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Abstract Reconstruction of unsteady vortical flow fields from limited sensor measurements is challenging.
We develop machine learning methods to reconstruct flow features from sparse sensor measurements during
transient vortex–airfoil wake interaction using only a limited amount of training data. The present machine
learning models accurately reconstruct the aerodynamic force coefficients, pressure distributions over airfoil
surface, and two-dimensional vorticity field for a variety of untrained cases. Multi-layer perceptron is used for
estimating aerodynamic forces and pressure profiles over the surface, establishing a nonlinear model between
the pressure sensor measurements and the output variables. A combination of multi-layer perceptron with con-
volutional neural network is utilized to reconstruct the vortical wake. Furthermore, the use of transfer learning
and long short-term memory algorithm combined in the training models greatly improves the reconstruction
of transient wakes by embedding the dynamics. The present machine-learning methods are able to estimate
the transient flow features while exhibiting robustness against noisy sensor measurements. Finally, appropriate
sensor locations over different time periods are assessed for accurately estimating the wakes. The present
study offers insights into the dynamics of vortex–airfoil interaction and the development of data-driven flow
estimation.

Keywords Vortex–airfoil interaction · Machine learning · Flow reconstruction

1 Introduction

Vortex–airfoil interaction is ubiquitous around fluid-based systems, including aircraft [1–4], wind turbines [5],
and pumps [6,7]. Such interactions can cause unsteady loading, fatigue, and structural damage to these systems.
For analyzing vortex–airfoil interactions, it is useful to assess the state of the flow from sparse measurements
for understanding the governing dynamics [8], prediction of flow disturbance [9], and performing the wake
flow control [10]. However, it is challenging to identify vortical structures during the vortex–airfoil interactions
from sparse measurements due to its strong nonlinear dynamics and the high-degree of freedom required to
describe the vortical flows.

Anumber of studies have examined sparse state estimation for aerodynamics. In particular, linear techniques
have been studied over the last several decades. For instance, gappy proper orthogonal decomposition [11] has
been considered to obtain dominant flow features from spatially incomplete and sparse data sets [12]. Focusing
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on the characterization of flows and boundary layers near body surface, the applications of four-dimensional
variational method [13], linear stochastic estimation [14], and Kalman filters [15] have also been explored.
However, these techniques are constrained by their linear formulations, which poses challenges when the
applications involve strongly nonlinear dynamics.

To overcome such limitations, nonlinear machine learning approaches have been considered as a promising
approach in analyzing fluid flows from sparse information. Nonlinear machine learning techniques have shown
to be useful in estimating and modeling high-dimensional flow [16]. For example, Pawar et al. [17,18] applied
a physics-guided machine-learning framework to estimate the lift coefficient of a variety of airfoils. Hui et al.
[19] utilized a signed distance function-assisted convolutional neural network (CNN) to predict the pressure
distribution over an airfoil surface. For flow field reconstructions, Erichson et al. [20] proposed a shallow
decoder based on multi-layer perceptron (MLP) for a circular cylinder wake, the sea surface temperature, and
forced isotropic turbulence. Fukami et al. [21] proposed aCNN-basedmethod to reconstruct the global turbulent
flow field from sparse sensors that can be in motion or change in numbers. In addition to the aforementioned
efforts, there are various machine-learning-based flow reconstruction techniques based on super-resolution
analysis [22–24].

However, there are issues with utilizing nonlinear machine learning techniques for estimating unsteady
fluid flows from limited sensor measurements. The most outstanding issue is the computational costs for using
machine learning models are expensive. For neural network-based models with low-dimensional inputs to
high-dimensional outputs, an enormous number of interior parameters (weights) are required. To determine
the internal parameters, generally, thousands of flow (or sensor) snapshots are required, which causes a large
computational burden in terms of both training costs and data storage. In our case, if a variety of unsteady flow
fields is needed to be accurately reconstructed, storage and computing costs can rise significantly if the problem
is approached naively. From this aspect, it is crucial to develop a method that can qualitatively reconstruct
a flow field with a small amount of training data and a reduced number of tuning parameters. In addition,
generalizable models promote a reduction in cost. Most machine learning models can only be used for specific
flow fields, for example, a single model trained with a laminar flow may not be applicable to use to reconstruct
turbulent flow fields. In fact, the data used for testing needs to be similar to the training data to achieve accurate
results. If we need to consider different flows over a vast parameter space, it is almost impossible to perform
experiments or simulations for each and every case. In this regard, the diversity of the training data needs to be
considered so that a single model can effectively predict unsteady flow fields over a large range of parameters.

