
Vol.:(0123456789)1 3

Research in Engineering Design (2018) 29:531–546
https://doi.org/10.1007/s00163-018-0284-9

ORIGINAL PAPER

Generation of a function‑component‑parameter multi‑domain matrix
from structured textual function specifications

T. Wilschut1  · L. F. P. Etman1 · J. E. Rooda1 · J. A. Vogel2

Received: 29 May 2017 / Revised: 8 November 2017 / Accepted: 7 February 2018 / Published online: 17 February 2018
© The Author(s) 2018. This article is an open access publication

Abstract
This study introduces a method to build a multi-domain matrix (MDM), visualizing the intended architecture of a system
within the component, function, and parameter domains. The MDM is generated from textual function specifications that are
subject to a specific grammatical structure and vocabulary based upon the functional basis and interaction basis as presented
in the literature. Two types of functions are distinguished: functions specifying what functionality a particular component
provides to another component, and functions specifying the internal working (transformation of flow) of a particular compo-
nent. The fixed grammar for the specification of the two types of functions allows for the automated derivation of dependen-
cies between components, between functions of components, and between system parameters. A case study on a navigation
lock demonstrates that the system architecture generated from function specifications matches the architecture of the real
lock system fairly well. As such the method can be used in the early design phase to reveal the product architecture that is
embodied in the function specifications of system components. The method may also support modeling of high-definition
DSMs of existing engineering systems.

Keywords  System architecture · Linguistic function specification · Design structure matrix · DSM · Multi-domain matrix ·
MDM · Functional basis · Interaction basis

1  Introduction

In recent years, many researchers have advocated the impor-
tance of system architecture design in the early develop-
ment phases; see, e.g., Pahl and Beitz (2013), Tilstra et al.
(2012), and Eggert (2005). Their rationale is supported by,
for example, Simpson (2004) and Jiao et al. (2007), who
state that a system’s architecture has a profound impact on

its performance and flexibility, i.e., the quality of the deliv-
ered functionality and the ease with which the system can be
modified to fulfill future requirements. Both properties are
important in modern, highly competitive and rapidly chang-
ing industries (Alizon et al. 2007).

Ulrich (1995) defined system architecture as the mapping
of a system’s functions to the physical components within
the system, and the dependencies between those compo-
nents. A well-known concept in modeling and analyzing
those component dependencies is the dependency structure
matrix (DSM) (Steward 1981), also referred to as design
structure matrix (Eppinger and Browning 2012).

A DSM is a binary N × N matrix denoting the dependen-
cies among N system components. Figure 1a shows an exam-
ple DSM. An off-diagonal-shaded square denotes a depend-
ency between component i and component j. A DSM may be
symmetric, denoting that dependencies between components
i and j are undirected, or asymmetric, denoting that depend-
encies between components i and j are directed.

One may distinguish product, organization, and process
type of DSMs (Eppinger and Browning 2012). Each type
of DSM shows the dependencies between elements from

 *	 T. Wilschut
	 t.wilschut@tue.nl

	 L. F. P. Etman
	 l.f.p.etman@tue.nl

	 J. E. Rooda
	 j.e.rooda@tue.nl

	 J. A. Vogel
	 han.vogel@rws.nl

1	 Department of Mechanical Engineering, Eindhoven
University of Technology, 5600 MB, PO Box 513,
Eindhoven, The Netherlands

2	 Grote Projecten en Onderhoud, Rijkswaterstaat,
Utrecht 3526 LA, The Netherlands

http://orcid.org/0000-0003-3042-4472
http://crossmark.crossref.org/dialog/?doi=10.1007/s00163-018-0284-9&domain=pdf

532	 Research in Engineering Design (2018) 29:531–546

1 3

a different domain. These DSMs may be jointly presented
along the diagonal of a larger matrix. Such a matrix is called
a multi-domain matrix (MDM). Each pair of DSMs is con-
nected via a domain-mapping matrix (DMM). A DMM is
an N ×M matrix, showing the dependencies between the
N elements from one domain and the M elements from the
other domain.

Eppinger and Browning (2012) discuss DSM and MDM
applications in many branches of industry, e.g., aerospace,
automotive, and the semiconductor industry. DSMs are pri-
marily used due to the compact and analytically advanta-
geous format (Eppinger and Browning 2012). For example,
one can highlight the system architecture by permuting the
rows and columns of the DSM, as shown in Fig. 1b. That
is, the permuted (clustered) matrix reveals an integrative or
‘bus’ module consisting of component d and two relatively
independent modules consisting of components {a, c, e}
and components {b, f} , respectively.

Eppinger and Browning (2012) introduced a five-step
DSM method to architectural modeling and analysis, as
depicted in Fig. 2. These five steps can be used to build an
MDM as well. In Step 1, the system is decomposed into
components. Guidelines for decomposing a system are
given in Chiriac et al. (2011) and Tilstra et al. (2012). Next,
component dependencies are identified and documented in
Step 2. The resulting DSM is analyzed in Step 3, for exam-
ple, by means of a clustering algorithm. The results are
visually inspected in Step 4. Finally, Step 5 concerns the

improvement of the DSM by, for example, adding missed
component dependencies or manually altering the cluster-
ing results.

Recently, Browning (2016) has presented an extensive
overview of DSM research. From the overview of papers
presented in this survey, it follows that the literature has
primarily focused on the third step. The other steps have
received less attention. In particular, the second step has
received little attention.

In Step 2, interviews with system experts and/or design
documentation reviews are often used to identify the depend-
encies between the various components (Browning 2016).
For product architecture DSMs, this often means the identi-
fication of spatial, information, energy and material type of
dependencies, following the seminal work of Pimmler and
Eppinger (1994). However, the identification of dependen-
cies often presents challenges. It appears to be quite labor
intensive and time consuming. In the literature, typically
efforts of several months are reported. For example, the
46 × 46 NASA pathfinder DSM took 5 months to complete
(Brady 2002); the 64 × 64 Pratt and Whitney jet engine DSM
4 months (Sosa et al. 2003), and the 84 × 84 Xerox printing
system DSM 3 months (Suh et al. 2010). Second, identifi-
cation of spatial, energy, information, or material depend-
encies is focused on form and not on function. Hence, not
all identified dependencies may relate to a function. Most
DSM studies analyze an existing product relying on design
documentation and expert opinions to determine the various
spatial, energy, information, and material dependencies. For
systems in the early product development stage, an actual
product realization or technical drawings may not be avail-
able; the DSM modeler has to rely mainly on functional
descriptions of components.

This paper presents a method to automatically build a
function-component-parameter MDM from functional

a
b
c
d
e
f

a b c d e f

(a)

d
a
c
e
b
f

d a c e b f

(b)

Fig. 1   a Example DSM, unclustered, showing component depend-
encies. b Example DSM. clustered, revealing a bus cluster and two
modular clusters (reprinted from Wilschut et al. 2016)

1. Decompose

2. Identify

3. Analyze

4. Display

5. Improve

Fig. 2   DSM method to architectural modeling and analysis (Eppinger
and Browning 2012). This work contributes to the second step: the
identification of dependencies

Component
(C - C)
DSM

Function
(F - F)
DSM

Parameter
(P - P)
DSM

F - C
DMM

P--C
DMM

P--F
DMM

Fig. 3   Schematic multi-domain matrix (MDM)

533Research in Engineering Design (2018) 29:531–546	

1 3

specifications of components, as schematically depicted in
Fig. 3. The MDM consists of a component DSM, a func-
tion DSM, a parameter DSM, and three DMMs representing
the mappings between the elements of the three DSMs. The
MDM is automatically built from textual function specifica-
tions that are specified using a predefined vocabulary and
grammatical structure. The functional basis of Stone and
Wood (2000), later improved by Hirtz et al. (2002), is used
as a basis for the vocabulary. The grammar is based on the
well-known verb + noun representation used, for instance,
by Stone and Wood (2000) and Pahl and Beitz (2013). Stone
and Wood (2000) used the functional basis and verb + noun
representation to create solution-free functional models of
systems. In our study, the dependencies between components
are of particular interest. Therefore, the presented grammar
is an extension upon the verb + noun representation that
enables the automated derivation of dependencies between
components, between component functions, and between
parameters that quantify the flows needed to realize func-
tions. The resulting MDM describes the architecture of a
system within the component, function, and parameter
domains. By applying clustering analysis to the generated
DSMs, the component-function-parameter system architec-
ture is highlighted.

