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Abstract
Purpose: We present a constructive procedure for the calculation of 2-D potential flows in periodic domains
with multiple boundaries per period window.
Methods: The solution requires two steps: (i) a conformal mapping from a canonical circular domain to the
physical target domain, and (ii) the construction of the complex potential inside the circular domain. All singly
periodic domains may be classified into three distinct types: unbounded in two directions, unbounded in one
direction, and bounded. In each case, we use conformal mappings to relate the target periodic domain to a
canonical circular domain with an appropriate branch structure.
Results: We then present solutions for a range of potential flow phenomena including flow singularities,
moving boundaries, uniform flows, straining flows and circulatory flows.
Conclusion: By using the transcendental Schottky-Klein prime function, the ensuing solutions are valid for
an arbitrary number of obstacles per period window. Moreover, our solutions are exact and do not require any
asymptotic approximations.

Keywords Potential flow · Conformal mapping · Periodic domains

1 Introduction

Spatially periodic domains arise in almost every area of fluid dynamics. To name but a few applications,
flows through periodic domains have been used to model the beating of motile cilia [70], vesicle suspensions
in confined flows [55], and sedimentation of small particles [63]. Modern aerofoil designs exploit periodic
features in the form of drag-reducing riblets [40] and noise-reducing serrations [4]. In other aerospace applica-
tions, individual turbomachinery stages may be modelled as periodic “cascades” of aerofoils [8,64], thereby
permitting both aerodynamic [5,62] and aeroacoustic [42,58] analyses. Superhydrophobic surfaces are often
manufactured with patterned longitudinal periodic arrays of ridges [23,35,51], and porous media can be rep-
resented as arrays of periodically spaced pores [11,65]. In summary, the accurate and versatile mathematical
modelling of flows through periodic domains has applications in a wide range of fluid mechanical scenarios.
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In this article, we provide a constructive procedure for the calculation of such flows, i.e. a calculus for flows
in periodic domains.

Typically, the solution of a 2-D potential flow problem require two steps [1]: (i) a conformal mapping from
a (multiply connected) canonical circular domain to the physical periodic target domain of interest, and (ii) the
solution of the potential flow problem inside the circular domain. Due to the invariance of Laplace’s equation
under conformal mappings, these two steps combine to solve the full flow problem in the physical domain [50].
We adopt an analogous approach in our work and accordingly there are two objects to obtain in our calculus:
the conformal mapping and the potential flow solution. Historically, conformal mappings have been restricted
to simply or doubly connected domains, and almost always without periodicity. The archetypal example is the
Joukowski mapping [49] which relates the unit disc to a Joukowski-type aerofoil. The extension of potential
theory to general multiply connected domains came about in the early 2000s through the identification of
the Schottky–Klein prime function [9] as a fundamental object associated with multiply connected domains
[15,18,19,29,30]. The prime function has also found relevance in fluid mechanics problems since Crowdy
[20] presented a “new calculus of vortex dynamics” to enable the calculation of 2-D potential flows in multiply
connected domains. This present paper is a natural sequel of that work and we present an extension of [20]
to periodic domains. Similarly to [20], an appealing feature of our solutions is that they are valid for multiply
connected domains, i.e. multiple boundaries per period window. In fact, using the prime function allows us
to express the solutions in a consistent manner regardless of connectivity. The relevant theory of the prime
function is thoroughly summarised in a recent monograph by Crowdy [25], complete with a huge range of
applications and exercises.

The authors were motivated towards this study by a need to calculate the potential flow through a cascade
of aerofoils to analyse turbomachinery noise [6]. In previous work we found an asymptotic solution in the
thin aerofoil limit where the angle of attack and aerofoil aspect ratio are assumed to be small [5]. While that
solution offers physical insight in the form of asymptotic expansions, it is limited to a small class of aerofoil
geometries, and only a single boundary per period window. Conversely, the solutions we present in this paper
are valid for any geometry (provided the appropriate conformal mapping is available), and can account for
multiple boundaries per period window. Moreover, the new solutions here can account for more sophisticated
potential flow phenomena than the simple uniform flow previously considered.

The remainder of the article is arranged as follows. In Sect. 2, we present the mathematical formulation of
our problem and introduce the key mathematical objects. We define the canonical circular domain in Sect. 2.1
and the periodic target domains in Sect. 2.2. In particular, we differentiate between three possible types of
target domain and present the functional forms of the conformalmappings from a circular domain to these three
domains in Sect. 2.3. In doing so, we introduce the Schottky–Klein prime function (Sect. 2.3.4), which serves
as an essential tool for constructing potential flows through multiply connected domains. We then proceed in
Sect. 3 by calculating the potential flow within the multiply connected circular domain. We devote attention
to the cases of uniform flow, straining flow, and circulatory flows, which require special treatment due to the
periodicity of the target domain. Following this, we apply our calculus to the flow past a periodic array of slits
in Sect. 4. Finally, we summarise our results in Sect. 5 and suggest applications and future lines of research.

2 Mathematical formulation

In this paper, we seek to construct 2-D potential flow solutions in periodic domains. We now introduce the
main mathematical objects used to develop our solutions.

2.1 The canonical circular domain

We now define the canonical circular domain, denoted by Dζ . We take Dζ to be the interior of the unit disc
with M excised discs so that there are a total of M + 1 boundary circles. The unit disc is labelled as C0 and
the excised discs are labelled as

{
C j | j = 1, . . . , M

}
. The excised discs have centers

{
δ j | j = 1, . . . , M

}
and

radii
{
q j | j = 1, . . . , M

}
. For example, in the simply connected case (M = 0), the canonical circular domain

is the unit disc. In the doubly connected case (M = 1), the canonical circular domain may be taken to be
a concentric annulus without loss of generality. A typical quadruply connected (M = 3) circular domain is
illustrated in Fig. 1. In general, every point on the circle C j satisfies

|ζ − δ j |2 = (ζ − δ j )(ζ − δ j ) = q2
j . (1)
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Fig. 1 Amultiply connected circular domain Dζ for M = 3.C0 denotes the unit circle and
{
C j | j = 1, 2, 3

}
denote the boundaries

of the excised discs with centers δ j and radii q j . The grey colour denotes regions that are outside the domain of definition (colour
figure online)

Moreover, every circle C j has an associated Möbius map defined by

θ j (ζ ) = δ j + q2
j ζ

1 − δ jζ
. (2)

These Möbius maps have a specific geometrical meaning. For j > 0, we define C ′
j to be the circle obtained by

reflecting the circle C j in the unit disc C0. Using (1), it is possible to show that the image of C ′
j in the Möbius

map θ j is simply the circle C j . Therefore, each Möbius map θ j represents the reflection of the disc C ′
j in the

unit circle |ζ | = 1.
The structure of the branches in the circular domain is dependent on the periodic target domain defined

below: for type I domains there are two interior branch points, for type II there is only one interior branch
point, and for type III there are zero interior branch points although two interior circles are connected by a
branch cut. This structure is illustrated on the left hand side of Fig. 2.

