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Abstract
This study introduces a method to build a multi-domain matrix (MDM), visualizing the intended architecture of a system 
within the component, function, and parameter domains. The MDM is generated from textual function specifications that are 
subject to a specific grammatical structure and vocabulary based upon the functional basis and interaction basis as presented 
in the literature. Two types of functions are distinguished: functions specifying what functionality a particular component 
provides to another component, and functions specifying the internal working (transformation of flow) of a particular compo-
nent. The fixed grammar for the specification of the two types of functions allows for the automated derivation of dependen-
cies between components, between functions of components, and between system parameters. A case study on a navigation 
lock demonstrates that the system architecture generated from function specifications matches the architecture of the real 
lock system fairly well. As such the method can be used in the early design phase to reveal the product architecture that is 
embodied in the function specifications of system components. The method may also support modeling of high-definition 
DSMs of existing engineering systems.

Keywords  System architecture · Linguistic function specification · Design structure matrix · DSM · Multi-domain matrix · 
MDM · Functional basis · Interaction basis

1  Introduction

In recent years, many researchers have advocated the impor-
tance of system architecture design in the early develop-
ment phases; see, e.g., Pahl and Beitz (2013), Tilstra et al. 
(2012), and Eggert (2005). Their rationale is supported by, 
for example, Simpson (2004) and Jiao et al. (2007), who 
state that a system’s architecture has a profound impact on 

its performance and flexibility, i.e., the quality of the deliv-
ered functionality and the ease with which the system can be 
modified to fulfill future requirements. Both properties are 
important in modern, highly competitive and rapidly chang-
ing industries (Alizon et al. 2007).

Ulrich (1995) defined system architecture as the mapping 
of a system’s functions to the physical components within 
the system, and the dependencies between those compo-
nents. A well-known concept in modeling and analyzing 
those component dependencies is the dependency structure 
matrix (DSM) (Steward 1981), also referred to as design 
structure matrix (Eppinger and Browning 2012).

A DSM is a binary N × N matrix denoting the dependen-
cies among N system components. Figure 1a shows an exam-
ple DSM. An off-diagonal-shaded square denotes a depend-
ency between component i and component j. A DSM may be 
symmetric, denoting that dependencies between components 
i and j are undirected, or asymmetric, denoting that depend-
encies between components i and j are directed.

One may distinguish product, organization, and process 
type of DSMs (Eppinger and Browning 2012). Each type 
of DSM shows the dependencies between elements from 
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a different domain. These DSMs may be jointly presented 
along the diagonal of a larger matrix. Such a matrix is called 
a multi-domain matrix (MDM). Each pair of DSMs is con-
nected via a domain-mapping matrix (DMM). A DMM is 
an N ×M matrix, showing the dependencies between the 
N elements from one domain and the M elements from the 
other domain.

Eppinger and Browning (2012) discuss DSM and MDM 
applications in many branches of industry, e.g., aerospace, 
automotive, and the semiconductor industry. DSMs are pri-
marily used due to the compact and analytically advanta-
geous format (Eppinger and Browning 2012). For example, 
one can highlight the system architecture by permuting the 
rows and columns of the DSM, as shown in Fig. 1b. That 
is, the permuted (clustered) matrix reveals an integrative or 
‘bus’ module consisting of component d and two relatively 
independent modules consisting of components {a, c, e} 
and components {b, f} , respectively.

Eppinger and Browning (2012) introduced a five-step 
DSM method to architectural modeling and analysis, as 
depicted in Fig. 2. These five steps can be used to build an 
MDM as well. In Step 1, the system is decomposed into 
components. Guidelines for decomposing a system are 
given in Chiriac et al. (2011) and Tilstra et al. (2012). Next, 
component dependencies are identified and documented in 
Step 2. The resulting DSM is analyzed in Step 3, for exam-
ple, by means of a clustering algorithm. The results are 
visually inspected in Step 4. Finally, Step 5 concerns the 

improvement of the DSM by, for example, adding missed 
component dependencies or manually altering the cluster-
ing results.

Recently, Browning (2016) has presented an extensive 
overview of DSM research. From the overview of papers 
presented in this survey, it follows that the literature has 
primarily focused on the third step. The other steps have 
received less attention. In particular, the second step has 
received little attention.

In Step 2, interviews with system experts and/or design 
documentation reviews are often used to identify the depend-
encies between the various components (Browning 2016). 
For product architecture DSMs, this often means the identi-
fication of spatial, information, energy and material type of 
dependencies, following the seminal work of Pimmler and 
Eppinger (1994). However, the identification of dependen-
cies often presents challenges. It appears to be quite labor 
intensive and time consuming. In the literature, typically 
efforts of several months are reported. For example, the 
46 × 46 NASA pathfinder DSM took 5 months to complete 
(Brady 2002); the 64 × 64 Pratt and Whitney jet engine DSM 
4 months (Sosa et al. 2003), and the 84 × 84 Xerox printing 
system DSM 3 months (Suh et al. 2010). Second, identifi-
cation of spatial, energy, information, or material depend-
encies is focused on form and not on function. Hence, not 
all identified dependencies may relate to a function. Most 
DSM studies analyze an existing product relying on design 
documentation and expert opinions to determine the various 
spatial, energy, information, and material dependencies. For 
systems in the early product development stage, an actual 
product realization or technical drawings may not be avail-
able; the DSM modeler has to rely mainly on functional 
descriptions of components.