In this study, we aim to develop machine learning methods that reconstruct dominant wake features from
limited sensor measurements and a small set of training data sampled over a vast parameter space. Because
the disturbance vortex can be of any size, strength, or position from the airfoil, a very large parameter space is
needed to be explored to capture the complex vortex-impinged airfoil wake dynamics. In this case, the amount
of data can be tremendously large. Instead of naively training machine learning models with all parameter
combinations, we develop models that are trained with a few cases in the parameter space and use the models
to estimate unseen cases. For the machine learning methods, we choose a multi-layer perceptron (MLP) to
model the nonlinear relationship between the low-dimensional sensors inputs and the outputs, including the lift
coefficient, drag coefficient, and surface pressure coefficient. Moreover, combining the convolutional neural
networks and MLP allows the reconstruction of the vorticity field over time with modest computational costs.
The transfer learning and long-short term memory further help in incorporating the dynamics of the transient
flow, which reduces the required training data and improves the flow estimation. The current model is robust
for a variety of wake scenarios separate from the training data. We also assess the influence of sensor numbers
and placement on flow estimation.

The present paper is organized as follows. The problem setup and data compilation are discussed in Sect. 2.
Flow physics of vortex–airfoil wake interactions are presented in Sect. 3. Machine learning techniques utilized
in this study are introduced in Sect. 4. Results and discussion of machine learning-based flow reconstruction
are presented in Sect. 5. Concluding remarks are provided in Sect. 6.

2 Data compilation

The present objective is to develop a robust machine-learning model for highly disturbed flows around an
airfoil from sparse pressure sensors and limited training data. Here, we consider transient flow over a NACA
0012 airfoil at an angle of attack of α = 12◦ experiencing various types of vortical disturbances at a chord-
based Reynolds number Re ≡ u∞c/ν∞ = 400 and a Mach number M∞ ≡ u∞/a∞ = 0.1. Here, u∞ is the
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Fig. 1 a The size and position of the vortical disturbance, and 8 uniform sensors are distributed on the airfoil surface; b the
velocity profile of the disturbance vortex

free-stream velocity, c is the chord length, ν∞ is the kinematic viscosity, and a∞ is the freestream sonic speed.
The simulated flows have been verified and validated with previous studies [25–27].

The compressible flow solver CharLES [28] is used to simulate the transient flows over the airfoil. For the
present vortex–airfoil interaction problem, a single vortical disturbance is initially introduced upstream of the
airfoil. This disturbance vortex is given as a compressible Taylor vortex [29], described by

uθ = uθmax
r

R
exp

[
1

2

(
1 − r2

R2

)]
, (1)

where R is the radius, and uθmax is the maximum rotational velocity of the vortex, as shown in Fig. 1. The
vortex is initially introduced at (x0, y0) with x0 = −2c.

The present vortex–airfoil interaction problem exhibits a variety of flow patterns, as shown in Fig. 2. A
strong disturbance vortex produces strong unsteadiness in the flow field, and the larger the vortex is, the larger
the region it influences. Apart from the radius and the strength, a vortex can either hit the airfoil at the leading
edge and thus incite large fluctuations or pass through the airfoil without causing dramatic changes to the flow
or aerodynamic characteristics. Detailed discussion on the flow is offered in Sect. 3. The present study examines
whether the flow field generated over the wide parameter space can be recovered with the machine-learning
model trained with only a very few cases.

In the present study,we choose eight sensors distributed on both sides of the airfoil surface to capture the vor-
tex passing around an airfoil, as shown in Fig. 1. These sensors are labeled 1–8, with the respective x-locations
of the sensors being (0.00, 0.26, 0.48, 0.72, 0.99, 0.23, 0.46, 0.71)c. Three parameters that describe the dis-
turbance vortex are maximum rotational velocity (uθmax), the radius (R), and the initial vertical location (y0).
The training data sets are comprised of uθmax/u∞ ∈ [−0.9,−0.7,−0.5,−0.3,−0.1, 0.1, 0.3, 0.5, 0.7, 0.9],
R/c ∈ [0.125, 0.25, 0.5, 0.75, 1], and y0/c ∈ [−0.3,−0.1, 0, 0.1, 0.3], respectively. Here, the positive value
of uθmax/u∞ indicates a counterclockwise rotation. The maximum rotational velocity of the vortex uθmax
covers a range from 0.1u∞ to 0.9u∞. The choices for the vortex radius R and y0 are carefully determined so
that vortices can pass over or below the airfoil while significantly influencing the airfoil wake. In Sect. 5, we
consider 25, 50, and 100 training cases out of the vast combinations of parameters, then test the models with
untrained cases. Parameter combinations of test cases are randomly chosen over the aforementioned ranges.
Note that the training data is a small proportion compared to the whole combinations of parameters. There are
no test cases overlapping with the training cases.

