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Abstract
Industry 4.0 (i4.0) is central to advanced manufacturing. Building on novel digital technologies, it enables smart and flexible 
manufacturing with systems connected across company boundaries and product lifecycle phases. Despite its benefits, the 
adoption of i4.0 has been limited, especially in small and medium-sized enterprises. A key challenge is the technological 
complexity of i4.0. While advanced functionality requires technological complexity, it complicates an understanding of 
which enabling technologies are particularly useful and required. This article presents a framework to support successful i4.0 
adoption across the entire product generation process through a systematic matrix-based dependency analysis of i4.0 solu-
tions and underlying i4.0 technologies. Through increasing transparency around technological complexity of i4.0 solutions, 
this research contributes to a better understanding of which technologies are required for specific i4.0 solutions and which 
technologies could be strategic enablers for a broad variety of i4.0 applications. Knowing these technological dependencies 
supports both, the systematic adoption of existing i4.0 solutions and the development of new i4.0 solutions. This also sets 
the basis for a future socio-technical investigation.

Keywords Complex systems · Dependency framework · Industry 4.0 · Product generation process · Technology adoption · 
Technology management

1 Introduction

This article develops a framework to structure the complex 
dependencies between Industry 4.0 (i4.0) applications, so-
called technology solutions (tech-solution), and enabling 
technologies. This framework supports technology and 
production mangers to better understand what technologies 
they need for a successful i4.0 adoption across the product 
generation process as well as to design future i4.0 solutions.

Industry 4.0 (i4.0) has become a central concept for 
contemporary and advanced manufacturing (Frank et al. 
2019). i4.0 represents a collection of technologies rather 

than a single technology (Xu et al. 2018). A key feature is 
the integration and networking of manufacturing processes 
within organizations as well as along supply chains, enabled 
through advancements in information and communication 
technologies (ICT) and competences. It allows a holistic 
collaboration between machines, resources and humans, 
along with a paradigm shift from a centralised to a more 
decentralised way of control (Kagermann 2015). This sup-
ports companies in shortening product development times, 
providing increasingly customised products, realizing higher 
flexibility in product development and manufacturing, as 
well as increasing resource efficiency and sustainability 
(Lasi et al. 2014). While the adoption of i4.0 is based on the 
implementation of i4.0 technologies, these are normally not 
acquired individually but as part of a purpose-oriented tech-
solution: for instance, an additive manufacturing machine 
alone does not provide much value in isolation but requires 
enabling technologies like CAD software and computers, 
and post-processing along with a use or business case to 
form an additive manufacturing solution. This also high-
lights that i4.0 can create the highest value if adopted along 
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the entire product generation process from product planning 
to manufacturing.

Despite these benefits, the adoption of i4.0 in companies 
is challenging (Pedota et al. 2023) and adoption rates lower 
than expected (Bajic et al. 2021). Initial studies indicate that 
central adoption challenges range from a limited understand-
ing of i4.0, via gaps in capabilities and system integration, 
to high investment costs. They cause a high risk of adopting 
i4.0 technologies that cannot be used to their full extent or 
that do not add value to the company (Bag and Pretorius 
2022; Orzes et al. 2020; Wichmann et al. 2019; Yu and Sch-
weisfurth 2020; Zhou and Le Cardinal 2019). Especially 
small and medium-sized enterprises (SMEs) tend to be gen-
erally cautious or even reluctant to invest in new technolo-
gies as their economic benefit and risk are not sufficiently 
assessable (Bajic et al. 2021; Erol et al. 2016; Orzes et al. 
2020; Raj et al. 2020). Along with often limited resources 
that hinder from closely following the latest evolutions of 
i4.0 technologies and i4.0 applications, competence and 
cultural challenges contribute to i4.0 adoption reluctance 
(Bajic et al. 2021; Cotrino et al. 2020; Faller and Feldmüller 
2015; Orzes et al. 2020). This is further complicated by a 
lack of a methodological approach and support around the 
adoption of i4.0 (Orzes et al. 2020; Raj et al. 2020; Yu and 
Schweisfurth 2020). In addition, technical issues such as 
lacking compatibility (Ghobakhloo et al. 2022) can cause 
various technical implementation challenges (Bajic et al. 
2021; Khaitan and McCalley 2015; Raj et al. 2020; Zhou 
and Le Cardinal 2019).

The majority of these adoption challenges is directly or 
indirectly linked to complex technological interdependencies 
of i4.0. Pedota et al. (2023) stress that technologies form com-
plex systems comprising complementary and interdependent 
single technologies (Ghobakhloo et al. 2022; Pedota et al. 
2023). While the adoption of i4.0 requires the implementa-
tion of digital technologies (Frank et al. 2019), the underly-
ing technological change in itself is neither simple nor self-
sufficient, and especially the mere adoption of technologies is 
not sufficient for a company to create competitive advantages 
(Pedota et al. 2023). Often, the limited focus on specific tech-
nologies leaves the full potential of i4.0 benefits underutilised 
(Bittighofer et al. 2018; Schneider et al. 2021). However, the 
resulting technological complexity is a double-sided sword.

On one hand, advanced i4.0 functionality and perfor-
mance require technological complexity. Only the purpose-
ful and consistent combination of complementary technol-
ogies as part of an overarching architecture enables novel 
system properties and applications or  tech-solutions (Pedota 
et al. 2023). This aligns with the wish of companies to 
only invest into socio-technical capabilities they need. This 
means they want technologies to achieve a specific purpose. 
They are not so much interested in single i4.0 technologies 
but rather consistent combination of technologies, i.e. i4.0 

tech-solutions for specific use cases (Pedota et al. 2023). For 
instance, while additive manufacturing would be a technol-
ogy, its combination with artificial intelligence and cloud 
computing could allow for an i4.0 tech-solution around rapid 
product development including optimised material selection 
(Pedota et al. 2023). The example also highlights the wish 
of SMEs as well as the general relevance of considering not 
only the manufacturing phase but the entire product genera-
tion process to utilise the full potential of i4.0 and underly-
ing investments.

On the other hand, the high i4.0 technological complexity 
is a major challenge (Frank et al. 2019; Ghobakhloo et al. 
2022; Kumar et al. 2020; Schott et al. 2020; Volkwein et al. 
2022). Along with the variety and novelty of i4.0 technolo-
gies (Müller et al. 2018), it complicates an understanding of 
what technologies are required for a specific i4.0 tech-solu-
tion, and whether or how new technologies are compatible 
with other new or existing technologies (Ghobakhloo et al. 
2022) as well as staff competences, processes, organizational 
change, and even the overarching company strategy (Ago-
stini and Nosella 2020; Calabrese et al. 2020). This aligns 
with other studies that link complexity to an uncertainty and 
limited common understanding of which and how to use 
new technologies and their combinations (Marri et al. 1998; 
Morales et al. 2023). Compared to Industry 3.0 with ele-
ments such as Computer Integrated Manufacturing (CIM), 
i4.0 integrates the physical and virtual domain and connects 
vast networks of artificial intelligence-enabled decentralised 
systems (Ahuett-Garza and Kurfess 2018; Xu et al. 2018), 
which drastically increases the resulting complexity. Espe-
cially for SMEs, i4.0 is an “intimidating concept” (Ramírez-
Durán et al. 2021). Their resource constraints (Ghobakhloo 
et al. 2022; Yu and Schweisfurth 2020) can limit their ability 
to follow the latest technological trends as well as increase 
the risk when buying unsuitable or incompatible technolo-
gies. In addition, there is an economic incentive to select 
technologies that can be used not only for a single tech-
solution but for several different i4.0 tech-solutions. This 
spans across the product generation process, such as using 
virtual reality to visualise a new product prototype as well as 
how specific manufacturing tasks could be conducted. Most 
of these challenges had already been reported for i3.0 and 
CIM with their internal focus and rigid system architecture 
tailored towards process efficiency (Marri et al. 1998) and 
still caused issues when i4.0 started to rise (İç, 2012). How-
ever, the open, externally oriented system architecture of 
i4.0 including artificial intelligence, increased amounts and 
importance of data, and integrated cyber-physical domains 
allow not only for process efficiency but also situational flex-
ibility (Marri et al. 1998; Yu et al. 2015), which amplifies 
these challenges and requires new methodical support.

