig. 3, the focus of general ECM 
research on the first half of the EC process is also present in 
AI-based literature, with most publications being published 
in the areas of solution development and impact analysis.

Of the identified contributions, 49% offer methods for 
decision support (business need 2), with the rest being split 
towards optimization (business need 3) and automation 
(business need 1) (see Fig. 4). Literature focusing on this 

Fig. 7  Example of a self-organizing map adapted from (Pacella et al. 
2016). Colors represent clusters, letters the actual label, and numbers 
how many ECs are within that cluster
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second business need employs various methods, though it 
UKR methods are dominant, whereas PS algorithms are 
mostly applied for optimization algorithms. Interestingly, no 
publication discusses AI approaches to supervise the process 
(business need 4). This might be due to two reasons: Either 
the EC process is too complex for supervision by AI appli-
cations or the current state-of-the-art is satisfactory enough 
and there is no need for AI methods.

4.2  Application of machine learning algorithms 
in ECM

Of all AI research, ML is the most extensively researched 
subfield (Nilsson 2010). Three main learning approaches 
exist: supervised, unsupervised, and reinforcement learn-
ing (Russell and Norvig 2010). Supervised learning algo-
rithms are often applied for classification or prediction, 
by learning from input data with known output data (Ertel 

2016). Correspondingly, unsupervised learning algorithms 
find patterns without prior knowledge of the outcome, most 
often used for clustering (Russell and Norvig 2010). The 
third, reinforcement learning is mainly used for optimiza-
tion tasks, based on rewards and punishment (Ertel 2016). 
Additionally, ML algorithms are differentiated as shallow 
and deep learning algorithms based on the complexity of 
their deployment function (Russell and Norvig 2010). Shal-
low learners require extensive manual data preprocessing 
(Ertel 2016), an application obstacle circumvented by intro-
ducing deep learning algorithms at the price of additional 
computational cost (Russell and Norvig 2010). As the per-
formance of the algorithms varies depending on the applica-
tion (Pasupa and Sunhem 2016), a lot of ML-based research 
in non-AI domains focuses on identifying the best algorithm 
and data preparation method for a given problem (Bzdok 
et al. 2018). As with all algorithms, the performance of ML 
models varies with the preset hyperparameters. Thus, before 
final testing, hyperparameter optimization runs should be 
conducted beforehand (Feurer and Hutter 2019). For evalua-
tion of which algorithm and hyperparameter set is best, usu-
ally a metric such as the F1-score or AUC-ROC (area under 
the receiver operating curve) is considered. In general, ML 
research follows the classic procedure depicted in Fig. 6a, 
b, supported by methodologies like CRISP-DM (Wirth and 
Hipp 2000).

From an ECM perspective, 23% of the publications pri-
marily applied supervised or unsupervised learning meth-
ods for three business needs (Fig. 5). With a wide range of 
applications, ML provides support for multiple EC tasks. 
Out of the nine ML publications identified, three applied 
ML for change propagation, three for change clustering, and 
two for understanding ECs and the EC process (Table 2). 
The remaining publication utilized ML for EC effort predic-
tion. No contribution applied reinforcement learning. Since 
we classified the publications by the primary nature of the 
method applied, it shall be noted here that two contributions, 
(Mehta et al. 2013) and (Chen et al. 2017), used ML as a 
baseline to compare the performance of their algorithms for 
impact prediction. These are discussed in the respective sec-
tions of their primary contribution.

Table 1  Overview of search results per database of 26th and 27th 
March 2022

a These databases do not allow for a specific search strategy; thus, the 
total result is shown
b The result was omitted due to no feasible extraction method and no 
relevance to the topic of EC in random samples, and only the results 
from S1 + F1 + F2 and S1 + F2 were used

Data base Search strategy

Keyword Title Abstract

ACM digital 65 77 277
Bielefeld academic 378 1109 3969
DOAJ 12 15 90
EBSCO 77 306 1187
IEEE 104 105 420
Science  directa 1859a

Scopus 2606 1100 (> 10,000b)
Springer  linka 3558a

Web of science 185 205 815
Wiley online 18 23 115
Total 18,675

Fig. 9  Typical process for the development of a metaheuristics model application (e.g. (Sharp et al. 2021))
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4.2.1  Supervised machine learning application

In ECM, supervised ML has been used to predict EC 
propagation based on information available from upstream 
processes (Morkos et al. 2014; Pan and Stark 2020; Zheng 

et al. 2019), for EC understanding (Sharafi et al. 2012), 
and for predicting the EC effort (Riesener et al. 2021).

The three publications discussing ML application for 
change propagation did so at different stages of the EC 
process. Zheng et al. (2019) tried to predict necessary ECs 

Table 2  Overview on artificial intelligence applications in ECM

a AI method and research field
ML machine learning, CPA communicating, perceiving, and acting, PS problem solving, KRP knowledge, reasoning and planning, UKR uncer-
tain knowledge and reasoning

