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Abstract This study presents a physics-based, low-order model for the trailing edge (TE) noise generated by
an airfoil at low angle of attack. The approach employs incompressible resolvent analysis of the mean flow to
extract relevant spanwise-coherent structures in the transitional boundary layer and near wake. These structures
are integrated into Curle’s solution to Lighthill’s acoustic analogy to obtain the scattered acoustic field. The
model has the advantage of predicting surface pressure fluctuations from first principles, avoiding reliance on
empirical models, but with a free amplitude set by simulation data. The model is evaluated for the transitional
flow (Re = 5e4) around a NACA0012 airfoil at 3 deg angle of attack, which features TE noise with multiple
tones. The mean flow is obtained from a compressible large eddy simulation, and spectral proper orthogonal
decomposition (SPOD) is employed to extract the main hydrodynamic and acoustic features of the flow.
Comparisons between resolvent and SPOD demonstrate that the physics-based model accurately captures the
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leading coherent structures at the main tones’ frequencies, resulting in a good agreement of the reconstructed
acoustic power with that of the SPOD (within 4 dB). Discrepancies are observed at high frequencies, likely
linked to nonlinearities that are not considered in the resolvent analysis. The model’s directivity aligns well
with the data at low Helmholtz numbers, but it fails at high frequencies where the back-scattered pressure
plays a significant role in directivity. This modeling approach opens the way for efficient optimization of
airfoil shapes in combination with low-fidelity mean flow solvers to reduce TE noise.

Keywords Airfoil trailing edge noise · Resolvent analysis · Low-order modeling

1 Introduction

Trailing edge (TE) noise, also known as airfoil self-noise, is one of themain sources of noise pollution generated
by airfoils moving through homogeneous flows. Keeping this noise source at a reasonable level is a major
challenge for the development of onshore wind energy [1] or aviation. Therefore, improving the accuracy of
low-order TE noise models that can be integrated into optimization methodologies is an active research topic
in the aeroacoustics community.

TE noise is generated by surface pressure fluctuations (SPF) that are caused by unsteady flow structures
in the transitional or turbulent boundary layer. These SPFs undergo a sharp discontinuity at the trailing edge
of the airfoil [2], resulting in acoustic scattering of the SPF into acoustic waves.

Most theoretical models of the sound radiated by pressure fluctuations in the vicinity of a sharp trailing
edge are derived from Lighthill’s acoustic analogy [3]. An early review of the resulting theories was done
by Howe [4], and a more general and recent overview of aeroacoustic models and prediction techniques can
be found in Lee et al. [5]. Aeroacoustic models can generally be regarded as transfer functions that predict
far-field acoustics based on near-field pressure fluctuations. However, most current theoretical approaches
rely on empirical or semi-empirical models of SPFs for turbulent flows [5,6]. These models often rely on
experimental datasets rather than first principles, and their accuracy is highly dependent on the similarity
between the studied cases and the original dataset. Consequently, it is challenging to estimate a priori how
noise reduction techniques that modify the flow field will impact these SPF models [5].

Nonetheless, theoretical models provide valuable insights into TE noise. Of particular relevance to the
present work is the “scattering condition” resulting from theory [7], which suggests that only perturbations
with spanwise wavenumbers lower than the acoustic wavenumbers are effectively radiated as sound at the
trailing edge. The acoustic wavenumber is defined as k0 = ω/a0, where a0 is the speed of sound and ω the
angular frequency.

Alternatively, high-fidelity compressible simulations can simultaneously capture the hydrodynamic and
acoustic fluctuations of the flow from first principles [8,9]. These simulations, especially when combined
with empirical flow decomposition techniques like spectral proper orthogonal decomposition (SPOD) [10,11],
provide high-quality reference data for reduced-ordermodels by identifying themain coherent structures related
to TE noise generation. However, their computational cost remains prohibitive for engineering applications.
One approach to mitigate this cost is employing hybrid methods, where hydrodynamic fluctuations are solved
using an incompressible solver, while acoustic radiation is handled with acoustic analogies. Such methods
have achieved success in reproducing TE noise [12], but remain computationally expensive and lack predictive
capabilities.

A promising technique to gain further insight into the mechanisms behind TE noise, and ultimately to
reduce the degrees of freedom for optimizing noise reduction techniques, is to combine a physics-based but
low-order model of SPFs with an acoustic analogy. This paper aims to develop and evaluate such a model by
using linearized mean flow analysis (LMFA) to model the coherent structures in the turbulent boundary layer
and using the resulting SPFs as input to an acoustic analogy. An approach similar to the present work has been
successfully applied to estimate the sound generated by turbulent jets from LMFA-based models [13–15], and
the present work is inspired from the developments obtained in this field.

LMFA and the related linear stability analysis has been widely employed over the last century to investi-
gate unsteadiness in various flow applications [16], including the analysis of coherent structures in turbulent
flows [17,18] and more recently by Kuhn et al. [19] among others. In particular, the resolvent analysis [20]
has gained popularity in recent years, and has been successfully used to extract the coherent structures max-
imizing the disturbance energy gain from a turbulent mean flow by McKeon & Sharma [21] and Hwang &
Cossu [22]. Since then, many studies have applied these techniques to the transitional and turbulent flows
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around airfoils and explored the connection between hydrodynamic instabilities and TE noise (e.g. Fosas de
Pando et al. [23,24], Yeh and Taira [25], Symon et al. [26], Abreu et al. [27], and Ricciardi et al. [28,29],
among others). However, themain goal of these studies was to uncover the underlyingmechanisms of TE noise,
rather than devising reduced-order model that reproduces the acoustic spectra and directivity of experimental
or high-fidelity simulation data, as is the objective of the present work.

In this work, we analyze the flow around a NACA0012 airfoil at low angle of attack (α = 3 deg) and a
transitional Reynolds number (Re = 5×104), which is the same setup as in the analysis of Ricciardi et al. [29].
This case offers the advantage of numerical tractability while showcasing a complex acoustic spectrum and
flow dynamics typical of applications in this regime. At such low-to-moderate Reynolds numbers, a feedback
mechanism occurs between upstream-traveling acoustic waves and downstream propagating hydrodynamic
instability waves in the boundary layer. This results in tonal TE noise, characterized bymultiple equally spaced
sharp peaks in the acoustic spectrum [28,30,31], i.e., the tones. The results ofRicciardi et al. [29] further suggest
that the tonal noise at these conditions is primarily caused by the scattering of spanwise coherent structures,
in line with the aforementioned scattering condition. This allows to restrict our empirical and physics-based
modeling to zero spanwise wavenumbers only.