This means understanding and managing complex 
interdependencies between i4.0 technologies and i4.0 
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tech-solutions is critical for the successful adoption of i4.0, 
but has only received limited attention to date. Representing 
a first step on a longer research journey towards the success-
ful adoption of i4.0 including socio-technical and economic 
considerations, this leads to the following research ques-
tion: How can dependencies between i4.0 tech-solutions in 
the product generation process and underlying enabling 
technologies be analysed and mapped? This includes the 
question: How can i4.0 technologies and solutions be sys-
tematically structured?

To answer these questions, we take a holistic focus on the 
product generation process: ranging from product planning, 
via product development and production planning, to pro-
duction (Naefe and Luderich 2016; Schneider et al. 2021). 
First, we analyse literature on i4.0 technologies and tech-
solutions to develop a consistent taxonomy of i4.0 technolo-
gies and a structured overview of i4.0 tech-solutions. This 
is critical to address the varying levels of abstraction and 
resulting understanding of i4.0 technologies, for instance, 
ranging from abstract additive manufacturing down to 
specific wire arc additive manufacturing. These structures 
serve as basis for a systematic analysis of solution-technol-
ogy dependencies, leading to an i4.0 solution-technology 
framework to support successful i4.0 adoption. Applying the 
framework to an existing cyber-physical brewery evaluates 
and showcases the framework applicability.

Thus, this research contributes to i4.0 adoption through a 
more systemic perspective, broadening the scope from single 
technologies (Bajic et al. 2021) to purposeful technology 
combinations, so-called tech-solutions, for specific applica-
tions. Our research helps to increase transparency around 
technological complexity of these i4.0 tech-solutions. It adds 
to an improved understanding of requirements and prerequi-
sites for implementing specific i4.0 tech-solutions and will 
help academics and practitioners investigating occurring 
adoption issues from a technological dependency perspec-
tive. While this contributes to adopting i4.0 tech-solutions 
that support product development and manufacturing, it 
helps practitioners like manufacturing managers or integra-
tors via guiding the design and development of new i4.0 
tech-solutions in the medium-term future. This also sets 
a basis for future research also considering non-technical 
adoption aspects as part of a socio-technical research per-
spective (Polojärvi et al. 2023), which can form the basis to 
develop methodical support for the planning and manage-
ment of i4.0 adoption (Orzes et al. 2020; Yu and Schweis-
furth 2020).

The remainder of this paper is structured as follows: 
Sect. 2 provides an overview of the key concepts of i4.0, 
the difference between technologies and tech-solutions. 
Section 3 describes the process of our literature analysis, 
technology and tech-solution mapping and resulting frame-
work development. The outcomes are presented in Sect. 4. 

Section  5 discusses the implications on i4.0 adoption, 
including a pre-evaluation of the framework with a cyber-
physical brewery. Section 6 concludes the paper and details 
the respective contributions and limitations.

2  Conceptualising Industry 4.0 technologies 
and tech‑solutions

The term Industry 4.0 (i4.0) or 4th Industrial Revolution was 
introduced at the Hannover Fair 2011 to describe a radical 
shift in manufacturing: while Industry 1.0 was character-
ised by steam-powered machines in the eighteenth century, 
Industry 2.0 by conveyer belts, electrical energy, and mass 
production in the nineteenth and twentieth century, Indus-
try 3.0 by automated manufacturing using programmable 
logic controllers, Industry 4.0 is characterised by smart 
autonomous decentralised but highly interconnected cyber-
physical systems that integrate virtual and physical domains 
(Ahuett-Garza and Kurfess 2018; Xu et al. 2018). A key ele-
ment of i3.0 is Computer Integrated Manufacturing (CIM), 
which has been closely linked to the rise of digital manu-
facturing in the 1980s (Yu et al. 2015). CIM is a generic 
term of a group of technologies, including manufacturing 
machines, IT and software, to produce products more effi-
ciently through an automated process from order reception, 
CAD design, production to shipping of a product (Marri 
et al. 1998). This automatization is achieved through the 
vertical integration of computers and manufacturing sys-
tems as part of localised networks of embedded systems 
within a single factory using a closed, hierarchical and rigid 
architecture (Yu et al. 2015). This limits the ability to deal 
with external changes (Yu et al. 2015). Thus, the key focus 
of CIM is on increasing process efficiency and quality, and 
reducing costs and production times (Marri et al. 1998). In 
contrast, the driving aspects of i4.0 are Cyber-Physical Sys-
tems (CPS) and Cloud Computing (CP) (Yu et al. 2015). 
They enable a vertical and horizontal integration and con-
nection amongst machines, between machines and humans, 
and along the value-chain, which builds global networks of 
embedded systems and ultimately factories and companies. 
Along with increased process efficiency, this also fosters a 
high degree of flexibility and adaptability (Yu et al. 2015). 
Hence, following the statement of İç (2012, p. 245) that 
“CIM refers to any computer-oriented technologies used in 
design, manufacturing and logistics operations”, i4.0 includ-
ing CPS and CS undeniably build upon CIM but enhance 
it by new technologies and features. Especially the use of 
cloud services, internet of things, and artificial intelligence 
along with a shift from mass manufacturing to flexible cus-
tomised manufacturing differentiate i4.0 from i3.0 (Jiang 
et al. 2022; Yin et al. 2018).
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The term i4.0 has been used extensively since its intro-
duction, leading to slightly varying definitions and under-
standings of i4.0 (Klingenberg et al. 2021). Analysing dif-
ferent i4.0 definitions reveals variations that are rooted in 
different overarching perspectives onto i4.0. These can be 
grouped into three main views: (1) Technology-centric view, 
focussing on underlying technologies, i.e. i4.0 as a collective 
term of using different i4.0 technologies (e.g. Hermann et al. 
2016; Lopez-Gomez et al. 2017); (2) Concept-centric view, 
focussing on organisational and manufacturing philosophi-
cal aspects, i.e. organizational and technological change 
following an automation philosophy (Nosalska et al. 2020; 
Oztemel and Gursev 2020); and (3) Networking-centric 
view, focussing on system interconnections, i.e. networking 
of machines, humans and organizations in real time (Bauer 
et al. 2014; Bauernhansl et al. 2014).

Nevertheless, all views share common characteristics, 
such as an overarching connectivity between suppliers and 
customers, digitalization and smart manufacturing, based 
on the extensive use of cyber-physical systems (Müller et al. 
2018). Hermann et al. (2016) state interconnection, infor-
mation transparency, decentralised decision and technical 
assistance as key characteristics of i4.0. This means, i4.0 is 
characterised by the use of novel technologies, which allow 
for high-level of connectedness of socio-technical systems, 
but also require substantial changes of machines, humans, 
organizations and industries. These aspects are summarised 
in the i4.0 definition of Nosalska et al. (2020): “Industry 4.0 
is a concept of organizational and technological changes 
along with value chains integration and new business mod-
els development that are driven by customer needs and mass 
customization requirements and enabled by innovative tech-
nologies, connectivity and IT integration.”.

2.1  A taxonomy of industry 4.0 technologies

Technologies generally represent “a system of knowledge 
about how to manipulate nature in a logical scheme to 
achieve a functional transformation” (Betz 2011). Although 
the term technology thus describes broadly the ability and 
knowledge to achieve such a transformation (Gochermann 
2022), often based on scientific insights, it is usually asso-
ciated with hardware and software, such as additive manu-
facturing and big data (Nosalska et al. 2020). Purposefully 
combined, compatible technologies provide new functions 
and enable the adoption of i4.0 in terms of i4.0 tech-solu-
tions (Kang et al. 2016).