Author and year # Typea Subfield Algorithm applied Goal Business need

(Koh 2022) 1 CPA NLP RoBERTa EC anticipation Automation
(Zheng et al. 2019) 2 ML Supervised ML Random forest EC anticipation Automation
(Morkos et al. 2014) 3 ML Supervised ML Artificial neural net EC anticipation Automation
(Hu and Carding 2015) 4 UKR Bayesian network Bayesian network Requirements propagation Decision support
(Chinn and Madey 2000) 5 KRP Temporal logic Temporal AI Workflow optimization Decision support
(Beroule et al. 2014) 6 UKR Multi-agent MAS + Fuzzy logic Workflow optimization Optimization
(Sandkuhl et al. 2012) 7 UKR Fuzzy logic Fuzzy string comparison Workflow optimization Decision support
(Wang and Che 2009) 8 PS Metaheuristic Particle swarm optimization Supply chain optimization Decision support
(Bender et al. 2015) 9 UKR Multi-agent Multi-agent system Workflow automation Automation
(Aguwa et al. 2017) 10 UKR Fuzzy logic Fuzzy logic EC prioritization Decision support
(Arnarsson et al. 2019) 11 CPA NLP Document embedding Knowledge retrieval Decision support
(Arnarsson et al. 2021) 12 CPA NLP Latent Dirichlet Knowledge retrieval Decision support
(Pan and Stark 2020) 13 ML Supervised ML Random forest EC detection Decision support
(Fathianathan et al. 2007) 14 PS Metaheuristic Evolutionary search algorithm Design generation Automation
(Sharp et al. 2021) 15 PS Metaheuristic Genetic algorithm Design generation Automation
(Li and Zhao 2014) 16 PS Metaheuristic Genetic algorithm Change propagation Optimization
(Li et al. 2019) 17 PS Metaheuristic Genetic algorithm Change propagation Optimization
(Lian et al. 2017) 18 PS Metaheuristic Cuckoo search Change propagation Optimization
(Camarillo et al. 2017) 19 UKR Multi-agent Multi-agents system + CBR Solution finding Automation
(Habhouba et al. 2009) 20 UKR Multi-agent Multi-agents system Design evaluation Automation
(Lee and Hong 2017) 21 UKR Bayesian network Dynamic Bayesian network Change propagation Decision support
(Ma et al. 2017) 22 UKR Multi-agent Multi-agent system Change propagation Decision support
(Mirdamadi et al. 2018) 23 UKR Bayesian network Bayesian network Change propagation Decision support
(Yeasin et al. 2020) 24 UKR Bayesian network Dynamic Bayesian network Change propagation Decision support
(Diallo and Zolghadri 2018) 25 UKR Bayesian network Causal Bayesian network Change propagation Decision support
(Mehta et al. 2012a) 26 KRP First order logic Own algorithm vs. statistical Impact prediction Decision support
(Mehta et al. 2013) 27 PS Metaheuristic Own algorithm vs. decision tree Impact prediction Decision support
(Chen et al. 2017) 28 UKR Prob. knowledge Own algorithm vs. KNN Impact prediction Decision support
(Kindsmuller et al. 2014) 29 UKR Fuzzy logic Fuzzy logic Impact prediction Decision support
(Mehta et al. 2012b) 30 UKR Prob. knowledge Own algorithm vs. KNN & SDA Impact prediction Decision support
(Riesener et al. 2021) 31 ML Supervised ML Random forest EC effort prediction Decision support
(Riesener et al. 2020) 32 CPA NLP Latent Dirichlet Change clustering Automation
(Grieco et al. 2017) 33 ML Unsupervised ML Self organizing map Change clustering Automation
(Li et al. 2017) 34 ML Unsupervised ML Dendritic neural net Data preparation Automation
(Pacella et al. 2016) 35 ML Unsupervised ML Self organizing map Change clustering Automation
(Sharafi et al. 2012) 36 ML Supervised ML 10 algorithms EC understanding Optimization
(Wang 2012) 37 PS Metaheuristic PSO + Genetic algorithm EC scheduling Optimization
(Lu et al. 2015) 38 ML Unsupervised ML Self organizing map EC understanding Optimization
(Damak et al. 2021) 39 UKR Bayesian network Bayesian network Flexible design Optimization
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based on feedback from sensors of smart products, essen-
tially triggering new ECs. Similarly, Morkos et al. (2014) 
applied an artificial neural net, to predict ECs based on 
requirements changes. Only the publication by Pan and Stark 
(2020) applied ML for change propagation prediction during 
the EC process.

As the overall focus of the publications varied, so did the 
application depth. As Zheng et al. (2019) conducted a feasi-
bility study, their research did not compare to any baselines 
and focused more on describing and investigating whether 
ML can be applied for generating EC requests. The research 
by Morkos et al. (2014) was on a more mature level. Con-
sequently, as they already knew classical linguistic methods 
were applicable, they focused on comparing how ML per-
forms against these classical methods. They showed that, 
although the semi-automatic linguistic approach performed 
best, the fully automatic application of artificial neural nets 
could result in similarly good results, without any manual 
input. Finally, Pan and Stark (2020) focused on which multi-
label prediction method was best and developed a better per-
forming hierarchical classification approach.

As all approaches applied shallow learning algorithms 
(random forest by Zheng et al. (2019) and Pan and Stark 
(2020), one-layer artificial neural net by Morkos et  al. 
(2014)), they all required extensive data preprocessing. As 
Morkos et al. (2014) and Pan and Stark (2020) utilized full 
EC requests as input data, NLP-methods such as the ‘bag-
of-words’ algorithm were required for data preprocessing. 
Although Zheng et al. (2019) did not specify the data pre-
processing, the resulting co-occurrence design structure 
matrix (DSM) was based on product sensor (e.g., loca-
tion, temperature) and stakeholder (e.g., visual and natu-
ral language) data, indicating that some sort of NLP was 
applied. However, from an ML approach, basing the data 
input for the ML-algorithm on DSM seems counterintuitive, 
as a major benefit of ML is the ability to generate predic-
tive models by feeding data directly without knowing the 
underlying dependency between the features (Bzdok et al. 
2018). In their conclusion, they even remark that basing their 
approach on a DSM is a major limitation, as it cannot handle 
incomplete case data, and suggest further investigation for 
actual data-driven ECM.

A second application of supervised ML was understand-
ing the underlying factors of EC lead time. For that, Sharafi 
et al. (2012) performed an analysis of ten different algo-
rithms within the supervised ML toolset to empirically 
derive the main drivers for long lead times. For that, they 
initially conducted an association rule analysis (a data min-
ing algorithm), which was then used as input for their ML 
models. Of the 10 algorithms, none was performing signifi-
cantly better at predicting the lead time. The initial goal of 
predicting the factors of long lead times was also somewhat 
unclearly shown. They argue, as the algorithms were able 

to predict accurately based on product complexity data, that 
these are factors for long lead times, without identifying 
their relative importance. This is somewhat at odds with the 
possibilities of ML. Although it is true that for most algo-
rithms feature importance is not easily extracted, by repeat-
edly running the algorithms with and with certain features, 
their relative importance can be shown (Heaton et al. 2017).

The third application of supervised ML in ECM was 
presented by Riesener et al. (2021), who applied a random 
forest algorithm for predicting the expected EC effort. They 
used real-world data to predict the effort needed to imple-
ment changes. However, they were only able to achieve a 
poor fit (R2 < 0.5) and inaccurate predictions, concluding 
that random forest has its limits within EC and feature engi-
neering is crucial. As this was also an exploratory study, 
they did not compare how other algorithms would perform. 
Furthermore, they have not conducted hyperparameter tun-
ing, usually a very important step in ML model develop-
ment. Thus, the outcome of their research can be only seen 
as a feasibility study.