For each case, we collect 500 snapshots of the flow field for u∞t/c ∈ [0.85, 5.1], which reflects the process
from the vortex approaching the airfoil to moving away from the tailing edge. Here, u∞t/c = 0 refers to the
initial time at which the vortex is at x0/c = −2. The snapshots at u∞t/c = [0, 0.85] are not used in the present
analysis to remove the start-up period of the simulation. For a single parameter set (uθmax/u∞, R/c, y0/c),
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Fig. 2 Randomly distributed 50 training cases (blue) and 10 test cases (red). Example test cases shown:
a (uθmax/u∞, R/c, y0/c) = (0.14, 0.15, 0.15), b (uθmax/u∞, R/c, y0/c) = (0.78, 0.99, 0.18), c (uθmax/u∞, R/c, y0/c) =
(− 0.80, 0.61, 0.08), d (uθmax/u∞, R/c, y0/c) = (0.35, 0.95, − 0.15) (color figure online)

the data sizes of aerodynamic force coefficients, pressure over surface, and two-dimensional vorticity field
data amount to approximately 1MB, 15MB, and 500MB, respectively. If we use 100 training cases with all
500 snapshots of two-dimensional wake data, the training data size becomes approximately 50GB for a single
machine learning model, which is quite large with respect to storage and computation.

3 Flow physics

The present vortex-impinged airfoil wake exhibits rich dynamics influenced by the vortex velocity, size, and
position. In this section, we present the flow physics induced by a variety of vortex disturbances.

The maximum rotational velocity of the vortex disturbance is one of the most important characteristics
affecting the vortex–airfoil interaction. Here, we investigate the influence of vortex largest velocity onCL ,CD ,
and vorticity fields when (R/c, y0/c) = (0.5, 0.1). As depicted in Fig. 3a, b, a positive (counterclockwise)
vortex generally induces a transient increase in CL and CD when it impinges on the leading edge of the airfoil.
A secondary negative peak is then introduced when the center of the vortical disturbance passes the center of
the airfoil. A similar but reversed trend is observed for a negative (clockwise) vortex. The initial decrease in
lift is followed by the vortex tail-induced lift increase.

For a positive vortex with two different magnitudes of the vortex rotational velocity, the first peaks of CL
are reached at nearly the same time, as presented in Fig. 3a. However, the magnitude difference causes the
temporal shift for the secondary peak—the peak with uθmax/u∞ = 0.7 is reached at u∞t/c ≈ 2.6 while that
with uθmax/u∞ = 0.3 is achieved at u∞t/c ≈ 3.0. This is because a stronger positive vortex produces a stronger
interaction with the pre-existing negative vorticity on the suction side of the airfoil, forming a large negative
vortex that detaches from the airfoil afterward. Similar to the positive disturbance cases, larger fluctuation
induced by a stronger negative vortex gives rise to an earlier secondary peak. For CD , we observe a similar
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Fig. 3 Effect of the largest rotational velocity of vortical disturbance. a Lift coefficients, b drag coefficients, and c vorticity fields
for vortical disturbances of (R/c, y0/c) = (0.5, 0.1) and uθmax/u∞ = −0.7, −0.3, 0.3, and 0.7

trend of the time history to the CL for the positive disturbance, while the magnitudes of variation are much
smaller than CL .

The dependence of the flow field response on the vortex size is also examined, as shown in Fig. 4. We
choose the same vortex strength and vertical position as (uθmax/u∞, y0/c) = (0.3, 0.1) for comparison. The
CL and CD histories experience the same trend of first increasing and then decreasing among different vortex
sizes. By increasing the vortex size, the first peaks of CL and CD appear earlier because a vortex with a larger
radius encounters the airfoil earlier.

The changes in the vorticity fields caused by the different sizes of vortices are also presented in Fig. 4c.
When a small-size vortical disturbance (R/c = 0.125) impinges on the airfoil, the whole vortex passes over
the suction side of the airfoil and induces mild fluctuation in the flow field. As the size of the vortex becomes
larger, the vortex splits into two structures which advects over the suction side and the pressure side. The
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Fig. 4 Effect of vortex size. a Lift coefficients, b drag coefficient, and c vorticity fields for vortical disturbances of
(uθmax/u∞, y0/c) = (0.3, 0.1) and R/c = 0.125, 0.25, 0.5, and 0.75

positive vorticity around the trailing edge is rolled up and interacts with the wakes, thus affecting the evolution
of the wake region.

In addition to the largest velocity and the size of the vortical disturbance, the transient dynamics are also
strongly influenced bywhether the disturbance vortex passes above or below the airfoil. Here, let we investigate
three vertical positions of y0/c = −0.3, 0, 0.3 with a negative vortical disturbance (uθmax/u∞, R/c) =
(−0.5, 0.5), as shown in Fig. 5. For y0/c = 0.3, the disturbance passes over the airfoil, where a large portion
of negative disturbance passes through the suction side of the airfoil, introducing a large jump in CD as the
first peak. For y0/c = 0, the negative vortical disturbance is split into two parts as it passes around the airfoil.
At u∞t/c = 2.55, the large positive vorticity attached on the pressure side of the airfoil produces the second
peak inCL . For the case of y0/c = −0.3 where the disturbance passes below the airfoil, the variation is mostly
dominated by the interaction along the pressure side of the airfoil, and the drop and the increment of CL and
CD occur at the same time.
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Fig. 5 Effect of vortex position. a lift coefficients, b drag coefficients, and c vorticity fields for vortical disturbances of
(uθmax/u∞, R/c) = (−0.5, 0.5) and y0/c = 0.3, 0, and −0.3

4 Methods

We develop machine-learning models to estimate aerodynamic characteristics that cover a variety of force
and wake dynamics from sparse sensors. Constructing a robust model suitable for the vast parameter space in
Fig. 2 is challenging. To estimate different types of nonlinear wake responses from limited training data, we
consider several strategies with regard to machine-learning model design and training methods for reproducing
the transient dynamics. For all machine-learning models used in the current study, three-fold cross-validations
are performed, ensuring the convergence of the estimations in terms of data distribution.