In addition to the continuously growing variety of tech-
nologies, a key challenge of systematically managing tech-
nologies is a varying degree of abstraction in literature, e.g. 
ranging from specific, such as deep learning, to abstract, 
such as general artificial intelligence. A clear taxonomy is 
key to ensure a unified understanding of what is actually 

described, managed or applied. To manage this complexity, 
such a taxonomy needs to be able to incorporate and clearly 
structure technologies on different levels of abstraction to 
differentiate between single technologies and groups of 
technologies. Due to the fast-paced technological develop-
ment, another requirement is to allow for future updates, i.e. 
adding, deleting, and modifying technologies and groups. 
This includes a robust mapping with i4.0 solutions to allow 
for adding, deleting, and modifying technologies, groups, 
and tech-solutions without affecting the rest of the mapping 
framework. A range of existing studies have categorised i4.0 
technologies in different ways and with different foci. This 
paper builds on this wealth of prior knowledge and combines 
these insights in a taxonomy that fulfils the requirements of 
allowing varying levels of abstraction, future updates, and 
a robust mapping of i4.0 technologies with i4.0 solutions.

Bueno et al. (2020) use a rough five-item technology 
categorisation of internet of things (IoT), cyber-physical 
systems (CPS), additive manufacturing (AM), cloud man-
ufacturing, and big data and analytics/AI, and map these 
onto different capabilities and applications for production 
scheduling and control. This provides a systematic overview 
of technology potentials but lacks a detailed technology cat-
egorisation and consideration of other product generation 
phases. Zheng et al. (2021) provide a broader view, both in 
terms of considering different product lifecycle phases and 
presenting a more detailed analysis of 10 technology types, 
which adds to the five categories of Bueno et al. (2020): IoT, 
CPS, AM, cloud technologies, big data and analytics, AI, 
blockchain, simulation and modelling, visualisation tech-
nologies, and automation and industrial robots. Dalmarco 
et al. (2019) describe nine technology groups: simulation, 
big data and analytics, cloud computing, cyber-physical 
systems, cybersecurity, collaborative robotics, augmented 
reality, additive manufacturing, and systems integration. 
Although they explain that these technologies are linked to 
developing, manufacturing, operating and servicing activi-
ties, the specific links to the activities and to each other are 
not clear. In this respect, the framework of Lopez-Gomez 
et al. (2017) analyses interdependencies of technologies. 
It uses a data perspective to structure i4.0 technologies 
into four groups including subgroups: data generation and 
capture (incl. CPS), data transmission (incl. network infra-
structure), data conditioning, storage and processing (incl. 
big data and cloud computing), and data application (incl. 
advanced manufacturing capabilities). However, the frame-
work does only mention a limited number of technologies 
for each group. Lee et al. (2015) also use a data perspec-
tive to build their hierarchical 5C CPS architecture: smart 
connection level (e.g. sensors), data-to-information conver-
sation level (e.g. smart machine components), cyber level 
(e.g. digital twins), cognition level (e.g. collaborative diag-
nostics and decision making), and configuration level (e.g. 
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self-optimising systems). Although the hierarchical levels 
building on each other are a powerful concept, they focus on 
a production system as ultimate goal and put less focus on 
smart individual machines or product development phases. 
Calabrese et al. (2020) analyse the relationship between 
i4.0 goals, technologies, and barriers, based on a structure 
of nine technology classes reflecting different i4.0 use case 
areas: production line, smart worker, smart equipment, com-
puting, sharing, smart product, data analytics, network, and 
cyber-security technologies.

The comparison of these framework shows distinctive 
similarities, where Bueno et al. (2020) can be seen as a sub-
set of Zheng et al. (2021). In respect of a consolidated i4.0 
technology taxonomy, a central category are manufacturing 
technologies, which enhance manufacturing capabilities and 
their level of automation and autonomy, and can be more 
generally addressed as production line (Calabrese et al. 
2020), abstractly as data application (Lopez-Gomez et al. 
2017), or more specifically as AM or robots (Dalmarco et al. 
2019; Zheng et al. 2021). Computing technologies (Cala-
brese et al. 2020) correspond with data conditioning, stor-
age and processing (Lopez-Gomez et al. 2017) and include 
cloud technologies (Dalmarco et  al. 2019; Zheng et  al. 
2021). They enable the sharing and provision of computing 

power and resources across business processes. They also 
improve the exchange and processing of data across com-
pany boundaries. While data technologies also overlap with 
data conditioning, storage and processing, their focus is 
more on data analytics (Calabrese et al. 2020; Dalmarco 
et al. 2019), including big data, AI and blockchain (Zheng 
et al. 2021). They enable advanced analysis, management 
and secure storage of data that forms the heart of i4.0 (Ink-
ermann et al. 2019). Closely linked are simulation technolo-
gies (Dalmarco et al. 2019), which also include modelling 
(Zheng et al. 2021) and computing, and represent a form of 
data application (Lopez-Gomez et al. 2017). They combine 
technologies for the simulation and the optimization of busi-
ness activities, ranging from technologies like ERP, MES 
and CIM/CAx novel technologies like advanced simulation 
for predictive control and problem solving (Modrák and 
Mandul’ák 2009). While human interface technologies are 
not explicitly addressed, they correlate with smart worker, 
smart product and smart equipment (Calabrese et al. 2020) 
in respect to data generation and capture and data appli-
cation (Lopez-Gomez et al. 2017), including visualisation 
(Zheng et al. 2021). They can range from partially immer-
sive augmented, where real-world elements are combined 
with the virtual reality, to fully immersive ways to visualise 
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Fig. 1  Taxonomy of Industry 4.0 technologies
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data and images. Network technologies combine sharing 
and network (Calabrese et al. 2020) and IoT (Zheng et al. 
2021) in the sense of data transmission (Lopez-Gomez et al. 
2017) as well as integration (Dalmarco et al. 2019). They 
enable the i4.0-inbuilt networking of machines and humans 
in real time (Bauernhansl et al. 2014; Lee et al. 2015) and 
show strong links to cloud-based computing technologies. 
Sensor technologies are not explicitly mentioned but are 
critical is respect to data generation and capture (Lopez-
Gomez et al. 2017) as they connect the physical and digital 
side of i4.0 through capturing real-world data (Szász et al. 
2021). While this enables smart i4.0 systems, these novel 
sensors are smart themselves as they are autonomous inter-
connected systems. An increasingly crucial category but 
only mentioned by Calabrese et al. (2020) and Dalmarco 
et al. (2019) are cyber security technologies. They protect 
hardware and software i4.0 infrastructure from unauthorised 
access, tempering or attacks (Bajic et al. 2021). Despite their 
relevance, the analysed literature surprisingly did not state 
specific technologies. Figure 1 provides an overview of the 
consolidated i4.0 technology taxonomy (with more details 
in Appendices 1 and 2). Its three-level structure allows to 
allocate technologies on different levels of abstraction and 
differentiate specific technologies from technology groups. It 
also supports its time-robustness as new technologies can be 
added to existing sub-categories. As cyber-physical systems 
(CPS) combine several technology categories, they cannot 
be mapped to a single category and are, therefore, not men-
tioned in the taxonomy.

2.2  Industry 4.0 technology‑solutions

Technology-solutions (tech-solutions) are “an implemen-
tation of people, processes, information and technologies 
in a distinct system to support a set of business or techni-
cal capabilities that solve one or more business problems” 
(Gartner 2022). I4.0 tech-solutions are the combination and 
realization of different technologies within a concrete i4.0 
adoption scenario, i.e. a specific application and purpose, 
such as combining additive manufacturing with artificial 
intelligence to enable optimised material selection for 3D 
printing (Pedota et al. 2023). A set of technologies can 
be combined to various tech-solutions based on different 

adoption purposes and strategies. The use of i4.0 tech-solu-
tions represents the adoption of i4.0.

Following the idea of i3.0/CIM from CAD design to 
produced product (Marri et al. 1998), this research uses a 
holistic lifecycle phase-spanning view on i4.0 tech-solutions 
across the product generation process, which can be struc-
tured into four phases (Fig. 2, and Table 2) or groups based 
on Naefe and Luderich (2016) and Schneider et al. (2020).

1. Product planning tech-solutions This phase centres 
around the strategic question of which products should 
be developed and why. Product planning tech-solutions 
are at the start of the product development process and 
help identifying product needs and requirements—
originating from both, internal and external sources 
(Feldman and Page 1984). With respect to i4.0, exter-
nal sources like customer involvement become more 
relevant (Wijewardhana et al. 2021). Along with tra-
ditional passive involvement types like an analysis of 
e-commerce platform transaction data (Li et al. 2018), 
active customer involvement through social networks for 
open innovation are of increasing interest (Kamble et al. 
2018).