This paper presents a method to automatically build a 
function-component-parameter MDM from functional 
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Fig. 1   a Example DSM, unclustered, showing component depend-
encies. b Example DSM. clustered, revealing a bus cluster and two 
modular clusters (reprinted from Wilschut et al. 2016)
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Fig. 2   DSM method to architectural modeling and analysis (Eppinger 
and Browning 2012). This work contributes to the second step: the 
identification of dependencies
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Fig. 3   Schematic multi-domain matrix (MDM)
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specifications of components, as schematically depicted in 
Fig. 3. The MDM consists of a component DSM, a func-
tion DSM, a parameter DSM, and three DMMs representing 
the mappings between the elements of the three DSMs. The 
MDM is automatically built from textual function specifica-
tions that are specified using a predefined vocabulary and 
grammatical structure. The functional basis of Stone and 
Wood (2000), later improved by Hirtz et al. (2002), is used 
as a basis for the vocabulary. The grammar is based on the 
well-known verb + noun representation used, for instance, 
by Stone and Wood (2000) and Pahl and Beitz (2013). Stone 
and Wood (2000) used the functional basis and verb + noun 
representation to create solution-free functional models of 
systems. In our study, the dependencies between components 
are of particular interest. Therefore, the presented grammar 
is an extension upon the verb + noun representation that 
enables the automated derivation of dependencies between 
components, between component functions, and between 
parameters that quantify the flows needed to realize func-
tions. The resulting MDM describes the architecture of a 
system within the component, function, and parameter 
domains. By applying clustering analysis to the generated 
DSMs, the component-function-parameter system architec-
ture is highlighted.

The outline of this article is as follows. Section 2 dis-
cusses literature regarding DSM model building and 
function modeling. Section 3 introduces the new method 
illustrated using an example problem. Section 4 presents a 
case study in which the presented method is used to derive 
dependencies between components of a navigation lock. The 
resulting DSM is compared with a DSM built in a previous 
study by Dijkstra (2016). Finally, conclusions are presented 
in Sect. 5.

2 � Related work

In this section, the literature is discussed which relates to 
building DSM or MDMs automatically and linguistic speci-
fications for function modeling.

2.1 � Automated DSM generation

Dong and Whitney (2001) were one of the first to consider 
automated building of DSMs. In their study, a design matrix 
(DM) is manually constructed using axiomatic design theory 
(Suh 1998). The DM is an n × m matrix which relates n 
functional requirements to m design parameters. An entry at 
position i, j in the DM denotes that functional requirement i 
is affected by design parameter j. Dong and Whitney (2001) 
used a heuristic to automatically generate a functional 
requirement DSM as well as a design parameter DSM by 
permuting the rows and columns of the DM. Their method 

requires the DM to be a square matrix, i.e., the number of 
functional requirements is assumed to be equal to the num-
ber of design parameters. However, if one strives for a diago-
nal DM, the accompanying DSMs also become diagonal.

A variation on this approach was introduced by Mau-
rer (2007) who used DMMs and DSMs assembled into a 
single MDM:

where D is an n × m DMM that relates n functions to m 
components, C is an m × m component DSM, and F is an 
n × n function DSM. An entry i, j in D denotes that function 
i is being (partly) fulfilled by component j. D is assumed to 
be constructed by hand. Subsequently, component DSM C is 
computed by C = DT

⋅ D and function DSM F is computed 
by F = D ⋅ DT . The intuition behind this is that if two com-
ponents contribute to the fulfillment of the same function, 
there possibly is a dependency between the two components. 
Similarly, if two functions are being fulfilled by the same 
component, there possibly is a dependency between the two 
functions. The method yields symmetric DSMs. Note that 
the method yields candidate dependencies; a subset pre-
sents the actual dependencies. Manual verification of the 
candidate component dependencies and candidate function 
dependencies is required (Maurer 2007). Regarding the con-
struction of matrix D, it may be difficult to decide whether 
a component contributes to fulfilling a function. There may 
be components that do not directly contribute, but that do 
have an indirect influence. Including or excluding these con-
tributions obviously affects the calculated component and 
function DSMs.

As an alternative to the aforementioned matrix based 
methods, graphical models to derive component dependen-
cies were proposed; see, e.g., Eisenbart et al. (2016), Wyatt 
et al. (2012) and D’Amelio et al. (2011). Of particular inter-
est for this paper are Function-Behavior-State (FBS) models 
(Umeda et al. 1995) and variants thereof, such as structure-
behavior-state models (Goel et al. 2009). Van Beek et al. 
(2010) used function-behavior-state models to derive DSMs. 
Figure 4 shows an example FBS model. A function relates 
to a particular physical phenomenon, i.e., a certain type of 
desired behavior. The behavior is realized by several entities, 
i.e., the components of the system. These entities should be 
in a certain state to realize the behavior. For the example 
shown in Fig. 4, the energy supply and the lamp should be 
connected. Though, the practical application of graphical 
FBS models in industry is low, since written documents are 
the primary means of communication and documentation in 
system design (Tomiyama et al. 2013).

Tosserams et al. (2010) observed the limited scalabil-
ity of graphical models while specifying decomposed 

(1)M =

[

C 0

D F

]
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multi-disciplinary-optimization problems. Therefore, they 
developed the dedicated specification language Ψ , which 
in turn de Borst et al. (2016) used to model a LED-Sys-
tem-in-Package. Based on the Ψ-language specification, 
de Borst et al. (2016) automatically generated a DSM dis-
playing the relationships between the approximately 700 
response and design parameters ( ≈ 700 ) characterizing the 
system.

Dori et al. (2003) developed object-process models which 
can be described graphically using object-process diagrams 
and linguistically using the object-process language imple-
mented within the OPCAT tooling. Sharon et al. (2009) used 
OPCAT to derive DSMs. Their efforts focus on modeling 
of relationships between system components and activities 
within the development process. Based on the linguistic and 
graphical models, dependencies between activities and com-
ponents are derived.

In summary, in building DSMs linguistic approaches 
provide better scalability and tractability than graphical 
approaches (Tosserams et al. 2010). Moreover, written docu-
ments are currently the primary communication and docu-
mentation means in system design (Tomiyama et al. 2013). 
However, to the authors’ knowledge, there is no method to 
automatically build product DSMs or MDMs based upon 
textual specifications. In particular, generating DSMs and 
MDMs from textual specifications of functions would be 
very powerful since component functions play an important 
role in system architecture design (Browning 2016). This 
paper presents exactly such a method. This allows designers 
to easily switch between text-based and DSM-based repre-
sentations of the system.