2.2 The target domain

Every singly periodic domain belongs to one of three types, as illustrated on the right hand side of Fig. 2: type
I, where the period window is unbounded in two directions; type II, where the period window is unbounded
in only one direction; and type III, where the period window is bounded in every direction. We term the
periodic domain of interest the “target domain”. Moreover, each of these types may be related to a canonical
circular domain with an appropriate branch structure, as illustrated on the left hand side of Fig. 2. The circular
domain is discussed in more detail in Sect. 2.1. The target domain period window consists of an arrangement
of identical with period P . In this paper, we assume that P is real, although complex periods may be obtained
through an elementary rotation. The target domain period window consists of M + 1 boundaries which we
label

{
L j | j = 0, . . . , M

}
. We label the target domain Dz and endow it with complex coordinate z.

2.3 Periodic conformal mappings

In the present work, we consider mappings from multiply connected circular domains (labelled Dζ ) to target
period windows of singly periodic domains (labelled Dz), as illustrated in Fig. 2. In this section, we present
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(a)

(b)

(c)
Fig. 2 The preimage and target domains in type I, II and III domains in the case M = 2. The preimages of ±i∞, if they exist in
the target domain, are at a∞± or a∞. The branch cut is denoted by the light blue curve (colour figure online)
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the prototypical form of each type of mapping, along with simple examples to aid intuition. In Sect. 2.3.5, we
recapitulate a constructive formula for computing mappings to polygonal domains.

2.3.1 Type I periodic conformal mappings

Type I periodic geometries are unbounded in two directions; a typical type I geometry and its corresponding
canonical circular domain are illustrated in Fig. 2a. Accordingly, the mapping function f (ζ ) must contain
precisely two branch points in the circular domain Dζ : one that is mapped to +i∞, which we denote a∞+ ,
and another that is mapped to −i∞, which we label a∞− . Moreover, these branch points must have equal and
opposite coefficients, otherwise the mapping does not have the correct multi-valued structure. For period P ,
we may express every type I mapping in the general form

f (ζ ) = P
2π i

log

(
ζ − a∞+

ζ − a∞−

)
+ f̃ (ζ ), (3)

where f̃ is analytic in Dζ . It is straightforward to check that winding anti-clockwise around ζ = a∞± yields
an increase in f of ±P per loop. Type I mappings have found relevance in the study of superhydrophobic
surfaces [21], where themappingswere used to derive frictional slip lengths for grooved surfaces. Additionally,
these mappings have been applied to find analytic solutions for free boundary problems, including von Kármán
streets of hollow vortices [27] for both simply connected and doubly connected domains, and arrays of bubbles
in Hele-Shaw cells [68,69]

Perhaps the most simple type I periodic conformal mapping is

f (ζ ) = P
π

(
arctan

(
ζ

a∞

)
− arctan(ζa∞)

)
, (4)

where we have taken a∞ = a∞+ = −a∞− to be any point inside the unit disc. The mapping (4) transplants
the unit disc to a periodic array of vertical slits with period P . This mapping and its variants have been
previously applied in turbomachinery studies to calculate the background potential flow through a cascade of
flat plate aerofoils [42,57,62]. The approach presented herein allows more general studies to be conducted,
using alternative flow phenomenon and higher connectivities.

Some new periodic slit maps for type I geometries are presented in Appendix B.1.

2.3.2 Type II periodic conformal mappings

Type II periodic geometries are unbounded in one direction; a typical type II geometry and its corresponding
canonical circular domain are illustrated in Fig. 2b. Consequently, the mapping function f (ζ ) must contain
precisely one branch point in the circular domain Dζ . We may express every type II mapping in the general
form

f (ζ ) = P
2π i

log (ζ − a∞) + f̃ (ζ ), (5)

where f̃ is analytic in Dζ . It is straightforward to check that winding anti-clockwise around ζ = a∞ yields
an increase in f of P per loop.

Type II mappings have previously been used to study the interaction of a vortex street with a shear flow in
[32], and free surface Euler flows in [14]. In the simply connected case, [45] found an analogous form of the
Schwarz–Christoffel formula to type II geometries, although the preimage domain in that case was the upper
half-plane �[ζ ] > 0.

The most simple type II periodic conformal mapping is

f (ζ ) = P
2π i

log

(
ζ − a∞

|a∞|(ζ − 1/a∞)

)
, (6)

for any a∞ inside the unit disc. The mapping (6) transplants the unit disc to the upper-half plane in periodically
repeated strips.

A new periodic slit map for type II geometries is presented in Appendix B.2.
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2.3.3 Type III periodic conformal mappings

Type III periodic geometries are bounded in both directions; a typical type III geometry and its corresponding
canonical circular domain are illustrated in Fig. 2c. Consequently, the mapping function f (ζ ) cannot contain
any branch points in the circular domain Dζ . Instead, branch points are located at ∞ and at some γ which
we take to be inside the circle C1. Therefore, the branch cut passes through the boundary circle C0 and the
boundary circle C1. Accordingly, type III mappings may only exist when there is at least one excised circle
(M > 0). For period P , we may express every type III mapping in the general form

f (ζ ) = P
2π i

log (ζ − γ ) + f̃ (ζ ), (7)

where γ is located inside C1 and f̃ is analytic in Dζ . It can be verified that winding anti-clockwise around C0
and C1 results in an increase in f of P per loop. The main difference between the type III mapping (7) and
the type II mapping (5) is that the preimage of infinity is now located inside one of the boundary circles.

Type III mappings have been applied to study steady capillary waves on an annulus [13], and to derive
effective slip lengths for superhydrophobic surfaces [24]. Additionally, Floryan [43] derived the Schwarz–
Christoffel formula for type III geometries, although the preimage domain was a horizontal channel 0 <
�[ζ ] < h. The most straightforward type III mapping relates the concentric annulus to a periodic channel.
Such a mapping takes the functional form

f (ζ ) = P
2π i

log(ζ ).

When the annulus is of interior radius q , C0 is mapped to the real axis and C1 is mapped to the upper wall of
the channel at a height of P log(q)/(2π i).

A new periodic slit map for type III geometries is presented in Appendix B.3.

2.3.4 The Schottky–Klein prime function

The primarymathematical object in this paper is the “Schottky–Klein prime function”. In particular, wewill use
this “prime function” to construct both the conformal mappings from the circular domain to the target domain
and the complex potential in the circular domain. While the prime function is well known in the context
of Abelian functions [9], its relevance in the context of fluid dynamics problems has only been elucidated
relatively recently [18,20,29]. The prime function is a transcendental analytic function associated with a
particular canonical circular domain, such as that illustrated in Fig. 1. For brevity, we suppress the dependence
of the prime function on the conformal moduli (q j and δ j ) and write it as a bivariate function ω(ζ, α).