Although all publications applying supervised ML con-
ducted their research with real-world test sets, only Pan 
and Stark (2020) report on feedback from the organization. 
Following the presentation of results, they report that the 
models should be tuned towards precision, rather than the 
F1 score, indicating that for their industry partner a correct 
classification is more important than finding all potential 
propagation paths. However, they too do not report on imple-
menting the ML model into the productive environment.

4.2.2  Unsupervised machine learning application

From the body of ECM research, four unsupervised ML 
approaches were discovered, focusing on clustering (Grieco 
et al. 2017; Lu et al. 2015; Pacella et al. 2016) and preparing 
data (Li et al. 2021). Li et al. (2021) addressed the issue that 
DSMs are based on expert knowledge, which causes difficul-
ties when applying them in productive environments. Thus, 
they designed a dendritic neural network to automatically 
generate a DSM based on the dendritic neuron model by 
Todo et al. (2014). Compared to the baseline, their algo-
rithm did not perform better. However, they did show how 
to apply unsupervised ML to automatically generate DSMs 
for further application with change propagation methods. 
Interestingly, opposed to other ML publications, they based 
their research on a generic bicycle model, instead of a real-
world problem. This is an immense benefit, as this enables 
other research to build on their outcome and compare their 
performance without requiring real-world data.

The final three applications of ML in ECM are applica-
tions for clustering and extracting knowledge through self-
organizing maps (SOM). Although all three applied SOM, 
their motivation varies. The research by Grieco et al. (2017) 
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and Pacella et al. (2016) applied SOM for classification in 
case new ECs are drafted. For performance comparison, 
they evaluated the performance of the ML model using 54 
ECs and compared the clustering result vs. expert knowl-
edge (Fig. 7). They have shown that by applying the SOM 
method, they achieved an F1-score of 0.9 (with 1 being the 
maximum). However, they have failed reporting on the deci-
sion threshold, as well as conducting performance compari-
sons to other algorithms, thus their publication can also be 
classified as an explorative study. Note, that both contribu-
tions discuss the same research case, which is why there is 
no difference between the outcome of these two publications.

The research by Lu et al. (2015) also applied self-organ-
izing maps, although for identification of anomalies in ECs 
and the EC process. Like the previous contribution, they 
utilized a real-world data set of 9849 ECs and achieved a 
high accuracy rate of 96%. An important point they raised is 
the introduction of control and experimental groups for ML 
model development employing temporal split. In doing so, 
they ensured that no data leakage into train data occurs, and 
the performance during testing was comparable to deploy-
ment. However, they do not report on whether their approach 
was ultimately implemented in a productive environment.

4.3  Application of communicating, perceiving, 
and acting AI‑methods

The research field of CPA methods lies at hand: Retrieving 
information from data in the form of natural texts, images 
in large databases and learning machines to act upon these 
(Russell and Norvig 2010). Within the field of ECM, the 
only primary CPA application is NLP (Table 2), with image 
processing being only remarked as a possibility by Zheng 
et al. (2019). NLP is the ability of a machine to interpret 
human language input and thereby retrieve knowledge from 
large data bases (Russell and Norvig 2010). For training 
NLP models an extensive amount of data is required as the 
possible combination of letters to words are theoretically 
infinite. Furthermore, as human language is messy, data 
cleaning methods such as lemmatization and stop word 
removal are applied during preprocessing steps (Russell 
and Norvig 2010) (Fig. 8). Once trained, NLP models can, 
among other applications, be applied for text classification, 
query response, and knowledge retrieval (Russell and Norvig 
2010).

In ECM, four recent publications exist which have pri-
marily applied NLP to advance ECM. The goal of the first 
three publications (Arnarsson et al. 2019, 2021; Riesener 
et al. 2020) is to retrieve knowledge from previous ECs, such 
that mistakes are not repeated. Contrary to their focus on 
retrieval from past ECs, Koh (2022) applied NLP to evaluate 
social media comments, and derive future ECs from that. In 
their method, they follow the approach in Fig. 8.

While the first publication by Arnarsson et al. (2019) 
investigates whether a document embedding model outper-
forms an elastic search model, the other two apply a Latent 
Dirichlet Allocation algorithm to cluster ECs and provide 
support in knowledge management. Although all conclude 
that NLP is beneficial from an ECM perspective in retrieving 
information, they comment that the tailoring of the solution 
needs to be driven by the applying organization. Further-
more, as the comparison in (Arnarsson et al. 2019) shows, 
NLP outperforms elastic search only for longer search que-
ries. These observations are attributed to highly individual-
ized processes and language within companies. Additionally, 
due to applying the model to the EC database of a single 
company, the results cannot be generalized (Arnarsson et al. 
2019, 2021).

As introduced, Koh (2022) applied NLP for extensive 
mining of information from social media. In their research 
method, they do not vary so much from the ML approach 
by Zheng et al. (2019), although instead of applying the 
RF, they apply the classical CPA by Clarkson et al. (2004). 
However, as they focus on the application of NLP, they 
describe the application of NLP in more depth and offer 
pseudo code. With their approach, they were able to ana-
lyze 3665 YouTube comments, pinpoint the components 
they affect, and derive ECs therefrom. Furthermore, they 
have shown that their method is not only applicable to the 
diesel engine they investigated, but also for ‘Car’, ‘Vacuum 
Cleaner’, and ‘Washing Machine’, suggesting it is applicable 
to all products.

Furthermore, we do note here that NLP methods are also 
important for data preparation for other AI-methods, as seen 
by the ML approach by Pan and Stark (2020) and Morkos 
et al. (2014).

