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Abstract We consider estimation and control of the cylinder wake at low Reynolds numbers. A particular
focus is on the development of efficient numerical algorithms to design optimal linear feedback controllers
when there are many inputs (disturbances applied everywhere) and many outputs (perturbations measured
everywhere). We propose a resolvent-based iterative algorithm to perform (i) optimal estimation of the flow
using a limited number of sensors, and (ii) optimal control of the flow when the entire flow is known but only a
limited number of actuators are available for control. Themethod takes advantage of the low-rank characteristics
of the cylinder wake and provides full-dimensional solutions by implementing a terminal reduction technique
based on resolvent analysis. Optimal feedback controllers are also obtained by combining the solutions of the
estimation and control problems. We show that the performance of the estimators and controllers converges
to the true global optima, indicating that the important physical mechanisms for estimation and control are of
low rank.

Keywords Vortex dynamics · Resolvent analysis · Flow control

1 Introduction

Flow control is either passive or active, and can be of tremendous benefit in a number of applications [34]. A
robust and energetically efficient way to control fluid flows is active closed-loop control or feedback control,
which comprises actuators operating according to real-time information from the flowfield obtained by sensors.
In the last few decades, efforts have been made to improve the efficiency and effectiveness of feedback control
schemes and linear control theory (e.g. optimal control) has received considerable attention, providing a
rigorous and systematic approach for designing control laws [23]. However, direct implementation of linear
control theory is computationally challenging for most fluid-flow problems due to the high dimensionality of
the discretised Navier–Stokes equations.

1.1 Reduced-order modelling

One common approach for solving flow control problems is to form reduced-order models (ROMs) which
capture the essential mechanisms in fluid flows. Traditional control design tools can then be directly applied
to design low-dimensional controllers. For fluid flows dominated by vortices, e.g. bluff body flows, a simple
way of obtaining ROMs is to use vortex models [35,46,55]. Another alternative approach to build ROMs is
based on the proper orthogonal decomposition (POD) [48], the standard method of balanced truncation [52]
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or the eigensystem realisation algorithm (ERA) [41]. In particular, POD has shown its effectiveness for flow
control of the cylinder wake [32,60] and of channel flow [36]. The work of Rowley [57] further extended
balanced truncation to high-dimensional systems where approximate balanced truncation can be achieved
using a snapshot-based algorithm named balanced proper orthogonal decomposition (BPOD). The ERA is a
system identification method that is equivalent to BPOD and allows direct application to flow systems using
only DNS or experimental data [8,30,37,67,68] without requiring simulations of the adjoint system. These
methods were originally designed for stable systems of large dimension and were subsequently extended to
unstable systems either by a state-projection method [1] or by limiting the sampling time [30]. It was also
shown that a frequency-domain version of BPOD was directly amenable to unstable systems [27]. For a
deeper insight into these methods, a detailed comparison is presented by Ma et al. [49] using the example of
the flow past an inclined flat plate. As an alternative strategy, the works of Borggaard et al. applied model
reductionmethods (e.g. POD) directly to the solution of Chandrasekhar equations [18] and high-rank Lyapunov
equations [19], which allows the assembly of low-dimensional Riccati equations associated with large-scale
control problems. Stoyanov [63] further extended the method to solve a large variety of Riccati equations that
come from large-scale control problems such as the linear feedback control of the cylinder wake [20].

A fundamental goal of reduced-order modelling is to seek a low-dimensional description of a fluid flow. A
direct application is the work of Dahan et al. [25] where frequency responses were captured from a series of
numerical simulations under harmonic actuation over a broad range of frequencies. Recently, model decom-
position based on resolvent analysis has shown good potential for control purposes. The method has been
applied to efficiently characterise the input–output behaviour of a broad range of flows, such as cavity flow
[33], flat-plate boundary layer flow [61], pipe flow [51] and the flow past a cylinder [64]. The method allows
the direct formulation of the flow system in the frequency domain. Therefore, no special treatment is required
for unstable systems, and there are no restrictions on the frequency range over which the linear dynamics can
be captured.

1.2 Full-dimensional control

Feedback control for two- or three-dimensional fluid flows will typically require some form of model reduction
[4]. In the design procedure for full-dimensional control, although no direct model reduction is employed, the
number of inputs or outputs (i.e. terminals) in the control problem is generally limited to a small number.
This is true for most control problems, even multi-input-multi-output (MIMO) systems, where the number of
terminals m is still far less than the dimensionality of the flow system N . This improves the feasibility of a
number of algorithms for designing full-dimensional controllers directly from the original system.

Methods that bypass open-loop model reduction for high-dimensional control problems are summarised in
Bewley et al. [16],whoproposed severalRiccati-less control designmethods. In particular, theminimumcontrol
energy (MCE) algorithm developed by Bewley et al. [17] uses eigenanalysis for full-dimensional optimal
control problems under the limitation of an infinite control penalty. Themethodwas then applied as a theoretical
analysis tool to investigate the best control performance and the effects of sensor placement in the linear
feedback control of the unsteady cylinder wake [21]. In later research, Pralits and Luchini [54] circumvented
this limitation using theadjoint of the direct-adjoint (ADA) algorithmwhich extends adjoint-based optimisation
by considering the adjoint of the original problem instead. The dimension of the corresponding optimisation
problem can therefore be converted from size N to size m, where m � N denotes the number of outputs.
The exact solution of the Riccati equation associated with the original high-dimensional control problem can
then be approximated without directly solving the Riccati equation itself. The method has been applied to
optimal full-dimensional control design for a boundary layer [59], in which the resulting full-dimensional
controllers served as excellent benchmarks for the performance evaluation of the ROM-based controllers. In
recent research, Martini et al. presented a full-dimensional method for the optimal flow state estimation by
leveraging the resolvent framework [50]. Based on the forcing statistics of the flow, their approach was shown
to outperform the truncated response-mode estimation using the dominant resolvent response modes. Various
benchmark cases have been tested, demonstrating its feasibility to deal with transitional and turbulent flows
[2,50,66].

As an alternative, solving Riccati equations to obtain linear quadratic regulators (LQR) is a more direct
approach to the design of full-dimensional controllers. A classic method for large-scale Riccati equations is
the Chandrasekhar algorithm employed by Kailath [42] where the original problem is replaced by a series
of partial differential equations. The method is feasible provided the number of inputs or outputs is much
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smaller than the dimension of the original system. Efforts have been devoted to improving the efficiency of
the algorithm by incorporating iterative methods such as the Newton–Kleinman method [5,43] and the Krylov
subspace projectionmethod [9]. Recently, an efficient solutionmethod formulated byBänsch et al. [6] extended
the original Newton-ADI method for problems governed by ordinary differential equations (ODEs) to those
governed by differential algebraic equations (DAEs). The work of Benner et al. [11] further proposed an
improved inexact low-rank Newton-ADI method which incorporated many improvements [10,14,15,29]. An
extension of the method was then presented by Benner et al. [12] specifically for the Hessenberg index-2 DAE
case arising for fluid flow problems, which shows a speed-up of approximately 100 times when compared to
the algorithm used in the previous work of Bänsch et al. [6]. These efficient algorithms for solving large-scale,
sparse Riccati equations have been incorporated into the M.E.S.S. library [13,58] which allows one to design
full-dimensional optimal estimators and controllers for high-dimensional control problems arising from fluid
flows.

1.3 Objectives of the present work

As mentioned above, many previous studies concerning dimension reduction and control design suffer from
two major limitations: (i) optimal control based on ROMs usually considers only the open-loop behaviour of
the flow; (ii) direct design of full-dimensional controllers is limited to cases with a small number of inputs
and outputs. To address these issues, we use a resolvent-based algorithm for full-dimensional control design,
which achieves globally optimal performance for various control setups in high-dimensional flow systems.
For each feedback control setup, the approach finds optimal solutions to two independent problems. The first
problem is the optimal estimation problem in which the objective is to estimate the flow from limited sensor
measurements. The second problem is the full-state information control problem in which the entire flow
field is known but only limited actuators are available for control. A major contribution of the approach is
its handling of the optimal estimation and control problems (i) when disturbances are applied everywhere in
the domain (so-called full-state inputs) and (ii) when the flow is measured everywhere (so-called full-state
output). The method exploits an iterative scheme and the convergence to the global optima can be shown from
the convergence of the closed-loop energy spectra.