For example, in the case M = 0 where the canonical circular domain is the unit disc, the prime function
is simply defined as

ω(ζ, α) = ζ − α.

In the doubly connected case (M = 1), the canonical circular domain is the annulus

ζ = reiθ , q ≤ r ≤ 1, 0 ≤ θ < 2π

and the prime function may be written as

ω(ζ, α) = − α

C2 P(ζ/α, q),

where

P(ζ, q) = (1 − ζ )

∞∏

k=1

(
1 − q2kζ

) (
1 − q2kζ−1

)
,

C =
∞∏

k=1

(1 − q2k).
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In the more general multiply connected case, the prime function may be expressed as the infinite product

ω(ζ, α) = (ζ − α)
∏

θ∈	′′

(ζ − θ(α))(α − θ(ζ ))

(ζ − θ(ζ ))(α − θ(α))
, (8)

where	′′ represents the Schottky group (which is the collection of allMöbiusmaps θ j defined in (2)) excluding
the identity and all inverses [30]. It is possible to prove several salient properties of the prime function using
the definition (8). Firstly, ω(ζ, α) is analytic everywhere inside Dζ with a simple zero at ζ = α. Secondly, the
prime function is skew-symmetric so

ω(ζ, α) = −ω(α, ζ ),

and its conjugate satisfies

ω

(
1

ζ
,
1

α

)
= − 1

ζα
ω(ζ, α),

where the conjugate function is defined by ω(ζ, α) = ω(ζ , α). Finally, the prime function transforms under
the Möbius maps θ j as

ω(θ j (ζ ), α1)

ω(θ j (ζ ), α2)
= β j (α1, α2)

ω(ζ, α1)

ω(ζ, α2)
,

where the functions β j are defined in [30].
In practice, the poor convergence properties of (8) mean that it is rarely advisable to use this product

definition in numerical computations. Moreover, it is not even guaranteed that the infinite products in (8)
converge for all choices of multiply connected domains. Alternatively, recent algorithms presented by [28]
provide a rapid and reliable schemewith which to compute the prime function, and a numerical implementation
in Matlab is available at https://github.com/ACCA-Imperial/SKPrime. The approach of [28] is to express
the prime function as the solution to a boundary value problem which can be solved with standard numerical
methods. This approach supersedes the previous method of [31] where the prime function was expanded into
a Fourier–Laurent expansion about the centers of the excised circles.

A comprehensive treatment of the prime function may be found in a recent monograph [25].

2.3.5 The periodic Schwarz–Christoffel formula

Although the extended Riemann mapping theorem guarantees the existence of a conformal mapping between
two domains of the same connectivity, it is often difficult to construct such a mapping in practice. Schwarz–
Christoffel (S–C) formulae are useful tools for generating such mappings, as they represent constructive tools
that furnish a conformal mapping to a desired target domain. Typically, S–C mappings provide a conformal
mapping between a canonical domain (taken to be circles in the presentwork) and a polygonal domain, although
there are extensions available for polycircular arc domains [26], gear-like regions [47], and curved regions [44].
Although the mappings are explicit, every S–C mapping is subject to a family of accessory parameters that
must, in general, be determined numerically. A great deal of work has been devoted to solving this “parameter
problem”, and a comprehensive review is available in [39]. In particular, theMatlab program sc-toolbox
(https://github.com/tobydriscoll/sc-toolbox) allows the rapid computation of S–C mappings through the use
of several novel numerical algorithms [37,38].

Historically, Schwarz–Christoffel mappings were typically restricted to simply connected domains. A
major advance came about in the early 2000s when two groups of researchers independently extended the S–C
mapping formulae to consider multiply connected domains [15,17,36]. The latter has an advantage over the
former insofar as the mapping formula is written explicitly in terms of the aforementioned Schottky–Klein
prime function. Further work has been done to solve the parameter problem in multiply connected domains
[53]. Recent work [7] has further extended the original S–Cmapping to permit target domains that are periodic.
Similarly to other work by Crowdy [15,17], the mapping formula is phrased in terms of the Schottky–Klein

https://github.com/ACCA-Imperial/SKPrime
https://github.com/tobydriscoll/sc-toolbox
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prime function. Consequently, the formula is valid for any number of objects per period window. The mapping
formula is given by (6.3) in [7] as

f (ζ ) = A
ˆ ζ

1
SP(ζ ′)

M∏

j=0

n j∏

k=1

[
ω

(
ζ ′, a( j)

k

)]β
( j)
k

dζ ′ + B, (9)

where β
( j)
k is the k-th turning angle on the j-th circle and a( j)

k are the pre-images of the vertices, which must
generally be determined numerically. The constant A represents a scaling and rotation, and B represents a
translation. The definition of the function SP is dependent on the type of mapping. In type I mappings, SP
possesses simple poles at a∞± so that, when integrated, there are branch points at a∞± . The original S–C
mapping is recovered in the limit where a∞± → a∞ and the two branch points coalesce to form a simple
pole at ζ = a∞, thereby rendering the map non-periodic. Conversely, in type II mappings SP only possesses
a single pole (at a∞) whereas in type III mappings SP contains no poles in Dζ .

Now thatwe have presented the functional forms of periodic conformalmappings, we present our procedure
for constructing the potential flow in the circular domain.

3 Constructing the complex potential

In this section, we adapt the work of [20] to enable the calculation of complex potentials for flows in periodic
domainswithmultiple objects per periodwindow.An incompressible and irrotational flow possesses a complex
potential w = φ + iψ where φ and ψ are the velocity potential and streamfunction, respectively. Additionally,
the complex potential is harmonic so

∇2
z w = 0, z ∈ Dz .

We write the complex potential in the ζ -plane as W (ζ ) = w( f (ζ )).
Constructing the complex potential for a simply connected domain is relatively straightforward upon use of

the Milne-Thomson circle theorem [10]. However, problems in multiply connected domains are not subject to
the same analysis, and the complex potential must be phrased in terms of the Schottky–Klein prime function.
In this section, we present the complex potentials for flow singularities (including point vortices, source-sink
pairs, vortex spirals and doublets), flows induced by moving boundaries, uniform flows, higher-order flows,
and circulatory flows. The analytic solutions for singularities and moving boundaries are essentially equivalent
to the non-periodic analysis by [20], and do not require modification. Nevertheless, these solutions have not
previously been applied to periodic domains and therefore we reiterate the original solutions by Crowdy.
Conversely, the solutions for uniform flows, higher-order flows and circulatory flows must be modified to
account for the periodicity of the domain. Each type of periodic geometry must be considered individually,
although the solutions are all valid for arbitrary connectivities.

