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Abstract The need to numerically represent a free vortex system arises frequently in fundamental and applied
research. Many possible techniques for realizing this vortex system exist but most tend to prioritize accuracy
either inside or outside of the vortex core, which therefore makes them unsuitable for a stability analysis
considering the entire flow field. In this article, a simple method is presented that is shown to yield an accurate
representation of the flow inside and outside of the vortex core. The method is readily implemented in any
incompressible Navier—Stokes solver using primitive variables and Cartesian coordinates. It can potentially be
used to model a wide range of vortices but is here applied to the case of two helices, which is of renewed interest
due to its relevance for wind turbines and helicopters. Three-dimensional stability analysis is performed in
both a rotating and a translating frame of reference, which yield eigenvalue spectra that feature both mutual
inductance and elliptic instabilities. Comparison of these spectra with available theoretical predictions is used to
validate the proposed baseflow model, and new insights into the elliptic instability of curved Batchelor vortices
are presented. Furthermore, it is shown that the instabilities in the rotating and the translating reference frames
have the same structure and growth rate, but different frequency. A relation between these frequencies is
provided.

Keywords Helical vortices - Vortex dynamics - Mutual inductance instability - Elliptic instability

1 Introduction

The motion of an infinite helical vortex is one of the classical problems in applied mathematics and fluid
mechanics that was perhaps first time addressed by Levy and Forsdyke [1]. Such a vortex moves through the
fluid without changing its shape [2] and is an idealization of a common flow structure. Related to this problem
is that of determining the corresponding velocity field that a helical vortex induces in a certain domain . This
is of prime interest during numerical simulations and is a prerequisite for stability calculations.

The velocity induced by a given vorticity distribution may be obtained from the Biot—Savart law, which by
assuming that the vorticity is concentrated to a line vortex is expressed as

_ I =x(9)] x t(s)
00 =3 | —aer .
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where x is some point in & in which the velocity is to be evaluated, ¢ is the line vortex parameterized by s, ¢ is
the tangent vector to the line, I” is the vortex strength and x” denotes a point on 6’ [3] (|| - | refers to the Euclidean
norm). The analysis of a flow field induced by Eq. (1) is obstructed by the presence of the singularity in the
integrand when evaluated for a point on the vortex line. One way of circumventing this issue is to introduce a
cut-off length § and exclude a small region ||x — x’|| < § from the integration [4]. Another approach that was
suggested by Rosenhead [5] and elaborated upon by Moore [6] is to desingularize the integral by modifying
the denominator in (1) to (|lx — x’||> + u?)3/2. The parameters § or i can be chosen such that the induced
velocity at a point on the vortex matches that of a vortex ring for which an analytical expression is known [7].
Although these methods will give an accurate representation of the induced velocity far away from the vortex,
they are ad hoc and will provide an ill-defined flow field in the vicinity of the vortex core, which might be
the most important region from a stability point of view. To overcome this issue, two approximate solutions
valid inside and outside the core, respectively, of a perturbed straight vortex were derived by [8] using matched
asymptotic expansions. Later, Hardin [9] presented analytical expressions for the velocity field in the interior
and exterior of a helix, which were furthered by Okulov [10]. These expressions however provide no details of
the flow inside the vortex core. Elaborate expressions for this region have instead been presented by Callegari
and Ting [11] and by Blanco-Rodriguez et al. [12]. Among the more recent contributions, we also mention
the wake model proposed in [13], where the velocity field is evaluated through an asymptotic expansion of the
Biot—Savart law after the vortex line has been determined iteratively.

The main motivation of this work is the desire to accurately represent a system consisting of M helical
vortices numerically in order to perform a global stability analysis of this flow. A method of generating helical
vortices that have gained much popularity in the wind turbine community is the actuator line (ACL) method
[14]. Despite the success of the ACL method, it requires measured blade data to be available, which limits its
application and makes it difficult to implement for an arbitrary helix. It also generates a root vortex, which is
an inevitable feature in most real-world flows, but can be undesirable in a theoretical study. Another issue is
the requirement of a Gaussian kernel to distribute the forcing from the actuator lines onto the grid points of
the mesh, which may greatly influence the results and thus must be judiciously tuned [15].