An overview of the present machine-learning-based estimation approaches is shown in Fig. 6. The input
is the sensor measurements sn�t spanning over n�t. We first consider a multi-layer perceptron (MLP) to
build the relationship between the sensor measurements and the aerodynamic force coefficients over time.
Since the degrees of freedom of the input and output areO(1), we can easily employ a fully-connected neural
network to construct such a relationship. Similarly, we also use a multi-layer perceptron (MLP) to estimate
the pressure distribution over the airfoil surface. However, MLP can be challenging to use for problems with
high degrees of freedom due to its fully-connected structure [21,30]. To access the two-dimensional vorticity
flow field (the degree of freedom ≈ O(103 − 104)), a model which can effectively extract spatial information
with a manageable computational cost is required. To address this point, we incorporate a two-dimensional
convolutional neural network (CNN) to provide qualitative estimations while maintaining a low computational
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Fig. 6 Overview of the present estimation problems. The inputs are pressure sensor measurements on the airfoil surface, outputs
are a CD orCL , bCP , and c vorticity field.CL ,CD , andCP are estimated using separate multi-layer perceptron models, vorticity
field is estimated using the combination of multi-layer perception and convolutional neural network
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Fig. 7 a A minimum unit of perceptron. b Two-dimensional convolutional operation

cost. When the MLP is coupled with the CNN, the machine-learning model can reconstruct the flow field from
a limited number of sensor measurements. Moreover, due to the transient nature of the current vortex–airfoil
interaction problem, accounting for the dynamics into model construction aids in accurate estimation. For
this reason, the long short-term memory (LSTM) algorithm [31] assisted with transfer learning serves as an
effective method to estimate the flow fields from time traces. Hence, we embed LSTM into the aforementioned
MLP andMLP-CNNmodels. In what follows, we introduce the algorithms of thesemachine learningmethods.
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4.1 Multi-layer perceptron

In the present study, the input sensor measurements are first fed into a multi-layer perceptron (MLP) [32]. For
the estimation of aerodynamic forces (Sect. 5.1) and pressure distribution over the airfoil surface (Sect. 5.2), the
MLPM is used as a function approximator between the input sensor measurements s and the output variables
q such that q ≈ M(s). For the estimation of the two-dimensional vorticity field ω (Sect. 5.3), MLP plays a
role of a nonlinear function mapping the low-dimensional sensor information s ∈ R

ns to the high-dimensional
variable in the model. In addition, we incorporate LSTM [31] into the machine-learning models to capitalize
on the dynamical information of sensors.

In MLP, the input at layer (l − 1) is multiplied by weights W , then linearly combined, and passed through
a nonlinear activation function ϕ as an output to the next layer (l),

q(l)
i = ϕ

⎛
⎝∑

j

W (l)
i j q

(l−1)
j + b(l)

i

⎞
⎠ , (2)

where b is a bias added at each layer as illustrated in Fig. 7a. We utilize the ReLU function [33] for ϕ, which is
known to be effective for addressing the vanishing gradient problems in deep neural networks. For determining
the weights W , the Adam algorithm [34] is utilized. In the present model training, early stopping [35] with 20
training epochs is also applied to avoid overfitting the machine-learning model.

4.2 Convolutional neural network

Since the full flow field estimation requires a large number of spatial grid points (high spatial degrees of
freedom), the computational burden is substantial for the direct application of MLP to the full flow field
reconstruction [36,37]. To address this issue, we combine MLP and a two-dimensional convolutional neural
network (CNN) [38]. The CNN enables regression while greatly reducing computational costs through filter
sharing. The two-dimensional convolutional operation is illustrated in Fig. 7b, whose internal procedure is
expressed as

q(l)
i jg = ϕ

⎛
⎝ F∑

l=1

H−1∑
p=0

H−1∑
q=0

h(l)
pqlgq

(l−1)
i+p−C, j+q−C,l + b(l)

g

⎞
⎠ , (3)

where C = �H/2�, H is the width and height of the filter, F is the number of input channels, g is the number
of output channels, b is the bias, and ϕ is the activation function. The input sensor measurements s ∈ R

ns are
transformed to a high-dimensional representation q̂ ∈ R

n q̂ through the MLP for the wake estimation. This
representation q̂ ∈ R

n q̂ is then reshaped into a two-dimensional matrix form q̂ ∈ R
nx̂×nŷ so that the data can

be managed with a two-dimensional CNN, as illustrated in Fig. 6a. Through the CNN process in Eq. 3 and
upsampling operation, the present model extracts the relationship between the input sensors and the vorticity
field ω ∈ R

nx×ny . As with the MLP training, we apply the ReLU function [33] as the nonlinear activation
function, the Adam algorithm [34] for updating filters, and early stopping [35] to prevent overfitting.