We employ resolvent analysis based on the mean field to model the coherent flow structures that cause
the SPF. This method allows to identify the most amplified coherent structures at each frequency from the
linearized mean flow operator. To keep the physics-based model simple, an incompressible resolvent analysis
is performed as a first step. The modes obtained from the resolvent analysis are then combined with an acoustic
analogy. Based on the scattering condition and the spanwise-invariant geometry of our setup, we employ a
closed form of Lighthill’s acoustic analogy derived by Curle [32], which accounts for the scattering of dipolar
sources on a solid boundary. The present model is evaluated by comparing the resolvent analysis with results
obtained from SPOD of the LES snapshots [33].

In previous works, promising attempts with a similar methodology were reported in Wagner et al. [34,35],
for a NACA0012 airfoil at a lower Reynolds number (Re = 2 × 104), and of Prinja et al. [36], for the
experimental flow around a cylinder. In both cases, the acoustic spectrumwas dominated by a single frequency,
and the analysis was focused on this discrete frequency. In contrast, the present work extends these previous
analyses to a more complex case. Here, we must consider the hydrodynamic and acoustic fluctuations over a
broad range of frequencies due to the presence of multiple tones.

The paper is organized as follows: The numerical dataset together with the acoustic spectrum is presented
in Sect. 2. Next, Sect. 3 introduces the SPOD, resolvent, and aeroacoustic methods used to obtain the empirical
and physics-based TE noise models. In particular, the radiated acoustic field from the aeroacoustic analogy is
compared with a spectral analysis of the LES snapshots in Sect. 4.2 to assess its accuracy without anymodeling
of the SPF. The results of the proposed physics-based model are then compared with reference data from the
SPOD analysis in Sect. 5, both in terms of wavepackets near the airfoil, SPFs, and the radiated acoustic field.
Finally, conclusions are drawn in Sect. 7.

2 Dataset

This work is based on a numerical dataset obtained from LES of the flow around a NACA0012 airfoil at
angle of attack α = 3deg. The trailing edge of the airfoil is rounded with a radius of approximately 0.16% of
the chord length c. The geometry is described with Cartesian coordinates (x, y, z) denoting the streamwise,
vertical, and spanwise directions respectively, while the corresponding components of the velocity are denoted
as u = [u, v, w]T The Reynolds number based on the chord length is Re = ρ∞u∞c/μ∞ = 5 × 104, where
u∞, ρ∞, and μ∞ denote the freestream velocity, density, and dynamic viscosity, respectively. The freestream
Mach number is M = u∞/a0 = 0.3, where a0 is the speed of sound. The surface of the airfoil is smooth, such
that no forced transition occurs. On the suction side, the flow is initially laminar with a thin recirculation bubble
stretching over a large portion of the airfoil, from x/c ≈ 40% to x/c ≈ 80%. At the reattachment location,
the flow is turbulent, having transitioned from the laminar state near the end of the bubble. These features are

highlighted in Fig. 1a, which shows contours of the mean turbulent kinetic energy k = 0.5
(
u′2 + v′2 + w′2

)
,

with primes denoting fluctuations around the mean (defined in Sect. 3.2), near the surface of the airfoil, along
with the recirculation region.

The open source, high order flux-reconstruction, numerical framework PyFR [37] is used for wall-resolved
implicit large eddy simulations (iLES). Unlike LES with an explicit sub-grid scale model, iLES introduces the
numerical dissipation through the discretization, see Park et al. [38] for details. The framework is designed to



S. Demange et al.

Fig. 1 a Contours of the time-span-averaged turbulent kinetic energy near the airfoil surface (higher values in darker color), the
recirculation regions are highlighted by the dashed line at ū = 0; b Spanwise-averaged snapshot of pressure fluctuations obtained
from the LES, the contour levels are saturated to highlight the origin of acoustic waves at the trailing edge. Additionally, the red
rectangle indicates the resolvent domain

solve a range of governing systems on mixed unstructured grids containing various element types. The discrete
set of equations obtained from the spatial discretization are integrated in time using an explicit fourth-order
Runge–Kutta method. The simulation is performed on a cluster of Nvidia A100 GPUs, and 840 snapshots are
collected over 40 convective flow through times (CTUs), at a sampling Strouhal number of St = f c/u∞ =
33.3, where f denotes the frequency. At least 20 CTUs were discarded before collecting snapshots, in order
to evacuate the transient flow behavior resulting from the initialization.

To resolve near-wall flow structures, anO-grid typemesh is applied around the airfoil regionwith structured
hexahedral type of elements. The maximum resolution at about the mid-chord given in terms of wall unit is
�x+ < 20, �z+ < 10 and �y+ < 1.0. At the trailing edge, the resolution in streamwise direction is kept
as �x+ < 5. A structured mesh is also applied in the wake region, until 2 chord lengths after the trailing
edge. In the acoustic region, an unstructured mesh with tetrahedra elements type is applied in order to reduce
numerical costs and avoid high aspect ratios. However, the acoustic wavelengths are still resolved for up to
St < 10, assuming five points to resolve one wave length. The acoustic region has been extended until 15
chord lengths away from the airfoil surface and the domain width is 40% of the chord length in the spanwise
direction. Periodic boundary conditions are used at the spanwise lateral boundaries of the domain, while a
no-slip, adiabatic wall is assumed for the airfoil surface. A designed sponge region is added via a forcing term
−ξ(q − q0) to the equation system. Here, ξ is the sponge strength, which is carefully chosen to assure that no
acoustic waves are reflected back inside the domain.

In this work, we focus on spanwise-coherent structures, i.e., with zero spanwisewavenumber kz = 0. Based
on previous numerical [11,27] and theoretical [39] results, these structures are known to bemost relevant for TE
noise and they satisfy the TE scattering condition kz < k0 [6] for all frequencies. Thus, the LES snapshots are
initially averaged in the spanwise direction before undergoing further analysis. An illustration of the resulting
two-dimensional snapshot is presented in Fig. 1b. Here, the pressure fluctuation contour levels are saturated
to emphasize the acoustic waves that originate at the trailing edge.