The outline of this article is as follows. Section 2 dis-
cusses literature regarding DSM model building and
function modeling. Section 3 introduces the new method
illustrated using an example problem. Section 4 presents a
case study in which the presented method is used to derive
dependencies between components of a navigation lock. The
resulting DSM is compared with a DSM built in a previous
study by Dijkstra (2016). Finally, conclusions are presented
in Sect. 5.

2 � Related work

In this section, the literature is discussed which relates to
building DSM or MDMs automatically and linguistic speci-
fications for function modeling.

2.1 � Automated DSM generation

Dong and Whitney (2001) were one of the first to consider
automated building of DSMs. In their study, a design matrix
(DM) is manually constructed using axiomatic design theory
(Suh 1998). The DM is an n × m matrix which relates n
functional requirements to m design parameters. An entry at
position i, j in the DM denotes that functional requirement i
is affected by design parameter j. Dong and Whitney (2001)
used a heuristic to automatically generate a functional
requirement DSM as well as a design parameter DSM by
permuting the rows and columns of the DM. Their method

requires the DM to be a square matrix, i.e., the number of
functional requirements is assumed to be equal to the num-
ber of design parameters. However, if one strives for a diago-
nal DM, the accompanying DSMs also become diagonal.

A variation on this approach was introduced by Mau-
rer (2007) who used DMMs and DSMs assembled into a
single MDM:

where D is an n × m DMM that relates n functions to m
components, C is an m × m component DSM, and F is an
n × n function DSM. An entry i, j in D denotes that function
i is being (partly) fulfilled by component j. D is assumed to
be constructed by hand. Subsequently, component DSM C is
computed by C = DT

⋅ D and function DSM F is computed
by F = D ⋅ DT . The intuition behind this is that if two com-
ponents contribute to the fulfillment of the same function,
there possibly is a dependency between the two components.
Similarly, if two functions are being fulfilled by the same
component, there possibly is a dependency between the two
functions. The method yields symmetric DSMs. Note that
the method yields candidate dependencies; a subset pre-
sents the actual dependencies. Manual verification of the
candidate component dependencies and candidate function
dependencies is required (Maurer 2007). Regarding the con-
struction of matrix D, it may be difficult to decide whether
a component contributes to fulfilling a function. There may
be components that do not directly contribute, but that do
have an indirect influence. Including or excluding these con-
tributions obviously affects the calculated component and
function DSMs.

As an alternative to the aforementioned matrix based
methods, graphical models to derive component dependen-
cies were proposed; see, e.g., Eisenbart et al. (2016), Wyatt
et al. (2012) and D’Amelio et al. (2011). Of particular inter-
est for this paper are Function-Behavior-State (FBS) models
(Umeda et al. 1995) and variants thereof, such as structure-
behavior-state models (Goel et al. 2009). Van Beek et al.
(2010) used function-behavior-state models to derive DSMs.
Figure 4 shows an example FBS model. A function relates
to a particular physical phenomenon, i.e., a certain type of
desired behavior. The behavior is realized by several entities,
i.e., the components of the system. These entities should be
in a certain state to realize the behavior. For the example
shown in Fig. 4, the energy supply and the lamp should be
connected. Though, the practical application of graphical
FBS models in industry is low, since written documents are
the primary means of communication and documentation in
system design (Tomiyama et al. 2013).

Tosserams et al. (2010) observed the limited scalabil-
ity of graphical models while specifying decomposed

(1)M =

[

C 0

D F

]

534	 Research in Engineering Design (2018) 29:531–546

1 3

multi-disciplinary-optimization problems. Therefore, they
developed the dedicated specification language Ψ , which
in turn de Borst et al. (2016) used to model a LED-Sys-
tem-in-Package. Based on the Ψ-language specification,
de Borst et al. (2016) automatically generated a DSM dis-
playing the relationships between the approximately 700
response and design parameters ( ≈ 700 ) characterizing the
system.

Dori et al. (2003) developed object-process models which
can be described graphically using object-process diagrams
and linguistically using the object-process language imple-
mented within the OPCAT tooling. Sharon et al. (2009) used
OPCAT to derive DSMs. Their efforts focus on modeling
of relationships between system components and activities
within the development process. Based on the linguistic and
graphical models, dependencies between activities and com-
ponents are derived.

In summary, in building DSMs linguistic approaches
provide better scalability and tractability than graphical
approaches (Tosserams et al. 2010). Moreover, written docu-
ments are currently the primary communication and docu-
mentation means in system design (Tomiyama et al. 2013).
However, to the authors’ knowledge, there is no method to
automatically build product DSMs or MDMs based upon
textual specifications. In particular, generating DSMs and
MDMs from textual specifications of functions would be
very powerful since component functions play an important
role in system architecture design (Browning 2016). This
paper presents exactly such a method. This allows designers
to easily switch between text-based and DSM-based repre-
sentations of the system.

2.2 � Linguistic function specifications

In function modeling, one can take several perspectives,
e.g., a system centered, a process centered or a purpose
centered perspective (Erden et al. 2008). Our work aims to
derive component dependencies, function dependencies, and
parameter dependencies from textual function specifications.
This falls into the category of the system centered modeling

perspective, which is common practice in engineering design
literature (Eisenbart et al. 2012), see, for instance, Pahl and
Beitz (2013) and Hubka and Eder (2012).

In the literature, one can find many definitions of func-
tion. Eisenbart et al. (2012) compared 12 different func-
tion definitions, and concluded that there are basically two
perspectives in defining function. The first perspective
emphasizes that a function describes some purpose, goal
or requirement. This perspective is consistent with the
work of Umeda et al. (1996) and the work of Fernandes and
Machado (2016). The second perspective emphasizes that a
function describes a transformation of flow. This perspective
is used in engineering design literature, such as Pahl and
Beitz (2013) and Dieter et al. (2013).

In the engineering design literature, transformation
functions are usually represented by a verb and a noun, for
example, ‘provide power’ or ‘transfer torque’. These func-
tional descriptions relate to the manipulation of flows of
energy, material, and signal through the system and should
be accompanied by the physical quantities (Pahl and Beitz
2013). Such a verb–noun representation is advantageous in
view of generality, flexibility, and expressiveness, but has
limitations with respect to rigorousness and uniqueness
(Deng 2002) due to the many synonyms in natural language.

Another disadvantage of the verb–noun representation is
that it does not yield complete sentences. The verb–noun
phrases typically do not contain a subject. Pahl and Beitz
(2013) state that in innovative design one should engage in
solution-free function modeling. Therefore, they argue that
a function should not contain a subject. On the other hand,
solution-free function modeling rarely happens in practice
(Tomiyama et al. 2013). In fact, many companies tend to
reuse design knowledge to decrease product development
time and costs (Jiao et al. 2007).

It is not possible to arrive at a single readable and under-
standable document when using verb–noun phrases without
a subject. Nor is it possible to derive component dependen-
cies or function dependencies. That is, the function ‘pro-
vide power’ does not provide any information regarding the
dependencies between components or functions. Stone and
Wood (2000) use block diagrams to construct verb + noun
function chains by hand.

Hirtz et al. (2002) created a functional basis consisting of
a unique set of verbs and flows. The verb set can be used to
improve the uniqueness of linguistic function specifications.
The flow set can be used to characterize the dependencies
between components. Tilstra et al. (2012) used the flow set
for the creation of an interaction (dependency) basis that
they used to (manually) build what they call high-definition
DSMs, displaying up to 25 different dependency types. In
their approach, they build a separate DSM per interaction
type and subsequently assemble those DSMs into a single
DSM. Tilstra et al. (2012) noted, however, that manually

Provide light

Convert electrical to optical energy

Function

Behavior

State
Energy supply Lamp

Connected

Fig. 4   Example function-behavior-state model

535Research in Engineering Design (2018) 29:531–546	

1 3

building high-definition DSMs of more than ten components
requires quite a large amount of work.

Our paper presents an extension upon the verb and
noun function representation. The extension uses the func-
tional basis to ensure the uniqueness of the specifications.
The interaction basis is used to characterize the resulting
dependencies. Our extension results in complete sentences
from which dependencies between components, functions,
and parameters can automatically be derived. The resulting
dependencies are visualized using an MDM.