4.3 Long short-term memory-assisted transfer learning

To improve the present estimation, we also utilize the long short-term memory (LSTM) algorithm [31]. LSTM
is one of the recurrent neural network methods, which is suitable for predicting temporal behaviors from
time-series data. Since LSTM can hold the time-series data as memory inside the function referred to as cell,
the implementation of LSTM can greatly help with the present problem that is dependent on past flow states
due to its transient nature.

An LSTM layer is constructed by four functions; a cell C , an input gate d , an output gate o, and a forget
gate g. These functions play important roles in deciding how past information is incorporated to predict the
output variables. The input gate d determines how much of the current information from the input of cell et is
used for prediction,

dt = σ(Wd · [q̃t−1, et ] + βd), (4)
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Fig. 8 Long short-term memory-assisted transfer learning

where q is the output of cell, W and β represent the weights and the bias, respectively, for each gate denoted
by its subscript; the subscripts t and t − 1 represent the time indices, and σ is the sigmoid function. Here, the
concatenation of two inputs in a model is denoted as [m, n]. In parallel, the LSTM also considers how much
of the past information is kept from the cell state at the previous cell state Ct−1 using the forget gate g,

gt = σ(Wg · [q̃t−1, et ] + βg). (5)

With the temporal cell state at the current time step,

C̃t = tanh(Wc · [q̃t−1, et ] + βc), (6)

and the previous cell state Ct−1, the current cell state Ct is determined by balancing the input gate d and the
forget gate g,

Ct = gtCt−1 + dt C̃t . (7)

Note that the sigmoid functions used for the input and the output gates play important roles in avoiding gradient
vanishing problems. At the output of the LSTM layer, the amount of information at the cell state Ct being
leveraged for short-term prediction (i.e., the output at the next step q̃t ) is assessed using the output gate o with

ot = σ(Wo · [q̃t−1, et ] + βo), (8)

q̃t = ot tanh(Ct ). (9)

With this formulation, the LSTM is able to predict the variable at the next step q̃t while considering the
long-term memory influence with the concept of cell state C .
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Here, we combine the high-dimensional representation of the input measurements obtained through
the MLP q̃n�t with two previous time sequences extracted by LSTMs {q̃(n−1)�t , q̃(n−2)�t } such that
q̃ = [q̃n�t + q̃(n−1)�t + q̃(n−2)�t ], as illustrated in Fig. 8. This combined vector q̃ with three time steps
is then provided to the MLP layer of the force estimation and the Cp estimation, or the two-dimensional CNN
layer of the vorticity reconstruction task.

Moreover, we utilize the concept of transfer learning for the LSTM-assisted network. Transfer learning can
facilitate the training process by setting appropriate initial weights [39]. The present strategy of the LSTM-
assisted transfer learning is graphically summarized in Fig. 8. In the present study, the weights of pre-trained
MLPwM are adopted as initial weights of the second modelF2 which has two sensor input gates s(n−1)�t and
sn�t . The high-dimensional feature of input sensor measurements q̂ from theMLP part of the model is merged
with that from LSTM. Once the training for the second model F2 is completed, the optimized weights of the
second model wF2 are repeatedly transferred to the third model F3 which considers sensor measurements at
three different time steps s(n−2)�t , s(n−1)�t , and sn�t . The weight optimizations through these operations are
mathematically expressed as

wF1 = argminwF1
||q − F1(sn�t ;w)||2, (10)

wF2 = argminwF2
||q − F2([sn�t , s(n−1)�t ];wF2(w

′
F1

))||2, (11)

wF3 = argminwF3
||q − F3([sn�t , s(n−1)�t , s(n−2)�t ];wF3(w

′
F2

))||2, (12)

where w′
F1

denotes the weights assigned to the common part of the first MLP-CNN model and the second
model, w′

F2
represents the weights assigned to the common part of the second MLP-LSTM-CNN model and

the third model, respectively. Since transfer learning can aid in the computational reduction by enabling fast
convergence of weights [40,41], we can expect accurate flow reconstruction with minimal training costs using
transfer learning with LSTM.

5 Results and discussion

5.1 Aerodynamic forces

Let us first present the machine-learning-based estimation ofCL andCD from the pressure sensor inputs. Here,
we here preparemachine learningmodelsF for each coefficient such thatCL = FL(s(t)) andCD = FD(s(t)).
The estimation results for CD and CL are shown in Fig. 9. When training with only 50 training cases with
each case having 50 snapshots, the model achieves a qualitative estimation of CD . Here, we denote the
number of cases as ncase, and the number of snapshots per case as nss. We also quote the L2 error norm
ε ≡ || fRef − fML||2/|| fRef − f ||2, where fRef and fML are the reference and the machine-learning-based
estimation, respectively, of variable f . Note that this error is normalized by the fluctuation of a variable from
its steady-state value f . For CL and CD , the error is measured over the time range u∞t/c = [0.85, 5.1] for
each case.