Figure 2a shows the power spectral density (PSD) of the spanwise-averaged pressure fluctuations one chord
length above the trailing edge. It was estimated from the LES data employing theWelch method. The spectrum
displays discrete, equally spaced, tones, typical for airfoils at transitional Reynolds number andmoderate angle
of attack [30,31].

The present geometry setup and flow parameters are the same as in the work of Ricciardi et al. [29]. A very
good agreement is found between the present surface pressure distribution on the airfoil and the one reported
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(a) (b)

Fig. 2 a Power spectral density of the pressure fluctuations probed one chord length above the trailing edge (x, y) = (1, 1). The
frequencies of the main tones identified by Ricciardi et al. [29] are added for comparison (- - -); b pressure distribution over the
airfoil (—) from the present work and from the LES from Ricciardi et al. [29] (+)

by their paper, as shown in Fig. 2b. Other mean flow quantities, such as mean boundary-layer profiles are also
in very good agreement. Similarly, the frequency of the tones in the acoustic spectrum reported in their work
matches well with the one recovered in this work, as shown in Fig. 2a.

3 Coherent structures identification and modeling

This section describes the methods by which coherent structures, i.e. time-periodic flow patterns with an
organized spatial structure, are extracted from the LES dataset and modeled via linearized analysis.

3.1 Spectral proper orthogonal decomposition

Proper orthogonal decomposition (POD) is a data-driven method which extracts a set of orthogonal basis
functions from flow realizations [40,41], here the LES snapshots, describing spatially coherent structures in the
flow. In the spectral version of POD (termed SPOD), this basis is defined by the eigenvalue decomposition of the
cross spectral density (CSD) matrix of the Fourier-transformed realizations at each frequency, resulting in the
spatio-temporal coherence of the structures. Following the so-called snapshot method [42], the decomposition
is based on the inner product between different flow realizations qi, given by

〈qi, qj〉 =
∫

�

qH
j Wqidx = qH

j Wqi, (1)

where � is the region of interest, the superscript “H” denotes the Hermitian transpose, and the discretized
weighting operator, W, is chosen as such that the sum of the eigenvalues defines an energy (related to the
variance of theCSD). In the presentwork, theflow realizations are defined as the velocity fluctuationsq ′(x, t) =[
u′ v′]T around the stationary time-averaged velocity field u(x) = [u v]T, and W is a diagonal matrix with
uniform energy weights

W =
[
1 0
0 1

]
. (2)

The eigenvalues and eigenvectors of the CSD represent the optimal coherent structures in terms of turbulent
kinetic energy ‖u′‖2 at each frequency. Note that the Chu norm [43] is another common choice of norm for
compressible flows, but is not chosen here to remain coherent with the incompressible resolvent analysis
introduced in the following section.

The SPOD analysis is also conducted on the pressure fluctuations alone, yielding optimal structures in
terms of a ‖p′2‖-energy, akin to the sound power, in order to provide an empirical model of the trailing edge
noise.

The analysis is performed with the numerical code from Schmidt [42], using Nb = 6 blocks with an
overlap of 75%, resulting in NFFT = 187 frequency bins per block. Although this number of blocks is rather
low for SPOD, it is considered suitable for the analysis of the tones, considering the quasi-periodic nature of
the flow [29]. It was confirmed by observing that although the frequency resolution was reduced with higher
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Nb, the separation between the leading and sub-leading SPOD eigenvalues remained similar and the leading
mode shapes remained almost identical when the number of blocks was doubled. Similarly to the spectral
analysis of pressure fluctuations used to recover the acoustic spectrum in Fig. 2a, the SPOD analysis is done
on the spanwise-averaged flow quantities.

3.2 Resolvent analysis

A resolvent analysis of themeanflow is used as the physics-basedmodel of coherent hydrodynamicfluctuations.
Following Reynolds andHussain [17], flow quantities q = [u, p]T are decomposed into q = q̄+q̃+q ′′, where
fluctuations around the time-averaged q̄ are split between a coherent term q̃ with a quasi-periodic behavior,
and a stochastic term q ′′ corresponding to turbulent motion. Coherent fluctuations are defined by the difference
of the ensemble average and the mean flow: q̃ = 〈q〉 − q̄.

The following derivations are based on the incompressible Navier-Stokes equations due to the low Mach
number studied. After substituting the triple decomposition into the governing equations, transport equations
of the coherent fluctuations are obtained by phase-averaging and subtracting the mean flow equations, leading
to

∇ · ũ = 0, (3a)
∂ ũ

∂t
+ (u · ∇)ũ + (ũ · ∇)u + ∇ p̃ − ∇ · (ν∇ũ) = f̃ , (3b)

where ν is the molecular viscosity and the nonlinear terms have been lumped into the forcing term

f̃ = −∇ ·
(
ũũ + ũũ

)
− ∇ · ˜u′′u′′, (4)

where the last term of f̃ can be interpreted as the coherent fluctuation of the Reynolds stress [17].
Since we focus our analysis on the near-field of the airfoil, where the flow is either laminar or transitional,

we assume that the influence of turbulent fluctuations on the forcing is negligible ˜u′′u′′ 
 f̃ . In this case,
the resulting formulation is equivalent to the one derived from the classical Reynolds decomposition without
turbulence modeling [44], similar to Ricciardi et al. [29] for the same case.

The analysis is carried out in the frequency domain by applying a Fourier transform onto the fluctuations
in time. Owing to the spanwise homogeneity of the setup and the periodic lateral boundary conditions in
the LES, the time-averaged state is also spanwise averaged, while the fluctuations and forcing term are also
Fourier-transformed in the spanwise direction, resulting in

q̃(x, y, z, t) =
∫ ∞

−∞

∫ ∞

−∞
q̂(x, y)ei(kzz−ωt)dkzdω, (5)

with ω the angular frequency and kz the spanwise wavenumber. Analog to the SPOD analysis, only kz = 0 is
considered.

The equations with appropriate boundary conditions are then discretized, leading to the following system

(L − ωB) q̂ = Bf f̂ , (6)

where L, B, and Bf are sparse matrices resulting from the finite-element discretization of the system (3). In
contrast to linear stability analyses, the resolvent framework retains the harmonic forcing term f̂ on the right
hand side of Eq. (6), with the matrix Bf defined such that no forcing is applied to the continuity equation. The
system is then rearranged to explicitly express the relationship between the inputs η̂ and outputs ŷ, reading

ŷ = R(ω)̂η, (7)

where R is the resolvent operator which linearly maps any arbitrary volume forcing onto the response, at the
real-valued angular frequency ω.