4.4  Application of problem‑solving algorithms

Problem solving via algorithms is a common subfield of 
operations research or computer science with countless exact 
solutions for some complex problems (Russell and Norvig 
2010; Taha 2017). However, AI research focuses on attempt-
ing to build machines that can find these solutions autono-
mously (Russell and Norvig 2010). For that, AI research 
devised informed search algorithms known as metaheuristics 
(MH) (Russell and Norvig 2010). Their main drawback is 
the inability of knowing whether the solution found is only 
a good solution or the best possible solution (Ertel 2016). 
They are quick to adapt and find reasonable solutions even 
for complex combinatorial problems (Taha 2017). MH can 
also be combined with other AI-approaches. For instance, it 
is common to use GAs for hyperparameter optimization or as 
layers in neural networks (Ertel 2016). In principle, all MH 
application follows the same procedure (Fig. 9): Develop a 
mathematical model of the problem, run the algorithm for n 
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number of iterations to find new possible solutions, evaluate 
the solutions, and accept the best-discovered solution as the 
solution to the problem.

The application of MH in ECM is shared across all busi-
ness needs, although its frequent with optimization tasks 
(Fig. 4.). Two contributions for automation (Fathianathan 
et al. 2007; Sharp et al. 2021) investigated how compo-
nent design can be parameterized and subsequently design 
changes generated. Furthermore, MH were applied thrice for 
change propagation prediction (Li et al. 2019; Li and Zhao 
2014; Lian et al. 2017), once for EC shop floor schedul-
ing (Wang 2012), once for impact prediction (Mehta et al. 
2013), and once for supply chain optimization (Wang and 
Che 2009). The most common algorithm applied was the 
genetic algorithm (GA), an easy-to-implement and flexible 
MH (Sharp et al. 2021) (Table 2).

The two most notable contributions in this AI subfield in 
ECM utilize evolutionary-inspired algorithms in feasibility 
studies for automatic design generation. As a study object, 
Sharp et al. (2021) demonstrated how GA can be applied for 
automatic design optimization after an EC is requested. Sim-
ilarly, Fathianathan et al. (2007) applied a related evolution-
ary search algorithm to automate fixture changes after ECs. 
After defining the needs on how to approach the technical 
optimization problem, both present a simulated case study. 
In the descriptive depth of their study, Sharp et al. (2021) 
laid out a detailed automatic EC request workflow, depicted 
in Fig. 10. Comparatively, Fathianathan et al. (2007) focused 
more on arguing for and explaining the concept of evolu-
tionary search algorithms. Both together have shown that 
MH are a possibility to automate parametric design, be it 
a discrete (Fathianathan et al. 2007) or continuous (Sharp 
et al. 2021) optimization problem. Sharp et al. (2021) further 
compared the performance of the MH vs. a human engineer, 
and although the calculation consumed more time, based on 
the input parameters the computer algorithm identified a bet-
ter solution with less monetary resources invested, showing 
the potential of using AI to automate EC design activities. 
Fathianathan et al. (2007), however, has failed to show a 
comparison.

Li and Zhao (2014) as well as Lian et  al. (2017) 
employed MHs to identify change propagation paths 
for improved scheduling of solution development. Both 
approaches are not standalone applications of MH, but 
rather a combination of graph networks and MHs. With 
their research, they offer methods to reduce change propa-
gation and optimize the duration of the design phase of an 
EC. A key challenge faced by Li and Zhao (2014) when 
applying the GA was the inability to a priori determine 
which design tasks are affected by an EC. As a result, 
the model had to include all possible paths, irrelevant 
whether it will be followed, resulting in redundancy. In 
their follow-up research, Li et al. (2019), they improved 

on this method by introducing more constraints, providing 
an optimal EC propagation path. The publication by Lian 
et al. (2017) considers using the improved Cuckoo search 
algorithm, instead of the GA. As with other publications, 
these three papers present their research based on an exem-
plary sample but do not compare different algorithms or to 
other publications, thus they can also only be considered 
as feasibility studies.

Other MH research for capacity optimization using a GA 
was done by Wang (2012), who combined it with a Particle 
Swarm Optimizer (PSO) to minimize customization costs by 
decreasing the job floor make span time of ECs by optimiz-
ing the manufacturing schedule. They showed that a hybrid 
solution provides better results than using only GA or only 
PSO, as it enables the algorithms to escape local optima. To 
further solidify their outcome, they compared the approach 
to an already established method, which performed worse 
than any MH application. Overall, their research offers a 

Fig. 10  Automatic engineering change request workflow as suggested 
by Sharp et al. (2021)
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method to improve the EC realization phase at the shop 
floor, an often overlooked area in ECM (Hamraz et al. 2013).

Impact prediction by application of MHs was shown by 
Mehta et al. (2013), who developed an own algorithm based 
on ant colony optimization, a common MH. Their exten-
sive research shows, how important attributes of ECs can 
be discovered by MHs and utilized for knowledge retrieval. 
In their research, they compared their MH approach vs. ML 
models such as Decision Tree and Naïve Bayes classifiers. 
They have demonstrated that their approach is significantly 
better, although they do remark that their test set is compara-
tively small. This in turn leads to reduced interpretability 
and generalization of their research outcome. At this point 
we note that their approach was further tested upon by Chen 
et al. (2017), which is discussed in the KRP section of our 
review, in accordance with its primary AI type.

Another MH application was suggested by Wang and 
Che (2009) for preventive supplier selection concerning 
the complexities of EC. They applied four variations of the 
PSO to define the optimal product modification strategy by 
incorporating supplier data into the model. Not only did 
they mathematically optimize which EC to implement, but 
also provide a strategy on how to allocate call-off quantities 
among four suppliers. The extensive data used incorporated 
hard data as well as fuzzy data.

A common issue discovered in most PS approaches is the 
neglection of comparing the developed method with exist-
ing approaches and algorithms and testing with only a few 
test cases. Except for the contributions by Wang (2012) and 
Mehta et al. (2013), none has tested their approach against 
existing methods. Statistical significance was only proven in 
one contribution (Mehta et al. 2013), although even here the 
authors mention that the test set size was too small. For those 
studies declared as exploratory studies this is acceptable to a 
certain degree, however, it does reduce the scientific impact 
of their outcome. Furthermore, no approach reported imple-
mentation in a running environment.

4.5  Application of Knowledge, reasoning, 
and planning algorithms in ECM

The AI field of KRP centers on the ability of intelligent 
machines to store knowledge about their environment (Rus-
sell and Norvig 2010). This subfield deals with the logical 
representation of knowledge and lies the foundation of many 
advanced AI methods (Ertel 2016).