The estimation results show that the positions of the peak and trough of CD induced by the vortex–airfoil
wake interaction are qualitatively predicted, yet the exact values are off from the DNS result. Increasing
the number of training cases ncase improves the estimation performance. Enhanced agreement between the
estimation and DNS is also achieved when increasing the number of snapshots to 500, as illustrated in Fig. 9a.
The enhancement in the data diversity leads to a drastic decrease in the prediction error. In contrast to 50
training cases, utilizing 100 training cases yields a 67% deduction in test error. The reason why the expansion
of training cases is beneficial for prediction performance is that the machine learning model can cover a larger
parameter space, which assists in better predicting unseen test cases. Yet, considering the vast parameter space,
100 training cases are very few.

To obtain an accurate reconstruction while using as little data as possible, we then incorporate the transfer-
learning-based LSTM into the model for CD , as shown in Fig. 9a. Due to the transient nature of the current
vortex–airfoil interaction problem, the present transfer-learning-based LSTM is able to build a reliable con-
nection between sensor input and output based on historical information. For all three examples, using the
MLP-LSTM model gives rise to a 10% decrease in the estimation error.

Estimation for CL is presented in Fig. 9b. Enhancement in the reconstruction of CL from increasing the
amount of training data is also shown in Fig. 9b. The new MLP-LSTM model reduces the test error to 0.215,
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Fig. 9 Estimation of CD and CL obtained with MLP and MLP-LSTM models for the case of (uθmax/u∞, R/c, y0/c) =
(−0.19, 0.83, 0.28)

0.158, and 0.148 for (ncase, nss) = (50, 50), (ncase, nss) = (50, 500) and (ncase, nss) = (100, 50), respectively.
Similar to the CD estimation, the transfer-learned-LSTM architecture is also useful in the estimation of CL .
We also note that the reconstruction for CL is usually better than CD , which is due to the variation of CL over
time being much larger than that of CD .

5.2 Surface pressure distribution

Next, we perform the MLP-based estimation of the pressure distribution Cp over the airfoil surfaces. Repre-
sentative snapshots of the vorticity field for a test case when a vortical disturbance passes around the airfoil
are shown in the first row of Fig. 10. Similar to the aerodynamics forces CL and CD , the reconstruction per-
formance is strongly influenced by the number of cases ncase, the number of snapshots per case nss, as well as
whether transfer-learned LSTM is incorporated. When training the MLP-LSTM model with 50 cases and 250
snapshots per case, a qualitative reconstruction is achieved for Cp. As shown in the first row of Fig. 10, the
estimatedCp at both the upper and lower surfaces of the airfoil are in agreement with the DNS. As we increase
the number of cases from 50 to 100 without utilizing transfer-learned LSTM, this machine-learning model also
reconstructs Cp in a reasonable manner, as shown in the second row of Fig. 10. However, by comparing the
reconstruction of Cp of (ncase, nss) = (100, 250) without LSTM against the results with LSTM implemented,
it is found that the use of transfer-learned LSTM greatly improves reconstruction, achieving enhanced perfor-
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Fig. 10 Machine-learning-based estimation of the pressure distribution over an airfoil surface. The pressure coefficient Cp at
u∞t/c = a 0.85, b 3.82, and c 4.67. Results are shown for the case of: (uθmax/u∞, R/c, y0/c) = (0.35, 0.95, −0.15)

mance with only half of the training data. In order to further improve the estimation performance, increasing
the number of snapshots from 250 to 500 for 100 training cases achieves a similar performance as the results
of (ncase, nss,LSTM) = (50, 250,Y), as shown in the last row of Fig. 10. Note that although we are using
100 training cases and 500 snapshots per case, the training data is still small compared to the broad parameter
space of the test cases.

5.3 Vorticity field

We employ the present machine learning techniques to reconstruct the two-dimensional vorticity field from
sensor measurements on an airfoil using the MLP-CNN model. Analogous to the results in Sect. 4.2, the
combination of MLP and CNN is suitable to estimate the vortical flow from sensors. The reconstruction of the
spatially discretized vorticity field ω ∈ R

100×200 is summarized in Fig. 11. The present model successfully
captures the vortical disturbance at u∞t/c = 0.85. The location and the strength of the vortex are well
reconstructed. The interaction between the vortex disturbance and the flow field around the airfoil at u∞t/c =
2.12 is also reproducedwell. This is approximately the time at whichCL andCD drop to their minimum values,
serving as an important dynamic transition point. However, the wakes behind the trailing edge at u∞t/c = 5.10
are not accurately reconstructed because these wake structures are farther away from the airfoil during this
period. Sensors on the airfoil surface measure do not observe a sizeable change in pressure, making it difficult
to reconstruct far-field wakes, which is expected.