Similar to Towne et al. [33], the input and response are related to the forcing and coherent fluctuation terms
of eq (6) through

f̂ = Ff η̂,
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ŷ = Fy q̂, (8)

where the Ff and Fy matrices are used to restrict the forcings and responses to a subset of the spatial domain
near to the airfoil surface, similarly to Ricciardi et al. [29]. The resolvent domain is shown in Fig. 1b. This
configuration focuses the analysis on perturbations near the surface, while filtering out spurious modes that
have significant support in the freestream [29]. The resolvent operator is therefore explicitly given as

R = Fy (L − ωB)−1 BfFf. (9)

The objective of the resolvent analysis is then to find the pairs of inputs-outputs leading to the maximum
gains of energy, where the gain, σ , is defined as

σ 2 = 〈ŷ, ŷ〉
〈η̂, η̂〉 = ŷHWy ŷ

η̂HWηη̂
, (10)

with Wy and Wη the discretized matrices corresponding to the weights from the definition of the inner
product (1) for the responses and forcing terms, respectively. In the present study, Wy = Wη = W, such that
σ represents the gain in terms of turbulent kinetic energy, analog to the SPOD analysis of Sect. 3.1.

Finally, it can be shown [45,46] that pairs of forcing and response that maximize the gain at a given
frequency are the solutions of the eigenvalue problem

W−1RHWRη̂ = λη̂, (11)

obtained by substituting Eqs. (7) and (9) into Eq. (10). The resulting eigenvalues λ are the optimal, squared
gains σ 2

i , and the corresponding eigenvectors η̂i are used to obtain the optimal forcing modes f̂ = Ffη̂i , which
define an orthogonal basis of forcings. Applying the resolvent operator on the set of optimal forcings yields the
optimal response modes ŷi that also span an orthogonal basis. The resulting triplets of {̂η, σ, ŷ}i (ω) are ranked
according to the gain-magnitude in descending order. If the first, i.e., the leading, gain is significantly larger
than the remaining ones, the resolvent operator is said to exhibit low-rank behavior at this particular frequency.
In this case, and provided that the forcing is not biased toward sub-optimal resolvent forcing modes [47], the
response to a forcing can be approximated by the leading optimal gain, forcing and response alone.

The resolvent analysis is performed using the Finite Element Linearized (Combustion) Solver FELiCS [48].
We assume Dirichlet boundary conditions in the far field (q̂ = 0) for all quantities. Away from the airfoil, the
otherwise constant molecular viscosity ν is artificially increased to act as a sponge region and damp spurious
solutions. The shape of the sponge region is the same as in Ricciardi et al. [29]. At the airfoil surface, Dirichlet
conditions are imposed for the velocity fluctuations and a Neumann condition is imposed for the pressure.
Computations are conducted over the same range of frequency as the SPOD analysis.

4 Hybrid acoustic modeling approach

This section describes the acoustic model used to retrieve the radiated sound field from SPFs. The results of
this model are compared with the acoustic field extracted directly from the LES snapshots.

4.1 Curle’s acoustic analogy

As with most current aeroacoustic models [5], we use a formulation derived from Lighthill’s acoustic anal-
ogy [3] to model trailing edge noise. This formulation was proposed by Curle [32] in order to include solid
boundaries in the acoustic wave propagation equation and will be referred to as Curle’s acoustic analogy.

For a two-dimensional domain, an analytical solution of Curle’s acoustic analogy may be derived by using
a free-field Green’s function for the convected wave equation. According to Schram et al. [49], the sound
pressure p̂obs at an observer point xobs can be related to the SPF p̂S on an impenetrable surface S in the
frequency domain by

p̂obs (xobs, ω) = ik0
4

∫

∂S
rini
r

H (2)
1

[
k0
β2 (r + M (xS − xobs))

]
p̂S (xS , ω) dxS , (12)
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where n is the unit normal vector out of the airfoil surface, r is the distance to the observer, H (2)
1 is the Hankel

function of second kind, β = √
1 − M2 is the Prandtl-Glauert factor, and xS is the surface coordinate.

Equation (12) considers only dipolar acoustic sources on the solid surface and neglects quadrupole sources
related to velocity fluctuations in the flow, which is reasonable at low Mach numbers [32,50]. In addition, the
term between the brackets in Eq. (12) was added to the original formulation by Schram et al. [49] to account
for uniform mean flow convection, similar to Sandberg et al. [8]. Non-uniform effects may play a role and
modify sound radiation, as will be shown later.

The present formulation also assumes that the solid body is acoustically compact [49], which can be
assessed by defining a Helmholtz number based on the chord length of the airfoil H = c/λ0 = St M , where
λ0 = is the acoustic wavelength. ForH < 1, the body is acoustically compact and the model presented holds.
However, Eq. (12) neglects the scattering of sound generated by the body over itself [49] for H > 1, which
may become relevant if it is not already accounted for in p̂S .

To improve the convergence of the power spectral density from the sound pressure calculation, Eq. (12) is
embedded in a Welch-like method and applied to each flow realization (or pressure-based SPOD mode). The
final PSD is then obtained by averaging

‖ p̂totobs(ω)‖2 = 1

Nb

Nb∑
i

∥∥ p̂iobs(ω)
∥∥2 , (13)

where Nb is the number of blocks to average over and p̂iobs is the sound pressure of the i-th realization. The
corresponding sound pressure level in decibel is then defined as

L p = 10 log10

(
p̂2obs
p20

)
dB, (14)

with a reference sound pressure p0 = 2 × 10−5 Pa.

4.2 Sound-field from Curle’s analogy vs. LES data

To demonstrate the accuracy of Curle’s analogy, we apply the method to the LES surface pressure fluctuations
and compare the resulting sound field against that directly extracted from the LES data using Welch method.
The comparison is done in terms of radiated sound power and directivity.

Sound power is an important quantity for engineering applications as it is equivalent to the total noise
emitted. It is readily obtained by integrating the PSD of the sound pressure over a surface when considering far-
field conditions. Figure3a shows the arc circle used for integration in the present two-dimensional framework.
It excludes the wake region since pressure fluctuations associated with the turbulent wake are not captured by
the acoustic model. Note that a rather short radius r = 2 is used here to avoid regions where the LES mesh
becomes coarser and high-frequency acoustic waves are potentially filtered out.