In this study, we employ the H2 optimal control tools established by Doyle et al. [28] to solve the optimal
feedback control problem for the two-dimensional flow past a cylinder. A complete introduction to the method
can be found in Skogestad and Postlethwaite [62], and a direct application to a one-dimensional flow system
can be found in Chen and Rowley [22]. The article is organised as follows. In Sect. 2, we formulate and
discretise the time-invariant model governing linear flow perturbations. The optimal estimation and control
problems arising from the flow system are presented in Sect. 3. A framework for solving the corresponding
high-dimensional Riccati equations is then introduced in Sect. 4. Here, we present an iterative algorithm to
obtain the global optimal estimator and controller, which together lead to an optimal feedback controller. In
Sect. 5, we test our method for the feedback stabilisation of the two-dimensional cylinder flow in which the
feedback setup aims to attenuate linear perturbations around the base flow. Conclusions are drawn in Sect. 6

2 Mathematical formulation

2.1 Governing equations

The feedback control of small-amplitude perturbations is analysed for the two-dimensional (2D) cylinder flow
governed by the incompressible Navier–Stokes equations:

∂tu = −u · ∇u − ∇p + Re−1∇2u,

∇ · u = 0,
(1)

where u(x, t) and p(x, t) are the velocity and pressure field, respectively. The Reynolds number Re = U∞D/ν
is defined using the free-stream velocity U∞, the cylinder diameter D and the kinematic viscosity ν to make
all variables dimensionless. The nonlinear equations are then linearised about the laminar base flow (U,P),
providing linear governing equations for small-amplitude perturbations:

∂tu′ = −U · ∇u′ − u′ · ∇U − ∇p′ + Re−1∇2u′ + f ′(x, t),
∇ · u′ = 0 .

(2)
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The nonlinear term u′ · ∇u′ is neglected due to our assumption of small perturbations and f ′(x, t) models any
external forcing, such as stochastic disturbances or actuation. The governing equations (2) can also be written
compactly as

∂

∂t

[
I 0
0 0

]
︸ ︷︷ ︸

E

[
u′
p′

]
=

[ L −∇()
−∇ · () 0

]
︸ ︷︷ ︸

A

[
u′
p′

]
+

[
I
0

]
︸︷︷︸
P

f ′(x, t), (3)

where the linear operator L = −U · ∇() − () · ∇U + Re−1∇2() and A denotes the linearised Navier–Stokes
operator around the base flow. The prolongation operatorPmaps a velocity vectoru′ to a velocity-zero-pressure
vector [u′, 0]T .

2.2 The discretised time-invariant model

The linearised Navier–Stokes equations (3) are discretised over the 2D computational domain shown in Fig. 1
using Taylor-Hood mixed finite elements on the computing platform FEniCS [47]. We use a structured mesh
with mesh points clustered smoothly near the cylinder and in the wake to appropriately resolve the details of
the flow. The mesh consists of 2.7×104 triangles with a minimum wall-normal spacing of 0.01 at the cylinder
surface. The compound state vector q = [u′, p′]T ∈ R

N thus corresponds to approximately N ≈ 1.2 × 105

degrees of freedom.
Having discretised the continuous equations (3), we can now express them in the form of a linear time-

invariant state-space model including any inputs and outputs:

Eq̇ = Aq + Bw
y = Cq .

(4)

The system matrix A ∈ R
N×N denotes the discretised linear Navier–Stokes operator and the global mass

matrix E = PMPT is defined using the prolongation matrix P ∈ R
N×Nu and the finite element mass matrix

M ∈ R
Nu×Nu associated with the velocity state of size Nu . Note that the superscript (·)T designates the

transpose, and we use (·)H for the conjugate transpose. The spatial–temporal discretisation of any external
forcing f ′ (e.g. an actuator at the position xa) is characterised by the matrix B ∈ R

N×2na and the time signal
w ∈ R

2na . The measurement y ∈ R
2ns is an output of interest (e.g. velocity u′ at the position xs) and is

characterised by the sensing matrixC ∈ R
2ns×N . Here, na and ns denote the numbers of actuators and sensors,

respectively. A feedback connection between the sensor output and the actuator input is then established to
attenuate flow perturbations.

The boundary conditions used for the linear model (4) are summarised in Fig. 1, and have been used
in many previous studies [38,45]. The base flow has the same boundary conditions as those depicted in the
figure except at the inlet �in where a uniform freestream velocity (i.e. U = [U∞, 0]) is enforced. Note that
the laminar base flows and discretised perturbation systems have been validated by comparing them with the
stability analysis results [7]. A sparse direct LU solver (MUMPS [3]) and iterative Arnoldi methods (ARPACK
[44]) are used for all linear problems encountered in the study.

Fig. 1 Computational domain and boundary conditions for the cylinder flow (only the top half segment of the entire domain is
shown)
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3 Optimal estimator and controller design

The aim of this section is to introduce the optimal estimation and control problems concisely, as these will
be used in Sect. 4. We describe the optimal estimation and control problems in Sect. 3.1 and their common
governing equations are formulated in Sect. 3.2. The numerical scheme to solve the corresponding optimisation
problems is introduced in Sect. 3.3.

3.1 The estimation and control problems

Our objective is to find a control signal from sensor measurements such that the flow perturbation is minimised
under the excitation of external disturbances and in the presence of sensor noise. The control that will be optimal
in minimisation flow perturbations arises, in one part, from the optimal filtering of any noise that corrupts our
signal and, in another part, from the optimal control when the entire flow state is assumed to be known. This
corresponds to two separate problems: (i) the optimal estimation (OE) problem and (ii) the full-information
control (FIC) problem, which can be solved independently based on Separation Theorem [31]. The optimal
feedback control (i.e. input–output control) law can then be constructed once these two problems are solved.
Figure 2 shows a summary of the problems investigated.

3.1.1 The optimal estimation (OE) problem

In order to employ feedback, one needs to know the flow state. However, only the sensor measurement is
available in any practical control setup. In the optimal estimation (OE) problem, we therefore aim to estimate
or observe the whole flow field from limited sensor measurements. More specifically, the flow estimate qe
is generated by applying the estimator gain K f to the difference between the sensor measurements from the
actual flow y(t) and the estimate ye(t), as shown in Fig. 2b. A major challenge for the OE problem is to form
the estimator such that the differences between the actual flow field and the estimate are small in the presence
of stochastic disturbances d and sensor noise n. This issue is addressed by solving the optimisation problem
that minimises the mean (time-averaged) kinetic energy of the estimation error JOE:

JOE = lim
t→∞

1

T

∫ T

0
eTQe dt, (5)

where e(t) = q(t)−qe(t) denotes the estimation error and thematrixQ = PMPT represents spatial integration
for computing the total kinetic energy.