Let us now focus on the critical near-wake region around an airfoil since this region primarily determines
the unsteady loading. Considering only the near-field region enables us to greatly reduce the size of training
data and the associated computational costs. Results from training with a smaller region are described in
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Fig. 11 Reconstructed vorticity flow field with large region training and windowed region training. Results shown for
(uθmax/u∞, R/c, y0/c) = (0.65, 0.40, 0)

Fig. 11. The windowed training model also provides improved estimations with lower error. The averaged L2
error for the test case reduces from 0.329 (large region training) to 0.261 (windowed region training), which
also shows the influence of the region size to estimate the wake field with the modest computational cost.

Moreover, the enhancement in reconstructing the vorticity field can also be achieved by increasing the
amount of training data and utilizing transfer-learned LSTM, as summarized in Fig. 12. For all time series, a
qualitative and insightful reconstruction of the vorticity field is achieved with as less as 10 snapshots per case,
as shown in the second column in Fig. 12. When we apply the transfer-learned-LSTM to the same dataset,
up to 33% reduction in L2 error is accomplished. Additionally, increasing the number of snapshots to 50 or
increasing the data diversity by using 100 training cases produces further improvements.

It is worth noting that the reconstruction accuracy for the interaction process is not uniform. For example,
at u∞t/c = 1.70 and u∞t/c = 2.55 when the center of the disturbance is near the airfoil, the L2 errors are
relatively high. Due to the high level of interaction, the complex morphological changes in the vorticity field
result in an increased error. However, this does not indicate that the machine-learning model is not able to
extract the crucial features of the flow field. Instead, the errors are partially due to the modest displacement
of vortical structures. In addition, the reconstructed vorticity field at u∞t/c = 5.10 shows that the transfer-
learned LSTM shows its superiority in estimating the small fluctuation behind the trailing edge compared to
the enhancement of data amount or diversity. Based on the insights gained from this study, we deduce that
when the influence from the disturbance is greater (strong disturbances with large sizes and the interactions
around the airfoil), the accuracy of the reconstruction is improved. Here again, the transfer-learned LSTM
greatly improves the estimation for the overall dynamic process.

5.4 Influence on the sensor positions

Next, let us examine the estimation performance of themachine-learningmodels trainedwith different numbers
and placements of the sensors. As shown in Fig. 13, we consider the uses of 8 sensors (case 1), 3 sensors around
the leading edge (case 2), 3 sensors on the top surface (case 3), 3 sensors around the trailing edge (case 4), and
3 sensors on the bottom surface (case 5), respectively. With 8 sensors (case 1), the lowest L2 error is achieved
compared to the other cases with 3 sensors, as expected. With 3 sensors, we observe that Case 5 with the
bottom surface sensors usually presents a lower error than Cases 2–4 for the whole time range. This is likely
because the sensors on the pressure side may sense the vortical structures approaching an airfoil easier and
earlier than having sensors on the suction side.

We also assess the estimation performance over time in Fig. 13. Before the vortical disturbance impinges on
the airfoil (u∞t/c < 2) and after the vortex moves away from the trailing edge of the airfoil (u∞t/c > 4), we
observe relatively low L2 error. For u∞t/c ∈ [2, 4], due to the complex interactions between the disturbance
and the airfoil, the estimation for this time period is more difficult than other times. However, we note that
the present model still achieves qualitative reconstructions even for the strong vortex–airfoil wake interaction
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Fig. 12 Dependence of the reconstruction accuracy on the present enhancement methods with window training for vorticity wake
problem. Results are shown for the case (uθmax/u∞, R/c, y0/c) = (0.72, 0.64, −0.10)

Fig. 13 Dependence of the L2 errors on the sensor positions. Cases 1–5 denote 8 uniform sensors, 3 leading edge sensors, 3
top surface sensors, 3 trailing edge sensors, and 3 bottom surface sensors, respectively. The machine-learning model with the
condition of (ncase, nsss,LSTM) = (50, 50,Y) is used
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Fig. 14 Dependence of the reconstruction accuracy on the location of sensors for the reconstructed vorticity wake.
(ncase, nsss,LSTM) = (50, 50,Y) As a test case, we use (uθmax/u∞, R/c, y0/c) = (0.65, 0.40, 0)

Fig. 15 Machine-learning model robustness against noisy sensor measurements. a CL and CD , (ncase, nss,LSTM) =
(100, 50,Y), b CP , (ncase, nss,LSTM) = (100, 500,Y), and c Vorticity field ω, (ncase, nss,LSTM) = (100, 100,Y)

process, as depicted in Fig. 14. These reconstructed snapshots correspond to the moment u∞t/c = 2.12 for
(uθmax/u∞, R/c, y0/c) = (0.65, 0.40, 0). This implies that monitoring not only the scalar error measurement
but also the reconstructed flow fields is essential for appropriate assessments of machine-learning-based flow
estimations. These results also provide practical insights into the choice of sensor locations. It is recommended
that sensors are placed on the suction and pressure sides for the present problem.