2. Product development tech-solutions Based on the pre-
ceding planning phase, this phase focusses on develop-
ing and designing a product (Wijewardhana et al. 2021). 
I4.0 tech-solutions can help reduce development times 
and costs, and improve quality (Wijewardhana et al. 
2021). Tech-solutions range from AI-supported colour 
matching (Wijewardhana et al. 2021) and design support 
(Frank et al. 2019), via rapid prototyping (Yang et al. 
2017; Zawadzki and Żywicki 2016) to virtual (Nosalska 
et al. 2020) and hybrid prototyping (Kamble et al. 2018).

3. Production planning and control tech-solutions This 
phase designs the production systems and processes to 
manufacture a developed product (Vielhaber and Stof-
fels 2014). This includes factory layout aspects, such as 
data-driven plant design (Bueno et al. 2020) and digital 
twin factory floor map planning (Chen 2017), process 
and workflow aspects, such as AI process optimiza-
tion (Ramirez-Peña et al. 2020) and e-Kanban systems 
(Bueno et al. 2020), and control aspects, such as distrib-
uted manufacturing control (Bueno et al. 2020) and local 
real-time process coordination (Fernandez-Carames and 
Fraga-Lamas 2019). Due to production control focusing 
on scheduling and monitoring production activities, it 
overlaps with the subsequent production process (Viel-
haber and Stoffels 2014).

4. Production tech-solutions Based on production plan-
ning, this phase focuses on the actual manufacturing of 
a product. These tech-solutions can support in increasing 
manufacturing capabilities and meet the need for a flex-
ible production system and process as a basis of a “smart 

Product Development Process Production Process

Product Generation Process

Product 
Planning

Product 
Development

Production 
Scheduling Production

Fig. 2  Product generation process
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factory”. Tech-solutions range from locating parts (Bon-
gomin et al. 2020; Fatorachian and Kazemi 2021; Mun-
samy et al. 2020; Oztemel and Gursev 2020; Pacchini 
et al. 2019) to smart machining implementations that 
allowing for the autonomous planning and execution of 
tasks based on design data (Xu 2017; Yang et al. 2018). 
Human robot-collaboration can complement unique 
human capabilities with machine power and accuracy 
in manufacturing environments (Cherubini et al. 2016; 
Gualtieri et al. 2021).

3  Research design and methods

This research follows the structure of the Design Research 
Methodology (DRM) and covers its first three phases (Bless-
ing and Chakrabarti 2009). The Research Clarification 
phase, addressed in Sect. 1, clarifies the need for, motivation 
and background of this research. The Descriptive Study 1, 
addressed in Sect. 2, uses a systematic literature review to 
build a deeper understanding of the current situation of i4.0 
technologies and tech-solutions. This builds the basis for the 
Prescriptive Study, addressed in Sect. 4, that develops the 
tech-solution-technology mapping framework. Following 
Blessing and Chakrabarti (2009), this also includes a first 
conceptual evaluation of the framework.

A key element of this research is a literature analysis 
based on the “Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses” (PRISMA) (Moher et  al. 
2009), based on the guidelines of Levy and Ellis (2006). 
Academic literature is extracted from Elsevier’s Scopus, a 
leading database with a broad coverage of scholarly litera-
ture (Martín-Martín et al. 2018), which includes Scopus-
listed databases like IEEE Explore. The search focusses on 
peer-reviewed journal articles to ensure research quality 
as well as review articles to get a consolidated overview 

of i4.0 tech-solutions and technologies, including techno-
logical links. This also allows for capturing existing i4.0 
taxonomies. The search string in title–abstract–keywords 
combines “Industry 4.0” with “technology” and “solution” 
(see Table 1). The search is limited to papers published after 
2011 (i.e. “> 2010”) as i4.0 was not officially used before 
the Hannover Fair 2011 (Wichmann et al. 2019). Following 
Wohlin (2014), a snowballing approach based on the refer-
ence lists of identified papers adds further literature using 
relatedness to the original search terms as inclusion criteria 
with a focus on review articles (Liao et al. 2017).

In a next step, the resulting 141 publications are screened 
based on two exclusion criteria: articles only generally men-
tioning i4.0, technologies and tech-solutions are excluded 
as they do not provide relevant descriptions on technology 
or tech-solution characteristics or their interdependencies, 
along with articles with no available full-text version.

To set the foundation for the dependency analysis of i4.0 
technologies and tech-solutions, the resulting 83 publica-
tions were analysed concerning i4.0 tech-solutions and tech-
nologies. This led to 63 technologies and 62 tech-solutions. 
The identified 63 technologies show an irregular distribu-
tion along with a highly varying level of abstraction (see 
Appendix 1, Fig. 4). While the 11 most frequently men-
tioned technologies account for 70% of all mentions, many 
technologies were mentioned only once. The latter might be 
due to a relative novelty (e.g. biosensors and quantum com-
puting) or a merely loose link to i4.0 (e.g. system dynamics 
and functional magnetic resonance imaging). For most tech-
nologies, however, it can be attributed to a strongly varying 
degree of abstraction, such as deep learning versus general 
artificial intelligence. To ensure a consistent level of abstrac-
tion, the identified technologies were categorised based on 
the taxonomy in Fig. 1. The identified 62 i4.0 tech-solutions 
were categorised in respect to the four phases of the product 
generation process: product planning, product development, 

Table 1  Research design of the systematic literature review

Step Search terms or selection criteria Number of

Database search Database: Scopus
Search string: TITLE-ABS-KEY ((“Industry 4.0” W/5 (technolog* OR solution) AND 

review) AND DOCTYPE (ar OR re) AND PUBYEAR > 2010 AND (LIMIT-TO 
(LANGUAGE, “English”)))

135 papers

Snowball search Inclusion criteria
 Related to Industry 4.0 technologies or tech-solutions
 Focus on review articles

+ 6 papers

Screening Exclusion criteria
 Industry 4.0, technologies or tech-solutions only generally mentioned
 No full-text available

83 papers

Coding Number of concepts identified within the 83 articles
 Industry 4.0 technologies
 Industry 4.0 tech-solutions

63 technologies
62 tech-solutions

Synthesis Mapping of Industry 4.0 technologies and tech-solutions n/a
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production scheduling, and production (Naefe and Luderich 
2016; Schneider et al. 2020) (Fig. 2, and Table 2). This was 
based on the analysis of the description of each tech-solution 
and its application context.

The dependency analysis and subsequent synthesis 
used a Domain Mapping Matrix (DMM) (Browning 2016; 
Danilovic and Browning 2007) to investigate the dependen-
cies between i4.0 tech-solutions and enabling technologies. 
DMM is a well-established tool in systems engineering and 
complexity management to model and analyse complex, 
often socio-technical dependencies between elements of 
different domains (Danilovic and Sandkull 2005). Due to 
its matrix nature, it also allows for calculating metrics like 
row and column sums, or matrix calculations to identify e.g. 
indirect links. In this case, the DMM supports the analysis of 
which technologies are required for a specific tech-solution, 
with technologies building the columns of the DMM and 
tech-solutions the rows.

In a step-wise process, each DMM cell was analysed for 
a potential dependency between the associated technology 
and tech-solution, centred around the guiding question if 
a technology is required for a specific tech-solution. This 
was based on explicitly stated dependencies in literature as 
well as the assessment of three researchers with experience 
in engineering design and i4.0. Building on the identified 
dependencies from literature, the researcher assessment was 
conducted individually first. Subsequently, the individual 
assessments were compared: aligning links were directly 
accepted while differing link assessments were discussed 
to understand the underlying reasons and to agree on a uni-
fied assessment. For instance, this led to the deletion of the 
link between (S1.1) Customer demand analysis and (T6.2) 
Advanced sensors as re-checking the associated literature 
implied a more data analysis-oriented angle. Subsequently, 
column and row sums were calculated to derive indicators 
for the frequency of technology use and indicators for the 
complexity of tech-solutions, respectively.

4  Mapping Industry 4.0 technologies 
and tech‑solutions

The individual analyses of i4.0 technologies and tech-solu-
tions already indicated that some tech-solutions use simi-
lar combinations of technologies, which, however, can be 
implemented in different ways. To understand these tech-
solution-technology relationships in detail, especially in 
respect to necessary technological preconditions, a system-
atic dependency analysis was conducted using a Domain 
Mapping Matrix (DMM) (Danilovic and Browning 2007).