In ECM, logic can be applied for knowledge retrieval as 
shown by Mehta et al. (2012b), or for scheduling optimiza-
tion by temporal logic as seen in (Chinn and Madey 2000).

In an initial publication, Mehta et al. (2012b) applied 
KRP to predict the impact of new ECs by searching for 
similar ECs among historical data. In doing so, they pro-
vide decision support to avoid change effects before they 

are implemented into the product. This was done by the 
introduction of an own algorithm tested on several expert 
knowledge-based simulated data sets and compared to an 
available statistical approach and two classical approaches 
(metric space and set-theoretic). They show in their research, 
that EC similarity is indeed a good indicator for impact pre-
diction, and in doing so, they set the foundations for their 
more advanced approaches (discussed in sec. 4.4 and 4.6 
according to the AI-method). Like their other publications, 
they compare to other algorithms and include statistical 
significance tests. However, by basing on a simulated test 
case, their publication shows only theoretical results. Fur-
thermore, the test set (n = 23) is relatively small (17 train 
cases, 6 test cases).

Although situated in the domain of ECM, the temporal 
AI representation researched by Chinn and Madey (2000) 
was a demonstrator for the AI-method itself in the wider 
area of workflow management. Nevertheless, their research 
shows the possibility to improve the workflow of EC during 
the design phase by scheduling ECs and associated tasks 
based on urgency, feeding to business need3. However, their 
research was an exploratory study and mainly contributed 
to possible new research paths to incorporate temporal rela-
tions in scheduling problems. As such, no implementation 
in practice is reported.

4.6  Application of uncertain knowledge 
and reasoning approaches in ECM

The concept of knowledge representation is shown in sec. 
4.5 mainly consisted of Boolean logic, where the outcome 
of an agent’s actions are deterministic (Russell and Norvig 
2010). However, this is not necessarily always the case (Ertel 
2016). In some cases, the outcome of a process cannot be 
definitely precalculated, but only a probability given of a 
certain outcome (Nilsson 2010). Designing agents that can 
deal with this uncertainty is the AI-subfield of UKR. From 
our literature search, we have identified four approaches 
to deal with uncertainty in the ECM process: Probabilistic 
knowledge representation, Fuzzy logic, Bayesian networks, 
and distributed artificial networks.

4.6.1  Probabilistic knowledge representation

We identified two publications integrating probabilistic 
knowledge in ECM, specifically for impact prediction, the 
publication by Mehta et al. (2012a) and the subsequent 
research by Chen et al. (2017).

Both contributions apply probabilistic knowledge rep-
resentation to predict the impact of an EC. Their research 
shows, that the similarity of change features of the EC are 
indicators for predicting the impact of new ECs. To proof, 
they simulated a test set of 23 ECs, of which a random 
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combination of 17 was used as a knowledge base to predict 
the impact of the remaining 6. Additionally, as with the pre-
viously discussed approach by Mehta et al. (2012b), the size 
of the test case is too small, which was acknowledged by 
Chen et al. (2017). Furthermore, their test case is based on 
simulated data, thus it is not shown that the approaches will 
also work in a running productive environment. However, 
this is one of the rare cases identified in AI-based ECM 
research, where a later contribution (Chen et al. 2017) com-
pares their performance against a previous contribution 
(Mehta et al. 2012a).

4.6.2  Bayesian networks

As seen by (Li and Zhao 2014), modeling every possible 
propagation path is a memory-consuming inefficient method. 
Thus, AI-research has devised Bayesian networks (BN) as 
a prominent AI method to reduce memory and computa-
tion resources (Ertel 2016). Closely related to probabilistic 
knowledge representation, BN are a systematic way to rep-
resent probabilistic relationships. They are directed acyclic 
graphs, where each node connects parents and children with 
a conditional probability distribution (Russell and Norvig 
2010) (Figs. 11, 12).

In ECM, BNs are generally used for impact and change 
propagation analysis to provide decision support (Table 2). 
In our literature search, we identified five publications apply-
ing BNs which are exclusively clustered into the third EC 

process step, impact analysis. Most research is motivated by 
improving the current status quo of the change prediction 
method (CPM) and DSM. For this, Lee and Hong (2017) 
and Yeasin et al. (2020) present a dynamic BN (Fig. 8) 
while Mirdamadi et al. (2018) designed a Bayesian belief 
network. Additionally, Diallo and Zolghadri (2018) provide 

Fig. 11  Example of the change propagation model based on dynamic Bayesian networks by Yeasin et al. (2020). The table above shows the cor-
responding DSM
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a concept for a causal Bayesian network. However, only the 
two dynamic BN were tested on a data set against the classic 
CPM. The main benefits of change propagation prediction 
by BNs were reported to be additional flexibility and, in the 
case of dynamic BNs, incorporating time effects. Unfortu-
nately, later research has not compared the performance to 
previous BNs. Furthermore, Diallo and Zolghadri (2018) 
propose hybrid networks to manage discrete and continu-
ous variables.

Within the discovered publications, two more BN appli-
cations have been discovered outside the core EC process. 
Damak et al. (2021) apply BNs to predict what type of EC 
an operational change would trigger. This is similar how 
requirements changes would trigger an EC and the applica-
tion by Morkos et al. (2014). Thus, their approach is more 
suited for estimation of effects before an EC is initiated, 
rather than to support the EC process.

Another goal of EC research and associated field is the 
prevention of changes (Fricke et al. 2000). One way of 
achieving this is by designing components in a way, that they 
absorb changes (Eckert et al. 2004). To determine which 
components should ideally be flexible, Hu and Cardin (2015) 
developed a BN-based method. Although they show that 
it is possible to determine which components should have 
increased flexibility to absorb potential future requirement 
changes, their approach cannot address the cyclic depend-
ency. Thus, they suggest dynamic BN for change propa-
gation prediction, as shown by the publications presented 
above.

4.6.3  Fuzzy logic

An early approach for AI was rule-based logic methods 
(Nilsson 2010; Russell and Norvig 2010). However, one 
downside of these systems is that data is usually not avail-
able as a Boolean. Hence, fuzzy logic has been devised 
(Russell and Norvig 2010), and although it is today mostly 
researched as part of control systems research (Ertel 2016), 
for completeness we include it as an AI-method applied in 
ECM.