3.1.2 The full-state information control (FIC) problem

The second step in the design of the optimal feedback control involves the solution of an optimal state-feedback
control problem in which the entire flow field is assumed to be perfectly measured or estimated (i.e. y = q).
The task of the FIC problem is therefore to attenuate flow perturbations using only limited actuators in the
presence of stochastic disturbances d, as shown in Fig. 2c. We aim to find the optimal full-state controller gain
Kr that minimises flow perturbations while also maintaining a sensible control effort:

JFIC = lim
t→∞

1

T

∫ T

0

(
qTQq + wTRw

)
dt. (6)

The cost function JFIC is composed of two contributions: (i) the kinetic energy of perturbations and (ii)
the control cost scaled by a matrix R. The matrix R is a weight matrix that controls the balance between
minimising flow perturbations and minimising the control cost.
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Fig. 2 Separation Theorem [31]. a Input–Output control (IOC) with only limited sensor measurements and limited actuation. b
Optimal estimation (OE) of the whole flow field using only limited sensor measurements. c Full-state information control (FIC)
using only limited actuators for control when the entire flow field is known

3.1.3 The input–output control (IOC) problem

Once the above two problems are solved, the optimal control signalw can be computed by applying the optimal
full-state controller to the estimated state, as shown in Fig. 2a. As suggested by the separation principle, the
feedback control law constructed from an optimal estimator and an optimal full-state controller is itself optimal.
In this case, the optimal estimator provides the best prediction of the entire flow field from limited sensors
contaminated by measurement noise. Based on this prediction, the optimal control signal is then generated for
limited actuators and gives the best attenuation of flow perturbations while maintaining a sensible control cost,
i.e. minimising the cost function JIOC defined in the same form as equation (6) for a specific choice of R.
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Fig. 3 Block diagram of the state-space model (7), which is denoted as a transfer function P(s) with the Laplace variable s

Table 1 A summary of system states, input and output matrices, and Riccati equations for the OE, FIC and IOC problems

P State Input Output y Performance z
x w Bq Bd Cy Dn Cz Dq

OE e −y K f W1/2 C V1/2 Q1/2 0

EXAT + AXE − EXCTV−1CXE + W = 0 K f = EXCTV−1

FIC q −y B W1/2 Kr 0
[
Q1/2

0

] [
0

R1/2

]

ETYA + ATYE − ETYBR−1BTYE + Q = 0 Kr = R−1BTYE

IOC

[
q
e

]
-y

[
B 0
0 K f

] [
W1/2

W1/2

] [
Kr −Kr
0 C

] [
0
V1/2

] [
Q1/2 0
0 0

] [
0 0
0 R1/2

]

3.2 The systems for estimation and control

We now consider the governing equations for the OE, FIC and IOC problems, which can be expressed as a
linear time-invariant state-space model P(s) shown by the block diagram in Fig. 3:

Eẋ = Ax + Bqw + Bdd
y = Cyx + Dnn
z = Czx + Dqw,

(7)

where the system state x represents the internal state of interest for each of the three problems. Table 1
summarises the system states, inputs, outputs and the performance-measuring matrices for the OE, FIC and
IOC problems. In particular, the optimal estimator gain K f and the optimal full-state controller gain Kr are
formed from the unique solutions of the generalised algebraic Riccati equations associated with the OE and
FIC problems, respectively.

Both the disturbances d and sensor noise n are modelled as uncorrelated zero-mean Gaussian white noise.
We inject stochastic disturbances over the entire velocity field (i.e. as the external forcing), and d is an Nu-by-1
vector whose statistical properties are given by W1/2 = P(M1/2)T after the spatial discretisation using a
finite-element method [24]. Here, Nu denotes the size of the velocity state and the matrix square root M1/2

computed from the Cholesky decomposition satisfies (M1/2)TM1/2 = M. We also include a contribution from
sensor noise in the measurement y and the diagonal matrix is set to V1/2 = αI.

The performance of either the estimator or the controller can be expressed by the mean kinetic energy of
the output z:

J = lim
t→∞

1

T

∫ T

0
zT z dt. (8)

Note that we choose Q1/2 = M1/2PT to measure the kinetic energy of the whole perturbation field and
R1/2 = αI to equally penalise all control signals.

3.3 Numerical Riccati solver

The state-space models arising from the discretisation of two- or three-dimensional fluid flows are gener-
ally of high dimension. Although it is common to perform numerical simulations for high-dimensional sys-
tems (i.e. N > 105), traditional control design tools (e.g. Riccati solvers) typically become computationally
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intractable for N > 103. The challenge of solving the large sparse Riccati equations associated with the OE and
FIC problems has been partially overcome by a sparse Riccati solver in the M.E.S.S. library [13,58] using an
extended low-rank method. However, a major limitation of the method is that the number of inputs and outputs
(so-called terminals) m should be much smaller than the dimension of the control problem, i.e. m � N. For
problems with either many inputs (e.g. disturbances applied everywhere) or many outputs (e.g. perturbations
measured everywhere), no efficient numerical tools are available to directly handle large-scale systems and
some special ‘terminal reduction’ techniques need to be considered to properly construct low-rank matrices
W1/2 and Q1/2 for the OE and FIC problems, respectively. In the next section, we will present an iterative
algorithm that combines resolvent analysis and proper orthogonal decomposition (POD) for full-dimensional
optimal estimator and controller design.

4 Resolvent-based performance optimisation

To overcome the challenges associated with many inputs and outputs, we now introduce a ‘terminal reduction’
technique that allows the design of optimal full-dimensional estimators and controllers in the presence of
disturbances everywhere (i.e. input d) and when measurements are applied everywhere (i.e. output z). The
method is developed based on resolvent analysis for mode selection (Sect. 4.1) and the proper orthogonal
decomposition (POD) in frequency space for efficient construction of low-rank orthonormal bases (Sect. 4.2).
The covariance and weight matrices appearing in the Riccati equations are then replaced by these low-rank
linear bases. In Sect. 4.3, we employ the method iteratively to find globally optimal estimators and controllers.

4.1 Linear optimal forcing and response modes

4.1.1 The H2 norm

The H2 norm of the transfer function Z(s) is a common way to quantify the performance of estimators or
full-state information controllers, which can be considered as the summation of the squared H2 norms of two
subsystems:

J = ‖Z(s)‖22 = ‖Z1(s)‖22 + ‖Z2(s)‖22, (9)

where J denotes the cost function defined for the OE problem (see (5)) or the FIC problem (see (6)). The
subsystem Z2(s) represents the transfer function that governs either the effect of sensor noise in the OE
problem or the control cost in the FIC problem (see Eqs. (19, 20) in Appendix A). Note that the dimensionality
of Z2(s) is determined by the number of sensors or actuators, which is generally small and thus computing
its norm is feasible and well-handled by the Riccati solver. However, Z1(s) represents the high-dimensional
transfer function from the disturbances d to either the estimation error e in the OE problem or the perturbations
q in the FIC problem. The corresponding H2 norm squared is:

‖Z1(s)‖22 = 1

2π

∫ ∞

−∞
Trace{ZH

1 ( jω)Z1( jω)} dω

= 1

2π

∫ ∞

−∞

Nu∑
i=1

σ 2
i ( jω) dω,

(10)

where σi ( jω) are the singular values of the transfer function Z1(s) at frequency ω arranged in descending
order. The singular values of a transfer function can be considered as energy gains between a series of inputs
and the corresponding outputs. We thus aim to minimise the integrated energy gain (10) for inputs and outputs
over all frequencies and all possible directions.

However, it is not feasible to consider all inputs or outputs while designing estimators or controllers for
a high-dimensional flow system (e.g. N > 105). Instead, we consider an alternative cost function γ 2(k, ωn)
which only considers a limited number of inputs and outputs within a specified frequency range:

γ 2(k, ωn) = 1

2π

∫ ωn

−ωn

k∑
i=1

σ 2
i ( jω) dω + ‖Z2(s)‖22, (11)
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Fig. 4 Resolvent analysis of the cylinder flow at Re = 90. The first three energy spectra (σ 2
i ) and the corresponding optimal input

and output modes (transverse component, real part) at the unstable frequency ω ≈ 0.76 are shown for comparison

in which only the first k orthogonal inputs and outputs across a limited frequency range ω ∈ [−ωn, ωn] are
considered. This cost function is constructed based on two facts: (i) for fluid flows, only a limited number
of dominant physical mechanisms occur within a finite frequency range, e.g. the instability of the linearised
cylinder flow occurs around ωc ≈ 0.8; (ii) these physical mechanisms can be approximated by a small number
of orthogonal inputs and outputs that have large energy gains σ 2

i , which are also the most significant for
estimation or control. Instead of minimising all energy gains over all frequencies and all possible directions
as described by the original cost function (9), it is more feasible to use the cost function (11) that considers a
significantly smaller number of inputs and outputs. Note that by choosing a sufficient number of orthogonal
inputs and outputs over a sufficient frequency range, the performance of the estimator or controller should
converge to the true global optimum.