A highly accurate baseflow is required when performing a numerical stability analysis. For the case of an
open flow with a prescribed (helical) vortex, this implies that a detailed flow representation is required both
inside the vortex core and in the far-field. Somewhat surprisingly, the above literature review has led us to
conclude that a general procedure for generating such a field is missing. In this article, we therefore propose
a step-by-step algorithm to generate a baseflow that is simple enough to potentially be implemented in a wide
range of solvers, yet yields sufficiently accurate results to enable a meaningful stability analysis to be carried
out. Our method is in certain aspects reminiscent of the technique recently discussed in [16], although more
general. Selcuk et al. [16] considers a specific formulation of the Navier—Stokes equations that imposes helical
symmetry and thereby reduces the three-dimensional flow problem to a two-dimensional one. Our method
is, however, derived in the context of primitive variables in a Cartesian coordinate system. As a result, any
vortex geometry and core structure is in principle possible in our framework. For the sake of brevity we will
however limit the discussion to the case of two interlaced helical vortices. In spite of a substantial interest for
this geometry within applications (e.g. rotor wakes etc.), there are still numerous open questions related to
the transition of this flow, such as the competition between different types of instabilities and the appearance
of these instabilities in different frames of reference, which motivate its further analysis. It is also a flow
for which theoretical predictions of the eigenvalues and eigenvectors are available, which provides a direct
means of validating the modeling approach. A recent experimental study by Quaranta et al. [17] has provided
detailed measurements for the configuration at hand. This ensures that the flow case investigated is physically
meaningful.

2 Baseflow generation

The fluid motion may in general be described as a combination of an isotropic expansion, a volume preserving
straining motion, and a rigid-body rotation [3]. In what follows, we will consider a flow field U that is assumed
to be solenoidal (i.e. have zero rate of volume expansion) and consist of a set of M helical vortices that are
embedded in a specified background flow. To determine U, the flow will be decomposed into an irrotational
part U and a rotational part U, such that U = U 4 U,
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2.1 Vortex-induced flow component
We consider first the rotational part and assume that this satisfies
V.U,=0, VxU, =w, (2a,b)

where @ is a specified vorticity field. Depending on the frame of reference, it might be useful to express the
vorticity field as the sum of a background field @y, and that due to a given vortex @y, such that

V.Uy =0, VxUy =wr, (3a,b)

v.Uy, =0, VxUy, =y, (3c,d)

where Uy = Uy, + Uy, . In this section, we focus on Uy, and defer a discussion about Uy, to the next. In

order to determine Uy, the flow can be expressed as a vector potential, Uy, = V x By, which substituted
into (3b) gives

Vx(VxBy,)=V(V-By)— Vszf = ws. 4)

Assuming that V - By, = 0, a Poisson problem is obtained for the vector potential

V2B, = —wr, ®)
which has the formal solution
1 wr(x")
By (x) = —[ ———dV(x) (6)
a7 Jg |lx — x'|

in the domain 2. This solution can be shown to be divergence-free if the vorticity field is either localized or
tangential to the boundary [3].

In order to compute By,, the global vorticity field @r induced by the M-multiple of helical vortices must
be determined. The center line of the jth individual vortex is a curve in R parameterized by s and given by