3.1 Singularities

Singularities embedded in a potential flow are frequently employed to model a host of physical phenom-
ena. In particular, point vortices are commonly used to represent discretised vorticity, which finds relevance
in geophysical fluid dynamics [66], unsteady aerodynamics [34], and aeroacoustics [48]. Accordingly, the
dynamics of point vortices has been described as a “classical mathematics playground” by [3]. The advantage
of modelling vorticity as point vortices is that the vorticity equation is replaced with a system of ordinary differ-
ential equations, which are usually far easier to solve numerically. The trajectories of more general classes of
singularities—sources and sinks, doublets etc.—can also be computed using the approach advocated by [54].
In this section, we recapitulate the complex potential for different types of singularities in multiply connected
domains.
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3.1.1 Complex potential for point vortices, WV

A fundamental object in constructing potential flows in multiply connected domains is the Green’s function,
G0, which satisfies

∇2G0(ζ, α) = −δ(ζ − α), for ζ ∈ Dζ , (10)

in addition to the requirement that the imaginary part of G0 takes constant values on every boundary circle
C j , j = 0, . . . , M . Consequently, G0 represents the complex potential induced by a unit strength point vortex
at α with a no-flux condition on every boundary. For a circular domain of arbitrary connectivity, such as that
illustrated in Fig. 1, Crowdy [29] showed that the Green’s function takes the form

G0(ζ, α) = 1

2π i
log

(
ω(ζ, α)

|α| ω(ζ, 1/α)

)
. (11)

Furthermore,G0 produces a circulation of−1 aroundC0 and zero circulation aroundC j , j = 1, . . . , M . Aswe
will explore in Sect. 3.5, it is often desirable to modify the circulation around the boundaries. However, while
G0 can change the circulation around C0, it cannot affect the circulation around any of the other boundary
circles. The circulations around C j , j = 1, . . . , M may be changed by introducing the modified Green’s
function

G j (ζ, α) = 1

2π i
log

(
ω(ζ, α)

|α| ω(ζ, θ j (1/α))

)
. (12)

The modified Green’s function G j produces +1 circulation around C j and zero circulation around Ci , for
i = 0, . . . , j − 1, j + 1, . . . M . We will use this fact later to construct flows with specified circulations around
each object, thereby satisfying the Kutta condition.

Since the problem is linear, we may construct the complex potential induced by n vortices of strength κk
located at αk in the circular domain by writing

WV (ζ ;α) =
n∑

k=1

κk G jk (ζ, αk)

= 1

2π i

n∑

k=1

κk log

(
ω(ζ, αk)

|αk | ω(ζ, θ jk (1/αk))

)
. (13)

In many applications each object must have a specific circulation. The circulation around each object may
be changed, without affecting other properties of the flow, by placing point vortices at one of the preimages
of infinity. For instance, we may remove the circulation around every object by placing appropriately tuned
vortices at, for example, a∞− , resulting in

WV (ζ ;α, a∞−) =
n∑

k=1

κk
(
G jk (ζ, αk) − G jk (ζ, a∞−)

)

= 1

2π i

n∑

k=1

κk log

(∣∣∣∣
a∞−

αk

∣∣∣∣ · ω(ζ, αk)

ω(ζ, a∞−)
· ω(ζ, θ jk (1/a∞−))

ω(ζ, θ jk (1/αk))

)
. (14)

3.1.2 Complex potential for a source-sink pair, WP

The complex potential for a source-sink pair of strength m is given by [22] as

WP(ζ ;α, β) = m

2π
log

(
αβ

|αβ| · ω(ζ, α)ω(ζ, α−1)

ω(ζ, β)ω(ζ, β
−1

)

)

, (15)

where the source is located at α and the sink is located at β in the circular domain. Additionally, WP induces
zero circulation around every boundary.



154 P. J. Baddoo , L. J. Ayton

3.1.3 Complex potential for a vortex spiral, WR

The complex potential for vortex spirals atα andβ in a circular domain are obtained by combining a source-sink
pair (15) with two point vortices:

WR(ζ ;α, β) = m

2π
log

(
αβ

|αβ| · ω(ζ, α)ω(ζ, α−1)

ω(ζ, β)ω(ζ, β
−1

))

)

+ �

2π i
log

(
|β|
|α| · ω(ζ, α)ω(ζ, β

−1
)

ω(ζ, β)ω(ζ, α−1)

)

. (16)

The complex potential WR produces zero circulation around every boundary.

3.1.4 Complex potential for a doublet, WD

The complex potential for a doublet of unit strength at angle λ at ζ = β in a circular domain is given by [20]
as

WD(ζ ; λ, β) = 2π i

[
eiλ

∂G0

∂α
− e−iλ ∂G0

∂α

]

α=β

.

It is possible to show that WD has a simple pole at ζ = β such that

WD(ζ ; λ, β) ∼ e−iλ

ζ − β
, (17)

as ζ → β.

3.2 Complex potential for moving boundaries, WB

In many applications, the boundaries in periodic domains are moving. In this case, the typical no-flux boundary
condition requires modification. In particular, the kinematic boundary condition states that the normal velocity
of fluid on a rigid surface must move at the same velocity as that surface. Consequently, we write

u · n = U j · n on L j , (18)

where n represents the normal direction, u represents the fluid velocity, and U j represents the prescribed
velocity of that boundary. In terms of the complex potential in the circular domain, (18) corresponds to

� [WB(ζ )] = Tj (ζ, ζ ), ζ ∈ C j , j = 0, . . . , M

where Tj are functions relating to the specific motion of each body. For example, for rigid body motions, Tj
takes the form (see “Appendix A”)

Tj (ζ, ζ ) = �
[
˙̄c j (z(ζ ) − c j ) − i

θ̇ j

2

∣∣z(ζ ) − c j
∣∣2

]
+ d j ,

where c j is a point in the object L j and θ j is the angle of rotation of L j around c j , and d j are constants that
satisfy a compatibility condition to be defined below.

In other words, the problem is now to find an analytic function, WB such that the imaginary part of WB
equals Tj (ζ, ζ̄ ) on the boundary of each circle C j . This is a form of the modified Schwarz problem, the solution
to which has been given by [19] for a circular domain of arbitrary connectivity as

WB(ζ ) = 1

2π

‰
∂ Dζ

Tj

(
ζ ′, ζ ′

) (
d log(ω

(
ζ ′, ζ

)
) + d log

(
ω

(
1/ζ ′, 1/ζ

))) + E, (19)

where E is an arbitrary real constant. In particular,WB has zero circulation around each circleC j . The boundary
data must also satisfy the compatibility condition (44).
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The integral in (19) is taken over every boundary circle and can therefore be decomposed into contributions
from each circle. Consequently, the solution to the modified Schwarz problem may also be expressed as

WB(ζ ) = − 1

2π

M∑

j=1

‰
C j

Tj

(
ζ ′, ζ ′

) (
d log(ω

(
ζ ′, ζ

)
) + d log

(
ω

(
θ j (1/ζ ) , 1/ζ ′ )))

+ 1

2π

‰
C0

T0
(
ζ ′, ζ ′

) (
d log(ω

(
ζ ′, ζ

)
) + d log

(
ω

(
ζ ′, 1/ζ

)))
+ E,

where θ j is the Möbius mapping associated with the j-th boundary circle as defined in (2). In the case M = 0
there is a single object per period window and the solution to the modified Schwarz problem is given by the
Poisson formula [1]:

WB(ζ ) = 1

2π

‰
C0

T0
(
ζ ′, ζ ′

)
· ζ ′ + ζ

ζ ′ − ζ
· dζ

′

ζ ′ + E .