4.1.2 Resolvent analysis

We now introduce the framework of resolvent analysis which forms the optimal forcing that maximises the
energy gain of the response. This is achieved using the generalised singular value decomposition of the transfer
function Z1(s):

Z1(s) = Q1/2(sE − A)−1W1/2 =
(
Q1/2Û

)



(
F̂
H
PTW1/2

)
. (12)

Here, we are considering the open-loop system (i.e. before any estimators or controllers are designed). The
Laplace variable s is evaluated at a particular frequency jω and 
 is a diagonal matrix containing the singular
values σi in descending order. The input and output matrices F̂ and Û each form an orthonormal basis with
respect to the matrices W and Q.

Figure 4 shows the first three singular values for the cylinder flow at Re = 90, and compares the corre-
sponding input and output modes at the unstable frequency ω ≈ 0.76. The first two output modes correspond
to vortex shedding. In particular, the leading output mode û1 corresponds to the amplification of upstream
inputs, while the second output mode corresponds to local amplification of disturbances. There exists a large
separation between the first (σ 2

1 ) and second (σ 2
2 ) energy gains. The third output mode, however, consists of

waves that are concentrated in the free-stream. For estimation and control, we might expect that the physical
mechanisms represented by the first two resolvent modes (e.g. vortex shedding) are the most important. It
is therefore acceptable to neglect free-stream modes and other less energetic modes while designing optimal
estimators and controllers.

In the OE problem, the white noise disturbances d can be thought of as random combinations of the input
basis in time, as given byW1/2 = PMF̂. It is worthwhile to note that there are usually large separations between
singular values σi such that only a limited number of forcing modes give rise to energetic responses that are
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Fig. 5 a Leading resolvent output modes (transverse component, real part) at the sampled frequencies when Re = 90. b The
corresponding PODmodes computed from the leading resolvent output modes. Note that these PODmodes form an orthonormal
basis that can reproduce resolvent modes via linear combinations

important for estimation. This allows us to consider only a truncated input matrix F̂k (with only the first k
columns) for optimal estimator design.Note that accounting for the accurate forcing colour of the flow is critical
to achieving optimal flow estimation. Recent research also highlighted this point by proposing a Riccati-less
estimator design method based on known forcing statistics which outperformed truncation approaches using
only the leading response modes [2,50]. As for the FIC problem with perturbation measurements everywhere,

the system states can be considered as linear combinations of the output basis as Q1/2 = Û
H
E. A truncated

output matrix Ûk can thus be used to reduce the number of outputs for optimal controller design since a
significant proportion of the energy of the flow’s response is usually concentrated in the first few output
modes.

4.2 Low-rank input–output bases

In the previous section, we used truncated resolvent input and output matrices at one specified frequency
(e.g. the unstable frequency) to approximate the covariance and weight matrices appearing in the OE and FIC
problems. This is because (i) resolvent input and output modes are optimally ranked in terms of energy gain so
that the first few modes capture the most energetic structures in fluid flows; (ii) resolvent input–output modes
are orthonormal with respect to the mass matrix and the truncated matrix forms a low-rank orthonormal basis
that can be directly substituted into the Riccati equations. Note that it is important to use orthonormal bases
because the original OE and FIC problems consider uncorrelated disturbances and independent measurements
over the whole domain.

However, it is important to note that we aim to minimise the energy gain integrated over a wide frequency
range, as defined by the cost function (11). The truncated input and output matrices F̂k and Ûk capture the most
important features of the system at one specific frequency and may not be appropriate at other frequencies.
This is most clearly shown in Fig. 5a in which the leading resolvent output modes at different frequencies show
significant differences. Therefore, we would like to construct a low-rank orthonormal basis that is appropriate
across a range of frequencies. One way to achieve this is to perform proper orthogonal decomposition (POD)
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of the resolvent modes across a wide frequency range, which will result in an orthonormal basis that is ranked
by the energy norm. For example, Fig. 5b shows the POD modes computed from the leading resolvent output
modes sampled at several frequencies, as shown in Fig. 5a. The leading resolvent output mode at each sampled
frequency can be represented by a linear combination of these POD modes.

To construct the orthonormal basis, we first consider a series of truncated input matrices F̂
(ω)

k or output

matrices Û
(ω)

k at sampled frequencies ω ∈ {ω1, · · · , ωn} as well as their complex conjugates. We choose the
first k resolvent modes from each input or output matrix so that the most important dynamics at each frequency
are included. Therefore, we can build complex-valued matrices containing all information across the sampled
frequencies:

ĤF =
[
F̂

(ω1)

k F̂
(−ω1)

k · · · F̂(ωn)

k F̂
(−ωn)

k

]
∈ C

Nu×2nk, (13a)

ĤU =
[
Û

(ω1)

k Û
(−ω1)

k · · · Û(ωn)

k Û
(−ωn)

k

]
∈ C

N×2nk, (13b)

Ĥ
 = diag
[



(ω1)
k 


(−ω1)
k · · · 


(ωn)
k 


(−ωn)
k

]
∈ C

2nk×2nk, (13c)

where diag[·] indicates a block-diagonal matrix. Now, we want to find the smallest linear subspace of each
matrix and then construct an orthonormal basis for this subspace. Notice that a complex vector ψ and its
complex conjugate ψH are both linear combinations of the real part and the imaginary part with complex
coefficients. That is, the linear span of these vectors has span{ψ, ψH } = span{Re(ψ), Im(ψ)}. Thus, by
replacing each complex conjugate pair of truncated matrices with a real-valued pair, one can build real-valued
subspaces without losing any information:

HF =
[
Re(F̂

(ω1)

k ) Im(F̂
(ω1)

k ) · · · Re(F̂(ωn)

k ) Im(F̂
(ωn)

k )

]
Ĥ

1/2

 ∈ R

Nu×2nk, (14a)

HU =
[
Re(Û

(ω1)

k ) Im(Û
(ω1)

k ) · · · Re(Û(ωn)

k ) Im(Û
(ωn)

k )

]
Ĥ

1/2

 ∈ R

N×2nk. (14b)

Here, each subspace is weighted by the square root of the diagonal matrix Ĥ
 and forms an eigenvalue problem
of the symmetric, positive-semidefinite matrix (i.e. HT

FMHF or HT
UQHU) with a smaller dimension 2nk:

HT
FMHF�F = �2

F�F, (15a)

HT
UQHU�U = �2

U�U, (15b)

where �F and �U are diagonal matrices with real and nonnegative energy norms λi in descending order, and
the columns of �F or �U are real, orthonormal eigenvectors. The orthonormal projection bases (either with
respect to M or Q) of (13), known as the POD modes, are given by

F̃ = HF�F�
−1
F ∈ R

Nu×2nk, (16a)

Ũ = HU�U�−1
U ∈ R

N×2nk . (16b)

These POD modes are sorted in descending order based on the magnitude of each λi , which indicate the
importance of each mode. A further truncation can be made so that we only need to consider the first m POD
modes for each case, as denoted by F̃m and Ũm . In this study, we allow a relative mismatch of less than 10−6

across the specified frequency range and m is chosen such that
∑m

i=1 λ2i ≈ (1 − 10−6) tr(�2) to capture a
sufficient fraction of the total energy norm.

4.3 Performance optimisation

In general, using a low-rank basis results in a local optimum for the optimal design problem with full-state
inputs and full-state outputs. This is because the low-rank basis that is good enough for the open-loop system
may not appropriately approximate the most important input-output directions of the closed-loop system.
Therefore, we need to perform POD not only for the open-loop system but also for the closed-loop system and
iterate until the estimation or control performance converges. The detailed steps of designing the global optimal
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Algorithm 1: Full-dimensional Optimal Estimator Design
Input: sensor measurements C, sensor noise α, number of resolvent spectra k, sampled frequencies ω ∈ {ω1, · · · , ωn},

stopping criterion θc
Output: optimal estimator K f

1 Initialising:
2 Construct global resolvent operatorH( jω) at each sampled frequency

3 Decompose the weighted resolvent Z1( jω) for the truncated input matrix F̂
(ω)

k

4 Assemble matrix HF from input matrices F̂
(ω)

k across sampled frequencies

5 Iterating:
6 while θt > θc do
7 Solving:
8 Construct low-rank basis F̃m from the leading POD modes of HF

9 Solve Riccati equation for estimator K f by settingW1/2 = PMF̃m

10 Update the closed-loop resolvent operatorH( jω):

H( jω) = ( jωE − A + K fC)−1.