©;i(s) = (Reos(@(s) + ¥), Rsin(@(s) + ), Lp(s)", (7)

where ; = 2m(j — 1)/M is the angle separating the helices in the azimuthal direction (j € {1,..., M}),
and R and L is the radius and the reduced pitch of the helices, respectively. The reduced pitch is related to
the helical pitch, i.e. the streamwise separation & between two consecutive helix loops (of the same helix) as
L = h/(2m), and the angle ¢ is related to s by

s
¢(s) = —, ®)
Y

where ¥y = +/R? + L2 is introduced to simplify the notation. A right-handed orthogonal coordinate system
that is aligned with the helix line €’; for every s is provided by the Frenet—Serret formulae [18]

de; de; i dn; t db
_fztj, —]:n_]’ ﬂ:—_]_l’_-['bj’ —‘]:—‘L’nj, (9a,b,c)
ds ds Jo ds P ds
where
L R 1
T=—, K=", p=-— (10a,b,c)
Y )4 K

is the torsion, curvature, and radius of curvature, respectively. Considering an axisymmetric vortex, the vorticity
inaplane & (s, j) orthogonal to the local axial vector £ ; (s) and spanned by the local normal n j (s) and binormal
vector b (s), is expressed as @(r), where r is a local radial coordinate (see Fig. 1). (The tilde-sign is used to
denote variable quantities in the local coordinate systems.)
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Fig. 1 Sketch of the vortex (green), the Cartesian coordinate system and the Frenet—Serret coordinate system at s = ¢ = 0 and
J = 1. Shown is also the (s, j)-plane, which is spanned by the normal z; (s) and the binormal b (s) vectors to the helix center
line € (s), and is perpendicular to the tangential vector ¢ ; (s)

In order to evaluate the vorticity in a point x = (x, y,z)" € 2 due to the jth vortex, the appropriate
Z-plane containing this point must be determined. This is done by finding the shortest distance from x to €,
which amounts to solving the nonlinear problem

Rx sin(¢(s) + ;) — Rycos(¢(s) + ;) + qub(s) —Lz=0 (11

for ¢ (s). Equation (11) may have several roots, in which case the solution minimizing the distance is retained.
Even so, there may exist several ¢ that yield the same minimum distance. Although this could be a potential
issue, it is usually of minor concern provided that the vortices are concentrated such that the vorticity decays
quickly with distance from the vortex center line ;.

Given s and ¢ (s), the global Cartesian coordinates are mapped to the local Frenet—Serret coordinate system

E(s, ) = (s, ) n(s, ), BGs, )T by,
EGs, /) =T, ) (x = Cj(s) (12)

and expressed in cylindrical coordinates r = (r, 0, &)T. (Note that & = 0 since x € (s, j).) Once in
the local cylindrical coordinate system, the vorticity is evaluated. In this work, the Batchelor vortex [19] is
considered, which models a trailing edge vortex with an axial core flow. The axisymmetric vorticity profiles
@ =@, a )T read

20,
& =0, r) =="5

(5)e ", af o) = e, (13a.b.c)
a ma

where I" is the circulation, U, is the axial center line velocity and a is the radius of the vortex core. The
corresponding velocity profiles U " =0, 0% 05T are given as

~ ~ I ~
0r=0. 0" =5~ (1= "), T5) = Up + Uee™ 01, (14a.b.c)
r

where U is a constant. Subsequently, the vorticity is mapped back from the cylindrical to the Frenet—Serret
coordinate system, and then to the Cartesian coordinate system,

of;(x) =T, )~ (FO) @) (15)

(See “Appendix A” for definitions of T, F and their inverses.) The steps outlined by (11)—(15) are repeated
for every point in the domain and the contributions from every vortex are added, wf(x) = ij: | ©F (x).
Afterward, (5) is solved and Uy, is obtained by taking the curl of By;.
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2.2 Background flow component

The remaining flow components that need to be determined in order to complete the description of the baseflow
are the irrotational component U and the rotational background component U, . The irrotational part of the
velocity field has the properties

V.Us=0, VxUs=0. (16a,b)

This part can be written as the gradient of a scalar field (i.e. velocity potential) that satisfies the Laplace
equation [3]. The properties of U, are specified in (3c) and (3d). Both U and Uy, are dependent on the frame
of reference in which the vortices are viewed, and must hence be specified accordingly. The motion of a helical
filament can be described as a rotation in the ¢-direction, a translation in the z-direction and a slipping along
the filament [2]. Hence, two equilibrium frames exist in which the vortices will be steady (or quasi-steady),
namely a rotating and a translating frame of reference.
The inviscid motion of an equilibrium array of helical vortices has been considered by Okulov [10]. Such
a system moves and rotates with the following translational and azimuthal velocities
UZ = R (ﬂ — R.Q) U? =R (17a,b)
“ L \27R T ' ’