2.2 � Linguistic function specifications

In function modeling, one can take several perspectives, 
e.g., a system centered, a process centered or a purpose 
centered perspective (Erden et al. 2008). Our work aims to 
derive component dependencies, function dependencies, and 
parameter dependencies from textual function specifications. 
This falls into the category of the system centered modeling 

perspective, which is common practice in engineering design 
literature (Eisenbart et al. 2012), see, for instance, Pahl and 
Beitz (2013) and Hubka and Eder (2012).

In the literature, one can find many definitions of func-
tion. Eisenbart et al. (2012) compared 12 different func-
tion definitions, and concluded that there are basically two 
perspectives in defining function. The first perspective 
emphasizes that a function describes some purpose, goal 
or requirement. This perspective is consistent with the 
work of Umeda et al. (1996) and the work of Fernandes and 
Machado (2016). The second perspective emphasizes that a 
function describes a transformation of flow. This perspective 
is used in engineering design literature, such as Pahl and 
Beitz (2013) and Dieter et al. (2013).

In the engineering design literature, transformation 
functions are usually represented by a verb and a noun, for 
example, ‘provide power’ or ‘transfer torque’. These func-
tional descriptions relate to the manipulation of flows of 
energy, material, and signal through the system and should 
be accompanied by the physical quantities (Pahl and Beitz 
2013). Such a verb–noun representation is advantageous in 
view of generality, flexibility, and expressiveness, but has 
limitations with respect to rigorousness and uniqueness 
(Deng 2002) due to the many synonyms in natural language.

Another disadvantage of the verb–noun representation is 
that it does not yield complete sentences. The verb–noun 
phrases typically do not contain a subject. Pahl and Beitz 
(2013) state that in innovative design one should engage in 
solution-free function modeling. Therefore, they argue that 
a function should not contain a subject. On the other hand, 
solution-free function modeling rarely happens in practice 
(Tomiyama et al. 2013). In fact, many companies tend to 
reuse design knowledge to decrease product development 
time and costs (Jiao et al. 2007).

It is not possible to arrive at a single readable and under-
standable document when using verb–noun phrases without 
a subject. Nor is it possible to derive component dependen-
cies or function dependencies. That is, the function ‘pro-
vide power’ does not provide any information regarding the 
dependencies between components or functions. Stone and 
Wood (2000) use block diagrams to construct verb + noun 
function chains by hand.

Hirtz et al. (2002) created a functional basis consisting of 
a unique set of verbs and flows. The verb set can be used to 
improve the uniqueness of linguistic function specifications. 
The flow set can be used to characterize the dependencies 
between components. Tilstra et al. (2012) used the flow set 
for the creation of an interaction (dependency) basis that 
they used to (manually) build what they call high-definition 
DSMs, displaying up to 25 different dependency types. In 
their approach, they build a separate DSM per interaction 
type and subsequently assemble those DSMs into a single 
DSM. Tilstra et al. (2012) noted, however, that manually 

Provide light

Convert electrical to optical energy

Function

Behavior

State
Energy supply Lamp

Connected

Fig. 4   Example function-behavior-state model
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building high-definition DSMs of more than ten components 
requires quite a large amount of work.

Our paper presents an extension upon the verb and 
noun function representation. The extension uses the func-
tional basis to ensure the uniqueness of the specifications. 
The interaction basis is used to characterize the resulting 
dependencies. Our extension results in complete sentences 
from which dependencies between components, functions, 
and parameters can automatically be derived. The resulting 
dependencies are visualized using an MDM.

3 � Method

This section introduces a method for the automated gen-
eration of MDMs from textual function specifications. The 
method is based on the function specification model depicted 
in Fig. 5. Function specifications consist of two basic ele-
ments: components and parameters. Components denote a 
specific part of the system. Parameters refer to flows through 

the system, e.g., power and information, or to aspects of 
components, e.g., position and temperature.

In the function specifications, components and parameters 
are used in together with verbs and prepositions following 
a fixed format. A sentence specifying a function describes 
either a goal function or a transformation function. A goal 
function describes the purpose of a component with respect 
to the other components of the system. For example, the goal 
function ‘Component x provides power p to component y’, 
denotes that the purpose of component x is to provide power 
p to component y. A transformation function describes the 
transformation of flow that occurs within a component. For 
example, the transformation function ‘Component x con-
verts power p into torque k’ denotes that an electrical energy 
flow p is converted into a mechanical energy flow k inside 
component x.

The method requires design engineers to manually spec-
ify the functions following the fixed format and to create 
a dictionary of component names, verbs, parameter types, 
parameter names, and prepositions that are allowed in the 
function specifications. Each word within a specified func-
tion is automatically referenced against the dictionary to 
detect typos and inconsistencies.

A compact fixed format is deliberately chosen to enforce 
precise and concise function specifications. That is, the qual-
ity of the specification is traded against the flexibility of the 
specification. Albeit the restricted specification flexibility, 
the proposed fixed format, defined in Fig. 5a, enables auto-
matic processing of the goal and transformation function 
specifications to generate an MDM consisting of a symmet-
ric component DSM, an asymmetric goal function DSM, an 
asymmetric parameter DSM, and three DMMs indicating 
the dependencies between components, goal functions, and 
parameters. By analyzing these matrices, for instance, by 
clustering, one can gain insight in the system architecture.

The three main steps of the method are explained in fur-
ther detail below. Section 3.1 explains how goal functions 
are specified. Section 3.2 explains how transformation func-
tions are specified. Section 3.3 explains how the MDM is 
generated from the function specifications.

3.1 � Step 1: specifying goal functions

Table 1 shows goal functions of a simple water storage 
system. Each sentence consists of the following four main 
elements:

1.	 The 1st component name denotes the component which 
actively contributes to fulfilling the function. The com-
ponent name must be part of the system decomposition.