Figure 3b–e show the comparison between the acoustic analogy and the LES. Overall, there is very good
agreement between the two in terms of the sound power spectrum, although Curle’s analogy slightly under-
estimates the sound power for Strouhal St < 9. This trend is accentuated at higher frequencies, where the
most of sound sources shift to smaller scale flow structures associated with the turbulent boundary layer near
the trailing edge and wake. As quadrupole sources associated with turbulence are not included in the acous-
tic analogy, this discrepancy with the LES data is expected, but is limited to frequencies where the acoustic
pressure is weak anyway.

Similarly, there is good agreement in terms of directivity, which has been normalized in the plots to
compensate for the differences in PSD. The number and overall position of lobes in the directivity patterns,
typical of airfoil trailing edge noise [50–52], are well captured for Strouhal numbers corresponding to both
acoustically compact (St = 0.53), in Fig. 3c, and non-compact (St = [3.4, 5.91]), in Fig. 3d, e, surfaces. The
remaining discrepancies in directivity may be related to the non-uniformity of the flow around the airfoil, but
the results of the acoustic analogy are considered satisfactory for the purposes of this study.
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Fig. 3 a Integration path (- - -) used to compute the sound power level around the airfoil, the contours indicate the distribution
of the PSD at St = 3.4 for illustration purposes; b–e comparison of the sound power levels directly computed on LES pressure
fluctuations (—) and from Curle’s acoustic analogy using the SPFs (- · -) in terms of b sound power level and (c–e) directivity

5 Resolvent-based hydrodynamic modeling

In this section, we evaluate the ability of the incompressible resolvent analysis to capture the relevant hydro-
dynamic features of the flow, as resolvent modes form the basis of our trailing edge noise model.

5.1 Resolvent vs. SPOD modes

The SPOD analysis provides a reference for comparison with the resolvent modes. Figure4a shows the SPOD
spectrum obtained from velocity fluctuations near the airfoil (the domain considered is shown in Fig. 6). The
eigenvalues associated with the most energetic SPODmode display sharp peaks at the frequencies of the tones
identified in the acoustic spectrum probed above the trailing edge (see Fig. 2a). These peaks are also observable
for the first sub-leading mode, but become increasingly difficult to distinguish from the rest of the spectrum
when considering the following sub-leading modes. At the tones, the large separation between the leading and
sub-leading SPOD eigenvalues indicates a low-rank dynamic behavior, similar to the case of Symon et al. [26].
This gain separation is less pronounced for frequencies in-between the tones, as emphasized in Fig. 4b showing
the normalized energy decay for the different SPOD modes. Hence, the hydrodynamic behavior of the flow
is well approximated by the leading SPOD mode at the tones, while the system is governed by higher-order
dynamics in-between the tones.
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(a)

(b)
Fig. 4 SPOD analysis of the LES data: a SPOD spectrum obtained from velocity snapshots. Asterisks indicate the frequencies
for which mode shapes will be compared later in this paper; b Energy of the SPOD modes, normalized by the cumulative energy
of all modes, at the main tone St = 3.4 (black) and in-between tones St = 3.67 (red). Results are shown for the velocity (—) and
pressure (- - -) fluctuations

Fig. 5 Three leading gains from the resolvent analysis of LES mean field

The SPOD analysis is further performed on the pressure fluctuations. Similarly to the velocity field,
spanwise-averaged realizations are also considered. Overall, the characteristics of pressure-based SPOD eigen-
values are similar to that based on the velocity fluctuations. In the spectrum, the same peaks are recovered (not
shown). The separation between the eigenvalues also follows the same pattern as for the velocity SPOD, as
shown in Fig. 4b. This suggests that the acoustic field at the tones is well approximated by the leading SPOD
mode. This will be confirmed in the following sections.

Next, the results of the resolvent analysis are analyzed and compared against that of the SPOD. Beforehand,
we emphasize two of the main differences between the present SPOD and resolvent analyses: (i) the SPOD is
based on a compressible LES, which allows for the presence of acoustic feedback, whereas acoustic waves are
absent in the incompressible resolvent; (ii) the SPOD is based on the nonlinear flow dynamics determined from
LES, while the resolvent is based on the linearized mean field operator. Therefore, the latter cannot capture
triadic interactions between nonzero frequency fluctuations. However, it does account for the interaction of
fluctuations with the base state through linearization around the time-average.

The resolvent gain for the three leading modes are displayed in Fig. 5 as a function of the Strouhal number.
A large gain separation is observed between the optimal and subsequent modes for most of the frequency
range, except in the very low and high frequency limits. In contrast to the SPOD, we do not observe low
gain separation in between the tones. Generally speaking, the large gain separation is indicative for a strong
linear amplification mechanisms typical of flows with strong shear, like laminar separation bubbles, backwards
facing step [53] and jets [54,55]. It further suggests that the leading resolvent mode is a good approximation
of the incompressible flow dynamics [26].
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Fig. 6 Real part of the pressure fluctuations obtained from (left column) the leading SPOD and (right column) resolvent modes at
(top row) St = 0.53, (middle row) St = 3.4, and (bottom row) St = 8.87. Contours levels are saturated to highlight low-amplitude
acoustic fluctuations in the SPOD modes. The same Strouhal numbers are indicated with the “∗” symbol on Figs. 4a and 5. The
boundary layer height (- - -) and recirculation region (—) are also indicated

The leading resolvent gain exhibits regularly spaced peaks of small relative amplitude. The frequency steps
separating the peaks differ from that of the SPOD spectrum, suggesting a difference in the feedbackmechanism
compared to the compressible LES. The position of the peaks is found to be robust to changes in the resolvent
domain size and the position of the sponge region, suggesting that they are not related to spurious feedback
from domain truncation [56]. Instead, we suspect that the peaks are due to an intrinsic resonance mechanism
caused by a feedback loop between evanescent pressure waves traveling upstream at infinite speed from the
trailing edge and the downstream traveling wave packets. However, such resonance mechanism is expected to
differ from the results for compressible flow at Mach 0.3, and hence this is not investigated further.