In ECM, fuzzy logic has been applied for instance to 
translate requirements by Aguwa et al. (2017), workload 
assigning (Sandkuhl et al. 2012), and effort optimization 
(Kindsmuller et al. 2014).

A difficulty when designing new ECs is the prioritization 
of work, as it is rarely known which EC is most important 
(Wänström et al. 2006). This becomes even more difficult 
when ECs are triggered by quality issues (Aguwa et al. 
2017). In these cases, the warranty costs per case and the 
relative occurrence of these indicate a priority. However, 
interpreting and setting a rule for that requires fuzzy logic, 
as shown by Aguwa et al. (2017).

A standalone method for automatically assigning ECs 
to the correct change manager was developed by Sandkuhl 
et al. (2012). In their approach, they constructed weighted 
graphs based on fuzzy string comparison to cluster ECs and 
the respective user. Although their approach is valuable, they 
mention as their main limitation that it was not validated 
with a running real-world case.

Another publication considered modeling the product 
development process to optimize the required effort (Kinds-
muller et al. 2014). To do so, they translated errors occurring 
during development into a fuzzy expert-based model and 
simulated how the effort is affected by product maturity. 
They showed, that while software tests are more beneficial 
in early project phases, hardware tests require a minimum 
project maturity to justify their effort.

4.6.4  Multi‑agent systems

For some complex problems, such as the EC process, the 
actions of a single agent can depend on the actions of 
another agent within the same environment (Russell and 
Norvig 2010), or it is simply easier to model effects (Wool-
dridge 2003). These systems are known as multi-agent sys-
tems (MAS), falling under the subfield of distributed AI 
systems (Wooldridge 2003). A key concept of MAS is the 
target for each agent to improve its performance measure, 
which is not necessarily a shared goal (Ertel 2016).

Within the body of knowledge, five agent-based AI 
applications were discovered, of which three are utilized to 
automate EC tasks (Bender et al. 2015; Beroule et al. 2014; 
Camarillo et al. 2017), one to simulate change propaga-
tion (Ma et al. 2017), and a design evaluation (Habhouba 
et al. 2009) (Table 2). The motivation for all agent-based 
approaches is to enable the researchers to connect multiple 
knowledge bases while retaining retrieval speed and man-
age EC complexity. In their realization, each MAS is highly 
individualized, which is why these five publications are 
introduced individually.

Camarillo et al. (2017) developed an MAS for problem-
solving from a product quality perspective. By applying a 
domain-independent agent architecture, they digitalized the 
existing process at the industry partner for their agent sys-
tem. Through adding an agent for each specific task and 
machine they were able to manage the complexity resulting 
from the manufacturing process. The system was subse-
quently tested and implemented at an energy storage pro-
duction facility, and it showed that 80% of the solutions were 
sensible, and for another 10% the discovered proposal led 
to a better solution. One of the few publications discussing 
the implementation of the prototype in a running environ-
ment, they state that the availability of proper product life-
cycle management and manufacturing problem solving is 
paramount.
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Finally, for data handling automation Bender et al. (2015) 
compared four agent architectures for combining product 
and logistics-related data for more efficiency in product life 
cycle management systems. Their publication remained a 
concept, although it shows how specific tasks in ECM can 
be outsourced to the machine, and offer the architecture for 
other, similar applications.

In some cases, an EC is not a new design, but a recom-
bination of already available components. For this case, 
Beroule et al. (2014) devised a consensus-seeking MAS of 
distributed fuzzy agents to integrate multiple departments 
and generate new combinations of components to resolve 
EC requests. They show the performance of this method by 
a simulated example of an office chair. However, they do 
not compare their performance to a human engineer or other 
algorithms. Rather, they just state that it is a possibility for 
automation.

Another MAS application for automation is presented by 
Habhouba et al. (2009). Having identified that ECM data is 
too varied to be processed by a single entity, they suggest 
dividing EC process into its subtasks and devising an agent 
for every single one. They present a simulated case study 
of an airplane wing EC, showing the inner workings of the 
MAS. The final decision of the design, however, still lies 
with the human expert. From an application perspective, the 
split into multiple agents has a second advantage, overlooked 
by the researchers. With distributing the task into many sub 
agents, maintainability of such a system would be increased 
as the improvement of each agent could be done indepen-
dently of the others.

Adding to business need 2, Ma et al. (2017) apply a MAS 
to model and simulate the effects of ECs and provide deci-
sion support. In their work, they described ECs on com-
ponents as agents, traversing a graph and simulating how 
changes to a component affect other components. A key 
component of their method is the inclusion of concurrent 
ECs, where multiple ECs are triggered simultaneously. In 
such a case (as seen with the Dynamic BN), ECs on other 
components have cyclic effects on other components. Fur-
thermore, they increase the level of detail of the propagation 
analysis by basing their network on parameters and proper-
ties of components. Finally, they test their method on the 
case study of a gear box.

Overall, as all contributions were successful in their 
respective tasks, they showed that MAS are suitable for com-
putational support of ECM. However, except for the contri-
bution by Camarillo et al. (2017), none of the proposals has 
reported a deployment into productive environments. Fur-
thermore, it is interesting that no contribution has devised 
an MAS over the entire EC process. This could relate to the 
complexity of the EC process, as by Ashby’s law (Ashby 
1968) to fully grasp it, an equally complex MAS would be 
required.

5  Insights for future AI‑application 
development in ECM

Insight 1 (I1): Research on AI applications in ECM 
focuses mostly on pre-approval and post-implementation 
process steps (Fig. 3.).

AI-artifacts are existent in the field of ECM, although 
their application mostly focuses on the same areas as 
general ECM research. There is a high potential for AI 
application in ECM, going as far as to automate the entire 
EC process as suggested by some researchers. The main 
application target is to provide decision support, with a 
secondary goal to solve capacity constraints or find the 
optimal design change. The classification of ECs, although 
only once explicitly mentioned as a goal of AI-research, is 
often a byproduct of EC impact prediction. This leads to 
another key takeaway considering the application of AI-
methods. The framework chosen shows the primary point 
of application in the EC process. However, as shown in 
the discussion of NLP and ML papers, for AI-application 
multiple process steps must be developed upon. For super-
vised learning this becomes especially apparent. Without 
existing labels, no ML-model can be trained. Thus, the 
last step, documentation and review is an important input 
parameter for any supervised ML application in ECM 
(e.g., Pan and Stark 2020; Riesener et al. 2021)).