3 � Method

This section introduces a method for the automated gen-
eration of MDMs from textual function specifications. The
method is based on the function specification model depicted
in Fig. 5. Function specifications consist of two basic ele-
ments: components and parameters. Components denote a
specific part of the system. Parameters refer to flows through

the system, e.g., power and information, or to aspects of
components, e.g., position and temperature.

In the function specifications, components and parameters
are used in together with verbs and prepositions following
a fixed format. A sentence specifying a function describes
either a goal function or a transformation function. A goal
function describes the purpose of a component with respect
to the other components of the system. For example, the goal
function ‘Component x provides power p to component y’,
denotes that the purpose of component x is to provide power
p to component y. A transformation function describes the
transformation of flow that occurs within a component. For
example, the transformation function ‘Component x con-
verts power p into torque k’ denotes that an electrical energy
flow p is converted into a mechanical energy flow k inside
component x.

The method requires design engineers to manually spec-
ify the functions following the fixed format and to create
a dictionary of component names, verbs, parameter types,
parameter names, and prepositions that are allowed in the
function specifications. Each word within a specified func-
tion is automatically referenced against the dictionary to
detect typos and inconsistencies.

A compact fixed format is deliberately chosen to enforce
precise and concise function specifications. That is, the qual-
ity of the specification is traded against the flexibility of the
specification. Albeit the restricted specification flexibility,
the proposed fixed format, defined in Fig. 5a, enables auto-
matic processing of the goal and transformation function
specifications to generate an MDM consisting of a symmet-
ric component DSM, an asymmetric goal function DSM, an
asymmetric parameter DSM, and three DMMs indicating
the dependencies between components, goal functions, and
parameters. By analyzing these matrices, for instance, by
clustering, one can gain insight in the system architecture.

The three main steps of the method are explained in fur-
ther detail below. Section 3.1 explains how goal functions
are specified. Section 3.2 explains how transformation func-
tions are specified. Section 3.3 explains how the MDM is
generated from the function specifications.

3.1 � Step 1: specifying goal functions

Table 1 shows goal functions of a simple water storage
system. Each sentence consists of the following four main
elements:

1.	 The 1st component name denotes the component which
actively contributes to fulfilling the function. The com-
ponent name must be part of the system decomposition.

2.	 The verb indicates the action that the component per-
forms on the flow. The verbs are constrained to the verbs
of the functional basis of Hirtz et al. (2002).

verb prepositionc.. c..+ p..+ + +

verb prepositionc.. + p..+ + + p..

h.. =

a.. =

c.. p..Component Parameter

Goal function:

Transformation function:

(a)

c..

c..

h..

p..

h.. p..

Dependencies derived from
goal functions
Dependencies derived from
transformation functions

*

*
*

*
*

* *
*

*

* *

*

*

*
*

**

(b)

Fig. 5   a Fixed structure of goal and transformation functions. b
Multi-domain matrix derived from the goal and transformation com-
ponent functions

536	 Research in Engineering Design (2018) 29:531–546

1 3

3.	 The parameter name quantifies a flow between the
two components (e.g., parameter pe in function h0 of
Table 1) or alternatively a particular aspect of the 2nd
component (e.g., parameter xe in function h4 of Table 1).
A parameter name consists of a parameter type and an
identifier. A parameter type should be an instance of one
of the generic dependency types defined in the depend-
ency basis of Tilstra et al. (2012). For example, see
Table 2.

4.	 The 2nd component name denotes the component that
is passively involved in fulfilling the function. The com-
ponent name must be part of the system decomposition.

Note that this grammar does not allow the construct: ‘The
electric wire wi connects power supply po with electric
motor el’, since power supply po is not a parameter quan-
tifying a flow, nor is power supply po an aspect of electric
motor el. The sentence describes form and not function. The
actual function of electric wire wi is to conduct electricity
from power supply po to electric motor el. Following the
goal function format, the function of the wire can be cap-
tured by the functions: ‘The power supply po exports power
pe to electric wire wi’ and ’Electric wire wi conducts power
pe to electric motor el’.

3.2 � Step 2: specifying transformation functions

Table 3 shows transformation functions of the water storage
system example. Each sentence consists of the following 4
main elements.

1.	 The component name denotes the component which
actively contributes to fulfilling the function. The com-
ponent must be part of the system decomposition.

2.	 The verb indicates the action that the component per-
forms on the flow(s). The verbs are constrained to the
functional basis of Hirtz et al. (2002).

Table 1   Goal functions of a
simple water storage system

ID 1st comp. name Verb Parameter name Prep. 2nd comp. name

 h0 Power supply po provides power pe to electric motor el
 h1 Power supply po provides power pv to control system co
 h2 Electric motor el provides torque kp to pump pu
 h3 Electric motor el signals status signal se to control system co
 h4 Frame fr secures position xe of electric motor el
 h5 Frame fr secures position xp of pump pu
 h6 Frame fr secures position xs of storage container st
 h7 Control system co signals control signal ce to electric motor el
 h8 Sensor se measures pressure wp in storage container st
 h9 Sensor se signals status signal ks to control system co
 h10 Pump pu provides flow qs to storage container st

Table 2   Mapping between parameters types and dependency types

Parameter type Interaction type from dependency basis

Power Electrical energy
Torque Mechanical energy (dynamic)
Position Spatial
Volume Spatial
Pressure Hydraulic energy
Flow Liquid material
Status signal Status signal
Control signal Control signal

Table 3   Transformation
functions of a simple water
storage system

ID Comp. name Verb 1st parameter name(s) Prep. 2nd parameter name(s)

 a0 Electric motor el converts power pp into torque kp
 a1 Electric motor el converts control signal ce into status signal se
 a2 Control system co processes status signal ws and

status signal se
into control signal ce

 a3 Control system co converts power pc into control signal ce
 a3 Control system co adds control signal ce to log lo
 a4 Sensor se converts pressure wp into status signal ws

 a5 Pump pu converts torque kp into flow qs
 a6 Storage container st accumulates flow qs into volume wv

537Research in Engineering Design (2018) 29:531–546	

1 3

3.	 The 1st parameter name(s) denotes the required input
flow(s) for the action performed by the component. An
action may require multiple inputs. The inputs are sepa-
rated by ‘and’.

4.	 The 2nd parameter name(s) denotes the resulting out-
put flow(s) of the action performed by the component.
An action may yield multiple outputs. The outputs are
separated by ‘and’.

The parameter names may be part of the set of parameters
resulting from the specification of goal functions. The mod-
eler should take care to ensure consistency in parameter
names.

3.3 � Step 3: automatically building a MDM

The MDM shown in Fig. 6 is automatically built from the
goal and transformation function specifications listed in
Tables 1 and 3, respectively. The DSMs in the MDM are
clustered separately. For the water storage example problem
and the case problem presented in Sect. 4, we used Markov
clustering (Wilschut et al. 2016, 2017), but any suitable clus-
tering algorithm may be used.

The goal functions represent dependencies between com-
ponents (C–C) and mapping relations between goal func-
tions and components (F–C), between parameters and com-
ponents (P–C), and between parameters and goal functions
parameters (P–F). In the following it is explained which
dependencies and mapping relations are derived from goal
functions.

Let G be the set of all specified goal functions g, where g
is defined as the tuple:

wherein cg,1 is the first component, vg is the verb, pg is the
parameter, qg is the preposition, and cg,2 is the second com-
ponent. Let C =

⋃

∀g∈G cg,1, cg,2 be the set of all components
used in the goal functions. Then, component ci and compo-
nent cj are dependent if:

evaluates true. That is, there exists a goal function g in the
set of a goal functions G, such that the first component cg,1 in
g equals ci and the 2nd component cg,2 in g equals cj.