Decompose the weighted resolvent for the truncated input matrix F̂
(ω)

k

11 Update matrix HF by including the matrices F̂
(ω)

k and F̃m :

HF = [
√
Trace{Ĥt


}/m F̃m Ht
F],

Ht
F =

[
· · · Re(F̂(ω)

k ) Im(F̂
(ω)

k ) · · ·
]
(Ĥ

t

)1/2.

12 Evaluate the estimation performance by integrating resolvent spectra:

γ 2
t (k, ωn) = 1

π

∫ ωn

0

k∑
i=1

σ 2
i ( jω) dω + ‖Z2‖22.

Compute the relative change of the performance at the current iteration:

θt = |γ 2
t /γ 2

t−1 − 1|.
13 end

estimator are summarised in Algorithm 1, which illustrates the design procedure in three stages: (a) initialising;
(b) solving and (c) iterating. The optimal full-state information controller can be designed analogously.

At the initial stage, the resolvent operatorH( jω) is constructed from the frequency-domain Navier–Stokes
equations linearised about the base flow. The singular value decomposition of the weighted global resolvent

Z1( jω) is performed at each sampled frequency, which results in the truncated input and output matrices F̂
(ω)

k

and Û
(ω)

k each consisting of orthonormal modes ranked by their energy gains σi in the diagonal matrix 

(ω)
k .

Note that only the first k resolvent modes are considered for the estimator optimisation and the most responsive
resolvent input modes at each sampled frequency are stacked together in the matrix HF (see Eq. (14a)).

Solving the large-scale Riccati equation associated with the OE problem is handled by a sparse Riccati
solver [58] which is capable of solving high-dimensional system matrices (i.e.A, E ∈ R

N×N ) but the number
of inputs (i.e. the size of disturbances d) is limited to be small. Therefore, we consider approximating full-
velocity-state random disturbances d ∈ R

Nu by reduced random disturbances dm ∈ R
m which disturb the

system through linear combinations of the input basis F̃m ( i.e. d ≈ F̃mdm). Here, the low-rank orthonormal
input basis F̃m is constructed from the leading POD modes of the matrix HF. By setting the covariance
matrix W1/2 = PMF̃m , the solution of the Riccati equation is obtained to form the optimal estimator K f
that minimises the estimation error under the stimulation of the dominant resolvent input modes across the
specified frequency range.

However, disturbance reduction is performed based on the open-loop system, and a number of possible
inputs discarded during the construction of the low-rank basis might become critical for the closed-loop
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Fig. 6 Flowchart of optimal estimator design. a Initialising: construct resolvent operatorH( jω) and perform resolvent analysis
across sampled frequencies; b Solving: construct low-rank input basis F̃m by applying POD analysis to the leading resolvent
input modes F̂k and solve the Riccati equation; c Iterating: update the low-rank input basis F̃m by including new resolvent input
modes F̂k and solve the Riccati equation

estimation error system. Therefore, we update the closed-loop resolvent operator and include the corresponding
resolvent input modes in the matrix HF:

HF =
[√

Trace{Ĥt

}/m F̃m Ht

F

]
, (17)

where matrices Ht
F and Ĥ

t

 consist of the resolvent input modes and the corresponding singular values at the

current iteration t . Note that we also include the previous low-rank basis F̃m in the matrix HF, scaled by the

coefficient
√
Trace{Ĥt


}/m so that it has the same total energy norm as Ht
F.

An iterative strategy is employed to further optimise the estimation performance γ 2(k, ωn). In particular, the
POD analysis of the updated matrixHF leads to a new low-rank input basis F̃m . Wemonitor the relative change
of the estimation performance until it reaches the stopping criterion θc. A detailed flowchart of implementing
Algorithm 1 is shown in Fig. 6. Note that resolvent analysis is central to this design method, as it is able
to predict dominant coherent structures even for higher Reynolds numbers [56,65]. By choosing a sufficient
number of resolvent modes over a sufficiently large frequency range, the method should result in an optimal
estimator that converges to the global optimal performance.
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Fig. 7 Comparison of a the first singular value σ1, b the third singular value σ3, c the sixth singular value σ6 and d the ninth
singular value σ9 as a function of frequency. They are computed either from the standard perturbation system (◦) or from the
terminal-reduced systems (lines). The terminal reduction is performed using different choices of k and ωn which correspond to
including the first k resolvent input modes within the frequency range [−ωn, ωn]

5 Numerical Results

In order to test our numerical method for the optimal estimation and control of fluid flows, we consider linear
feedback control of the cylinder wake at Re = 90 as an example. Here, we choose a single sensor placed
downstream at xs = (7.70, 0.73) to measure the perturbation velocity u′(xs, t) and a single actuator placed
near the cylinder surface (at xa = (2.56, 1.18)) to stimulate the flow in the streamwise and transverse directions
independently (i.e. ns = na = 1). Note that this choice is merely for demonstration and the algorithm is valid
for any reasonable choices of sensor and actuator placements. Based on this method, a recent investigation
has also been conducted to reveal the optimal control placements and the key physical mechanisms that limit
feedback control performance [39].

This section is organised as follows. The validation of low-rank bases and a convergence analysis of
Algorithm 1 are presented in Sect. 5.1 using different parameter choices. The implementation of the feedback
control design is then presented, which consists of three parts: (i) optimal estimator design when only a single
sensor is available for measurement; (ii) optimal full-state information controller design when only a single
actuator is available for control; (iii) feedback control with a single sensor for measurement and a single
actuator for control.

5.1 Validation and convergence analysis

The algorithm for solving the OE and FIC problems is based on an iterative strategy. Each step consists of
the projection of the original system onto a low-rank orthonormal basis and gives a terminal-reduced system
that retains only the most energetic mechanisms. For the sake of validation, we consider the terminal-reduced
system’s ability to capture the dynamics of the original system by comparing their resolvent spectra. For
brevity, we consider input reduction in the open-loop system (12) where the size of the random disturbances
is reduced to m after setting the matrix W1/2 = PMF̃m . The construction of the low-rank orthonormal basis
F̃m relates to two parameters: k and ωn which correspond to including the first k resolvent input modes over
the frequency range [−ωn, ωn]. With a good choice of parameters, any largely amplified linear inputs, as well
as their energy gains, can be well-modelled by the terminal-reduced system.

Figure 7 compares resolvent spectra from the standard perturbation system (◦) to those from the terminal-
reduced systems (lines) using four different parameter choices. As can be seen from the figure, the terminal-
reduced system is better able to capture the dynamics of the original system for a wider frequency range if
larger values of k and ωn are chosen. In particular, the comparisons from Fig. 7 indicate two important features
of the terminal-reduced system. First of all, the first k resolvent spectra from the terminal-reduced system
well-match those from the original system within the frequency range ω ∈ [0, ωn] (i.e. relative error less than
10−6). Second, the remaining resolvent spectra, which correspond to resolvent input modes that are excluded
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Fig. 8 Convergence of the iterative Algorithm 1 with four different parameter choices. a The convergence of the cost function
γ 2
t (k, ωn). b The convergence of the relative change of the cost function θt . The red dashed line indicates the chosen stop criterion

θc

Table 2 Rank of the reduced disturbance m, the cost function for the optimal estimator design γ 2(k, ωn) and the mean energy of
the total estimation error JOE (random disturbances applied everywhere) are listed for different parameter choices (k, ωn). The
optimal estimators are designed at Re = 90 with a sensor placed at xs = (7.70, 0.73) and sensor noise of magnitude α = 10−4

Case k ωn m γ 2(k, ωn) JOE

(a) 1 3 29 1878.28 21170.07
(b) 3 6 155 3574.74 21101.26
(c) 6 12 446 4522.91 21094.52
(d) 9 18 768 5316.83 21094.01

in the terminal-reduction procedure, poorly fit those from the original system. For example, the dash-dotted
lines, which correspond to the parameter choice k = 3 and ωn = 6 rad/s, match the circle markers reasonably
well for the first and third resolvent spectra within the frequency range [0, 6] rad/s, as shown in Fig. 7(a, b).
Nevertheless, in Fig. 7(c, d), which shows a comparison of the sixth spectra σ 2

6 and the ninth spectra σ 2
9 , the

dash-dotted lines in no case are following the circle markers.
We further consider the implementation of Algorithm 1 using the four above-mentioned parameter choices

for convergence analysis. In Fig. 8(a, b), the cost function γ 2
t (k, ωn) and the corresponding relative change θt

are shown as a function of the iteration number t . We notice that different choices of k and ωn show similar
convergence features and each cost function converges to a constant after only two iterations. Their relative
errors drop below the stop criterion θc = 10−4 after four iterations, which is deemed sufficient to guarantee
the converged estimator gain K f . As already mentioned, each iteration includes a resolvent-based terminal
reduction procedure (see Sect. 4.2) as well as iteratively solving a nonlinear Riccati equation [58]. Choosing
either a higher-value truncation criterion (e.g. capture more than 99.5% energy norm while truncating POD
matrices) or a lower Riccati solver tolerance will lead to further decrease in the relative error θt .