Table 2 shows the DMM and the resulting i4.0 tech-solu-
tion-technology framework. Tech-solutions are modelled 
as rows and structured according to the four focal product 

generation process phases. Technologies are depicted as 
columns and clustered into the identified seven technology 
groups with a focus on the 26 technology clusters to ensure 
a homogenous level of detail. Links between tech-solutions 
and technologies are indicated by an “X” and can be read 
as “requires”. They are based on information derived from 
literature and were critically discussed and enhanced. For 
example, the implementation of hybrid prototyping (i.e. 
integrated virtual and physical prototyping) for product 
development requires AR/VR along with advanced sensors, 
simulations and CAD data as well as additive manufactur-
ing (Kamble et al. 2018). The analysis focused on minimal 
required technologies, ignoring potential variants, such as 
“Social Networks for Open Innovation” potentially using 
special CAD toolkits as well in some cases.

The DMM analysis reveals specific patterns. In general, 
row sums indicate the number of required technologies for 
each tech-solution, while column sums indicate how fre-
quently a technology is used across different tech-solutions. 
The five analysed product planning tech-solutions show a 
focus on Network, Data (analytics) and Computing technolo-
gies. This might align with the fuzzy front-end character of 
this early phase, which aims at identifying customer needs 
and innovation opportunities. In comparison, the more tan-
gible character of the subsequent phase is reflected in the 
12 product development tech-solutions having strong links 
to Simulation along with Human interface and Computing 
technologies. Similarly, the 21 production planning and con-
trol tech-solutions also show a focus on Simulation technolo-
gies but combined with Sensors and Data technologies. This 
aligns with a shift of the object of observation during the 
product generation process, from planning and simulating 
the product to its manufacturing process. The 24 production 
process tech-solutions have the highest density of techno-
logical links, covering almost all technology groups evenly. 
This high density along with the relatively high number of 
manufacturing-related tech-solutions reflects the origin of 
i4.0 as a manufacturing concept. However, the DMM also 
indicates an increased use of these technologies for tech-
solutions in other product creation and life-cycle phases, 
aligning with literature (Arromba et al. 2021).

5  Discussion

The DMM analysis reveals specific patterns around general 
technology use and frequency of technology use as well as 
complexity of i4.0 tech-solutions and dependencies between 
technologies. In this respect, the consolidated i4.0 technol-
ogy taxonomy proved to be useful as it enhanced existing 
two-level taxonomies and frameworks like Calabrese et al. 
(2020) and Lee et al. (2015) to a three-level taxonomy. While 
the top-level categories are usually too abstract and broad 
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for a meaningful mapping, the single technologies at the 
bottom-level are too detailed for mappings and also face the 
issue of being outdated quickly due to the dynamic evolution 
of technologies. Hence, the additional middle-level allows 
for sufficient detail but is still generic enough to allow for 
incorporating new technologies in the future. In addition, it 
also able to deal with and systematise technology descrip-
tions with varying levels of details, such as general additive 
manufacturing versus specific wire arc additive manufactur-
ing, which would otherwise complicate an understanding 
of what is required for the successful adoption of an i4.0 
tech-solution.

5.1  General technology use

The DMM uncovers a varying use of technologies across 
the product generation process. While production process 
tech-solutions show a broad use of technologies, produc-
tion planning and product development focus on Data and 
Simulation. The focus of product planning lies on Data and 

Network technologies. This reflects the characteristics of 
each phase along with the level of concretisation and matu-
rity of the associated product.

It also reflects the origin of i4.0 as a manufacturing 
concept and key R&D area. Although a holistic life-cycle-
spanning consideration of i4.0 would be important and ini-
tial scientific signs in this direction can be observed (e.g. 
Arromba et al. 2021; Ramírez-Durán et al. 2021), a broad 
tech-solution of i4.0 beyond manufacturing has been limited 
to date. This is also evident in our DMM analysis although 
it has to be treated with care as we only analysed review 
articles. Due to the retrospective character of reviews, this 
might cause a time delay of reported i4.0 tech-solutions. 
Still, this does not affect the general pattern of i4.0 tech-
nologies being under-utilised in non-manufacturing related 
product generation process phases. This represents a major 
gap as opportunities and synergies to other technology-and-
innovation-management approaches are not exploited. For 
example, i4.0 and open innovation show strong similarities 
in respect to underlying IT technologies, networked features 

Table 2  Industry 4.0 tech-solution-technology framework
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Table 2  (continued)
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and organisational openness, which would be beneficial to 
build integrated industry ecosystems if combined.

5.2  Most frequently used technologies

The sum of links of each DMM column indicates how fre-
quently specific i4.0 technologies are used in i4.0 tech-solu-
tions. Three groups—low, medium and high frequency of 
use—can be differentiated, using the maximum value of 39 
to derive three evenly spaced groups. Knowing the groups 
can support companies in their investment decisions: high 
frequency can indicate mature technologies with limited 
adoption risks (cf. Núñez-Merino et al. 2020), which might 
also be central enabling technologies (cf. Pedota et al. 2023), 
i.e. representing future-proof investments that are applicable 
for a large variety of tech-solutions.

Low frequency of use (0–13 links) these represent tech-
nologies from current niche applications as well as low level 
of maturity. For example: although quantum computing 
is mentioned and has the potential for radical disruptions 
across industries, its currently low maturity hinders indus-
trial application—similar to brain computer interfaces. Con-
cerning investment decisions, associated i4.0 tech-solutions 
and technologies are likely to have niche applications and 
teething issues for the moment. However, in the long-run, 
they have the potential for disruptive innovations. Complex 
Systems are an exemption as they represent established 
technologies that are potentially included in i4.0 tech-solu-
tions despite not being explicitly mentioned in the analysed 
literature.

Medium frequency of use (14–26 links) this group shows 
a higher level of technological maturity, which is reflected 
in a broader tech-solution spectrum. On the long-run, tech-
nologies with a medium frequency of use may prove to be 
both, niche technologies or key enabler for i4.0. Examples 
include semantic web, cloud manufacturing, and general 
cloud computing.

High frequency of use (27–39 links) these are used across 
a variety of i4.0 tech-solutions and have a high maturity, 
such as AI and CIM/CAx systems. However, these tech-
nologies are not always exclusively used for i4.0. From an 
investment perspective, they highlight promising established 
technologies with sufficient suppliers and support provid-
ers. In addition, they open up a broad application space and 
future-proof opportunities as they can be used in a multitude 
of tech-solutions.

In general, technologies with a high frequency can be an 
indicator of potential i4.0 “base” or “platform” technolo-
gies, i.e. technologies that are fundamental prerequisites for 
any i4.0 tech-solution. Besides CIM/CAX systems and AI, 
these might include medium frequency technologies such 
as big data analytics and industrial networks. However, 
some analysis results are counter-intuitive and need further 

investigation in the future: this includes the low frequency 
of social networks, which have great potential for customer 
or user engagement in the sense of open innovation in the 
product development phase as well as maintenance or after 
sales. But this might be due to the focus on manufacturing 
of i4.0. Another example is mobile internet, which has the 
potential of a broad application—especially in the context 
of 5G-eabled fast external and in-factory communication. 
This might be due to the analysis focus on links stated in 
literature. It is also important to point out that no specific 
security technologies were mentioned in the analysed lit-
erature despite their critical role for i4.0 (Fuller et al. 2020). 
Future research needs to explore the underlying reasons. 
These might include an under-reporting as cyber security 
technologies could be generic or not i4.0-specific. Given that 
effective cyber security not only requires technologies but 
also processes, mechanisms and trainings, a broader analysis 
scope could be beneficial as well.

5.3  Inherent complexity of Industry 4.0 
tech‑solutions

The DMM also allows insights into the relative complex-
ity of i4.0 tech-solutions through its row sums. A higher 
number of required technologies per tech-solution can indi-
cate the associated efforts, such as integrating or managing 
and maintaining different technology types. Aside from the 
absolute number of links, their distribution across different 
technology groups is also relevant. While technologies from 
one group, such as AI and big data analytics, show large 
similarities, using technologies from different groups can 
increase integration efforts and also affect individual inno-
vation cycles, e.g. varying software vs. hardware lifecycles.