5.5 Robustness against noisy sensor measurements

Let us evaluate the machine-learning model robustness against the noisy sensor measurements. We use the
Gaussian noise n for the sensor input s. Hence, the estimated output is expressed as

qn = F(s + n) (13)

where qn is the output of the model, F is the model trained without noisy inputs, and γ = ‖n‖/‖s‖ is the
magnitude of the noise.

The estimation performance of CL , CD , CP , and vorticity field with noisy inputs (pressure measurements)
are considered herein, as shown in Fig. 15. For all estimations, the error increases with the magnitude of the
input noise, as expected. The reconstructed CL , CD , CP , and vorticity field are also shown in Figs. 16, 17,
and 18. Regarding the estimated CL and CD in Fig. 16, the reconstructed CL and CD present smooth curves
without noisy input of γ = 0. With increasing γ , CL and CD have high fluctuations resulting in a larger L2
error but with the overall trend well reproduced.

The estimated CP from noisy pressure inputs is depicted in Fig. 17. While the error solely increases with
the noise magnitude, we find that the error at u∞t/c = 2.55 is larger than that at u∞t/c = 0.85. This is caused
by the intense wake-vortex gust interaction at u∞t/c = 2.55 which induces rapid changes in the pressure
distribution on the airfoil surface. Although the error reports approximately 0.5 with γ = 0.178, the whole
trend of the CP curve is well-estimated, supporting the robustness of the present machine-learning model.

The reconstructed vorticity fields across the different levels of noisy inputs are also exhibited in
Fig. 18. We show two cases of the vortical disturbance, (uθmax/u∞, R/c, y0/c) = (0.35, 0.95,−0.15) and
(−0.60, 0.91,−0.09). A large positive disturbance is introduced in the former case, while a negative vortical
gust travels over the airfoil in the latter case. In the case of (uθmax/u∞, R/c, y0/c) = (0.35, 0.95,−0.15), the
estimated vorticity field retains the primary vortical features for γ ≤ 0.178. The estimated flow field deviates
from the reference DNS field at γ = 0.28. For the case of (uθmax/u∞, R/c, y0/c) = (−0.60, 0.91,−0.09),
spurious negative structure attached to the trailing edge vortex emerges beyond γ = 0.178, albeit the overall
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Fig. 16 Reconstruction ofCL andCD subjected to different levels of input noise. Results are shown for (uθmax/u∞, R/c, y0/c) =
(0.96, 0.57, 0.21)

Fig. 17 Comparison of CP subjected to different levels of input noise. Results are shown for (uθmax/u∞, R/c, y0/c) =
(0.35, 0.93, −0.15)

Fig. 18 Comparison of estimated vorticity fields subject to different levels of input noise

flow is reconstructed well. At γ = 0.28, although the L2 error norm is relatively high, the main wake structures
are nonetheless reconstructed. These results suggest that the present machine-learning models that incorporate
dynamics are robust against noisy pressure measurements even with a small amount of training data.

6 Concluding remarks

High-fidelity machine-learning-based reconstructions are developed for aerodynamic force coefficients, pres-
sure distribution over the airfoil, and two-dimensional vorticity flows that experience an impact with a distur-
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bance vortex. Such reconstruction using sparse sensor measurements and a modest amount of training data is
extremely challenging due to the strong nonlinearities and the transient nature of flow fields which requires
a vast parameter space to be covered during the learning process. For accurate reconstruction, we developed
machine learning models that are suitable for estimating the transient flow features. A multi-layer perceptron
is chosen for its ability in constructing the nonlinear relation between limited sensor measurements and aero-
dynamic forces coefficient as well as pressure over the airfoil surface. A convolutional neural network coupled
withMLP addresses the problem of estimating the vorticity fields with rich information in an efficient waywith
the filtering process. To better capture dynamical features in time, long short-term memory (LSTM)-assisted
transfer learning is utilized via passing information from the historical scenarios, which is embedded in the
aforementioned two model structures. Due to the transient nature of the vortex–airfoil interaction problem, the
use of LSTM greatly assists in the improvement of the estimation with as few as 10 training snapshots.

The main contribution of the present study is how time-varying flows with a vast parameter space are
reconstructed accurately. For this study, the parameter space is comprised of maximum rotational velocity,
radius, and position of the disturbance vortex. As shown in this paper, careful sampling of training data
and incorporation of dynamics into the machine-learning model is important. Based on our study, we also
showed that accurate reconstruction of vortical structures is easier to accomplish for high-intensity interaction
processes between the vortical disturbance and the airfoil (strong vortex with large size, interacting close to the
airfoil). In addition, we accessed proper sensor locations over different time periods.We expect that the present
machine-learning-based reconstruction method will be useful in predicting and controlling flows associated
with vortex–airfoil interactions in the future.
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