The derived dependency between components ci and cj is
characterized by parameter pg , which is defined as the tuple:

(2)g ∶= (cg,1, vg, pg, qg, cg,2)

(3)∃g ∈  ∶ cg,1 = ci ∧ cg,2 = cj

(4)pg ∶= (npg , tpg , bpg)

 el
 se
 po
 co
 st
pu
fr
h2

h10
h0
h7
h9
h1
h8
h3
h6
h5
h
qs

wv

 pe

 kp

se

pc

ws

wp

ce

lo
 xe

 xs

 xp

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Electrical energy

Spatial

Mechanical energy (dynamic)

Hydraulic energy
Liquid material

Status signal

Control signal

Multi-interaction type

1

1

1

1

1

1

1
1

1

1
2

22
2
2

2

2

2
2
2

2
2
2 2

2
2

1
1

1

1

1

3

3
3

3

3

3

33

4

4

4

4
44

1

1

3

4

2
2

2

5

555
5

5

5

6

66

68

6

6

6 6

66

7
6 6

7

6

6

7

8

7

7

77 7

7

8
9

9

9

9
9

9
9

9
9

9
9

Electrical components

Mechanical components

Dynamic electromechanical functions

Control functions

Spatial functions

Dynamic elektro-
mechanical parameters

Spatial parameters

Electromechanical component
6

4
5

5

4

Passive component-
function dependency

9

el

se p
o

co st p
u

fr h2 h1
0

h0 h7 h9 h1 h8 h3 h6 h5 h q s w
v

p
e

k
p

s e p
c

w
p

w
p

c e l o x
e

x
s

x
p

Control parameters

Fig. 6   Multi-domain-matrix generated from the function specifications listed in Tables 1 and 3

538	 Research in Engineering Design (2018) 29:531–546

1 3

wherein npg is the name of parameter pg , tpg is the type of

parameter pg , and bpg is the type of the dependency basis of

Tilstra et al. (2012) to which type tpg belongs. For instance,

in the example problem, the parameter type power belongs
to the electrical energy type of the dependency basis, as
shown in Table 2.

The derived dependency between components ci and cj
is assumed to be bidirectional, as it is common practice to
model symmetric product architectures (Browning 2016).
That is, if Eq. (3) evaluates true, the dependency entries
( ci, cj ) and ( cj, ci ) are placed in a symmetric compo-
nent–component (C–C) DSM, and are assigned depend-
ency type bpg . Each dependency type is represented by a

distinct number and color in the DSM.
Furthermore, goal function g is used to derive mapping

relations between goal functions and components. That is,
a goal function g has a mapping relation with component
c if:

evaluates true. That is, g has a mapping relation with c if the
first or second component of g is equal to component c.
These relations are placed in an asymmetric goal func-
tion–component (F–C) DMM, where a relation between g
and its first component cg,1 (entry ( g, cg,1 )) is marked as an
active relation and assigned type bpg and a relation between

g and its second component cg,2 (entry ( g, cg,2 )) is marked as
being a passive relation indicated by a number 9 and gray
color.

Similarly, mapping relations between parameters and
components are derived from goal functions. That is, a
parameter p has a mapping relation with component c if:

evaluates true. That is, parameter p has a mapping relation
with component c if there exists a goal function g such the
first or second component in g equals c and parameter pg in
g equals p. This relation is placed in an asymmetric param-
eter–component (P–C) DMM (entry (p, c)) and is assigned
type bpg.

Finally, goal functions denote mapping relations
between parameters and goal functions. A parameter p has
a mapping relation with goal function g if:

evaluates true. Parameter-goal function mapping relations
are placed in an asymmetric parameter-goal function DMM
and is assigned type bpg.

Transformation functions represent dependencies
between parameters (P-P), between goal functions (F–F),

(5)cg,1 = c ∨ cg,2 = c

(6)∃g ∈ G ∶ (cg,1 = c ∨ cg,2 = c) ∧ pg = p

(7)pg = p

and mapping relations between components and parame-
ters (P–C). In the following, it is explained which depend-
encies and mapping relations are derived from transforma-
tion functions.

Let T be the set of all specified transformation functions
t, where t is defined as the tuple:

wherein, ct ∈ C is the component within t, vt is the verb, Pt,1
is the first set of parameters, qt is the preposition, and Pt,2
is the second parameter set. Then, parameter pi depends on
parameter pj if:

evaluates true. That is, parameter pi depends on parameter
pj if there exists a transformation function t, such that pi is a
member of the second parameter set Pt,2 and pj is a member
of the first parameter set Pt,1.

Parameter dependency entry ( pi, pj ) is placed in an asym-
metric parameter–parameter (P–P) DSM and is assigned the
dependency type bpj of the column (input) parameter pj . Fur-

thermore, transformation functions are used to derive goal
function dependencies. That is, goal function gi depends on
goal function gj if:

evaluates true. That is, goal function gi depends on goal
function gj if there exists a transformation function t, such
that the parameter pgi is a member of the second parameter
set Pt,2 and parameter pgj is a member of the first parameter

set Pt,1.
Goal function dependency entry (gi, gj) is placed in an

asymmetric goal function–goal function DSM and is
assigned dependency type bpgj of parameter pgj of column

(input) goal function gj.
Finally, parameter-component mapping relations are

derived from transformation functions. That is, parameter
p has a mapping relation with component c if:

evaluates true. That is, parameter p has a mapping relation
with component c if there exists a transformation function
t in which ct equals c and p is a member of the union of the
first and second parameter sets of t, Pt,1 , and Pt,2 , respec-
tively. Parameter-component mapping relations are placed
in an asymmetric parameter-component (P–C) DMM and
are assigned dependency type bp.

For the water storage system example, the goal functions
shown in Table 1 yield: (1) dependencies between compo-
nents, displayed in the C–C DSM of the MDM shown Fig. 6
(rows 1–7, columns 1–7); (2) between components and goal
functions, displayed in the F–C DMM (rows 8–18, columns

(8)t = (ct, vt,Pt,1, qt,Pt,2)

(9)∃t ∈ T ∶ pi ∈ Pt,2 ∧ pj ∈ Pt,1

(10)∃t ∈ T ∶ pgi ∈ Pt,2 ∧ pgj ∈ Pt,1

(11)∃t ∈ T ∶ ct = c ∧ p ∈ Pt,1 ∪ Pt,2

539Research in Engineering Design (2018) 29:531–546	

1 3

1–7); (3) between components and parameters, in the P–C
DMM (rows 19–31, columns 1–7); and (4) between goal
functions and parameters, shown in the P–F DMM (rows
19–31, columns 8–18). For example, goal function h0 :
‘Power supply po provides electrical power pe to electric
motor el’, represents an electrical energy-type dependency
between the power supply po and the electric motor el. The
dependency is taken to be bidirectional, yielding two sym-
metrically placed, entries (3, 1) and (1, 3), in the component
DSM. The type of the dependency originates from the rela-
tion between the parameter type ‘power’ and the dependency
basis of Tilstra et al. (2012), as listed in Table 2.

Second, h0 yields two dependencies in the F–C DMM.
Power supply po actively contributes to fulfilling h0 and
electric motor el passively contributes to fulfilling h0 : the
yellow entry (10, 3) labeled with ‘1’ in Fig. 6 indicates that
the power supply po performs an action on an electrical flow;
the gray entry (10, 1) labeled with ‘9’ indicates that electric
motor el passively contributes to fulfilling function h0.

Third, h0 yields two dependencies, (21, 1) and (21, 3), in
the P–C DMM, since power supply po and electric motor el
both relate to parameter pe.

Finally, h0 describes a dependency between h0 and
parameter pe , resulting in a single dependency (21, 10) in the
P–F DMM. The label ‘1’ (yellow) indicates that parameter
pe represents an electric energy flow.

The transformation functions of Table 3 are used to
derive: (1) dependencies between parameters, shown in the
parameter DSM (rows 19–31, columns 19–31); (2) depend-
encies between goal functions, shown in the function DSM
(rows 8–18, columns 8–18); and (3) dependencies between
components and parameters, shown in the P–C DMM (rows
19–31, columns 1–7). For example, function a0 : ‘Electric
motor el converts electrical power pe into torque kp ’, denotes
a dependency between electrical power pe and torque kp .
This dependency is taken to be directed, yielding a single
dependency, entry (22, 21) in the parameter DSM directed
from pe to kp . Moreover, the directed dependency between
parameters pe and kp implies a directed dependency between
goal functions h0 and h2 since power supply po needs to pro-
vide power pe to electric motor el, before electric motor el
can provide torque kp to pump pu. As such, a0 yields a single
dependency, entry (8, 10) in the goal function DSM directed
from h0 to h2 . Additionally, electric motor el interacts with
all parameters used in a0 , yielding two entries (21, 1) and
(22, 1) in the P–C DMM.