Deriving three evenly spaced and whole-numbered 
groups based on a maximum value of 11, the DMM shows 
three complexity groups. These involve technologies from at 
least two technology groups but with no tech-solution using 
technologies from all seven technology groups:

1. Low complexity (1–4 technologies, usually 2–3 groups)
2. Medium complexity (5–8 technologies, usually around 

5 groups)
3. High complexity (9–12 technologies, usually around 6 

groups)

In general, the DMM row sums and relative complexities 
provide an indication of the resulting R&D and implemen-
tation efforts, and costs of i4.0 tech-solutions. Highlighting 
the required technologies for different i4.0 tech-solutions 
increases the transparency of required preconditions. This 
supports a well-informed investment decision including a 
detailed assessment of adoption benefits and risks of specific 
i4.0 tech-solutions.
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5.4  Links between technologies

The i4.0 tech-solution-technology DMM also allows initial 
insights into dependencies between technologies themselves. 
Looking at DMM rows of different tech-solutions, patterns 
of technologies become visible which tend to occur together.

A prominent example is augmented reality, which typi-
cally occur in combination with data, (advanced) sensors 
and simulation. This is reasonable as augmented reality 
requires AI for sophisticated models and simulations that 
are projected onto a real-world environment using specific 
interface technologies like headsets (Alcácer and Cruz-
Machado 2019). Similarly, additive manufacturing systems 
occur in combination with CIM/CAx as such digital models 
are a prerequisite for the actual manufacturing step (Alcácer 
and Cruz-Machado 2019). Another example are cobots in 
combination with advanced sensors to detect humans and 
objects, or advanced simulation based on CIM/CAx models 
and AI to enable autonomous and safe collaboration with 
humans and other machines via industrial networks (Kamble 
et al. 2018).

A special case are digital twins. These are essential for 
cyber-physical systems, which are described as a key ele-
ment of i4.0. Digital twins are sometimes seen as a technol-
ogy and often used in an ambiguous way as an umbrella term 
(Murray et al. 2019; Schleich et al. 2017) for what Fuller 
et al. (2020) differentiate into digital model, digital shadow 
and actual digital twin. Thus, we do not consider them as 
a single technology but rather as a group of tech-solutions, 
which build on use case-specific combinations of technolo-
gies, such as computing, data analytics and simulation tech-
nologies (Liu et al. 2021).

Although these links between technologies already pro-
vide valuable insights into which technologies could or 
should be combined, enabling and hierarchical dependencies 
have to be analysed in a next step. This will allow for identi-
fying technology chains and networks and support answer-
ing questions like which technologies are required to enable 
a specific technology. This will enable more technological 
transparency and contribute to a better understanding and 
managing of complexity in the context of i4.0 adoption.

5.5  Example application of the i4.0 framework: 
a cyber‑physical i4.0 nano brewery

To answer the question of how the i4.0 tech-solution-
technology framework could be used, it was applied to an 
existing cyber-physical system (CSP), an i4.0 nano-brewery 
at the University of Technology Sydney in Sydney, Aus-
tralia (Fig. 3) to conceptually verify it as part of the DRM’s 

Prescriptive Study (Blessing and Chakrabarti 2009). The 
brewery’s autonomous process management ensures con-
stant output quality as well as process flexibility and param-
eter prediction to quickly prototype new recipes. Additional 
aspects include the upscaling of recipes from lab to indus-
trial scale and the exchange of recipes across global produc-
tion sites tackling concept drift etc. To address the latter, a 
partner research institute at the <will be added for accepted 
publication> possesses an identical physical twin brewery 
system.

Although the DMM does not specifically list cyber-phys-
ical breweries yet, the listed “smart machining” (S4.21) fits 
well due to its focus on manufacturing and smart processes. 
“Smart factories” (S4.20) are less suitable due to their focus 
on an entire socio-technical factory system. The DMM 
allows the following insights:

The sub-category of Autonomous Equipment is a key 
aspect for the brewery, which needs to autonomously react 
to changing ingredients quality like water and malt, and 
environmental factors such as temperature or humidity, in 
order to adjust process parameters and ensure a constant 
beer quality. Other manufacturing technologies like cobots 
for material handling might be added later but are not part 
of the core system. An important basis of the brewery is 
Cloud Computing, in this case, using Amazon Web Ser-
vices to run RapidMiner AI Hub to analyse process data 
and build machine learning models to enable an autono-
mous brewery. Cloud Manufacturing is relevant to share 
beer recipes between the two global physical twin brewery 
systems. Although the basis for this is the analysis of big 
amounts of data, the brewery uses Artificial Intelligence 
as it does not only include descriptive and diagnostic but 
also predictive and prescriptive factors. Similar to cobots, 
advanced human interfaces could be beneficial in the 
future but are not core element or requirement for the cur-
rent brewery tech-solution. Due to its encapsulated setup, 
the brewery does not interact with other manufacturing 
systems. Thus, Industrial Networks do not apply in this 
case—despite the DMM entry. Instead, IoT middleware 
is essential to connect the digital twin components with 
the underlying different hardware parts of the brewery. 
This includes actuators, such as valves and heating ele-
ments, and traditional sensors, such as temperature and 
flow sensors, as well as Advanced Sensors, such as elec-
tronic nose sensors to assess ingredients and brew quality. 
However, Computer Integrated Manufacturing along with 
Factory Management technologies play a minor role for 
this research brewery—despite the DMM entry—which is 
mainly due to it being a lab and not an industry brewery 
line. Nevertheless, they will become important when mov-
ing from a lab to an industrial production. This includes 
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upscaling of production volumes and careful management 
of supplies and logistics to ensure a reliable and economic 
production.

In respect to the resulting investment decisions when 
planning such a system, the high column sums of both 
associated technology sub-categories (Table 2) indicate 
that this would be a beneficial and future-oriented invest-
ment if a company does not have existing CIM or ERP 
systems. In general, the high row sum indicates a high 
level of technological complexity of the CPS, which is 
also reflected in the large variety of required enabling 
technologies.

From a product development perspective, the DMM can 
provide guidance around what technology groups will be 
relevant when designing and developing a new tech-solu-
tion. Even though the listed tech-solutions might differ 
slightly to the one to be developed, it can highlight what 
might be important, allowing the R&D team to discuss if 
and how those technologies apply to the new tech-solution. 
However, the brewery example also showed that some of 
the listed tech-solutions are more specific than others. 
Therefore, future research should also investigate how a 
sub-structure of tech-solution clusters could find a suitable 
level of abstraction to balance general applicability and 
level of detail.

In summary, the retrospective application of the i4.0 tech-
solution-technology framework to this brewery confirms its 
conceptual plausibility and usability. It helps validating 
and sense-checking specific system design decisions of the 
brewery. In addition, it also indicates aspects that are cur-
rently not considered and can therefore trigger a systematic 
reflection and discussion if and why these aspects might be 
relevant—right now or in the future.

6  Conclusion

The i4.0 tech-solution-technology DMM framework 
analyses and highlights dependencies between i4.0 tech-
solutions and underlying technologies. This adds transpar-
ency to the question of which technologies are required 
for implementing specific i4.0 tech-solutions. Aside from 
the dependencies themselves, the i4.0 tech-solution-tech-
nology framework also provides initial indications of how 
frequently specific technologies are used and of the rela-
tive complexity of i4.0 tech-solutions. The DMM frame-
work also reveals initial insights into connected technol-
ogy chains and forms the basis for a future socio-technical 
analysis.