The results of the output reductions, as well as the convergence features of the FIC problem, are similar to
those presented above, in which the convergence of the controller is always guaranteed after four iterations.
The choice of parameters k and ωn is critical to the design of optimal estimators and controllers. We will show
further details about their effects on estimation and control performance in the following sections.

5.2 Optimal estimator design

5.2.1 Parameters and estimation performance

We now consider optimal estimator design at Re = 90 by implementing Algorithm 1 with four different
choices of the parameters k and ωn . The sensor noise has a negligible magnitude of α = 10−4. With this small
choice of α, the performance of the estimator remains insensitive to the sensor noise, and thus we are able to
analyse the effects of disturbances on the estimation error. Table 2 lists the rank of the reduced disturbances
m, the cost function for the optimal estimator design γ 2(k, ωn) and the resulting estimation performance JOE
for different choices of k and ωn . The cost function γ 2(k, ωn) is a norm squared when considering a limited
number of system inputs and outputs (i.e. low-rank inputs and outputs), whereas JOE represents the estimation
error when random disturbances are applied everywhere in the domain (i.e. full-rank inputs and outputs).

We immediately see that the rank of the reduced disturbances m increases with increasing values of k and
ωn . The physical meaning of the cost function γ 2(k, ωn) is the mean energy of the estimation error, while the
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Fig. 9 Spatial distribution of the estimation error εOE(x, y) with a sensor placed at (7.70, 0.73), which is marked by a blue dot
(blue dot). The optimal estimators are designed using parameters a k = 1, ωn = 3; b k = 3, ωn = 6; c k = 9, ωn = 12 and d
k = 9, ωn = 18. e The estimation error εOE when disturbances are applied everywhere over the domain. (f ) The differences of
the estimation error εOE between d and e (i.e. between γ 2(k, ωn) and JOE). All plots share the same linear colour scale [0, 10.5]

system is excited by the first k resolvent input modes across the frequency range [−ωn, ωn]. As expected,
a larger rank of the reduced disturbance m, i.e. considering more input directions, gives rise to a larger cost
function γ 2(k, ωn). By performing numerical simulations, we are able to evaluate the estimation performance
JOE based on the definition of the original OE problem: the mean energy of the estimation error when random
disturbances are applied everywhere in the domain. With estimators designed with larger values of k and ωn ,
we observe that the total estimation error JOE decreases and eventually converges to a constant (relative change
converges around 10−4).

It is also insightful to see the energy distribution of the estimation error throughout the domain and the
effect of the disturbances applied. Thus, we define a root-mean-square value εOE(x, y) such that

γ 2(k, ωn) =
∫

Ω

ε2OE(x, y) dΩ, (18)

where εOE(x, y) denotes the contribution of the estimation error throughout the domain (see Appendix B). The
contour plots of εOE(x, y) for the four cases listed in table 2 are shown in Fig. 9(a, b, c, d), respectively. We
notice that these contour plots show quite similar structures. In particular, the most significant contributions
to the estimation error are concentrated in two horizontal streaks which are approximately symmetric and
located around y ≈ 0.7. As expected, the smallest εOE occurs at the sensor location (blue dot) which divides
the two streaks into two regions: a near-wake area (between the cylinder and the sensor) and a far-wake area
(downstream of the sensor). The only difference among these plots is the slightly larger magnitude of εOE for
cases with larger k and ωn . This can be most clearly seen by comparing Fig. 9a to the remaining three plots.
We further consider the spatial distribution εOE from numerical simulations when disturbances are applied
everywhere, i.e. εOE defined using JOE, which is shown in Fig. 9e. Here, we use the same estimator as that used
in case (d) but we apply random disturbances everywhere in the domain instead of the reduced disturbances
of rank m. By comparing Fig. 9d, e, we see that the reduced disturbances produce lower estimation error in
the freestream but give almost the same characteristic structures (streaks described above) as the case with
disturbances applied everywhere. This can be more clearly seen in Fig. 9f, which plots the difference between
Fig. 9d and e: the region in which the streaks lie is white in space whereas the ‘background’ or ‘freestream’
area is of approximately uniform colour.

To quantitatively characterise the estimation performance, Fig. 10 compares the first four resolvent spectra
computed from the open-loop system (without estimator) to those from the closed-loop error system Z(s) for
the four cases. A comparison of the four plots reveals two important facts: first, with increasing values of k and
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Fig. 10 Comparison of a the first singular value σ1, b the second singular value σ2, c the third singular value σ3 and d the fourth
singular value σ4 from resolvent analysis of the open-loop system (◦) and the closed-loop systems Z(s) (lines) at Re = 90.
Estimators are designed for a sensor placed at (7.70, 0.73) using four different parameter choices

Fig. 11 Performance of the optimal estimator designed for different magnitudes of the sensor noise. a The total cost function
JOE as a function of the noise magnitude α. The grey area indicates the contribution of the sensor noise (||Z2(s)||22) to the total
cost function. b The mean energy of the estimation error due to unitary sensor noise

ωn , the resolvent spectra of the closed-loop error system eventually converge, as shown by the matched dashed
lines (k = 6, ωn = 12) and solid lines (k = 9, ωn = 18); second, the estimator significantly changes the first
two resolvent spectra but barely modifies either the third or the fourth singular spectra. These two observations
further validate the iterative method for solving the OE problem: it is unnecessary to optimise all energy gains
over the whole frequency range and a reasonable choice of k and ωn should give convergence to the global
optimal estimator. Note that γ 2(k, ωn) is defined as the integral over the first k resolvent spectra within the
frequency range [−ωn, ωn], whereas JOE is over all resolvent spectra across all frequencies. The gap between
the cost function γ 2(k, ωn)

2 and JOE represents the effect of ‘background’ or ‘free-stream’ modes which do
not affect the estimator design. In other words, the reduced disturbances used for the optimal estimator design
procedure allow us to ignore these ‘background’ modes (which are not important for estimation) and thus
reduce the complexity of computation.

5.2.2 Effect of sensor noise

The choice of sensor noise also affects the optimal estimation performance. The magnitude of the sensor noise
is determined by the matrix V1/2 = αI where the positive scalar α represents the relative size of the sensor
noise n to the disturbances d. To quantify their contribution to the total estimation error, we compute the
H2 norm squared of the corresponding transfer functions individually from numerical simulations. Here, let
Z1(s) be the transfer function from the disturbances d to the estimation error, and let Z2(s) be the transfer
function from the sensor noise n to the estimation error. It can be shown that ||Z1(s)||22 + ||Z2(s)||22 = JOE.
The performance of the optimal estimator for different choices of α and the corresponding contributions from
d and n are summarised in Fig. 11.
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Table 3 Rank of the reduced performance measuring m, the cost function γ 2(k, ωn) for the optimal control design and the
resulting control performance JFIC are listed with different parameter choices (k, ωn). The optimal FIC controllers are designed
at Re = 90 with an actuator placed at xa = (2.56, 1.18) and the control penalty is chosen to be β = 10−4

Case k ωn m γ 2(k, ωn) JFIC

(a) 1 3 25 1916.46 20950.07
(b) 3 6 156 3416.41 20856.78
(c) 6 12 467 4350.22 20840.40
(d) 9 18 789 5132.85 20837.68

In Fig. 11a, we can see that for α < 1, the estimation performance is insensitive to the precise choice of α.
With further increasing values ofα, the estimation error energy JOE increases logarithmically. The deterioration
of the estimation performance is owing not only to the contribution of the sensor noise, as indicated by the
grey area, but also to the contribution of disturbances (lower bound of the grey area). The value of α controls
the balance between measurement uncertainty and model uncertainty in the estimation problem. The estimator
tends to reduce the effect of the measurement uncertainty if it is designed using a larger value of α, as shown
by Fig. 11b. The normalised energy norm ||Z2(s)||22/α2, which reflects the effect of unitary measurement
uncertainty on the estimator performance, decreases with increasing values of α. As can be seen from the
figure, under the same amount of measurement uncertainty, the optimal estimator designed using a larger
value of α is more effective at reducing the estimation error due to sensor noise. In practice, one should choose
α based on a trade-off between the uncertainty of the measurements and the uncertainty of the model.