2.	 The verb indicates the action that the component per-
forms on the flow. The verbs are constrained to the verbs 
of the functional basis of Hirtz et al. (2002).

verb prepositionc.. c..+ p..+ + +

verb prepositionc.. + p..+ + + p..

h.. =

a.. =

c.. p..Component Parameter

Goal function: 

Transformation function: 

(a)

c..

c..

h..

p..

h.. p..

Dependencies derived from 
goal functions
Dependencies derived from 
transformation functions

*

*
*

*
*

* *
*

*

* *

*

*

*
*

**

(b)

Fig. 5   a Fixed structure of goal and transformation functions. b 
Multi-domain matrix derived from the goal and transformation com-
ponent functions
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3.	 The parameter name quantifies a flow between the 
two components (e.g., parameter pe in function h0 of 
Table 1) or alternatively a particular aspect of the 2nd 
component (e.g., parameter xe in function h4 of Table 1). 
A parameter name consists of a parameter type and an 
identifier. A parameter type should be an instance of one 
of the generic dependency types defined in the depend-
ency basis of Tilstra et al. (2012). For example, see 
Table 2.

4.	 The 2nd component name denotes the component that 
is passively involved in fulfilling the function. The com-
ponent name must be part of the system decomposition.

Note that this grammar does not allow the construct: ‘The 
electric wire wi connects power supply po with electric 
motor el’, since power supply po is not a parameter quan-
tifying a flow, nor is power supply po an aspect of electric 
motor el. The sentence describes form and not function. The 
actual function of electric wire wi is to conduct electricity 
from power supply po to electric motor el. Following the 
goal function format, the function of the wire can be cap-
tured by the functions: ‘The power supply po exports power 
pe to electric wire wi’ and ’Electric wire wi conducts power 
pe to electric motor el’.

3.2 � Step 2: specifying transformation functions

Table 3 shows transformation functions of the water storage 
system example. Each sentence consists of the following 4 
main elements.

1.	 The component name denotes the component which 
actively contributes to fulfilling the function. The com-
ponent must be part of the system decomposition.

2.	 The verb indicates the action that the component per-
forms on the flow(s). The verbs are constrained to the 
functional basis of Hirtz et al. (2002).

Table 1   Goal functions of a 
simple water storage system

ID 1st comp. name Verb Parameter name Prep. 2nd comp. name

 h0 Power supply po provides power pe to electric motor el
 h1 Power supply po provides power pv to control system co
 h2 Electric motor el provides torque kp to pump pu
 h3 Electric motor el signals status signal se to control system co
 h4 Frame fr secures position xe of electric motor el
 h5 Frame fr secures position xp of pump pu
 h6 Frame fr secures position xs of storage container st
 h7 Control system co signals control signal ce to electric motor el
 h8 Sensor se measures pressure wp in storage container st
 h9 Sensor se signals status signal ks to control system co
 h10 Pump pu provides flow qs to storage container st

Table 2   Mapping between parameters types and dependency types

Parameter type Interaction type from dependency basis

Power Electrical energy
Torque Mechanical energy (dynamic)
Position Spatial
Volume Spatial
Pressure Hydraulic energy
Flow Liquid material
Status signal Status signal
Control signal Control signal

Table 3   Transformation 
functions of a simple water 
storage system

ID Comp. name Verb 1st parameter name(s) Prep. 2nd parameter name(s)

 a0 Electric motor el converts power pp into torque kp
 a1 Electric motor el converts control signal ce into status signal se
 a2 Control system co processes status signal ws and 

status signal se
into control signal ce

 a3 Control system co converts power pc into control signal ce
 a3 Control system co adds control signal ce to log lo
 a4 Sensor se converts pressure wp into status signal ws

 a5 Pump pu converts torque kp into flow qs
 a6 Storage container st accumulates flow qs into volume wv
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3.	 The 1st parameter name(s) denotes the required input 
flow(s) for the action performed by the component. An 
action may require multiple inputs. The inputs are sepa-
rated by ‘and’.

4.	 The 2nd parameter name(s) denotes the resulting out-
put flow(s) of the action performed by the component. 
An action may yield multiple outputs. The outputs are 
separated by ‘and’.

The parameter names may be part of the set of parameters 
resulting from the specification of goal functions. The mod-
eler should take care to ensure consistency in parameter 
names.

3.3 � Step 3: automatically building a MDM

The MDM shown in Fig. 6 is automatically built from the 
goal and transformation function specifications listed in 
Tables 1 and 3, respectively. The DSMs in the MDM are 
clustered separately. For the water storage example problem 
and the case problem presented in Sect. 4, we used Markov 
clustering (Wilschut et al. 2016, 2017), but any suitable clus-
tering algorithm may be used.

The goal functions represent dependencies between com-
ponents (C–C) and mapping relations between goal func-
tions and components (F–C), between parameters and com-
ponents (P–C), and between parameters and goal functions 
parameters (P–F). In the following it is explained which 
dependencies and mapping relations are derived from goal 
functions.

Let G be the set of all specified goal functions g, where g 
is defined as the tuple:

wherein cg,1 is the first component, vg is the verb, pg is the 
parameter, qg is the preposition, and cg,2 is the second com-
ponent. Let C =

⋃

∀g∈G cg,1, cg,2 be the set of all components 
used in the goal functions. Then, component ci and compo-
nent cj are dependent if:

evaluates true. That is, there exists a goal function g in the 
set of a goal functions G, such that the first component cg,1 in 
g equals ci and the 2nd component cg,2 in g equals cj.