This research contributes to the field of i4.0 adoption 
by providing transparency around i4.0 readiness and nec-
essary technological investments to enable specific i4.0 
tech-solutions. This includes a systematic analysis and 
structuring of i4.0 technologies, i4.0 tech-solutions and 
their interdependencies resulting in an i4.0 tech-solution-
technology framework. This is based on a consolidated 
i4.0 technology taxonomy, which addresses the current 
issue of varying levels of abstraction of i4.0 in literature. 
It provides a clear structure and categorization consider-
ing different levels of abstraction. The combined product 
development and manufacturing perspectives of i4.0 tech-
solutions are a first step in broadening the scope from an 
originally manufacturing concept to a holistic lifecycle-
spanning consideration and application of i4.0. This adds 
to developing an in-depth understanding and definition of 
i4.0 (Hermann et al. 2016; Klingenberg et al. 2021; Lu 
2017). In addition, the DMM analysis provides the basis 
for future analysis of tech-solution-technology dependen-
cies, of technology-technology interdependencies and a 

Fig. 3  Cyber-physical i4.0 
nano-brewery
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systems-thinking angle for analysing adoption barriers. 
This can serve as a basis for developing methodical i4.0 
strategy and implementation guidelines for companies, as 
demanded by Abdirad and Krishnan (2021).

These will also be of high relevance to industry in the 
medium-term future. In the short-run, industry benefits 
through a systematic overview of which technologies are 
required for specific i4.0 tech-solutions and which technol-
ogies are i4.0 key enablers. This reduces the risk of miss-
ing necessary technologies and supports well-informed 
investment decisions. The DMM framework also pro-
vides indications on general technological maturity risks 
as well as which technologies allow for a large variety 
of tech-solutions and resulting opportunities. However, 
it is important to note that these frequencies of use are 
from an i4.0 perspective: so, for instance, Social Networks 
might only be a niche technology for i4.0 tech-solutions 
but become more relevant when broadening the scope to 
other perspectives, such as open innovation. Thus, for a 
holistic view, companies will also need to consider other 
technology adoption strategies beyond i4.0.

Despite these contributions, it is vital to discuss limita-
tions and resulting potential for further research. Although 
the case study proves to be useful in conceptually verify-
ing the framework as part of the DRM’s Prescriptive Study 
(Blessing and Chakrabarti 2009), it needs to be broadly 
applied and evaluated in different industry projects to pro-
spectively plan and accompany the adoption of different i4.0 
tech-solutions as part of an in-depth DRM’s Descriptive 
Study 2. While this provides direct support to these pro-
jects, it also allows to iteratively evaluate and empirically 
refine the currently conceptual framework in different indus-
try settings. A practical evaluation of the framework could 
be conducted in two groups per i4.0 adoption project: one 
group planning the implementation of i4.0 tech-solution and 
required technological investments without and one group 
using the framework. This allows for a comparison of e.g. 
understanding of technological complexity, investment deci-
sions and effort as well as quality of the decision-making 
process.

Another limitation that the case study showed is that 
framework users, such as technology and production manag-
ers, currently need to manually allocate a new tech-solution 
to one of the listed ones, which act as a proxy in the DMM. 
As tech-solutions have a similar dynamic evolution as 

technologies, it is necessary to explore how a suitable tech-
solution taxonomy could be structured. Finding the right 
balance between level of details and general applicability 
will be key. A potential way forward could be to cluster them 
according to their technology links in the DMM. However, 
this could cause issues regarding the alignment with the 
product generation process. Although the rather rough clus-
tering in four process phases (Schneider et al. 2020) worked 
well in this case, the phases could be detailed further to 
provide more orientation in different settings.

A minor limitation is the current focus on i4.0 technol-
ogy review articles. For the DMM, this is sufficient as the 
three-level technology taxonomy uses its middle-level cat-
egories for the mapping onto tech-solutions, which allows 
for independence from specific single technologies. While 
this allows for a time-robust DMM mapping, the analysis of 
single technology papers could add further hitherto implicit 
insights. In case of new radically different technologies, an 
additional middle category could be added to the technology 
taxonomy. This will also be necessary to enhance the current 
top-level category of cyber-security.

Concerning a detailed future i4.0 adoption support, the 
current DMM framework only highlights which technolo-
gies are required for specific i4.0 tech-solutions. However, 
it does not indicate a suitable adoption sequence. In this 
respect, an additional hierarchical perspective on i4.0 tech-
nologies, such as Lee et al. (2015), could be helpful in pri-
oritising and sequencing the adoption of different required 
technologies. In addition, the current DMM lacks an analysis 
of inter-technology dependencies. Thus, future research also 
needs to investigate how technologies are depending on each 
other, for instance, in the sense or enabling prerequisites, 
which would also support in prioritising the adoption of 
specific technologies.

However, such a technology analysis is not sufficient due 
to the socio-technical character of i4.0 (Pedota et al. 2023). 
Instead, future research needs to broaden its scope beyond 
technologies and also include competences, skill, organiza-
tional processes, business models, and mindsets and organi-
sational culture. This will be crucial from an organisational 
change management perspective and to ensure a successful 
long-term use of new i4.0 socio-technical capabilities. This 
includes data security and privacy and its socio-technical 
impact as well as mitigation measures (Bajic et al. 2021; Yu 
and Schweisfurth 2020).
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Fig. 4  Overview of frequency of i4.0 technologies

Appendix

Appendix 1: Overview of frequency of i4.0 technologies

See Fig. 4.
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Appendix 2: Sources of Industry 4.0 technologies

See Table 3.

Table 3  Sources for Industry 4.0 technologies

Group Technology Sources

Manufacturing Additive manufacturing (AM) Alcácer and Cruz-Machado (2019); Bueno et al. (2020); Calabrese et al. (2020); 
Calabrese et al. (2021); Pacchini et al. (2019)

Manufacturing Collaborative robots (Cobot) Alcácer and Cruz-Machado (2019); Alladi et al., (2019); Bongomin et al., (2020); 
Calabrese et al., (2021); Pacchini et al., (2019)

Manufacturing Advanced Actuators Bongomin et al. 2020; Calabrese et al. 2021; Dombrowski et al. 2017; Frank et al. 
2019; Klingenberg et al. 2021)

Manufacturing Advanced materials Kumar (2018); Pacchini et al. (2019); Wichmann et al. (2019)
Manufacturing Autonomous equipment Santos and Martinho (2020)
Computing Cloud computing (CC) Alcácer and Cruz-Machado (2019); Alladi et al. (2019); Bongomin et al. (2020); 

Calabrese et al. (2021); Pacchini et al. (2019)
Computing Cloud manufacturing (CMfg) Alcácer and Cruz-Machado (2019); Bueno et al. (2020); Calabrese et al. (2021); 

Kamble et al. (2018); Wichmann et al. (2019)
Computing Edge Computing Alladi et al. (2019); Fernandez-Carames and Fraga-Lamas (2019); Fraga-Lamas 

and Fernandez-Carames (2019); Lim et al. (2021); Sittón-Candanedo et al. 
(2019)

Computing Quantum COMPUTING Bongomin et al. (2020)
data Blockchain Alladi et al. (2019); Bodkhe et al. (2020); Bongomin et al. (2020); Calabrese et al. 

(2021); Fernandez-Carames and Fraga-Lamas (2019)
Data Artificial intelligence (AI) Alladi et al. (2019); Bag and Pretorius (2022); Bongomin et al. (2020); Bueno et al. 

(2020); Pacchini et al. (2019)
Data Big data analytics (BDA) Alcácer and Cruz-Machado (2019); Alladi et al. (2019); Bag and Pretorius (2022); 

Bongomin et al. (2020); Pacchini et al. (2019)
Human interface Augmented reality (AR) Alcácer and Cruz-Machado (2019); Firmino et al. (2020); Ghobakhloo (2018); 

Pacchini et al. (2019)
Human interface Virtual reality (VR) Bongomin et al. (2020); Cotrino et al. (2020); Dombrowski et al. (2017); Fraga-

Lamas et al. (2018); Ghobakhloo (2020)
Human interface Brain–computer interface (BCI) Govindarajan et al. (2018)
Network Industrial networks Fraga-Lamas et al. (2018); Klingenberg et al. (2021)
Network Social networks Bodkhe et al. (2020); Fernandez-Carames and Fraga-Lamas (2019); Kamble et al. 