5.3 Optimal full-state information controller design

Analogous to the OE problem, the FIC problem can be solved by Algorithm 1 and replacing Q1/2 = Ũ
T
mE

in the Riccati equation. The number of outputs in the performance measure Z1(s) is thus reduced to the rank
of the POD basis m. In this section, we consider the optimal full-state information controller design for the
actuator placement xa = (2.56, 1.18) at Re = 90. The control penalty is chosen to be β = 10−4 to allow the
most aggressive controller that minimises the energy gains of the closed-loop system for the first k resolvent
output modes across the frequency range [−ωn, ωn]. The rank of the reduced performance measuring m, the
cost function for the optimal control design γ 2(k, ωn) and the resulting control performance JFIC for different
choices of parameters k and ωn are summarised in Table 3.

As expected, the rank of the reduced performance measuring m as well as the cost function γ 2(k, ωn)
increases with increasing values of k and ωn since more resolvent output modes and their energy gains are
considered. We further perform numerical simulations of the closed-loop system to evaluate the original
control performance JFIC defined by (6). We observe that the control performance JFIC slightly decreases with
increasing values of k and ωn and eventually converges to a constant with a relative change around 10−4.
For the cost function in the FIC problem, a root-mean-square value εFIC(x, y) can also be defined as in (18)
(see Appendix B). In this case, εFIC(x, y) indicates the contribution of every single disturbance to the energy
norm of the performance measure Z(s). In other words, it shows the spatial distribution of the receptivity to
disturbances applied in the closed-loop system and the region with larger values of εFIC has higher receptivity
and is more sensitive to disturbances (worst disturbance rejection ability) under the control of the actuator.

In Fig. 12a–d, we plot the receptivity εFIC defined from the cost function γ 2(k, ωn) for the four cases
listed in Table 3. We first notice that the receptivity of all four cases has almost the same spatial distribution
regardless of the values of k and ωn . In particular, the minimum of εFIC occurs near the actuator position where
linear perturbations are best controlled. Another significant observation from these contour plots is that the
spatial distribution of εFIC can also be divided into two regions: the first is near the cylinder and the second is
in the far wake (downstream of the actuator). Analogous to the OE problem, the only difference among these
plots is the slightly larger magnitude of εFIC for those cases with larger k and ωn . This can be most clearly
seen by comparing Fig. 12a, d. In Fig. 12e, we further consider the receptivity of the perturbation system
controlled by the same controller designed for case (d) but with full-state performance measuring. That is,
εFIC is defined from JFIC, which can be computed from numerical simulations of the corresponding adjoint
system (see “Appendix B”). From a comparison of Fig. 12d, e, their differences only occur in the ‘freestream’
area and the receptivity defined from γ 2(k, ωn) (with output reduction) exactly reproduces the characteristic
structures found using JFIC (without any reductions). This can be most clearly seen in Fig. 12f where regions
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Fig. 12 Spatial distribution of the receptivity to disturbances εFIC(x, y) under the control of the actuator placed at (2.56, 1.18),
which is marked by a blue dot (blue dot). The optimal full-state information controllers are designed using parameters a k = 1,
ωn = 3; b k = 3, ωn = 6; c k = 9, ωn = 12 and d k = 9, ωn = 18. e The receptivity εFIC with full-rank performance measuring.
(f ) The differences of the receptivity εFIC between (d) and (e) (i.e. between γ 2(k, ωn) and JFIC). All plots share the same linear
colour scale [0, 30]

Fig. 13 Comparison of a the first singular value σ1, b the second singular value σ2, c the third singular value σ3 and d the fourth
singular value σ4 from resolvent analysis of the open-loop system (◦) and the closed-loop systems Z(s) (lines) at Re = 90.
Controllers are designed for an actuator placed at (2.56, 1.18) using four sets of parameters

with high values of εFIC are white (negligible difference between (d) and (e)), whereas the ‘freestream’ area is
of approximately uniform colour.

Figure 13 shows comparisons of the first four resolvent spectra between the open-loop system and the
closed-loop systemZ(s) for the four cases listed in Table 3.We observe that the resolvent spectra of the closed-
loop system converge for larger values of k and ωn , as shown by the matched dashed lines (k = 6, ωn = 12)
and solid lines (k = 9, ωn = 18). In Fig. 13c, d, the third and the fourth singular spectra of the closed-loop
system are almost identical to those from the open-loop system regardless of the values of k andωn . Analogous
to the OE problem, it is unnecessary to optimise all energy gains over the whole frequency range to solve the
FIC problem, and a reasonable choice of k and ωn is sufficient to obtain a converged controller that achieves
globally optimal performance. The cost function γ 2(k, ωn), which excludes the effect of ‘background’ or
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Fig. 14 Performance of the optimal controller designed using different control penalties. a The total cost function JFIC as a
function of the control penalty β. The grey area indicates the contribution of the control cost (||Z2(s)||22) to the total cost function.
b The normalised control cost as a function of the control penalty β

‘freestream’ modes (that do not need to be controlled for good performance), reduces the complexity of the
original FIC problem and makes feasible the optimal full-state information controller design procedure.

5.3.1 Effect of control penalty

We now consider the effect of the control penalty on the optimal controller design. The control performance
is composed of two parts: (i) a contribution from the flow perturbations z1 = Q1/2q and (ii) the control signal
z2 = R1/2w, where Q1/2 = M1/2PT and R1/2 = βI. The balance between minimising perturbations q and
minimising the control signal w is thus controlled by the positive scalar β. To quantify their contributions
individually, the H2 norm squared of the corresponding transfer functions Z1(s) and Z2(s) are computed from
numerical simulations of the closed-loop system. It can be shown that ||Z1(s)||22 + ||Z2(s)||22 = JFIC. For
controllers designed using different values of β, the contributions from q and w are shown in Fig. 14 as well
as the total control performance JFIC.

From Fig. 14a, we observe that with a small value of β < 1, the control performance is insensitive to the
precise choice of β. This is consistent with previous findings for a spatially developing one-dimensional flow
[22]. A larger value of β is not only less effective at reducing the perturbation magnitude (lower bound of
the grey area), but also gives a control cost that increases logarithmically with β (grey area). Both of these
contributions result in the logarithmic deterioration of the control performance JFIC.

A measure of the control signal is given by the normalised H2 norm squared ||Z2(s)||22/β2 (i.e. control
effort) and a controller tends to stabilise the perturbation system with a smaller control signal if it is designed
using a larger value of β, i.e. less aggressive control. This can be most clearly seen in Fig. 14b where the norm
squared of the control signal decreases with increasing values of β and tends to converge to a constant for
β � 1. However, the control design algorithm may diverge and fail to find the solution of the optimal control
problem when the control penalty becomes extremely large (i.e. β → ∞). With an infinite control penalty, the
optimal control problem is referred to as the minimum energy stabilising control feedback that can be solved
by the Minimum Control Energy (MCE) algorithm proposed by Bewley et al. [17]. In this case, control leaves
those stable modes of the system alone and swings the unstable eigenvalues of the system into the left-half
plane (LHP) using the minimum amount of control effort. In practice, one should choose β based on a trade-off
between minimising perturbations while maintaining reasonably sized control inputs.