The derived dependency between components ci and cj is 
characterized by parameter pg , which is defined as the tuple:

(2)g ∶= (cg,1, vg, pg, qg, cg,2)

(3)∃g ∈  ∶ cg,1 = ci ∧ cg,2 = cj

(4)pg ∶= (npg , tpg , bpg )
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Fig. 6   Multi-domain-matrix generated from the function specifications listed in Tables 1 and 3



538	 Research in Engineering Design (2018) 29:531–546

1 3

wherein npg is the name of parameter pg , tpg is the type of 

parameter pg , and bpg is the type of the dependency basis of 

Tilstra et al. (2012) to which type tpg belongs. For instance, 

in the example problem, the parameter type power belongs 
to the electrical energy type of the dependency basis, as 
shown in Table 2.

The derived dependency between components ci and cj 
is assumed to be bidirectional, as it is common practice to 
model symmetric product architectures (Browning 2016). 
That is, if Eq. (3) evaluates true, the dependency entries 
( ci, cj ) and ( cj, ci ) are placed in a symmetric compo-
nent–component (C–C) DSM, and are assigned depend-
ency type bpg . Each dependency type is represented by a 

distinct number and color in the DSM.
Furthermore, goal function g is used to derive mapping 

relations between goal functions and components. That is, 
a goal function g has a mapping relation with component 
c if:

evaluates true. That is, g has a mapping relation with c if the 
first or second component of g is equal to component c. 
These relations are placed in an asymmetric goal func-
tion–component (F–C) DMM, where a relation between g 
and its first component cg,1 (entry ( g, cg,1 )) is marked as an 
active relation and assigned type bpg and a relation between 

g and its second component cg,2 (entry ( g, cg,2 )) is marked as 
being a passive relation indicated by a number 9 and gray 
color.

Similarly, mapping relations between parameters and 
components are derived from goal functions. That is, a 
parameter p has a mapping relation with component c if:

evaluates true. That is, parameter p has a mapping relation 
with component c if there exists a goal function g such the 
first or second component in g equals c and parameter pg in 
g equals p. This relation is placed in an asymmetric param-
eter–component (P–C) DMM (entry (p, c)) and is assigned 
type bpg.

Finally, goal functions denote mapping relations 
between parameters and goal functions. A parameter p has 
a mapping relation with goal function g if:

evaluates true. Parameter-goal function mapping relations 
are placed in an asymmetric parameter-goal function DMM 
and is assigned type bpg.

Transformation functions represent dependencies 
between parameters (P-P), between goal functions (F–F), 

(5)cg,1 = c ∨ cg,2 = c

(6)∃g ∈ G ∶ (cg,1 = c ∨ cg,2 = c) ∧ pg = p

(7)pg = p

and mapping relations between components and parame-
ters (P–C). In the following, it is explained which depend-
encies and mapping relations are derived from transforma-
tion functions.

Let T be the set of all specified transformation functions 
t, where t is defined as the tuple:

wherein, ct ∈ C is the component within t, vt is the verb, Pt,1 
is the first set of parameters, qt is the preposition, and Pt,2 
is the second parameter set. Then, parameter pi depends on 
parameter pj if:

evaluates true. That is, parameter pi depends on parameter 
pj if there exists a transformation function t, such that pi is a 
member of the second parameter set Pt,2 and pj is a member 
of the first parameter set Pt,1.

Parameter dependency entry ( pi, pj ) is placed in an asym-
metric parameter–parameter (P–P) DSM and is assigned the 
dependency type bpj of the column (input) parameter pj . Fur-

thermore, transformation functions are used to derive goal 
function dependencies. That is, goal function gi depends on 
goal function gj if:

evaluates true. That is, goal function gi depends on goal 
function gj if there exists a transformation function t, such 
that the parameter pgi is a member of the second parameter 
set Pt,2 and parameter pgj is a member of the first parameter 

set Pt,1.
Goal function dependency entry (gi, gj) is placed in an 

asymmetric goal function–goal function DSM and is 
assigned dependency type bpgj of parameter pgj of column 

(input) goal function gj.
Finally, parameter-component mapping relations are 

derived from transformation functions. That is, parameter 
p has a mapping relation with component c if:

evaluates true. That is, parameter p has a mapping relation 
with component c if there exists a transformation function 
t in which ct equals c and p is a member of the union of the 
first and second parameter sets of t, Pt,1 , and Pt,2 , respec-
tively. Parameter-component mapping relations are placed 
in an asymmetric parameter-component (P–C) DMM and 
are assigned dependency type bp.

For the water storage system example, the goal functions 
shown in Table 1 yield: (1) dependencies between compo-
nents, displayed in the C–C DSM of the MDM shown Fig. 6 
(rows 1–7, columns 1–7); (2) between components and goal 
functions, displayed in the F–C DMM (rows 8–18, columns 

(8)t = (ct, vt,Pt,1, qt,Pt,2)

(9)∃t ∈ T ∶ pi ∈ Pt,2 ∧ pj ∈ Pt,1

(10)∃t ∈ T ∶ pgi ∈ Pt,2 ∧ pgj ∈ Pt,1

(11)∃t ∈ T ∶ ct = c ∧ p ∈ Pt,1 ∪ Pt,2
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1–7); (3) between components and parameters, in the P–C 
DMM (rows 19–31, columns 1–7); and (4) between goal 
functions and parameters, shown in the P–F DMM (rows 
19–31, columns 8–18). For example, goal function h0 : 
‘Power supply po provides electrical power pe to electric 
motor el’, represents an electrical energy-type dependency 
between the power supply po and the electric motor el. The 
dependency is taken to be bidirectional, yielding two sym-
metrically placed, entries (3, 1) and (1, 3), in the component 
DSM. The type of the dependency originates from the rela-
tion between the parameter type ‘power’ and the dependency 
basis of Tilstra et al. (2012), as listed in Table 2.

Second, h0 yields two dependencies in the F–C DMM. 
Power supply po actively contributes to fulfilling h0 and 
electric motor el passively contributes to fulfilling h0 : the 
yellow entry (10, 3) labeled with ‘1’ in Fig. 6 indicates that 
the power supply po performs an action on an electrical flow; 
the gray entry (10, 1) labeled with ‘9’ indicates that electric 
motor el passively contributes to fulfilling function h0.