(2018); Moldabekova et al. (2020)
Network Mobile internet Klingenberg et al. (2021; Shi et al. (2020)
Network Semantic web & IoT Ghobakhloo (2018); Moldabekova et al. (2020); Shi et al. (2020)
Sensor ID & location sensors Alcácer and Cruz-Machado (2019); Calabrese et al. (2020, 2021); Dombrowski 

et al. (2017; Pacchini et al. (2019)
Sensor Advanced sensors Bongomin et al. (2020); Calabrese et al. (2020, 2021); Dombrowski et al. (2017); 

Frank et al. (2019)
Sensor 3D laser scanning Javaid et al. (2020); Kerin and Pham (2019); Yang et al. (2018)
Modelling and simulation Advanced simulation Alcácer and Cruz-Machado (2019); Bongomin et al. (2020); Calabrese et al. 

(2020); Fernandez-Carames and Fraga-Lamas (2019); Pacchini et al. (2019)
Modelling and simulation Factory management (FM) Bongomin et al. (2020); Frank et al. (2019); Nosalska et al. (2020); Núñez-Merino 

et al. (2020); Szász et al. (2021)
Modelling and simulation Computer integrated manufac-

turing (CIM/CAx)
Klingenberg et al. (2021); Nosalska et al. (2020); Núñez-Merino et al. (2020)

Modelling and simulation Complex systems (CS) Hoffmann Souza et al. (2020); Paula Ferreira et al. (2020)



131Research in Engineering Design (2024) 35:115–136 

1 3

Appendix 3: Sources of Industry 4.0 applications

See Table 4.

Table 4  Sources for Industry 4.0 applications

Tech-solution/application Sources

Product planning
 (S1.1) Customer demand analysis Wijewardhana et al. (2021)
 (S1.2) Real-time customer feedback Wijewardhana et al. (2021)
 (S1.3) Product customization and individualiza-

tion
Strange and Zucchella (2017); Zheng et al. (2021)

 (S1.4) Social networks for open innovation Kamble et al. (2018)
 (S1.5) Shared smart spaces Fernandez-Carames and Fraga-Lamas (2019)

Product development
 (S2.1) Advanced colour matching Wijewardhana et al. (2021)
 (S2.2) AI product design support Frank et al. (2019); Ramirez-Peña et al. (2020); Zheng et al. (2021)
 (S2.3) Digital complex design Zheng et al. (2021)
 (S2.4) Digital product representation Chen et al. (2020); Hoffmann Souza et al. (2020); Zheng et al. (2021)
 (S2.5) Distributed and collaborative engineer-

ing
Alcácer and Cruz-Machado (2019); Fraga-Lamas et al. (2018)

 (S2.6) Hybrid prototyping Kamble et al. (2018)
 (S2.7) Rapid prototyping Yang et al. (2018); Zheng et al. (2021)
 (S2.8) Technical product assessment Zheng et al. (2021)
 (S2.9) Virtual prototyping Nosalska et al. (2020); Wijewardhana et al. (2021); Zheng et al. (2021)
 (S2.10) VR/AR design evaluation Alcácer and Cruz-Machado (2019); Frank et al. (2019); Ghobakhloo (2018); Govindarajan 

et al. (2018); Ottogalli et al. (2019)
 (S2.11) Virtual disassembly platforms Kerin and Pham (2019)
 (S2.12) VR disassembly sequence planning 

(DSP)
Kerin and Pham (2019)

Production planning and control
 (S3.1) AI process optimization Ramirez-Peña et al. (2020)
 (S3.2) AR monitoring and control Alcácer and Cruz-Machado (2019); Chen et al. (2020); Fraga-Lamas et al. (2018); Frank 

et al. (2019); Ottogalli et al. (2019)
 (S3.3) Capacity synchronization Bueno et al. (2020)
 (S3.4) Data-driven plant design Bueno et al. (2020); Zheng et al. (2021)
 (S3.5) Deadlock prevention Fraga-Lamas et al. (2018); Kamble et al. (2018)
 (S3.6) DT factory floor map planning Chen et al. (2020)
 (S3.7) Distributed manufacturing control Bueno et al. (2020)
 (S3.8) E-Kanban system Bueno et al. (2020)
 (S3.9) Integrated manufacturing control Chen et al. (2020)
 (S3.10) Coordination of local real-time pro-

cesses
Fernandez-Carames and Fraga-Lamas (2019)

 (S3.11) Production system digital twin Bueno et al. (2020); Chen et al. (2020); Gupta and Basu (2019); Hoffmann Souza et al. 
(2020); Paula Ferreira et al. (2020)

 (S3.12) Real-time value stream mapping (R-T 
VSM)

Shahin et al. (2020)

 (S3.13) Production planning preview and per-
formance evaluation

Zheng et al. (2021)

 (S3.14) Smart demand forecasting Bueno et al. (2020); Calabrese et al. (2021); Fatorachian and Kazemi (2021); Munsamy et al. 
(2020); Strange and Zucchella (2017)

 (S3.15) Shop floor visualization Alcácer and Cruz-Machado (2019); Zheng et al. (2021)
 (S3.16) Smart flow shop scheduling Woschank et al. (2020)
 (S3.17) Smart process monitoring Chen et al. (2020); Frank et al. (2019); Lim et al. (2021); Shahin et al. (2020)
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Table 4  (continued)

Tech-solution/application Sources

 (S3.18) Smart production planning and sched-
uling

Bueno et al. (2020); Szalavetz (2017); Woschank et al. (2020); Zheng et al. (2021)

 (S3.19) Virtual assembly Govindarajan et al. (2018); Ottogalli et al. (2019)
 (S3.20) Virtual factory walks Govindarajan et al. (2018)
 (S3.21) Virtual product changeover Kamble et al. (2018)

Production process
 (S4.1) AM computing distribution Fernandez-Carames and Fraga-Lamas (2019)
 (S4.2) AM using recycled materials Nascimento et al. (2019)
 (S4.3) AR assembly task guidance Alcácer and Cruz-Machado (2019); Cotrino et al. (2020); Fraga-Lamas et al. (2018); Kamble 

et al. (2018); Kannan and Garad (2021)
 (S4.4) AR product/material/part localization Alcácer and Cruz-Machado (2019); Fraga-Lamas et al. (2018); Kamble et al. (2018)
 (S4.5) Automatic optical order replenishment Bittencourt et al. (2019); Kannan and Garad (2021); Munsamy et al. (2020); Shahin et al. 

(2020)
 (S4.6) Battery additive manufacturing Kumar (2018)
 (S4.7) Brain–computer-interface (BCI) robot 

control
Govindarajan et al. (2018)

 (S4.8) Brain–computer-interface (BCI) VR 
interaction

Govindarajan et al. (2018)

 (S4.9) Context-aware AR assistance Bueno et al. (2020); Fraga-Lamas et al. (2018); Ottogalli et al. (2019)
 (S4.10) Direct digital manufacturing Bueno et al. (2020)
 (S4.11) Flexible electronics additive manufac-

turing
Kumar (2018)

 (S4.12) Human–robot-augmentation Kumar (2018)
 (S4.13) Human–robot-collaboration (HRC) Alladi et al. (2019); Bag and Pretorius (2022); García et al. (2020); Gualtieri et al. (2021); 

Kumar (2018)
 (S4.14) JIT and advanced pull system manage-

ment
Zheng et al. (2021)

 (S4.15) Location detection Bongomin et al. (2020); Fatorachian and Kazemi (2021); Munsamy et al. (2020); Nosalska 
et al. (2020); Pacchini et al. (2019)

 (S4.16) Multi-agent applications for production 
systems

Nosalska et al. (2020); Zheng et al. (2021)

 (S4.17) Production process automation Alcácer and Cruz-Machado (2019); Chen et al. (2020); Nascimento et al. (2019); Ramirez-
Peña et al. (2020); Zheng et al. (2021)

 (S4.18) Reflection-based sound localization Woschank et al. (2020)
 (S4.19) Safety eye for HRC Kamble et al. (2018); Lim et al. (2021)
 (S4.20) Smart connected factory formalization Fraga-Lamas et al. (2018); Zheng et al. (2021)
 (S4.21) Smart machining implementation Yang et al. (2017); Zheng et al. (2021)
 (S4.22) Smart mold loading table Shahin et al. (2020)
 (S4.23) Smart robotic remanufacturing cells Kerin and Pham (2019); Wagner et al. (2017); Yang et al. (2018)
 (S4.24) Soft robotic actuators product handling Fraga-Lamas and Fernandez-Carames (2019)
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