3.4 � Results and discussion

The component DSM in Fig. 6 shows that the system con-
sists of a cluster of mechanical components, consisting
of the frame fr, pump pu, and storage container st, and a
cluster of electrical components, consisting of the control

system co, the power supply po, and the sensor se. The
two clusters are connected via the ‘bus’ consisting of the
electric motor el.

Note that the generated component DSM only dis-
plays intended dependencies between components, i.e.,
dependencies that follow from function specifications.
Unintended dependencies, that may result from physical
phenomena such as heat generation, are not displayed by
the DSM.

The function and parameter DSMs both show a clus-
ter of dynamic electro-mechanical functions/param-
eters, a cluster of control functions/parameters, and
three independent spatial functions/parameters. Since
the function DSM is directed one can identify func-
tion chains. For example, one can identify the function
chain h0 → h2 → h10 , which indicates that power supply
po provides power pe to electric motor el ( h0 ), electric
motor el converts power pe into torque kp and provides
torque kp to pump pu ( h0 ), and pump pu converts torque
kp into water flow qs , which is provided to storage con-
tainer st ( h10 ). Similarly, the parameter DSM indicates
flow chains. For example, one can identify the chain pe →
kp → qs → wv , indicating the flow chain electrical energy
→ mechanical energy → liquid material→ liquid material.
The function DSM could be analyzed with a sequencing
algorithm to find the optimal function cycle within the
system. By sequencing the parameter DSM one can find
an optimal sequence to set parameter values during the
design process.

The three DMMs clearly show the mapping between the
component, function, and parameter clusters. Each com-
ponent cluster fulfills a specific set of functions which are
characterized by a specific set of parameters. Moreover, the
DMMs indicate which functions and parameters cross the
boundary of a component cluster. This is relevant informa-
tion during the design process. For example, parameter wp
relates to both the electrical and the mechanical component
clusters. The water pressure wp depends on the height of the
storage container st. As such, changing the height of storage
container st influences water pressure wp . In turn, this may
result in the need for a different sensor and/or a different
control strategy.

Summarizing, the proposed method aims to improve the
uniqueness and clarity of function specifications by using
a fixed grammar and vocabulary. The fixed grammar ena-
bles the automated construction of an MDM. The MDM
can provide valuable and structured information regarding
dependencies between system components, functions, and
parameters. By relating parameter types to the dependency
basis of Tilstra et al. (2012), a variety of distinct dependency
types can be derived from the function specifications and
visualized using the MDM. This, reduces the required effort
to construct high-definition DSMs.

540	 Research in Engineering Design (2018) 29:531–546

1 3

4 � Case study: navigation lock Sambeek

To validate the proposed method for a larger case prob-
lem, a component DSM developed in a previous study by
Dijkstra (2016) is compared with a component DSM of the
same system generated following the method described in
the previous section. The major difference with the study of
is that Dijkstra (2016) built the DSM model following the
DSM concepts of Pimmler and Eppinger (1994), while our
study departs from specifications of goal functions of the
system elements to automatically generate the component
DSM. Both DSMs aim at identifying and visualizing the
dependencies between the components of navigation lock
Sambeek, shown in Fig. 7. Through the comparison of the
outcomes of the two approaches, we investigate how well
the intended dependencies present in the DSM generated
from the function specifications match the dependencies in
the DSM of the real physical system. In other words, how
well specified functions translate to realized form. All the
DSMs shown in the remainder of this section were clustered
separately and therefore show differences in the order of
column and row labels.

4.1 � Building and generating DSMs of lock Sambeek

Dijkstra (2016) followed the five-step DSM approach of
Eppinger and Browning (2012). Dijkstra first reviewed sev-
eral existing lock decompositions and proposed a decompo-
sition consisting of 51 components for the DSM modeling.
To identify interactions, Dijkstra conducted interviews and
reviewed design documentation over a period of several

weeks. In this process, Dijkstra considered four types of
component dependencies: (1) spatial dependencies which
indicate that a dimensional change of one component
implies a dimensional change of another component or that
two components are physically connected to each other; (2)
location dependencies which indicate that two components
have a particular alignment but are not physically con-
nected; (3) energy dependencies which indicate that energy
is transferred between two components; and (4) information
dependencies which indicate that information is transferred
between two components. The spatial interaction includes
the strain energy and proximity dependency type of interac-
tions in the interaction basis by Tilstra et al. (2012). The
location dependency type relates to the alignment type of
interaction in the interaction basis. Dijkstra assumed that
all dependencies are bidirectional. This resulted in DSM H
(where H refers to handmade), shown in Fig. 8, displaying
spatial, location, energy, and information-type dependencies.

Using the same decomposition as Dijkstra, we speci-
fied the goal functions of the various lock components. The
method presented in Sect. 3.1 was used to this end. In this
process, we have rewritten function descriptions in natural
language into function specifications following the format
defined in Sect.3.1. For instance, one of the functions for
ship lock Sambeek was formulated as

‘The filling and emptying system serves to level the water
in the chamber, containing one or more vessels, to cor-
respond with the water level in the water way from which
the ships are approaching.’ (Glerum and Vrijburcht
2000).

Fig. 7   Navigation lock Sambeek

541Research in Engineering Design (2018) 29:531–546	

1 3

which we have rewritten as the following two functions:

‘Leveling-system lsa imports water flow Qin into lock-
chamber loc’
‘Leveling-system lsb exports water flow Qout from lock-
chamber loc’

since the import and export of water is performed by two dif-
ferent leveling systems at Lock Sambeek. Note that our fixed
sentence structure only allows to specify the actual functions
of the leveling systems. Conditions to which a function may
be subjected cannot be expressed.

From the function specifications, the component DSM
was generated following the logic described in Sect. 3.3.

This resulted in DSM G, shown in Fig. 9, displaying ten dif-
ferent dependencies types. Note that the elements of the two
DSMs are presented in different order due to the different
clustering outcomes for the two analyses.

It took us approximately one week to complete the full pro-
cess. However, having the system decomposition and reference
DSM of Dijkstra at our disposal, significantly eased the speci-
fication process. Moreover, as we were involved in Dijkstra’s
study, we gained extensive knowledge on the functioning of
lock Sambeek prior to the specification process. Without such
prior knowledge, our estimate is that the specification pro-
cess would have taken several weeks to complete. For exam-
ple, in the Master’s graduation project of Josten (2017), the
presented method was used to describe the architecture of a

1 1

1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1

1

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1

1

1

1 1

1 1 1 1 1

1 1

1 1 1 1 1

1 1

1 1 1 1 1

1

1

1

1 1 1 1

1

1 1 1 1

1 1 1

1 1 1

1

1 1 1 1 1 1

1

1 1 1 1

1 1 1 1 1 1 1 1

1 1

1 1 1 1 1 1

1 1

1 1 1 1 1

1 1

1 1 1 1 1

1

1

1 1 1 1

1

1 1 1 1

1 1 1

1 1

1 1 1 1

1 1 1

1 1 1

1 1

1 1 1

1 1

1 1 1 1

1 1 1

1 1 1

1

1 1

1 1 1 1 1 1

1 1

1 1

1 1 1 1 1

1 1 1 1 1 1

1 1 1

1 1

1 1 1 1

1 1 1

1 1 1

1 1

1 1 1 1

1 1

1 1 1

1 1

1 1 1

1 1

1 1 1 1

1

1 1 1

1 1

1 1 1 1

1 1

1 1 1 1

1

1

1 1 1

1 1

1 1

1 1

1 1 1 1

1 1

1 1 1 1

fua

ope

lhb
lha

obl

shi

fub

loc

rps

opb

cos

ssb

ini

rza

paa

spa

waa

bpa

spb

shf

cci

rzb

bpb

shs

wab
pab

log

ssa

ivs
mei

stl

lop

epi

hps

doa

eos

lsb

ems

daa
lsa

dab

utc

dob

eps

ros
mos

fds

rai

tel
vhf

wls

1
2

8
7
6
5
4
3

16
15
14
13
12
11
10
9

25
24
23
22
21
20
19
18
17

35
34
33
32
31
30
29
28
27
26

44
43
42
41
40
39
38
37
36

51
50
49
48
47
46
45

fu
a

op
e

lh
b

lh
a

ob
l

sh
i

fu
b

lo
c

rp
s

op
b

co
s

ss
b

in
i

rz
a

p
a
a

sp
a

w
a
a

bp
a

sp
b

sh
f

cc
i

rz
b

bp
b

sh
s

w
a
b

p
a
b

lo
g

ss
a

iv
s

m
ei

st
l

lo
p

ep
i

h
p
s

d
oa

eo
s

ls
b

em
s

d
a
a

ls
a

d
a
b

u
tc

d
ob

ep
s

ro
s

m
os

fd
s

ra
i

te
l

vh
f

w
ls

1 2 876543 161514131211109 252423222120191817 35343332313029282726 444342414039383736 51504948474645