Furthermore, in the case M = 1 there are two boundaries per period window, and, when the canonical circular
domain is the annulus q ≤ |ζ | ≤ 1, the solution is given by the Villat formula [2,19]

WB(ζ ) = 1

2π

‰
C0

T0
(
ζ ′, ζ ′

)
·
(
1 − 2K

(
ζ ′

ζ

))
· dζ

′

ζ ′

− 1

2π

‰
C1

T1
(
ζ ′, ζ ′

)
· 2K

(
ζ ′

ζ

)
· dζ

′

ζ ′ + E,

where

K (ζ ) = ζ Pζ (ζ, q)

P(ζ, q)
.

3.3 Complex potential for uniform flows, WU

We now present our solutions for uniform flows through periodic domains. At this point our solutions diverge
from those of [20], and an alternative approach must be taken. In particular, each type of periodic geometry
must be considered individually.

3.3.1 Uniform flows in type I geometries

We now consider the case of uniform flow through a type I geometry. In the physical plane, the complex
potential wU for uniform flow of strength U inclined at an angle of χ to the horizontal satisfies

∇2
z wU (z) = 0, z ∈ Dz, (20a)

� [wU (z)] = c j , z ∈ L j , j = 0, . . . , M, (20b)

wU (z) ∼ Ue−iχ z, as z → ±i∞, (20c)

where c j are some constants. We write the complex potential in the ζ -plane as

wU (z) = wU ( f (ζ )) = WU (ζ ). (21)

Consequently, in the ζ -plane, Eqs. (20a), (20b) and (20c) become

∇2
ζ WU (ζ ) = 0, ζ ∈ Dζ \ {a∞±} , (22a)

� [WU (ζ )] = c j , ζ ∈ C j , j = 0, . . . , M, (22b)

WU (ζ ) ∼ Ue−iχ f (ζ ), as ζ → a∞± . (22c)
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Use of (3) transforms (22c) into

WU (ζ ) ∼ ±UP
2π i

e−iχ log(ζ − a∞±), as ζ → a∞± . (23)

Using an approach analogous to that of section 6.2 of [20], we can construct the complex potential by taking
linear combinations of point vortices (14) and source-sink pairs (15) located at the preimages of infinity. Note
that the complex potentials for point vortices and source-sink pairs are analytic and take constant boundary
values on each circle C j . Therefore, the complex potentials each satisfy (22a) and (22b). We must now
strategically choose combinations of source-sink pairs and point vortices to achieve the correct asymptotic
behaviour (22c). In particular, a unit strength source-sink pair has the asymptotic behaviour

WP(ζ ; a∞+, a∞−) ∼ ± 1

2π
log(ζ − a∞±), (24)

as ζ → a∞± , whereas a unit strength point vortex has the asymptotic behaviour

WV (ζ ; a∞±) ∼ 1

2π i
log (ζ − a∞±) . (25)

as ζ → a∞± . Comparison of (24) and (25) with (23) shows that we may write WU as

WU = UP (− sin(χ)WP(ζ ; a∞+, a∞−) + cos(χ) [WV (ζ ; a∞+) − WV (ζ ; a∞−)]) .

Note that the no-flux condition (22b) remains satisfied since we have taken real, linear combinations of the
complex potentials WS and WV . In terms of the prime function, we may expand WU into the form

WU (ζ ) = PU

2π i

(
e−iχ log

(
ω(ζ, a∞+)

ω(ζ, a∞−)

)
− eiχ log

(
ω(ζ, 1/a∞+)

ω(ζ, 1/a∞−)

))
. (26)

The solution (26) is equivalent to that of appropriately tuned vortex spirals (16) located at a∞± . It may be
shown by analytic continuation and Liouville’s theorem that (26) is unique in satisfying (22a), (22b), and (22c).
Moreover, WU (ζ ) is single-valued as ζ loops around any of the circles C j , which implies that each object has
zero circulation [16]. Alternatively, (26) can be interpreted as a special form of the vortex spiral introduced in
(16).

In the case where there is a single object per period window, we have M = 0 and (26) becomes

WU (ζ ) = PU

2π i

(
e−iχ log

(
ζ − a∞+

ζ − a∞−

)
− eiχ log

(
a∞−

a∞+
· a∞+ζ − 1

a∞−ζ − 1

))
. (27)

3.3.2 Comparison to solution for non-periodic flows

We now show that the solution for uniform flow through a periodic domain (26) collapses to the solution for
uniform flow through a non-periodic domain [20] in the large period limit. We take the limits a∞± → a∞,
which corresponds to the two branch points in the conformal mapping coalescing to form a simple pole.
Consequently, in this limit there is no branch cut and the mapping is not periodic. Taylor expanding the
logarithms in (26) yields

log

(
ω(ζ, a∞+)

ω(ζ, a∞−)

)
∼ (a∞+ − a∞−)

ωα(ζ, a∞)

ω(ζ, a∞)

= 2π i (a∞+ − a∞−)

[
∂G0

∂α

]

α=a∞
, (28a)

log

(
ω(ζ, 1/a∞+)

ω(ζ, 1/a∞−)

)
∼ (a∞+ − a∞−)

1

a∞2

ωα(ζ, 1/a∞)

ω(ζ, 1/a∞)

= 2π i (a∞+ − a∞−)

[
∂G0

∂α

]

α=a∞
, (28b)
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subject to addition of an arbitrary constant. The subscript α indicates the derivative with respect to the second
argument of the prime function. Substitution of (28a) and (28b) into (26) and rescaling P = P̃/ (a∞− − a∞+)
yields

WU (ζ ) = 2π iP̃U

[
eiχ

∂G0

∂α
− e−iχ ∂G0

∂α

]

α=a∞
,

which is equivalent to the complex potential for uniform flow through a non-periodic system as detailed in
section 6.2 of [20].

3.3.3 Uniform flows in type II geometries

The uniform flow for a type II geometry may be calculated in a similar fashion to that in Sect. 3.3.1 by
strategically placing flow singularities in the circular domain. In a type II geometry, the flow angle in the far
field is restricted to be parallel to the period. Therefore, the conditions onwU are equivalent to (20a) and (20b),
but (20c) is replaced with

wU (z) ∼ U z, as z → +i∞,

since we assume the period to be real and positive. Accordingly, instead of placing a vortex spiral (16) at the
preimage of infinity, we now place a point vortex (11) at the preimage of infinity and may therefore write the
solution as

WU (ζ ) = UP
2π i

log

(
ω(ζ, a∞)

|a∞| ω(ζ, 1/a∞)

)
. (29)

Note that this solution induces circulation UP on the circle C0, which corresponds to the lower boundary of
the target domain.