Figure 6 compares the mode shape of the leading SPOD and resolvent mode, in terms of pressure fluctua-
tions. The depicted frequencies correspond to low, main, and high -frequency tones, respectively, as indicated
in Figs. 4a and 5 by red “∗” symbols. In all cases, the modes take the shape of wavepackets propagating
along the suction side of the airfoil near the trailing edge. Similar observations were made in previous related
studies [11,27,29].

Several distinctions can be made between SPOD and resolvent modes. First, the agreement is excellent at
moderate frequency while it strongly deteriorates for the very low and high frequency limits. At low frequency,
the SPOD wavepacket is detached from the surface and concentrated near the flow reattachment region, which
is not captured by the resolvent mode. At high frequency the SPOD modes extend into the wake, while the
resolvent mode is confined to the suction side of the airfoil and located further upstream. Moreover, the
SPOD modes show low amplitude acoustic waves radiating from the trailing edge. In contrast, the resolvent
mode’s pressure field is nearly uniform away from the surface and of opposite sign on each side of the airfoil,
representing evanescent pressure fluctuations.

The comparison between the leading optimal resolvent mode and leading SPOD mode is extended to the
full frequency range by considering the alignment between mode shapes [27,44]. It is defined with the inner
product of Eq. 1 as

γi j = |〈qi , q j 〉|
|qi ||q j | , (15)

where the operand |qi | is the norm of the complex mode shape qi . A perfect alignment between mode shapes
is indicated by γi j = 1, while γi j = 0 indicates orthogonal vectors. Note that alignment is only computed
within the physically relevant region for trailing edge noise, close to the airfoil surface. This corresponds to
the input/output region in the resolvent shown in Fig. 1b.

Figure 7 shows the alignment as function of frequency computed based on the velocity and pressure
fluctuations, respectively. Both quantities exhibit similar overall trends. High alignment of γ ≈ 80% is found
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Fig. 7 Alignment between the optimal resolvent mode and most energetic SPOD mode considering both velocity components
(—) or pressure (- - -) fluctuations

(a)

(b) (c)
Fig. 8 a Alignment of the SPFs obtained over the airfoil from the leading SPOD (—) mode and the optimal resolvent (- · -)
response; Comparison between the SPOD and resolvent SPF mode at the main tone (St = 3.4) in terms of b magnitude and c
unwrapped phase angle. The curvilinear coordinate “s” starts at the trailing edge and increases as the profile is traveled in the
counter-clockwise direction

at the main tones at moderate frequencies, and it drops below 50% for the high frequencies range of St > 6.6.
These high frequencies correspond to the range of decreasing gain separation of the RA and the SPOD. Hence,
the incompressible resolvent presented here turns out to be suitable to model the low rank flow dynamics
present at low and moderate frequencies.

5.2 Resolvent-based modeling of SPFs

We now focus the analysis on the SPFs associated with the hydrodynamic features examined in the previous
section, as they serve as input to the acoustic model. The SPFs are extracted from resolvent modes around the
airfoil contour and compared with the pressure-based SPODmodes. For this purpose, a curvilinear coordinate
system referred to as “s” is adopted. The system commences at the trailing edge (s = 0) and progresses
counter-clockwise around the profile.

Figure 8 displays the alignment between the SPFs obtained from the optimal resolvent and leading SPOD
modes. Results show a similar trend to the alignment based on the velocity field shown in Fig. 7. The highest
alignment is obtained for Strouhal numbers between 1 ≤ St ≤ 6, with maximum values of about 95% at the
main tones. With increasing frequency, the alignment between SPOD and resolvent modes decreases until they
become approximately orthogonal at St = 13. Considering the very high alignments at moderate frequencies,
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Fig. 9 Comparison of the SPF phase speed over the surface of the airfoil obtained from the SPOD (- · -) and resolvent (—) modes
for St = 3.4 (up) and St = 8.87 (down). The speed of upstream-traveling acoustic waves, cph = −(a0 − u∞), is indicated with
the dashed line. All speeds are normalized with the freestream velocity

we conclude that the incompressible resolvent analysis models the SPFs very accurately in the range where
the tones occur.

The alignment between the SPF from the SPOD and the resolvent is, however, biased toward regions where
the fluctuations have high amplitudes. As will be shown, low-amplitude pressure waves on the airfoil surface
are also crucial when trying to reproduce the directional patterns of TE noise, but their relative importance is
masked when relying solely on the alignment as defined in Eq. 15. This is highlighted in Fig. 8b where the
SPF of SPOD and resolvent modes are plotted along the surface coordinate s using a semilogarithmic scale.
Note that for this comparison the resolvent mode was first scaled such that its amplitude matches that of the
SPOD at the point where the amplitude of the SPOD mode is maximum: s(max(‖ p̃spod‖)). The figure reveals
that if the SPOD and resolvent modes are aligned to have similar amplitudes near the trailing edge (near s = 0
and s = 2), they however differ by one order of magnitude close to the leading edge (s = 1).

The reason for this difference is explainedwhen examining the phase angle of the SPFs, as shown in Fig. 8c.
Both the resolvent and SPOD modes reveal downstream-traveling waves on the suction side near the trailing
edge, as indicated by the positive slope of the phase angle φ for 0 ≤ s ≤ 0.5. However, the SPOD analysis also
captures acoustic upstream-traveling waves propagating with the speed of sound toward the leading edge, as
indicated by a negative (resp. positive) slope for s ≤ 1 (resp. s ≥ 1). In sharp contrast, the resolvent predicts
nearly infinitely fast propagating waves (nearly zero slope), consistent with the incompressibility condition,
which correspond to evanescent pressure fluctuations.

The acoustic nature of the upstream-traveling waves captured by the SPOD is confirmed by examining the
phase speed of the SPF. It is defined as cph = ω/ks, with ks = ∂φ/∂s as the wavenumber along the airfoil
surface. Note that the sign of the phase speed was adjusted to describe downstream- (upstream-) traveling
waves for cph > 0 (cph < 0) respectively for all s. Figure9 reveals that on the suction side near the trailing
edge, both the resolvent and SPOD analyses show pressure fluctuations traveling downstream at roughly 60%
of the freestream velocity, indicating the propagation of hydrodynamic structures. In other regions of the
surface, however, the SPOD captures the upstream-propagating acoustic waves traveling at phase velocities
corresponding to cph = −(a0 − u∞). This is not captured by the resolvent modes, as it is based on an
incompressible formulation. As will be shown later, this deviation has a non-negligible impact on the acoustic
field obtained from the acoustic low-order model.