Spatial Information Energy Location

Fig. 8   Handmade DSM H (Dijkstra 2016)

542	 Research in Engineering Design (2018) 29:531–546

1 3

bridge control system using a DSM with 45 elements. It took
Josten approximately 4–5 weeks to review roughly 800 pages
of design documentation (pdf and Word documents) and to
manually specify the goal and transformation functions. Some
verification with design engineers was needed to resolve ambi-
guities in the documentation as well.

4.2 � Comparing the two DSMs of lock Sambeek

Handmade DSM H and generated DSM G are compared in
two steps. The first step consists of comparing the presence of
dependencies in H and in G using the ΣDSM concept intro-
duced by Gorbea et al. (2008). The second step consists of
comparing the types of dependencies in H and G.

In our case DSMs, H and G contain different dependency
types due to the different modeling approaches. As a conse-
quence, H and G cannot be directly merged into a ΣDSM. To
this end, the DSMs are first converted into scalar matrices, H̄
and Ḡ , respectively, where H̄ij = 1 , denotes that component c i
and component c j have one or more dependencies in DSM H;
otherwise, H̄ij = 0 . Similarly, Ḡij = 2 , denotes that component
c i and component c j have one or more dependencies in DSM
G; otherwise, Ḡij = 0 . The sum of these matrices yields the Σ
DSM:

(12)S = H̄ + Ḡ

where Sij = 1 indicates that a dependency is only present in
H̄ ; Sij = 2 indicates that a dependency is only present in Ḡ ;
and Sij = 3 indicates that a dependency is present in both H̄
and Ḡ.

Figure 10 shows ΣDSM S. Red squares, marked with a
number 1, indicate dependencies that were identified by
Dijkstra (2016), but were not derived from the function spec-
ifications. Blue squares, marked with a number 2, indicate
dependencies that were derived from the functions specifi-
cations but where not identified by Dijkstra (2016). Green
squares, marked with a number 3, indicate dependencies
that were derived from the function specifications and were
identified by Dijkstra (2016).

Table 4 lists the number of red, blue, and green marks. All
dependencies identified by Dijkstra (2016) could be related
to a goal function, resulting in zero red marks. However, 58
(14.7%) dependencies were generated that were not identi-
fied by Dijkstra (2016). Most of the blue marks relate to
liquid (water) and solid (ships) material flows through the
system, which were not considered by Dijkstra (2016). Inter-
esting are the seven blue interactions of the Close Circuit
Television (CCTV) installation (cci, row 2). The top of the
operating building of lock Sambeek provides a clear line
of sight to all areas of the lock complex, as such Dijkstra
(2016) only identified a location interaction between the
CCTV installation and the operating building. Contrary,
from a functional perspective the CCTV installation needs

Fig. 9   Generated DSM G  sh
i

op
b

op
e

cc
i

lo
c

lh
a

fu
b

fu
a

ob
l

co
s

rp
s

lh
b

u
tc

eo
s

d
oa

ls
a

d
ob

h
p
s

em
s

d
a
b

ep
s

d
a
a

ls
b

rz
a

bp
a

w
a
a

sh
f

p
a
a

sp
a

sh
s

bp
b

w
a
b

rz
b

p
a
b

sp
b

ro
s

in
i

m
o s

ep
i

ss
b

ra
i

iv
s

st
l

fd
s

vh
f

lo
p

ss
a

te
l

w
ls

m
ei

lo
g

shi

opb

ope

cci

loc

lha

fub

fua

obl

cos

rps

lhb

utc

eos

doa

lsa

dob

hps

ems

dab

eps

daa

lsb

rza

bpa

waa

shf

paa

spa

shs

bpb

wab

rzb

pab

spb

ros

ini

mos

epi

ssb

rai

ivs

stl

fds

vhf

lop

ssa

tel

wls

mei

log

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

11 11 6 6 3 6 6 2 6 1 9 6 6 6 1 8 8 11 8 11 11
10 10 3 11 11 10 10 10 10 10 10 10 10 10 7 10 1 10 10 10

10 8 11 9 11 11 11 11 8 8 8 11 11 8 11
10 8 8 8 8 3 11 1 8 8 8 8

11 8 11 11 11 3 11 1 5 1 11 10 10 11
11 11 10 3 1 10 10 6 6 2 7 1 10
6 8 11 11 10 1 5 10 10 6 11 6 6 8
6 8 11 10 11 1 11 6 6 10 11 6 10 8
3 3 3 3 3 11 11 9 1 3 11 11 11 11

11 9 1 11 11 9 11 11 11 11 11 11 11 8 11 11 8
11 1

11 10 3 1 10 10 10 6 6 1 7 10
11 1 1

11 11 1 9 9 9 9
1 10 1 2 2
5 11 11 9 2 1 9
1 1 10 2 10

10 1 1 1 1 1 1
10 9 9 9 9 9 9

11 10 9 2 1 9
10 1 1

10 11 9 2 1 9
11 5 11 9 10 1 9

6 11
6 6 6 6 6

6 8 6 11 11 6 10 11 6
2 10 10 10 10 10 10 10
6 8 11 11 6 11 10 6 10
1 6 6 6 6 6
9 10 2 10 10 10 10 10

6 6 6 6 6
6 8 11 11 10 6 11 11 6
6 11
6 8 6 11 10 10 6 11 6
1 6 6 6 6 6
10 11 11 1
10 11 1
10 11 11 1

8 10 11 1
1

8 10 8 11 1
11 10 8 1
8 11 1

7 8 7 8 1 7
11 10 11 1

1
1

11 10 11 1
11 10 8 8 11 1 10

10 8 11 1
10 11 8 1

Electrical energy
Spatial

Optical energy Gas materialLiquid material
Status signal

Control signal Multi-flow
Solid material

1
Mechanical energy2

3
Hydraulic energy4

5
6

7
8

9
10

11

543Research in Engineering Design (2018) 29:531–546	

1 3

to cover all areas of the lock complex. As such, the function
specifications yield many interactions throughout the lock
complex with the CCTV installation.

Table 5 lists the number of dependencies (entries in the
DSM) per dependency type for handmade DSM H and
generated DSM G. Despite the differences in modeling

approach, the dependency types used in H and G do, to some
extent, match: the spatial and location types in H relate to
the spatial type in G; the information type used in H relates
to the status and control signal types in G; and the energy
type in H relates to the electrical, mechanical, optical, and
hydraulic energy types in G; the solid, liquid, and gaseous
material flow-type dependencies in G do not have an equiva-
lent type in H.