3.3.4 Uniform flows in type III geometries

Constructing the potential for a uniform flow in a type III geometry requires a different approach to that of type
I and type II since the period window is bounded. Instead we construct a flow that has a specified circulation
on the boundaries L0 and L1 of the period window. Additionally, since no point is mapped to infinity, there
can be no singularities of the complex potential in the circular domain. We may express the complex potential
for such a flow in the form

WU (ζ ) = UP(G1(ζ, α) − G0(ζ, α))

= UP
2π i

log

(
ω(ζ, 1/α)

ω(ζ, θ1(1/α))

)
, (30)

for any α ∈ Dζ , and where UP is now the circulation on C0 and C1. Note that these quantities are related to
the harmonic differentials v1 (also referred to as the first kind integrals) by lemma 5.1 of [28], which gives

G1(ζ, α) − G0(ζ, α) = −v1(ζ ) + v1(α) + 1

2
τ11 + 1

2π
arg

[
α

α − δ1

]
,

where τ11 is a constant.
The flux through a single period window is related to the circulation on C0 and C1. While the circulation

is given by the jump in velocity potential on, for example, C0,

U =
[

 [WU ]

]

ζ∈C0

,

the flux, Q, is given by the jump in streamfunction between C0 and C1:

Q =
[
� [WU ]

]ζ∈C1

ζ∈C0

.
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In general, there are no closed form relationships between U and Q. However, in the doubly connected case
for a concentric annulus of interior radius q , (30) becomes

WU (ζ ) = UP
2π i

log(ζ ),

and we may relate the flux to the circulation as

Q = UP
2π

log(q).

3.4 Straining flows

Our calculus may also consider straining flows where the flow velocity tends to infinity in the far-field.

3.4.1 Straining flows in type I geometries

We consider a straining flow whose complex potential has the far-field behaviour

w±
S (z) ∼ �±eiλ±e∓2π iz/P , (31)

as z → ±i∞ for real constants �±, λ±. The flow speed increases exponentially as the distance from the
boundaries increases. In the circular domain, (31) becomes

W ±
S (ζ ) ∼ ±�±

a∞+ − a∞−

ζ − a∞±
ei(λ±∓2π f̃ (a∞± )/P)

as ζ → a∞± . By comparisonwith (17), the complex potentials W ±
S may be constructed by taking appropriately

placed doublets and writing

W ±
S (ζ ) = ±2π i�̂±

[(
a∞+ − a∞−

)
e−iλ̂ ± ∂G0

∂α
− (a∞+ − a∞−) eiλ̂ ± ∂G0

∂α

]

α=a∞±
(32)

where

�̂± = �± exp
[
±2π�( f̃ (a∞±))/P

]
, (33)

λ̂± = λ± ∓ 2π
( f̃ (a∞±))/P. (34)

This solution also induces zero circulation about every boundary.
In an analogous way to Sect. 3.3.1 it may be shown that we recover the original straining flow solution of

[20] in the limit where the period is large, i.e. a∞± → a∞. In the non-periodic case, the flow is straining in
both directions at the same angle so we write �± = � and λ± = λ and consider the sum of the two solutions
in (32). Rescaling � = �̃P2 and P = P̃/(a+∞ − a−∞) and applying L’Hôpital’s rule then yields

W ±
S (ζ ) = 2π i�̃P̃2

[
e−iλ ∂2G0

∂α2 − eiλ
∂2G0

∂α2

]

α=a∞
, (35)

which is equivalent to equation (32) of [20].
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3.4.2 Straining flows in type II geometries

The complex potential for a straining flow in a type II geometry has the asymptotic behaviour

wS(z) ∼ �eiλe−2π iz/P . (36)

as z → +i∞ for real constants �, λ. The solution takes a similar form to that of (32):

WS(ζ ) = 2π i�̂

[
eiλ̂

∂G0

∂α
− e−iλ̂ ∂G0

∂α

]

α=a∞
,

where

�̂ = � exp
[
2π�( f̃ (a∞))/P

]
,

λ̂ = λ + 2π
( f̃ (a∞))/P.

3.4.3 Straining flows in type III geometries

We do not consider straining flows in type III geometries since the domain is bounded.

3.5 Complex potential for circulatory flows, W�

Thus far, we have deliberately only constructed solutions with vanishing circulation around each object. The
exception was the solution for point vortices introduced in Sect. 3.1.1, whose strengths affected the circulation
around the boundaries. We now explain how to tune the circulation around each object in the absence of
singularities in the flow.

3.5.1 Circulatory flows in type I geometries

In type I geometries, we may modify the circulation around each boundary by strategically placing vortices at
the preimages of infinity. To change the circulation around C j , we use the modified Green’s functions which
were introduced in (12). The complex potential for a circulatory flow in a periodic domain with no singularities
in the flow is given by

W�(ζ ) = −�+
0 G0(ζ, a∞+) − �−

0 G0(ζ, a∞−)

+
M∑

j=1

�−
j G j (ζ, a∞+) + �+

j G j (ζ, a∞−), (37)

for j = 0, . . . , M . The potential W� induces circulation � j = �+
j +�−

j around each boundary L j . The reason
for splitting � j in two parts is connected to the fact that there are "two infinities" in our geometry. By placing
vortices at a∞± we change the behaviour in the far field z → ±i∞, respectively. In particular, the far-field
behaviour of w� is

w� ∼ ±�±Pz as z → ±i∞, (38)

where �± = ∑M
j=0 �±

j . In words, including a nonzero circulation around the boundaries produces a far-field
flow parallel to the real axis.
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3.5.2 Circulatory flows in type II geometries

We employ a similar strategy to the previous section to modify the circulation around the boundaries in type
II geometries. In Sect. 3.3.3 we showed that a uniform flow may be constructed by placing a point vortex at
the preimage of infinity. This point vortex induced a circulation around the boundary L0, which represented
the lower boundary of the domain. To specify the circulations around the boundaries L j for j = 1, . . . , M,
we instead use the modified Green’s functions and write

W�(ζ ) =
M∑

j=1

� j G j (ζ, a∞).

This complex potential induces circulation� j around the boundary L j . Note that this complex potential affects
the flow in the far field, which is now

dw�

dz
∼ �P as z → +i∞,

where � = ∑M
j=1 � j .