5.4 Optimal feedback controller design

Wenow turn our attention to the IOCproblemwhere the optimal estimator and the optimal full-state information
controller are combined to form a feedback controller as shown in Fig. 2a. In particular, we consider feedback
control of the cylinder flow at Re = 90 where a single sensor is placed at xs = (7.7, 0.73) with sensor noise
of magnitude α = 10−4 and a single actuator is placed at xa = (2.56, 1.18) with control penalty β = 10−4.
In this case, we aim to minimise the energy gain of the performance measure Z(s) defined in table 1 for the
IOC problem. The cost function γ 2(k, ωn) for the optimal feedback control design and the resulting control
performance JIOC for different choices of k and ωn are summarised in Table 4.

Similar to the OE and FIC problems, the cost function γ 2(k, ωn) increases with increasing values of k
and ωn for the IOC problem since more resolvent modes and their energy gains are considered. The feedback
controllers designed for the four cases are implemented in numerical simulations with random disturbances
applied everywhere, and the control performance JIOC is evaluated according to (6), which is summarised
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Table 4 Cost function γ 2(k, ωn) for the optimal feedback control design and the resulting feedback control performance JIOC
are listed for different parameter choices (k, ωn). The feedback controllers are found from solutions of the OE and FIC problems
at Re = 90 with a sensor placed at xs = (7.70, 0.73) and an actuator placed at xa = (2.56, 1.18). The sensor noise and control
penalty are chosen to be α = β = 10−4

Case k ωn γ 2(k, ωn)(×105) JIOC(×105)

(a) 1 3 1.370014 2.498071
(b) 3 6 1.663140 2.027560
(c) 6 12 1.759455 1.965255
(d) 9 18 1.793839 1.958116

Fig. 15 Comparison of a the first singular value σ1, b the second singular value σ2, c the third singular value σ3 and d the fourth
singular value σ4 from resolvent analysis of the open-loop system (◦) and closed-loop systems Z(s) (lines) at Re = 90. The
feedback controller is assembled from the optimal estimator and the optimal full-state information controller designed at Re = 90
with a sensor placed at xs = (7.70, 0.73) and an actuator placed at xa = (2.56, 1.18)

in table 4. We first notice the convergence of JIOC with increasing values of k and ωn , and the final relative
change decreases to around 10−3, which is larger than those observed in the OE and FIC problems. This is
mainly caused by the iterative algorithm which leads to converged results but with small relative errors when
compared to the true optimum. Moreover, the control performance rapidly deteriorates when the control setup
is switched from the optimal actuation or sensing (JOE or JF IC ) to the feedback control problem (JIOC).
In this case, the deterioration of control performance is due not only to the reduced ability of actuation and
sensing, but also to the severe time delay between the actuator and the sensor [38,53].

In this study, we characterise the control performance JIOC using the energy gains between orthonormal
inputs and outputs (i.e. resolvent analysis) over the whole frequency space. Therefore, Fig. 15 shows compar-
isons of the first four resolvent spectra between the open-loop system and the closed-loop system Z(s) for the
four cases listed in table 4. Analogous to the OE and FIC problems, we first observe the convergence of the
resolvent spectra for larger values of k and ωn , as shown by the matched dashed lines (k = 6, ωn = 12) and
solid lines (k = 9, ωn = 18). Furthermore, in the first two resolvent spectra, i.e. Fig. 15a, b, we observe large
separations between the open-loop system (◦) and the closed-loop systems (lines). Although slight deviations
are observed in the third resolvent spectra for ω < 1.6, Fig. 15c, d shows almost identical resolvent spectra
for the open-loop system and the closed-loop systems regardless of the values of k and ωn . Together with
similar observations for the OE and FIC problems, these findings are consistent with those of [26,40] where
two types of resolvent modes were identified: (i) those corresponding to important physical mechanisms in
the flow system that are required to be estimated and controlled and (ii) those representing the advection and
diffusion of perturbations in the freestream that can be ignored in the optimal control design procedure.
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6 Conclusions

We proposed a novel method to design H2-optimal estimators and controllers for high-dimensional fluid flows.
This involves solving high-dimensional Riccati equations with the full-rank covariancematrices (i.e.W andQ)
which is challenging for existing numerical solvers. This challenge has been overcome by exploiting low-rank
orthonormal bases that are constructed by performing a proper orthogonal decomposition of resolvent modes
across a wide frequency range. We have thus transformed the problem from one of minimising energy gains
between inputs and outputs over all frequencies and all possible directions to one of minimising the first few
resolvent spectra over a specified frequency range. An iterative algorithm was implemented to update the low-
rank orthonormal bases at each iteration using resolvent modes from the closed-loop system. Our numerical
results indicate that by choosing sufficiently many resolvent modes over a sufficiently large frequency range,
the performance converges to the global optimum in a few iterations.

We demonstrated the effectiveness of the algorithmby considering the linear feedback stabilisation problem
arising from the two-dimensional cylinder flowusing a single sensor and a single actuator. The optimal feedback
controller is solved by considering two basic problems: (i) an optimal estimation (OE) problem and (ii) a full-
state information control (FIC) problem. In the OE problem, the optimal estimation performance is robust
when the sensor noise is smaller than stochastic disturbances (i.e. α < 1). Similarly, the optimal FI control
performance is insensitive to the control penalty if we take minimising the perturbation magnitude as the
priority (i.e β < 1).

The algorithm has been implemented for different choices of parameters, i.e. the number of resolvent
spectra k and the frequency range ωn . The convergence of the corresponding results was shown by comparing
the resolvent spectra for the original open-loop system and the closed-loop systems resulting from four different
choices of k and ωn . We observed that the optimal estimators and controllers affect only the first few resolvent
spectra within a specified frequency range regardless of the parameter choice. This links directly to the findings
of [26,40] where two types of resolvent modes were identified: (i) those accounting for important physical
mechanisms in the flow system that are required to be estimated and controlled and (ii) those representing
the advection and diffusion of perturbations in the freestream that can be ignored in the design procedure.
We therefore see that although the discretised Navier–Stokes equations are high-dimensional, only a limited
number of physical mechanisms are important for effective estimation and control.
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A Transfer functions for estimation and control

Optimal estimation (OE). The transfer function governing the estimation performance Z(s) is subject to
disturbances and sensor noise:

Z(s) = [
Z1(s) Z2(s)

]
= Q1/2[sE − (

A − K fC
)]−1 [

W1/2 −K fV1/2
]
,

(19)

which consists of two subsystems: (i) from disturbances d to the weighted estimation error Q1/2e; and (ii)
from the sensor noise n to the weighted estimation error Q1/2e, denoted by Z1(s) and Z2(s), respectively.

Full-state information control (FIC). The transfer function measuring the control performance Z(s) incor-
porates two subsystems: from disturbances d (i) to the weighted perturbations Q1/2q and (ii) to the weighted
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control signal R1/2w, which are denoted by Z1(s) and Z2(s), respectively:

Z(s) =
[
Z1(s)
Z2(s)

]
=

[
Q1/2

−R1/2Kr

]
[sE − (A − BKr )]−1W1/2. (20)

B The root-mean-square of the norm

The root-mean-square value ε(x, y) is defined as:

γ 2(k, ω) =
∫

Ω

ε2(x, y) dΩ, (21)

where γ 2(k, ω) is the cost function of the associated design problem. In the OE problem, we can solve for ε2OE
by using resolvent response modes or the time series of the estimation error:

ε2OE =
∑
u,v

{ 1

2π

∫ ωn

−ωn

k∑
i=1

(
σi ûi

)�2
dω

}

= lim
t→∞

1

T

∫ T

0

∑
u,v

{
Q−1 (

Q1/2e
)�2

}
dt,

(22)

where the singular values σi and resolvent response modes ûi are computed from resolvent analysis of the
closed-loop system Z(s). Here, ()� is the Hadamard power and

∑
u,v denotes summation over the streamwise

and transverse components. In the FIC problem, a similar root-mean-square value εFIC can be defined from
the resolvent forcing modes or results from numerical simulations of the adjoint system.
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