Note that Table 5 lists 386 dependencies in H and 494
dependencies in G, while binary DSMs H̄ and Ḡ only con-
tain 336 and 394 dependencies, respectively. In H 25 com-
ponents, pairs are connected via more than one dependency
type, and in G, 46 component pairs are connected via more
than one dependency type. As a result, H and G contain
more dependencies than H̄ and Ḡ , respectively.

lhb
cci
fub
loc
rps
opb
fua
ope
lha
obl
shi
cos
ssb
ini
rza
paa
spa
waa
bpa
spb
pab
rzb
bpb
shs
wab
shf
log
ssa
ivs
mei
stl
lop
epi
hps
doa
eos
lsb

ems
daa
lsa
dab
utc
dob
eps
ros
mos
fds
rai
tel
vhf
wls

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

3 3 3 3 3 3 3 3 3 3 3 2 3
2 2 3 3 2 3 3 3 2 2 2 2

3 2 2 3 3 3 3 3 3 2 3 2 2 2
3 2 2 2 3 2 3 3 3 2 2 2 2 3
3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
2 2 3 3 3 3 3 2 3 3 3 2 2 2
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3 3 2 3
3 3 3 2 3 3 3 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
3

3 3 3
3 3

2 3 3 3 3 3 3 2 3
3 3 2 3 3 3

2 2 3 3 3 3 3 3 3
3 3 3 3 3

3 3 2 3 3 3
2 3 3 3 3 3 2 3 3

3 3
3 3 3 3 3
3 3 3 3 3 3 2 2

2 2 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3

3 3 3 3
3

3 3 3 3
3 3 3 3
3 3 3

3
3 3 3 3

3 2 3 2 3 3 3
2 2 3 3 3 3

3 3 3 3 3 3 3
2 2 3 3 3 3 3

3 3 3 3 3 3 3
3 3 3 3 3 3

2 2 3 3 3 3 3
3 3 3 3 3 3

3 3 3
3 2 2 3 3 3

2 3 3
3 3 3 3
3 3 3 3

2 3 3 3 2 3
3 3 3 3 3
3 3 3 3
3 3 3 3

3 2 3 3 2 3 3

Only present in G
Present in H and G

Only present in H
2
3

1

lh
b

cc
i

fu
b

lo
c

rp
s

op
b

fu
a

op
e

lh
a

ob
l

sh
i

co
s

ss
b

in
i

rz
a

p
a
a

sp
a

w
a
a

bp
a

sp
b

p
a
b

rz
b

bp
b

sh
s

w
a
b

sh
f

lo
g

ss
a

iv
s

m
ei

st
l

lo
p

ep
i

h
p
s

d
oa

eo
s

ls
b

em
s

d
a
a

ls
a

d
a
b

u
tc

d
ob

ep
s

ro
s

m
os

fd
s

ra
i

te
l

vh
f

w
ls

Fig. 10   ΣDSM S showing the differences between handmade DSM H and generated DSM G 

Table 4   Similarity in number of dependencies

MH MG MT Color # %

1 0 1 Red 0 0.0
0 2 2 Blue 58 14.7
1 2 3 Green 336 85.3
Total 394 100

544	 Research in Engineering Design (2018) 29:531–546

1 3

Furthermore, H contains 50 spatial dependencies and 198
location dependencies, while G only contains a 100 spatial
dependencies. This is caused by the fact that location relates
to form and not to function. For example, in H object light-
ing, obl has multiple location interactions throughout the
system, (row seven of Fig. 8), while in G, object lighting
obl has multiple optical energy relations (row/column 9 of
Fig. 9), since the function of object lighting obl is to pro-
vide light at various places of the lock complex. To fulfill
this function in the realized system, the object lighting has
to be at several locations of the lock complex. Hence, the
functional optical energy dependencies turn into physical
location dependencies.

Considering information dependencies, H contains 82
information dependencies, while G contains 102 status sig-
nal dependencies and 56 control signal dependencies. Two
components i and j may have to interchange multiple status
and control signals to fulfill their functions. For example,
regular operating system ros and control system cos inter-
change multiple status and control signals. Those signals
are exchanged over the same physical connection. Hence, G
contains more information-type dependencies than H. This
example shows that multiple functional dependencies may
turn into a single information dependency in the DSM of the
as-built (physical) system.

Looking at the energy-type dependencies in Table 5, one
can see that there is an exact match between the number of
energy-type dependencies in H and the electrical energy-
type dependencies in G. As such, each functional electrical
energy-type dependency has resulted in a physical energy-
type dependency in the realized system. The mechanical and
optical energy-type dependencies in G have probably been
captured by Dijkstra by spatial- and location-type dependen-
cies in H.

Dijkstra did not consider material flow-type dependen-
cies, as a result many of the liquid, solid, and gaseous mate-
rial flow-type dependencies are not included in H.

To conclude, the method presented in Sect. 3 can be used
to generated an intended lock architecture which matches
the realized physical architecture fairly well. The generated
system architecture provides a reasonable model for the (to
be realized) architecture of the physical system. Therefore,
the method can be used in the early design phase to deter-
mine the functional architecture of a new system, as well
as for an existing physical system to identify component
and parameter dependencies (most published DSM analyses
considered existing systems). On the other hand, the DSM
generated from function specifications and the DSM built
from data regarding the actual physical embodiment are
closely related but at the same time depart from a different
modeling perspective: function-based DSM modeling versus
form-based DSM modeling.

5 � Conclusions

Building Dependency Structure matrices (DSMs) are a time
consuming and sometimes tedious process. This study aims
to introduce a method for the intuitive, easy, and quick speci-
fication of goal and transformation functions. The function
specifications are constrained to a fixed grammar and vocab-
ulary through which we aim to increase the uniqueness and
clarity of function specifications and allow for the automated
construction of a multi-domain-matrix (MDM). The MDM
consists of a component DSM, a function DSM, a parameter
DSM, and three domain-mapping matrices (DMMs) indi-
cating the dependencies between the elements in the three
DSMs. The MDM provides valuable and structured informa-
tion regarding the intended architecture of the system within
the component, function, and parameter domains. In addi-
tion, by mapping parameter types onto dependencies types,
a variety of distinct dependency types can be derived from
the function specifications and visualized using the MDM.
This reduces the required effort to construct high-definition
DSMs.

Case study ‘Navigation lock Sambeek’ showed that the
generated intended lock architecture matches the realized
physical architecture fairly well. Therefore, the generated
system architecture provides a reasonable model for the (to
be realized) architecture of the physical system. As such,
the method can be applied in the early design phase to gain
insight in and reason about the architecture of a new sys-
tem. The generated MDM provides clear insight into the
dependencies inside and across the component, function
and parameter domains. The method may also be used to
generate a DSM of an existing system, acknowledging that
one takes a functional instead of a physical DSM modeling

Table 5   Number of dependencies per dependency type in handmade
DSM H and generated DSM G 

Handmade DSM H Generated DSM G

Type # Type #

Spatial 50 Spatial 100
Location 198
Information 82 Status signal 102

Control signal 56
Energy 56 Electrical energy 56

Mechanical Energy 10
Optical energy 24
Hydraulic energy 22
Solid material 90
Liquid material 26
Gaseous material 8

Total 386 Total 494

545Research in Engineering Design (2018) 29:531–546	

1 3

view. Functional specifications of components may be more
straightforward to obtain than identifying spatial, material,
information and energy interactions from design documents
and interviews. For our lock case and the study of Josten
(2017) this appeared to be the case. A reduction of modeling
effort was observed.

6 � Discussion

The method presented in this article requires function speci-
fications to be written in a fixed structured format. Design
documents are generally written using far more natural lan-
guage. This means the design documentation has to be con-
verted in function specifications according to the prescribed
format. This may be quite an elaborate process. There is
software tooling to automatically process natural language,
see, for instance, Bird et al. (2009), which may support the
conversion process. However, we have experienced that a
significant amount of effort has to do with inconsistencies,
errors, and incompleteness of documentation. This may, for
instance, relate to the system decomposition, the naming
conventions, function descriptions, graphs, and drawings.
Automated language processing typically cannot help with
this. The conversion process provides a means to encounter
these issues an correct for them.

Design documentation usually contains far more infor-
mation than function descriptions, for example, geometric
aspects of a system. Therefore, in our future work we seek
to extend our grammar such that non-functional aspects of
systems can be described as well. For example, two compo-
nents may have a spatial relation as they are placed in the
same system housing. Such a dependency does not follow
from just the specification of the goal and transfer functions
of the two components. More information is needed there.

Acknowledgements  Financial support for this research by Rijkswater-
staat, part of the Dutch Ministry of Infrastructure and Water Manage-
ment, is gratefully acknowledged. We would like to thank Erik-Jan
Houwing, Maria Angenent and Robert de Roos for their feedback and
support for this work. We also thank the anonymous reviewers for their
comments and suggestions, which have improved the paper.