3.5.3 Circulatory flows in type III geometries

In Sect. 3.3.4 we showed that uniform flows through type III geometries may be obtained by specifying an
equal circulation on boundaries L0 and L1. We now show how to specify the circulation around interior
boundaries L j for j > 1. Since the domain is bounded, the net circulation around the interior boundaries
must vanish. Otherwise, integrating the complex velocity around the boundaries would result in a nonzero
quantity, therefore violating Cauchy’s theorem as there are no singularities in the flow. In type 3 geometries,
the circulation around interior boundaries may again be specified with the modified Green’s function. For
example, the complex potential with circulation � j around L j for j > 1 is given by

W�(ζ ) =
M∑

j=2

� j G j (ζ, γ ),

for any γ ∈ Dζ . The net circulation around the interior boundaries must vanish, so
∑M

j=2 � j = 0.

3.5.4 The Kutta condition

In many applications, certain solutions produced by potential flow analyses are undesirable. In aerodynamics,
the flow at the trailing edge of a body must be finite [12,41], and satisfying this requirement is known as the
Kutta condition. We can express the total complex potential as

W (ζ ) = W�(ζ ) + W̃ (ζ ),

where W̃ represents the complex potential with vanishing circulation. Enforcing the Kutta condition requires
the velocity at each trailing edge to vanish. If the trailing edge of the boundary L j is located at ζ j in the circular
domain, the Kutta condition requires

dW�

dζ
(ζ j ) + dW̃

dζ
(ζ j ) = 0, j = 0, . . . , M. (39)

Since W� contains M + 1 unknown circulations, (39) represents an (M + 1) × (M + 1) linear system of
equations that can easily be inverted.

As noted in Sect. 3.5.1, in type I geometries, the effect of modifying the circulations is to modify the angle
and strength of the flow far away from the objects. Similarly, the effect of the Kutta condition is to modify the
far-field behaviour of the flow. For example, if an inlet flow angle is specified, the Kutta condition determines
the outlet angle.
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Fig. 3 Uniform flow through periodic arrays of slits with the Kutta condition applied

4 Example: flow through an array of slits

We now present a simple example as an illustration of our calculus. The calculus is implemented in Matlab
and the codes used to produce this example are available at www.github.com/baddoo/periodic-calculus. We
consider the flow through a periodic array of slits, which is commonly used to model the periodic blades
in a turbomachinery stage [6,8,46,52,56,60]. Under the assumption that the curvature of the duct passage
containing the blades is small—which is typically the case—an annular blade row may be ‘unwrapped’ into
a two-dimensional plane [59]. Additionally, the blades are typically thin so may be modelled at leading order
as flat plates, or slits. This arrangement is often referred to as a ‘rectilinear cascade of flat plates’.

The mapping for this type I geometry, which is valid for an arbitrary number of boundaries per period,
is the periodic angled slit map (47). We consider slits inclined at an angle of −π/4 to the real axis and an
incident flow inclined at an angle of −π/8. The complex potential for this flow is given by (26). Additionally,
we set the circulation around each slit so that the Kutta condition is satisfied at the trailing edges, which are
taken to be the end of each slit furthest downstream. Since we wish to maintain the specified inlet angle as
z → i∞, we place vortices in (37) at a∞− . The resulting streamlines are illustrated in Fig. 3 for flows past
one, two, three, and four slits per period window. By enforcing the Kutta condition, we effectively introduce a
small amount of viscosity at the trailing edge of the slit so that the fluid leaves the surface of the slit smoothly.
In the non-periodic case, the velocity of the circulatory contribution decays likeO(1/|z|) so the inclination of
the fluid ultimately returns to the original upstream angle of attack. However, in the periodic case, the velocity

www.github.com/baddoo/periodic-calculus
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Fig. 4 Flow through periodic arrays of slits with embedded point vortices and the Kutta condition applied

of the circulatory contribution tends to a constant in the far field (38) so the fluid exits the cascade at a new
angle. This is clearly seen in Fig. 3.

Previously, the current authors found solutions for the potential flow past a cascade of thin aerofoils [5].
Those solutions were only valid for asymptotically small angles of attack, whereas the present solution holds
for any angle of attack. Additionally, the present solution can account for more complicated flow phenomena,
such as point vortices (13). In Fig. 4, we include two point vortices of equal but opposite circulation. In tandem
with the Kutta condition, these vortices have a significant effect on the outlet angle of the flow, indicating that
vorticity can have a significant effect on lift on cascades. More complicated blade shapes also can be modelled
using the periodic Schwarz–Christoffel formula (2.3.5) as illustrated in [7].

5 Conclusion

In this paper,we have presented a constructive procedure for calculating 2-Dpotential flows in periodic domains
of arbitrary geometry and connectivity. The first step in the procedure is to construct a conformal mapping
from a circular domain to the physical target domain. A constructive formula for such mappings is available in
[7]. The second step in the procedure is to construct the complex potential for the flow in the circular domain.
By constructing both the conformal mapping and the complex potential in terms of the Schottky–Klein prime
function, the ensuing solutions are valid for arbitrary connectivities. Although the calculus we have presented
accounts for a range of flow types, of particular note are the complex potentials for uniform flow and point
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vortices: the former can be used to model the motion of the periodic array through a fluid (or vice-versa), while
the latter can be used to represent discrete quantities of vorticity.

The solutions we have found in this paper could be applied to a range of physical scenarios. In particular,
potential flows may be used to accurately model unsteady inviscid flows in aerospace applications [41].
Since the potential flow solutions struggle to account for viscosity, researchers are now turning to data-driven
methods to incorporate missing physics. While it is generally accepted that the Kutta condition is appropriate
to constrain the flow at the trailing edge, there is some debate regarding the flow condition at the leading
edge. After a detailed numerical and experimental campaign, [61] proposed a leading-edge suction parameter
criterion to control the amount of vorticity shed from the leading edge. This criterion was then applied by [33]
to couple a reduced-order model [34] with high-fidelity “truth” simulation [67] to calculate the lift on a flat
plate undergoing a sudden motion. Such a data-driven approach could certainly be applied to the geometries
in the present work to model flow separation in turbomachinery stages. This will be a topic of future work.
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A Rigid body motion kinematic condition

In this section we derive the kinematic boundary condition for the complex potential due to a rigid body
motion. In the physical plane, the complex potential induced by the motion of the boundaries is given by wB .
Following [18], we now manipulate (18) to derive a condition on the imaginary part of wB on the boundaries.
We note that the dot product may be rewritten in terms of complex notation as a · b = 
[āb] where a is
the obvious complexification of a. We also note that the tangent vector t may be written in complex form as
dz/ds, where s is the arc length. Therefore, the normal vector n may be written as −idz/ds and the kinematic
boundary condition (18) may be written as



[

ū(s) × −i
dz

ds

]
= 


[
Ū j (s) × −i

dz

ds

]
.

Using the standard representation of complex velocity, this expression becomes



[
dwB

dz
× −i

dz

ds

]
= 


[
Ū j (s) × −i

dz

ds

]
. (40)

The first term may be simplified by the chain rule to obtain



[
−i

dwB

ds

]
= 


[
−iŪ j (s)

dz

ds

]
.