Third, h0 yields two dependencies, (21, 1) and (21, 3), in 
the P–C DMM, since power supply po and electric motor el 
both relate to parameter pe.

Finally, h0 describes a dependency between h0 and 
parameter pe , resulting in a single dependency (21, 10) in the 
P–F DMM. The label ‘1’ (yellow) indicates that parameter 
pe represents an electric energy flow.

The transformation functions of Table 3 are used to 
derive: (1) dependencies between parameters, shown in the 
parameter DSM (rows 19–31, columns 19–31); (2) depend-
encies between goal functions, shown in the function DSM 
(rows 8–18, columns 8–18); and (3) dependencies between 
components and parameters, shown in the P–C DMM (rows 
19–31, columns 1–7). For example, function a0 : ‘Electric 
motor el converts electrical power pe into torque kp ’, denotes 
a dependency between electrical power pe and torque kp . 
This dependency is taken to be directed, yielding a single 
dependency, entry (22, 21) in the parameter DSM directed 
from pe to kp . Moreover, the directed dependency between 
parameters pe and kp implies a directed dependency between 
goal functions h0 and h2 since power supply po needs to pro-
vide power pe to electric motor el, before electric motor el 
can provide torque kp to pump pu. As such, a0 yields a single 
dependency, entry (8, 10) in the goal function DSM directed 
from h0 to h2 . Additionally, electric motor el interacts with 
all parameters used in a0 , yielding two entries (21, 1) and 
(22, 1) in the P–C DMM.

3.4 � Results and discussion

The component DSM in Fig. 6 shows that the system con-
sists of a cluster of mechanical components, consisting 
of the frame fr, pump pu, and storage container st, and a 
cluster of electrical components, consisting of the control 

system co, the power supply po, and the sensor se. The 
two clusters are connected via the ‘bus’ consisting of the 
electric motor el.

Note that the generated component DSM only dis-
plays intended dependencies between components, i.e., 
dependencies that follow from function specifications. 
Unintended dependencies, that may result from physical 
phenomena such as heat generation, are not displayed by 
the DSM.

The function and parameter DSMs both show a clus-
ter of dynamic electro-mechanical functions/param-
eters, a cluster of control functions/parameters, and 
three independent spatial functions/parameters. Since 
the function DSM is directed one can identify func-
tion chains. For example, one can identify the function 
chain h0 → h2 → h10 , which indicates that power supply 
po provides power pe to electric motor el ( h0 ), electric 
motor el converts power pe into torque kp and provides 
torque kp to pump pu ( h0 ), and pump pu converts torque 
kp into water flow qs , which is provided to storage con-
tainer st ( h10 ). Similarly, the parameter DSM indicates 
flow chains. For example, one can identify the chain pe → 
kp → qs → wv , indicating the flow chain electrical energy 
→ mechanical energy → liquid material→ liquid material. 
The function DSM could be analyzed with a sequencing 
algorithm to find the optimal function cycle within the 
system. By sequencing the parameter DSM one can find 
an optimal sequence to set parameter values during the 
design process.

The three DMMs clearly show the mapping between the 
component, function, and parameter clusters. Each com-
ponent cluster fulfills a specific set of functions which are 
characterized by a specific set of parameters. Moreover, the 
DMMs indicate which functions and parameters cross the 
boundary of a component cluster. This is relevant informa-
tion during the design process. For example, parameter wp 
relates to both the electrical and the mechanical component 
clusters. The water pressure wp depends on the height of the 
storage container st. As such, changing the height of storage 
container st influences water pressure wp . In turn, this may 
result in the need for a different sensor and/or a different 
control strategy.

Summarizing, the proposed method aims to improve the 
uniqueness and clarity of function specifications by using 
a fixed grammar and vocabulary. The fixed grammar ena-
bles the automated construction of an MDM. The MDM 
can provide valuable and structured information regarding 
dependencies between system components, functions, and 
parameters. By relating parameter types to the dependency 
basis of Tilstra et al. (2012), a variety of distinct dependency 
types can be derived from the function specifications and 
visualized using the MDM. This, reduces the required effort 
to construct high-definition DSMs.
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4 � Case study: navigation lock Sambeek

To validate the proposed method for a larger case prob-
lem, a component DSM developed in a previous study by 
Dijkstra (2016) is compared with a component DSM of the 
same system generated following the method described in 
the previous section. The major difference with the study of 
is that Dijkstra (2016) built the DSM model following the 
DSM concepts of Pimmler and Eppinger (1994), while our 
study departs from specifications of goal functions of the 
system elements to automatically generate the component 
DSM. Both DSMs aim at identifying and visualizing the 
dependencies between the components of navigation lock 
Sambeek, shown in Fig. 7. Through the comparison of the 
outcomes of the two approaches, we investigate how well 
the intended dependencies present in the DSM generated 
from the function specifications match the dependencies in 
the DSM of the real physical system. In other words, how 
well specified functions translate to realized form. All the 
DSMs shown in the remainder of this section were clustered 
separately and therefore show differences in the order of 
column and row labels.

4.1 � Building and generating DSMs of lock Sambeek

Dijkstra (2016) followed the five-step DSM approach of 
Eppinger and Browning (2012). Dijkstra first reviewed sev-
eral existing lock decompositions and proposed a decompo-
sition consisting of 51 components for the DSM modeling. 
To identify interactions, Dijkstra conducted interviews and 
reviewed design documentation over a period of several 

weeks. In this process, Dijkstra considered four types of 
component dependencies: (1) spatial dependencies which 
indicate that a dimensional change of one component 
implies a dimensional change of another component or that 
two components are physically connected to each other; (2) 
location dependencies which indicate that two components 
have a particular alignment but are not physically con-
nected; (3) energy dependencies which indicate that energy 
is transferred between two components; and (4) information 
dependencies which indicate that information is transferred 
between two components. The spatial interaction includes 
the strain energy and proximity dependency type of interac-
tions in the interaction basis by Tilstra et al. (2012). The 
location dependency type relates to the alignment type of 
interaction in the interaction basis. Dijkstra assumed that 
all dependencies are bidirectional. This resulted in DSM H 
(where H refers to handmade), shown in Fig. 8, displaying 
spatial, location, energy, and information-type dependencies.