Insight 2 (I2): Population-based MH and ML algo-
rithms are versatile AI-algorithms for optimizing and 
automating tasks during the EC process (Fig. 5).

This becomes evident when the range of the applica-
tions is considered. Most other AI methods were confined 
to one or two process steps, whereas ML algorithms cover 
most process steps. From a usual ML application perspec-
tive, it is interesting, that the first two process steps are 
neglected. As seen in Fig. 3., no publication researched 
exclusively ML-driven classification of ECs, although it is 
one of the most common ML applications. This is a direct 
result of our clustering framework, as only the primary 
contribution has been considered. Most publications do 
classify past changes, but mostly as a preprocessing step 
for other applications, e.g., change propagation. Regarding 
the development of solutions, we infer that this is due to 
research occurring in other domains such as design auto-
mation, e.g., (Oh et al. 2019; Yu et al. 2019).

Comparably, although MH approaches are concentrated 
on optimization, they cover diverse tasks within this process 
step and are often a preprocessing step for ML applications 
(e.g., hyperparameter optimization). The limiting factor of 
these algorithms is their design – they always require a cost 
function, which they optimize their problem with. As such, 
only those tasks can be automated by MH, where variables 
can be parameterized, and an optimization goal is given.
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Insight 3 (I3): Multi-agent systems are required to fully 
automate the EC process as the data flow occurring in ECM 
is too decentralized and the process too complex.

Since research on AI-artifacts mostly focuses on sin-
gle tasks during the process, full automation can only be 
achieved by linking them sequentially. However, due to high 
complexity and EC data coming from various IT-systems 
and different departments, a specialized solution is required 
for automating the EC process. In AI-based ECM research, 
managing complexity is solved by the introduction of MAS. 
By employing multiple smart agents, data management and 
maintainability are simplified, and the requirements of dis-
tributed stakeholders are fulfilled.

Insight 4 (I4): Within ECM, no standard data set exists to 
test new algorithms and most algorithm testing is performed 
on real-world data.

Most publications that tested their approach did so on 
real-world data. However, as Mehta et al. (2013) point out, 
to generalize, research on new tools should be done with 
standardized data sets, which are currently missing in the 
EC domain. Thus, the results derived from experiments on 
one data set are confined to the specific case-study, which 
in turn leads to the necessity to retest algorithms for each 
company and industry. Furthermore, as these data sets would 
have a lot of company-specific information, they are prob-
ably subject to company secrecy. However, generating a 
simulated case as a reference set is a double-edged sword. 
With the simulation, possible anomalies existing within the 
EC process could be overlooked, or the problem too simpli-
fied, leading to wrong assumptions on the performance of 
algorithms.

Insight 5 (I5): Although most AI research is based on 
case studies, only a few have reported implementation in 
the industry.

From all 39 papers reviewed, only one (Camarillo et al. 
2017) implemented the prototype in a productive environ-
ment, and one (Pan and Stark 2020) discussed algorithm 
tuning with an industry partner. The reasons for this can be 
manifold. One major difficulty might be the high individu-
alization of ECM or an insufficient data backbone for AI 
applications. Other potential challenges are the necessity of 
consistent data management (e.g., product life cycle manage-
ment systems) and data access (Camarillo et al. 2017). As a 
result, AI artifacts are possibly not yet adapted to usage in 
productive environments, or, at worst, the applicability of the 
research outcome is not given for productive environments.

Insight 6 (I6): The EC process is driven by expert knowl-
edge and highly individualized, requiring extensive data 
engineering

As shown by some of the ML methods, the input given by 
EC requests is often given in natural language. This, how-
ever, leads to difficulties. Not only does the language within 
ECM change in every organization (Arnarsson et al. 2021), 

but also the EC process itself varies. Thus, any application 
of AI would have to be tailored to the target organization. 
The data engineering and mining could further be aided with 
statistical methods, not necessarily requiring expensive AI 
methods.

Insight 7 (I7): EC data is mostly vague and the outcome 
of the process often uncertain, necessitating fuzzy logic and 
probabilistic methods.

The outcome of any process in EC, be it design genera-
tion, change propagation or any other, is difficult to grasp. 
This is also indicated by the lack of supervising methods 
(business need 4). This can either be due to the unavailabil-
ity of performance indicators, or due to inept methods. Any 
supervision method for the EC process, however, would have 
to manage this. This necessitates monitoring with uncer-
tainty and probability.

Insight 8 (I8): AI-based ECM Research has seldomly 
compared their approach to already existing solutions, show-
ing an overall lack of rigor.

A common theme observed was the introduction of new 
approaches and methods and claiming that they perform 
well. However, they have rarely compared their approach to 
solutions discovered in previous publications. This can be a 
direct result of the high individualization of the EC process 
(I6), but also due to low rigor in AI-based ECM research. 
Furthermore, no publication has linked their actual code or 
algorithm, thus making it difficult for others to replicate the 
experiments on other test sets. Another general point of cri-
tique is the application of AI methods without parameter 
optimization. Parameters have a significant impact on nearly 
every AI method, and should always be considered (Feurer 
and Hutter 2019).

In conclusion, and as an answer to RQ1, the findings from 
the insights can be described as follows: The complexity 
and expert-knowledge-based EC process requires AI meth-
ods to be applied in an ensemble when targeting automatic 
EC processing. As most ECs have similarly occurred in the 
past, using knowledge of past EC occurrences is suggested, 
although extensive data engineering is necessary. Addition-
ally, we heavily suggest testing new methods against already 
existing approaches, to determine which method is superior.