In the present work, we only consider rigid bodies. Accordingly, the only possible motions are rotations and
translations. Therefore, every point z ∈ L j may be expressed as

z = c j (t) + η j (s)e
iθ j (t).

The velocity of each moving object may therefore be written as

U j (s) = ċ j (t) + iθ̇ j (t)η j (s)e
iθ j (t) = ċ j (t) + iθ̇ j (t)

(
z − c j (t)

)
.

http://creativecommons.org/licenses/by/4.0/
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Therefore, the kinematic condition (40) becomes



[
−i

dwB

ds

]
= 


[
−i ˙̄c j (t)

dz

ds
− θ̇ j (t)

(
z̄ − c̄ j (t)

) dz

ds

]
. (41)

Noting that

d

ds

∣∣z − c j
∣∣2 = 2


[
dz

ds

(
z̄ − c̄ j

)]
,

we may integrate the kinematic condition (41) with respect to arc length s to get


 [−iwB] = 

[
−i ˙̄c j (z − c j ) − θ̇ j

2

∣∣z − c j
∣∣2

]
+ d j , for z ∈ L j , (42)

for a constant d j are chosen to comply with a compatibility condition [19].
We write WB(ζ ) = wB(z(ζ )) and translate (42) into the canonical circular domain to obtain the condition

� [WB(ζ )] = �
[
˙̄c j (z(ζ ) − c j ) − i

θ̇ j

2

∣∣z(ζ ) − c j
∣∣2

]
+ d j ≡ Tj

(
ζ, ζ̄

)
, for ζ ∈ C j . (43)

Finally, the boundary data must furthermore satisfy the compatibility conditions
‰

∂ Dζ

Tj

(
ζ(s), ζ(s)

) ∂σ j

∂n
ds = 0, j = 1, . . . , M, (44)

where s represents the arc length, ∂/∂n represents the normal derivative, and σ j represent the harmonic
measures [19,28].

B Catalogue of periodic conformal slit maps

In this section, we present a range of new conformal slit maps from circular domains for periodic domains. The
definitions presented herein are exact and do not make use of any approximations. Moreover, the mappings
are valid for arbitrary connectivities and all types of periodic map: types I, II and III. The basic approach in
this section is to construct a mapping that relates a multiply connected circular domain to an intermediate slit
domain made up of either circular arc slits or radial slits. The circular domain is labelled Dζ , the intermediate
domain Dξ , and the target domain Dz . Taking a logarithm of the ξ -plane then results in periodic slit mapping
in the z-plane.

B.1 Type I periodic conformal slit maps

B.1.1 Type I parallel slit map

We first introduce the type I circular arc slit map, AI, defined in section 7.2 of [30] as

ξ = AI(ζ ; a∞+, a∞−) ≡ ω(ζ, a∞+)ω(ζ, 1/a∞−)

ω(ζ, a∞−)ω(ζ, 1/a∞+)
. (45)

This mapping relates each boundary circle to a circular slit of finite length, as illustrated in Fig. 5. The point
a∞+ is mapped to the origin, and the point a∞− is mapped to infinity. The angle and length of the slits depends
on the locations of the boundary circles in the preimage circular domain and the choices of a∞± . Accordingly,
taking the scaled logarithm

z = P
2π i

log (ξ) (46)

transplants each circular arc onto a periodically repeated horizontal slit. Again, the mapping is illustrated in
Fig. 5.
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Dζ Dz
Dξ

ξ = AI(ζ; a∞+ , a∞− ) z = P log(ξ)/(2iπ)

Fig. 5 A type I periodic parallel slit map for M = 3

Dζ Dz
Dξ

ξ = RI(ζ; a∞+ , a∞− ) z = P log(ξ)/(2iπ)

Fig. 6 A typical type I periodic perpendicular slit map M = 3

B.1.2 Type I periodic perpendicular slit map

We now introduce the radial slit map defined in section 7.5 of [30]:

ξ = RI(ζ ; a∞+, a∞−) ≡ ω(ζ, a∞+)ω(ζ, 1/a∞+)

ω(ζ, a∞−)ω(ζ, 1/a∞−)
.

This mapping transplants each boundary circle onto a finite radial slit, as illustrated in Fig. 6. Similarly to
the circular arc slit map (45), the lengths and angles of the radial slits depends on the conformal modulii and
a∞± . In an analogous way to Sect. B.1.1, applying the scaled logarithm (46) transplants each radial slit to a
periodically repeated vertical slit, as illustrated in Fig. 6.

B.1.3 Type I periodic angled slit map

We now take linear combinations of the parallel and perpendicular slit maps to obtain mappings for angled
slits. In particular, the mapping

S(ζ ; a∞+, a∞−, χ) = P
2π i

[
cos(χ) log (AI(ζ ; a∞+, a∞−)) − i sin(χ) log (RI(ζ, a∞+, a∞−))

]
eiχ

= P
2π i

[
log

(
ω(ζ, a∞+)

ω(ζ, a∞−)

)
− e2iχ log

(
ω(ζ, 1/a∞+)

ω(ζ, 1/a∞−)

)]
(47)

maps a circular domain to a periodic array of slits inclined at angle χ to the horizontal with real period P .
Such a mapping is illustrated in Fig. 7.

B.2 Type II periodic conformal slit maps

We now introduce the type II circular slit map, AI I , defined in section 7.1 by [30] as

ξ = AII(ζ ; a∞) ≡ ω(ζ, a∞)

|a∞|ω(ζ, 1/a∞)
. (48)

This mapping relates each boundary circle to a circular slit of finite length, except from C0 which is mapped to
itself. In addition, the point a∞ is mapped to the origin. An example of a type II circular slit map is illustrated
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Dζ Dz

z = S(ζ; a∞+ , a∞− , χ)

Fig. 7 A typical angled periodic slit map for M = 3

Dζ Dz
Dξ

ξ = AII(ζ; γ) z = P log(ξ)/(2iπ)

Fig. 8 A type II periodic parallel slit map for M = 3

Dζ Dz
Dξ

ξ = AIII(ζ; γ) z = P log(ξ)/(2iπ)

Fig. 9 A typical type III periodic parallel slit map for M = 3

in Fig. 8. Since the image of every circle has constant radius, taking the scaled logarithm (46) results in a
periodically repeating arrangement of slits with the image of C0 forming a boundary of the period window, as
illustrated in Fig. 8.

B.3 Type III periodic conformal slit maps

Finally, we introduce the type III circular slit map, AIII, defined in section 7.3 of [30] by

ξ = AIII(ζ ; γ ) = |γ |ω(ζ, 1/γ )

ω(ζ, θ1(1/γ ))
, (49)

for any γ ∈ Dζ . This mapping relates each boundary circle to a circular slit of finite length except C0, which
is mapped to itself, and C1 which is mapped to a disc centred at the origin. Taking the scaled logarithm (46)
then generates a channel with periodically repeated horizontal slits, as illustrated in Fig. 9.
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