Using the same decomposition as Dijkstra, we speci-
fied the goal functions of the various lock components. The 
method presented in Sect. 3.1 was used to this end. In this 
process, we have rewritten function descriptions in natural 
language into function specifications following the format 
defined in Sect.3.1. For instance, one of the functions for 
ship lock Sambeek was formulated as

‘The filling and emptying system serves to level the water 
in the chamber, containing one or more vessels, to cor-
respond with the water level in the water way from which 
the ships are approaching.’ (Glerum and Vrijburcht 
2000).

Fig. 7   Navigation lock Sambeek
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which we have rewritten as the following two functions:

‘Leveling-system lsa imports water flow Qin into lock-
chamber loc’
‘Leveling-system lsb exports water flow Qout from lock-
chamber loc’

since the import and export of water is performed by two dif-
ferent leveling systems at Lock Sambeek. Note that our fixed 
sentence structure only allows to specify the actual functions 
of the leveling systems. Conditions to which a function may 
be subjected cannot be expressed.

From the function specifications, the component DSM 
was generated following the logic described in Sect. 3.3. 

This resulted in DSM G, shown in Fig. 9, displaying ten dif-
ferent dependencies types. Note that the elements of the two 
DSMs are presented in different order due to the different 
clustering outcomes for the two analyses.

It took us approximately one week to complete the full pro-
cess. However, having the system decomposition and reference 
DSM of Dijkstra at our disposal, significantly eased the speci-
fication process. Moreover, as we were involved in Dijkstra’s 
study, we gained extensive knowledge on the functioning of 
lock Sambeek prior to the specification process. Without such 
prior knowledge, our estimate is that the specification pro-
cess would have taken several weeks to complete. For exam-
ple, in the Master’s graduation project of Josten (2017), the 
presented method was used to describe the architecture of a 
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bridge control system using a DSM with 45 elements. It took 
Josten approximately 4–5 weeks to review roughly 800 pages 
of design documentation (pdf and Word documents) and to 
manually specify the goal and transformation functions. Some 
verification with design engineers was needed to resolve ambi-
guities in the documentation as well.

4.2 � Comparing the two DSMs of lock Sambeek

Handmade DSM H and generated DSM G are compared in 
two steps. The first step consists of comparing the presence of 
dependencies in H and in G using the ΣDSM concept intro-
duced by Gorbea et al. (2008). The second step consists of 
comparing the types of dependencies in H and G.

In our case DSMs, H and G contain different dependency 
types due to the different modeling approaches. As a conse-
quence, H and G cannot be directly merged into a ΣDSM. To 
this end, the DSMs are first converted into scalar matrices, H̄ 
and Ḡ , respectively, where H̄ij = 1 , denotes that component c i 
and component c j have one or more dependencies in DSM H; 
otherwise, H̄ij = 0 . Similarly, Ḡij = 2 , denotes that component 
c i and component c j have one or more dependencies in DSM 
G; otherwise, Ḡij = 0 . The sum of these matrices yields the Σ
DSM:

(12)S = H̄ + Ḡ

where Sij = 1 indicates that a dependency is only present in 
H̄ ; Sij = 2 indicates that a dependency is only present in Ḡ ; 
and Sij = 3 indicates that a dependency is present in both H̄ 
and Ḡ.

Figure 10 shows ΣDSM S. Red squares, marked with a 
number 1, indicate dependencies that were identified by 
Dijkstra (2016), but were not derived from the function spec-
ifications. Blue squares, marked with a number 2, indicate 
dependencies that were derived from the functions specifi-
cations but where not identified by Dijkstra (2016). Green 
squares, marked with a number 3, indicate dependencies 
that were derived from the function specifications and were 
identified by Dijkstra (2016).

Table 4 lists the number of red, blue, and green marks. All 
dependencies identified by Dijkstra (2016) could be related 
to a goal function, resulting in zero red marks. However, 58 
(14.7%) dependencies were generated that were not identi-
fied by Dijkstra (2016). Most of the blue marks relate to 
liquid (water) and solid (ships) material flows through the 
system, which were not considered by Dijkstra (2016). Inter-
esting are the seven blue interactions of the Close Circuit 
Television (CCTV) installation (cci, row 2). The top of the 
operating building of lock Sambeek provides a clear line 
of sight to all areas of the lock complex, as such Dijkstra 
(2016) only identified a location interaction between the 
CCTV installation and the operating building. Contrary, 
from a functional perspective the CCTV installation needs 

Fig. 9   Generated DSM G  sh
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to cover all areas of the lock complex. As such, the function 
specifications yield many interactions throughout the lock 
complex with the CCTV installation.

Table 5 lists the number of dependencies (entries in the 
DSM) per dependency type for handmade DSM H and 
generated DSM G. Despite the differences in modeling 

approach, the dependency types used in H and G do, to some 
extent, match: the spatial and location types in H relate to 
the spatial type in G; the information type used in H relates 
to the status and control signal types in G; and the energy 
type in H relates to the electrical, mechanical, optical, and 
hydraulic energy types in G; the solid, liquid, and gaseous 
material flow-type dependencies in G do not have an equiva-
lent type in H.