Open Access  This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat​iveco​
mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate
credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

References

Alizon F, Khadke K, Thevenot HJ, Gershenson JK, Marion TJ, Shooter
SB, Simpson TW (2007) Frameworks for product family design
and development. Concurr Eng 15(2):187–199

Bird S, Klein E, Loper E (2009) Natural language processing with
Python: analyzing text with the natural language toolkit. O’Reilly
Media Inc, Newton

Brady TK (2002) Utilization of dependency structure matrix analy-
sis to assess complex project designs. In: ASME 2002 interna-
tional design engineering technical conferences and computers
and information in engineering conference. American Society of
Mechanical Engineers, pp 231–240

Browning TR (2016) Design structure matrix extensions and innova-
tions: a survey and new opportunities. IEEE Trans Eng Manag
63(1):27–52

Chiriac N, Hölttä-Otto K, Lysy D, Suh ES (2011) Three approaches
to complex system decomposition. In: Proceedings of the 13th
international DSM conference, Cambridge, Massachusetts, USA,
September 2011

D’Amelio V, Chmarra MK, Tomiyama T (2011) Early design inter-
ference detection based on qualitative physics. Res Eng Des
22(4):223–243

de Borst ECM, Etman LFP, Gielen AWJ, Hofkamp AT, Rooda JE
(2016) Decomposition analysis of the multidisciplinary coupling
in LED system-in-package design using a DSM and a specifica-
tion language. Struct Multidiscip Optim 53(6):13951411

Deng Y-M (2002) Function and behavior representation in con-
ceptual mechanical design. Artif Intell Eng Des Anal Manuf
16(05):343–362

Dieter GE, Schmidt LC, Azarm S (2013) Engineering design. McGraw-
Hill, New York

Dijkstra M (2016) RA risico’s in een sluizenfamilie en generieke sub-
systemen. Technical report, Rijkswaterstaat

Dong Q, Whitney D (2001) Designing a requirement driven product
development process. In: Proceedings of the ASME international
conference on design theory and methodology, Pittsburgh, PA,
USA, September 2001, pp 1–11

Dori D, Reinhartz-Berger I, Sturm A (2003) OPCAT-A bimodal case
tool for object-process based system development. In: Proc. 5th
international conference on enterprise information systems,
Angers, France, April 2003, pp 286–291

Eggert R (2005) Engineering design. Pearson/Prentice Hall, Upper
Saddle River

Eisenbart B, Blessing L, Gericke K (2012) Functional modelling per-
spectives across disciplines: a literature review. In: Proceedings
of 12th international design conference, Dubrovnik, Croatia, May
2012

Eisenbart B, Gericke K, Blessing LTM, McAloone TC (2016) A DSM-
based framework for integrated function modelling: concept,
application and evaluation. Res Eng Des 28(1):1–27

Eppinger SD, Browning TR (2012) Design structure matrix methods
and applications. MIT Press, Cambridge

Erden MS, Komoto H, van Beek TJ, D’Amelio V, Echavarria E, Tomiy-
ama T (2008) A review of function modeling: approaches and
applications. Artif Intell Eng Des Anal Manuf 22(02):147–169

Fernandes JM, Machado RJ (2016) Requirements in engineering pro-
jects. Lecture notes in management and industrial engineering.
Springer, Cham

Glerum A, Vrijburcht A (2000) Design of locks 1. Rijkswaterstaat,
Utrecht

Goel AK, Rugaber SR, Vattam S (2009) Structure, behavior, and func-
tion of complex systems: the structure, behavior, and function
modeling language. Artif Intell Eng Des Anal Manuf 23(Special
Issue 01): 23–35

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

546	 Research in Engineering Design (2018) 29:531–546

1 3

Gorbea C, Spielmannleitner T, Lindemann U, Fricke E (2008) Analysis
of hybrid vehicle architectures using multiple domain matrices.
In: DSM 2008: proceedings of the 10th international DSM confer-
ence, Stockholm, Sweden, November 2008

Hirtz J, Stone RB, McAdams DA, Szykman S, Wood KL (2002) A
functional basis for engineering design: reconciling and evolving
previous efforts. Res Eng Des 13(2):65–82

Hubka V, Eder WE (2012) Theory of technical systems: a total concept
theory for engineering design. Springer, Berlin

Jiao J, Simpson TW, Siddique Z (2007) Product family design and
platform-based product development: a state-of-the-art review. J
Intell Manuf 18(1):5–29

Josten T (2017) Dependency Structure Matrix based analysis of the
operation, control, and monitoring components of the Wantij
bridge. Master’s thesis, Eindhoven Univeristy of Technology, the
Netherlands

Maurer MS (2007) Structural awareness in complex product design.
PhD thesis, Universität München

Pahl G, Beitz W (2013) Engineering design: a systematic approach.
Springer, Berlin

Pimmler TU, Eppinger SD (1994) Integration analysis of product
decompositions. In: Proceedings of the ASME design theory and
methodology conference, Minneapolis, MN, USA, September
1994

Sharon A, Dori D, De Weck O (2009) Model-based design structure
matrix: deriving a dsm from an object-process model. In: Proc.
second international symposium on engineering systems, Cam-
bridge, Massachusetts, USA, June 2009, pp 1–12

Simpson TW (2004) Product platform design and customization: status
and promise. Artif Intell Eng Des Anal Manuf 18(1):3–20

Sosa ME, Eppinger SD, Rowles CM (2003) Identifying modular and
integrative systems and their impact on design team interactions.
J Mech Des 125(2):240–252

Steward DV (1981) The design structure system: a method for manag-
ing the design of complex systems. IEEE Trans Eng Manag EM
28(3):71–74

Stone RB, Wood KL (2000) Development of a functional basis for
design. J Mech Des 122(4):359–370

Suh ES, Furst MR, Mihalyov KJ, de Weck O (2010) Technology infu-
sion for complex systems: a framework and case study. Syst Eng
13(2):186–203

Suh NP (1998) Axiomatic design theory for systems. Res Eng Des
10(4):189–209

Tilstra AH, Seepersad CC, Wood KL (2012) A high-definition design
structure matrix (HDDSM) for the quantitative assessment of
product architecture. J Eng Des 23(10–11):767–789

Tomiyama T, van Beek TJ, Cabrera AAA, Komoto H, D’Amelio V
(2013) Making function modeling practically usable. Artif Intell
Eng Des Anal Manuf 27(Special Issue 03): 301–309

Tosserams S, Hofkamp AT, Etman LFP, Rooda JE (2010) A specifica-
tion language for problem partitioning in decomposition-based
design optimization. Struct Multidiscip Optim 42(5):707–723

Ulrich K (1995) The role of product architecture in the manufacturing
firm. Res Policy 24(3):419–440

Umeda Y, Ishii M, Yoshioka M, Shimomura Y, Tomiyama T (1996)
Supporting conceptual design based on the function-behavior-
state modeler. Artif Intell Eng Des Anal Manuf 10(04):275–288

Umeda Y, Tomiyama T, Yoshikawa H (1995) FBS modeling: modeling
scheme of function for conceptual design. In: Proc. of the 9th int.
workshop on qualitative reasoning, pp 271–8

Van Beek TJ, Erden MS, Tomiyama T (2010) Modular design of
mechatronic systems with function modeling. Mechatronics
20(8):850–863

Wilschut T, Etman LFP, Rooda JE, Adan IJBF (2016) Multi-level
flow-based markov clustering for design structure matrices. In:
Proceedings of the ASME 2016 international design engineering
technical conferences and computers and information in engineer-
ing conference, Charlotte, NC, USA, August

Wilschut T, Etman LFP, Rooda JE, Adan IJBF (2017) Multi-level flow-
based markov clustering for design structure matrices. J Mech
Des 139(12):1–10

Wyatt DF, Wynn DC, Jarrett JP, Clarkson PJ (2012) Supporting prod-
uct architecture design using computational design synthesis with
network structure constraints. Res Eng Des 23(1):17–52

	Generation of a function-component-parameter multi-domain matrix from structured textual function specifications
	Abstract
	1 Introduction
	2 Related work
	2.1 Automated DSM generation
	2.2 Linguistic function specifications

	3 Method
	3.1 Step 1: specifying goal functions
	3.2 Step 2: specifying transformation functions
	3.3 Step 3: automatically building a MDM
	3.4 Results and discussion

	4 Case study: navigation lock Sambeek
	4.1 Building and generating DSMs of lock Sambeek
	4.2 Comparing the two DSMs of lock Sambeek

	5 Conclusions
	6 Discussion
	Acknowledgements
	References