6  Implications for Future Research

Following the discussion of results in Sect. 4 and insights 
in Sect. 5, this section is aimed at synthesizing the outcome 
and answering RQ2. Resulting from (I1) we have identified 
that the research gap for EC implementation (Hamraz et al. 
2013; Iakymenko et al. 2018) also translates to AI-driven 
ECM research. Looking at the literature from the perspective 
of RQ2 and the business needs, we conclude that AI-driven 
ECM is possible, although numerous research gaps exist.
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From the perspective of readily available tools, business 
need 2 and business need 3 are best covered. For instance, 
by adapting the clustering approaches of current AI applica-
tions towards the first step of business need 3 (Optimization). 
Further useful methods are the decision support applications 
defined. As researchers were able to predict the outcome and 
impact of a change by the usage of EC data (e.g., (Riesener 
et al. 2021)), the methods could be tested for application 
during EC implementation. However, this requires exten-
sive testing and data engineering (I4), as the logistical and 
production data enriches the process. Because of unavailable 
standard data sets, comparing different approaches is impos-
sible. This can have multiple reasons, such as company pol-
icy and data complexity. However, this can be mitigated by 
sharing the algorithm and code. In doing so, other research-
ers can test the method with their own data set and compare 
the performance and improve upon these.

For business need 1, automation of the EC process, 
research, and development of a dedicated MAS would be 
necessary (I3). As even more stakeholders are involved dur-
ing the EC process than during the generation of the design 
change, the ensuing AI application and agents would have 
to control various heterogenous aspects.

Hence, an initial start would be to automate those tasks, 
which are less communication-intensive, like the optimiza-
tion of the effectivity date (business need 3). This could, in 
an MAS, be easily done by MH or ML models (I2), while 
the ordering task is still performed by a human operator. 
Research would be required on incorporating multiple data 
sources into the optimization models, as well as defining 
which MH algorithm is best suited. Likewise, classification 
and impact analysis could be supported by ML method (I2).

From within our literature review, no direct answer or 
approach for business need 4 can be derived. However, with 
(I4) and (I7) in mind, the dimension of the EC process leads 
to data and information loss on interfaces, causing instability 
in downstream process steps. Thus, a research gap towards 
supervision techniques tailored to the EC process becomes 
evident. Additionally, while other fields of research have 
explored data needs for AI applications, EC data remains 
mostly vague (I7). Key challenges remain in mining knowl-
edge from the process and joining various data types 
together for better process understanding. Future research 
should therefore also focus on establishing standardized data 
formatting and data sets, to test newly developed algorithms 
and methods.

A remaining research gap is a low report on the actual 
application in the industry (I5). Thus, we suggest conduct-
ing case-studies, whether AI-driven ECM has been imple-
mented in various industries. This would further help under-
stand the hindrances and difficulties. Furthermore, without 
validation in the field, AI applications for research cannot 
confirm whether their approach is suitable for advances 

in ECM. Furthermore, several researchers developed new 
methods, however they have not compared their performance 
against previously published solutions (I8). This is insofar an 
issue, as researchers and practitioners alike cannot confirm, 
which method is best to be applied in industry or case stud-
ies. Hence, aiming at RQ2, we can summarize the research 
needs as follows: While business need 1 requires research 
on modeling and developing an MAS, business need 2 and 
3 have been already addressed partly in the literature. Here, 
research should focus on determining the relevant factors, 
and testing various algorithms to determine the best out-
come. Eventually, business need 4 would need exploration 
on AI-driven control of knowledge-intensive processes. To 
give an overview of future research and the literature gaps, 
Table 3 presents the business need, how they are currently 
addressed in the literature, as well as knowledge transfer 
possibilities from within the domain.

7  Conclusion

Management of ECs increasingly burdensome on design, 
logistics and production departments. Driven by this indus-
trial need, automation by AI has been suggested by various 
authors. To aid the development of these new AI applica-
tions, we conducted a systematic literature review of publi-
cations on AI artifacts in ECM. By discussing 39 identified 
publications, eight insights and five research needs were 
documented, thus establishing a knowledge base for future 
development of AI methods.

In summary, the potential for usage of AI in EC has been 
recognized by various authors. The most common applica-
tion is to understand change propagation and change impact. 
This indicates that most of the problems in ECM emerge 
from this area. It has been established that conventional 
approaches are not providing satisfactory flexibility and 
dynamicity in the EC domain. More so, it is necessary to 
use different methods from the entire AI toolset, such as 
NLP, BN, OR, and ML in the ensemble for a fully automatic 
data-driven EC process. Hence, for full automation of the 
EC process, an MAS is required.

The two RQs, “What insights can be gathered from AI 
applications in the EC domain” and “What future research 
is necessary for AI-supported implementation of ECs”, 
were answered by presenting eight insights and five research 
needs, respectively. From the eight insights, in combina-
tion with predefined business need, future research on AI-
supported ECM should focus on:

(1) Testing of various metaheuristics in the context of EC 
effectivity date optimization

(2) Testing different combinations of ML methods to pre-
dict the EC effort
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(3) Researching distributed AI systems for automated EC 
processing

(4) Development of domain-specific process monitoring 
methods

(5) Validating AI artifacts with industry partners

With this outcome the review provides two contribu-
tions to practitioners and researchers alike: Through pro-
viding a detailed analysis of current AI research in ECM, 
both gain an understanding of the challenges and possibili-
ties already existing in the domain. With a discussion of 
these insights towards the business need we point towards 
literature gaps and opportunities for future research in 
ECM.

As a limitation, we point out that we have restricted the 
EC definition to technical artifacts in mechanical design 
and excluded AI-supported EC in areas such as construc-
tion engineering, software engineering or circuit engineer-
ing. Another limitation of our study is the provision of 
business need. As these are highly dependent on the imple-
menting organization, the business need presented provide 
an initial starting point, with the potential for further addi-
tions from case studies in industrial environments.

Nevertheless, this review shows a theoretical gap in the 
field of ECM. To aid organizations with managing design, 
production, supply chains, and EC, applicable tools for 
automatic handling of EC are necessary. Future research 
should thus focus on modeling the EC process and ena-
bling their agent-based realization. This can be done by 
suggesting optimal effectivity days, automating the EC 
scheduling task, and supervising the process. Regarding 
this, AI provides an opportunity. Additional exploration 
on what algorithms to use is required, and an agent-based 
approach to model and handle the complexity of ECM 
should be discussed. Finally, to confirm the theory, the 
resulting artifacts should be tested with industry partners.
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