Note that Table 5 lists 386 dependencies in H and 494 
dependencies in G, while binary DSMs H̄ and Ḡ only con-
tain 336 and 394 dependencies, respectively. In H 25 com-
ponents, pairs are connected via more than one dependency 
type, and in G, 46 component pairs are connected via more 
than one dependency type. As a result, H and G contain 
more dependencies than H̄ and Ḡ , respectively.
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Fig. 10   ΣDSM S showing the differences between handmade DSM H and generated DSM G 

Table 4   Similarity in number of dependencies

MH MG MT Color # %

1 0 1 Red 0 0.0
0 2 2 Blue 58 14.7
1 2 3 Green 336 85.3
Total 394 100
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Furthermore, H contains 50 spatial dependencies and 198 
location dependencies, while G only contains a 100 spatial 
dependencies. This is caused by the fact that location relates 
to form and not to function. For example, in H object light-
ing, obl has multiple location interactions throughout the 
system, (row seven of Fig. 8), while in G, object lighting 
obl has multiple optical energy relations (row/column 9 of 
Fig. 9), since the function of object lighting obl is to pro-
vide light at various places of the lock complex. To fulfill 
this function in the realized system, the object lighting has 
to be at several locations of the lock complex. Hence, the 
functional optical energy dependencies turn into physical 
location dependencies.

Considering information dependencies, H contains 82 
information dependencies, while G contains 102 status sig-
nal dependencies and 56 control signal dependencies. Two 
components i and j may have to interchange multiple status 
and control signals to fulfill their functions. For example, 
regular operating system ros and control system cos inter-
change multiple status and control signals. Those signals 
are exchanged over the same physical connection. Hence, G 
contains more information-type dependencies than H. This 
example shows that multiple functional dependencies may 
turn into a single information dependency in the DSM of the 
as-built (physical) system.

Looking at the energy-type dependencies in Table 5, one 
can see that there is an exact match between the number of 
energy-type dependencies in H and the electrical energy-
type dependencies in G. As such, each functional electrical 
energy-type dependency has resulted in a physical energy-
type dependency in the realized system. The mechanical and 
optical energy-type dependencies in G have probably been 
captured by Dijkstra by spatial- and location-type dependen-
cies in H.

Dijkstra did not consider material flow-type dependen-
cies, as a result many of the liquid, solid, and gaseous mate-
rial flow-type dependencies are not included in H.

To conclude, the method presented in Sect. 3 can be used 
to generated an intended lock architecture which matches 
the realized physical architecture fairly well. The generated 
system architecture provides a reasonable model for the (to 
be realized) architecture of the physical system. Therefore, 
the method can be used in the early design phase to deter-
mine the functional architecture of a new system, as well 
as for an existing physical system to identify component 
and parameter dependencies (most published DSM analyses 
considered existing systems). On the other hand, the DSM 
generated from function specifications and the DSM built 
from data regarding the actual physical embodiment are 
closely related but at the same time depart from a different 
modeling perspective: function-based DSM modeling versus 
form-based DSM modeling.

5 � Conclusions

Building Dependency Structure matrices (DSMs) are a time 
consuming and sometimes tedious process. This study aims 
to introduce a method for the intuitive, easy, and quick speci-
fication of goal and transformation functions. The function 
specifications are constrained to a fixed grammar and vocab-
ulary through which we aim to increase the uniqueness and 
clarity of function specifications and allow for the automated 
construction of a multi-domain-matrix (MDM). The MDM 
consists of a component DSM, a function DSM, a parameter 
DSM, and three domain-mapping matrices (DMMs) indi-
cating the dependencies between the elements in the three 
DSMs. The MDM provides valuable and structured informa-
tion regarding the intended architecture of the system within 
the component, function, and parameter domains. In addi-
tion, by mapping parameter types onto dependencies types, 
a variety of distinct dependency types can be derived from 
the function specifications and visualized using the MDM. 
This reduces the required effort to construct high-definition 
DSMs.

Case study ‘Navigation lock Sambeek’ showed that the 
generated intended lock architecture matches the realized 
physical architecture fairly well. Therefore, the generated 
system architecture provides a reasonable model for the (to 
be realized) architecture of the physical system. As such, 
the method can be applied in the early design phase to gain 
insight in and reason about the architecture of a new sys-
tem. The generated MDM provides clear insight into the 
dependencies inside and across the component, function 
and parameter domains. The method may also be used to 
generate a DSM of an existing system, acknowledging that 
one takes a functional instead of a physical DSM modeling 

Table 5   Number of dependencies per dependency type in handmade 
DSM H and generated DSM G 

Handmade DSM H Generated DSM G

Type # Type #

Spatial 50 Spatial 100
Location 198
Information 82 Status signal 102

Control signal 56
Energy 56 Electrical energy 56

Mechanical Energy 10
Optical energy 24
Hydraulic energy 22
Solid material 90
Liquid material 26
Gaseous material 8

Total 386 Total 494
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view. Functional specifications of components may be more 
straightforward to obtain than identifying spatial, material, 
information and energy interactions from design documents 
and interviews. For our lock case and the study of Josten 
(2017) this appeared to be the case. A reduction of modeling 
effort was observed.

6 � Discussion

The method presented in this article requires function speci-
fications to be written in a fixed structured format. Design 
documents are generally written using far more natural lan-
guage. This means the design documentation has to be con-
verted in function specifications according to the prescribed 
format. This may be quite an elaborate process. There is 
software tooling to automatically process natural language, 
see, for instance, Bird et al. (2009), which may support the 
conversion process. However, we have experienced that a 
significant amount of effort has to do with inconsistencies, 
errors, and incompleteness of documentation. This may, for 
instance, relate to the system decomposition, the naming 
conventions, function descriptions, graphs, and drawings. 
Automated language processing typically cannot help with 
this. The conversion process provides a means to encounter 
these issues an correct for them.

Design documentation usually contains far more infor-
mation than function descriptions, for example, geometric 
aspects of a system. Therefore, in our future work we seek 
to extend our grammar such that non-functional aspects of 
systems can be described as well. For example, two compo-
nents may have a spatial relation as they are placed in the 
same system housing. Such a dependency does not follow 
from just the specification of the goal and transfer functions 
of the two components. More information is needed there.
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