6 Low-order trailing edge noise prediction

Curle’s acoustic analogy is applied to the SPF extracted from both the SPOD and resolvent modes presented
in the previous section. With the former, we will assess to what extend the acoustic field is driven by the most
energetic coherent structure (the leading SPOD mode), while with the latter we intend to asses the quality of
the physics-based TE noise model.
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(b)

(a)

(c)
Fig. 10 Comparing results from Curle’s method applied to the SPFs from the SPOD modes against Curle’s results using directly
the LES SPFs: a integrated acoustic power from the LES (black) and SPOD (orange); b directivity at the main tone (St = 3.4)
from the SPFs of the LES (—) and first SPOD mode (- - -); c directivity for frequency in-between tones, at St = 10.125, using
SPFs from the LES (—), and from the summation of an increasing number of SPODmodes (- - -), starting from the leading mode
alone and including up to all modes (Nb = 6) following the arrow

6.1 SPOD-based model

The acoustic field from the empirical model is obtained by inserting the SPF from the leading SPODmode into
Eq. (12). As the accuracy of Curle’s solution has been assessed in Sect. 4, the results of the acoustic analogy
using the leading SPOD mode can be compared with those of the same analogy applied to the SPF extracted
directly from the LES.

Figure 10a shows the acoustic power, integrated over a circle of radius r = 2c and centered at the trailing
edge. The predictions based on the leading SPODmode is in very good agreement with that obtained from the
LES data for most of the frequency range, with the exception of very high frequencies (St ≥ 12). There, the
dynamics are no longer low-rank and more SPOD modes should be considered to reconstruct the TE noise, as
shown in Fig. 10c. This is also the case in-between the peaks where we also observe slight disagreements.

The directivity of the predicted acoustic fields is shown in Fig. 10b for the main tone frequency, and in
Fig. 10c for a frequency in between tones. At the tones, the position of the lobes and amplitude of the PSD in
the directivity pattern are very well predicted by the SPOD-based model. In between the tones, the position
and number of the lobes is still well predicted, but the amplitude is under-predicted. Note that this observation
held true for most of the frequency range.

Overall, the SPF extracted from the leading SPOD mode combined with Curle’s acoustic analogy proves
to be an accurate estimate of the trailing edge noise radiated by the airfoil for most of the frequency range. The
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(b)

(a)

Fig. 11 Comparison of the total acoustic power obtained from Curle’s acoustic analogy applied to the leading SPOD mode (- - -)
and the optimal resolvent mode (—) scaled at: a the maximum amplitude of the SPOD mode; b a fixed position near the trailing
edge (s = 0.2)

frequencies at which the model is less accurate, either in between tones or at the high end of the frequency
range, correspond to low sound power levels and are therefore less relevant.

6.2 Resolvent-based model

A similar procedure to that of the previous section is now applied to the SPF extracted from the optimal
resolvent mode. The SPF from resolvent modes are calibrated at each frequency using a complex-valued
weight [26] obtained from the pressure fluctuations of the leading SPOD mode at a single point on the airfoil
surface. Complex factors are defined as the ratio of the complex SPOD and resolvent modes at this point:

χ = p̃spod(ω, sp)/ p̃RA(ω, sp).

Note that the sub-optimal resolvent modes are considered insignificant, due to the low-rank behavior of the
system observed in both the SPOD and resolvent analyses at relevant frequencies

Two strategies are followed for choosing the position of the calibration factor probe sp. First, we use a fixed
position for all frequencies and select a location where the hydrodynamic pressure fluctuations have significant
amplitude on the suction side near the trailing edge (we selected sp = 0.1 and sp = 0.2). Second, we use the
position where the pressure amplitude of the SPOD mode is maximum on the airfoil surface, which varies as
a function of frequency. Note that the former approach can easily be applied to experiments as it only requires
a single well-positioned sensor, whereas the latter strategy would require an array of sensors placed along the
chord.

Figure 11 compares the radiated sound power predicted by the acoustic analogy applied to the SPF of the
optimal resolvent mode and with that of the leading SPOD mode. The PSD is again integrated over a circle of
radius r = 2c centered at the trailing edge, and results are shown for both the fixed and frequency-dependent
calibration positions. Overall, a good agreement between the empirical and resolvent-based models is found,
for both fixed calibration positions, in the range of frequencies 0.35 ≤ St ≤ 6.8, corresponding to a high
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Fig. 12 Normalized directivity plots for the empirical (black) and physics-based (blue) models at a St = 0.53, b St = 3.4, and
c St = 8.87. The directivity of a hybrid SPF distribution (- · -) between the resolvent and SPOD which effectively filters out the
upstream-traveling acoustic waves from the SPOD is added to (b)

alignment between resolvent and SPOD leading SPF modes. The agreement is even better for the frequency-
dependent calibration position, with good agreement up to frequencies of St ≈ 10, thus covering most of the
frequency range with significant sound power levels. Overall, both scaling methods result in an overshoot of
about 4 dB at the main tone, however, the relative amplitudes of tones are well captured. As expected, the
resolvent-based model underperforms at very low and high frequencies (St ≤ 0.35, St ≥ 10), where we also
encountered poor alignment between SPOD and resolvent modes.

The evaluation of the resolvent-based model is completed by a comparison of the normalized directivity
patterns, as shown in Fig. 12 for three different Strouhal numbers. At the lower Strouhal number of St = 0.53,
the airfoil is acoustically compact, as characterized byH = StM ≈ 0.16,which results in the dipolar directivity
pattern observed in Fig. 12a. In this case, the resolvent-based model captures the position and respective
amplitudes of the two lobes very well. A very similar result is presented by Wagner & Sandberg [35] using
a similar method for a NACA0012 at α = 0 deg and Re = 2 × 104. For higher frequencies, the agreement
significantly deviates. The resolvent-based model retrieves only two lobes directed slightly downstream, while
the SPOD-based model shows an increasing number of lobes directed upstream with increasing frequency.

The deviation of the resolvent-based prediction of the directivity at higher frequencies can be explained
by constructing a hybrid model. This model is composed of the SPOD mode along the suction side near the
trailing edge and the resolvent mode for the rest of the surface. This mode-merging procedure is performed
at the main tone frequency (St = 3.5), where the SPFs of the SPOD and resolvent modes are very similar.
Figure13 shows the SPF distribution of this hybrid model, where a smoothing spline function is used to avoid
discontinuities between the two distributions. Practically, this hybrid model allows to decouple the influence
of SPFs caused by the downstream-traveling hydrodynamic wavepacket from that of back-scattered acoustic
waves in the radiated sound.

The directivity pattern predicted from this hybrid SPF model and Curle’s acoustic analogy is included
in Fig. 12b. Accordingly, the hybrid model shows a much better agreement with the resolvent-based model
than when using the full SPOD pressure fluctuations. The number and position of lobes match that of the
physics-based model. This highlights the importance of small-amplitude back-scattered acoustic waves for the
directivity pattern observed in the data.

To get an impression of the global sound field, the radiated acoustic field of the empirical and resolvent-
based models are illustrated in Fig. 14. The comparison is shown for a low frequency where the airfoil is
acoustically compact and at the main tone where this is not the case. For the latter, the sound field determined
from the incompressible resolvent is mainly directed downstream of the trailing edge, while the opposite is
observed for the empirical model. This is not the case for the low Helmholtz number case. Therefore, the
applicability of the physics-based model in its current form is limited to low Helmholtz numbers for accurate
directivity predictions. However, it may still estimate the radiated sound power with reasonable accuracy, as
seen in Fig. 11.
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Fig. 13 At the main tone (St = 3.5), real part of the SPF from the optimal resolvent (- - -) and leading SPOD (—) modes; as
well as the hybrid SPF distribution (̇̇̇̇) obtained by merging the two models on the suction side of the airfoil, upstream of the
hydrodynamic wavepacket (s = 0.44). A second merging of the SPF is done near the trailing edge on the pressure side in order
to respect the Kutta condition

Fig. 14 Comparison of the acoustic fields radiated by using Curle’s solution on the SPF from the empirical model (left column)
and the physics-based model (right column), at a low Strouhal number St = 0.53 (top row) and at the main tone St = 3.4 (bottom
row). Contours show the real part of the complex pressure field and highlight the differences in terms of directivity from the two
approaches
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7 Summary and Conclusions

In this study, we developed and evaluated a physics-based, reduced order model of the trailing edge noise
generated by an airfoil at low angle of attack. Our model relies on pressure fluctuations on the airfoil surface,
which are obtained from the leading incompressible resolvent mode about the mean flow. These pressure
fluctuations are then incorporated into Curle’s solution to Lighthill’s acoustic analogy to compute the acoustic
field. The input to the model are the mean flow and a single point surface pressure spectrum to scale the
amplitude of the resolvent mode.Whilemost state-of-the-art SPFmodels are based on empirical arguments [5],
the advantage of the present physics-based model is that it is easily transferable to other airfoil shapes and flow
parameters, provided that the mean flow is known and its dynamics are low rank over the frequency range of
interest.

Our model was evaluated for the flow around a NACA0012 airfoil at transitional Reynolds number Re =
5×104, lowMach number M = 0.3, and low angle of attack α = 3 deg. In this setup, tonal trailing edge noise
dominates the sound field [29], which is characterized by regularly spaced peaks in the acoustic spectrum.
The resolvent analysis is performed on the spanwise and time-averaged flow obtained from a compressible
LES. Likewise, only spanwise coherent structures with spanwise wavenumber kz = 0 are considered as they
fulfill the edge scattering condition [11,27,39]. The results from the resolvent analysis are compared to the
wavepackets determined from SPOD of the LES snapshots, considering velocity fluctuations in the airfoil’s
boundary layer, associated SPFs, and radiated acoustic fields through Curle’s acoustic analogy.

A good agreement is found between the leading SPOD and optimal resolvent mode at the frequency of
the main tones. Alignment values between resolvent and SPOD modes of up to 80% are observed at these
frequencies, which suggests that the incompressible resolvent analysis is able to accuratelymodel the dominant
wavepackets propagating in the airfoil’s boundary layer as predicted by the compressible LES.

When assessing the SPFs employed to derive the radiated acoustic field via Curle’s analogy, an excellent
match is found between the optimal resolvent and leading SPOD modes at the tonal frequencies. This is
quantified by alignment values of up to 95%. However, we demonstrate that the absence of back-scattered
acoustic waves in the resolvent modes has a dramatic effect on the directivity patterns of the sound emitted by
the resolvent-basedmodel at frequencieswhere the airfoil is not acoustically compact. This observation extends
the results of Wagner et al. [34,35] who used a similar methodology to study a NACA0012 at Re = 2 × 104.
Their results were obtained at a single frequency that resulted in a dipolar directivity pattern, which is typical of
acoustically compact surfaces. However, this is not the case here, as the airfoil is not acoustically compact for
St > c/M ≈ 3.3 and back-scattered acoustics become relevant. A compressible formulation of the resolvent
could potentially address this.

At high Strouhal numbers, the resolvent modes strongly deviate from the SPOD modes, even though a
large separation is still found in the resolvent gain. This leads to a deviation of the acoustic prediction. We
conjecture that this mismatch is caused by the nonlinear triadic interaction between the discrete modes at the
tonal frequencies, which are not captured by the present resolvent approach. In this regard, the methodology
proposed by Symon et al. [26] to obtain the nonlinear “parasitic modes” from a nonlinear forcing composed
of limited triadic interactions of known resolvent modes could be used to extend the present work.

In conclusion, the resolvent-based model presented here can accurately predict the sound power emitted by
the airfoil provided that the SPF-spectrum is known at a single surface point close to the trailing edge, within
4 dB of the reference provided by the leading SPOD mode. We further assessed that the leading SPOD mode
alone offers an accurate data-driven model of TE noise across most of the frequency range for the case studied.
By adjusting the scaling position of the resolvent modes, we observed improvements in the prediction at the
main tones, achieving errors within 2 dB, but at the cost of accuracy in higher-frequency prediction.

In the future, this modeling approach could be utilized to optimize airfoil shapes with the aim of reducing
the overall sound power emitted. This could be achieved by combining a low-fidelity mean field solver with
an appropriate scaling strategy for the point-wise SPF spectrum. It remains to be seen how well this method
can be applied to model the broadband TE noise encountered at higher Reynolds numbers. We expect higher
spanwise wave numbers to become important in this case, which is easily implemented in this approach, andwe
expect the incompressible limit of the solver to be even better justified due to the absence of tonal frequencies
and associated acoustic feedback mechanism.
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