The angular velocity §2 is composed of the angular velocity induced by other vortices in the multiple, and the
angular velocity induced by the vortex itself. In [10], the following expression for this quantity is derived

r L L L
RL=——|M-— — In| ————— 1
47 R? [ I+ )2 (1 + )0 (n <M(1 +z2>3/2> " )

a 4 2 1 4 2, 3\ <3
+m<ﬁ + 3¢ +3+E_2_<Z -3¢ +§>W>

¢ R(1+60)\ 1
_<1+z2)3/2<1“( e >_Z)] e

where ¢ (+) is the Riemann zeta function, £ = L /R is the dimensionless reduced pitch (introduced to simplify
the notation) and a is the vortex core size. Equation (18) assumes a constant distribution of vorticity throughout
the core. In situations where more realistic vortices with a continuous vorticity profiles are considered, one
can choose a. to be the equivalent core size of a Rankine vortex without axial flow [8,20].

With the aid of (17) and (18), the motion of the equilibrium frames can be determined. In the rotating frame
of reference, which is common in numerical simulations [21,22], one has

oy =-22:(0, 0, )", U,=Q(y, —x, 0, U;=0, (19a,b,¢)

where Qf = ngl/ R — Uezq/ L. Equation (192a) and (19b) are readily seen to satisfy (3c) and (3d). For the
translating frame of reference on the other hand, one instead has

W =0, Uy =0, U=U(0, 0, 1)", (20a,b.c)

where Ug; = LQg = L Ugil /R— Uéq. The translating frame, although less common, is useful in many situations
since it enables a straightforward comparison with experimental results.

It is noted that (17) with (18) only correspond to equilibrium velocities in the absence of viscosity. When
viscosity is considered, the vortices will continuously diffuse, and hence one may expect the induced and
self-induced velocities to change slightly over time. The timescale over which this attenuation takes place is
however reasonably long, and therefore (17) and (18) may still yield a good estimate of the motion of the
helices for a limited time horizon. This is indeed verified to be the case in the direct numerical simulations
presented in Sect. 2.4.
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Table 1 Baseflow parameters used in the computations

Parameter Notation Value
Helix radius R 1.0
Circulation r —1.0
Number of helices M 2
Core size a 0.031
Effective core size Ae 0.050
Axial center line velocity U. -19
Helix pitch h 0.82
Reynolds number Re 6900
4.0

3.0

2.0

1.0

> 0.0

-1.0]

-2.0

-3.0]

(@ (b) °

Fig. 2 a Cross section of the mesh structure in the xy-plane showing the spectral element borders (the interior grid points are
shown in the second quadrant of the mesh). The mesh is extruded in the z-direction with equidistant elements. One period of the
two generated helices visualized by the A;-criterion [23]

2.3 Validation and implementation

The described approach has been implemented in the high-order spectral element solver Nek5000 [24], which
does not enforce helical symmetry but solves the Navier—Stokes equations in a Cartesian coordinate system
using primitive variables in a Py — Py_, formulation [25]. Homogeneous Dirichlet boundary conditions are
imposed on the outer rim and the flow is periodic in the z-direction (only one period of the helix is generated).
A cross section of the computational mesh is shown in Fig. 2a. Equation (5) is here preconditioned with an
additive Schwarz preconditioner [26] and solved with GMRES [27]. To solve (11), a standard bisection method
with interval bracketing is used [28].

The numerical values chosen are listed in Table 1 and correspond to the experimental configuration recently
investigated by Quaranta et al. [17]. The parameters are made dimensionless with the circulation measured in
the experiment I™* = 68.8 cm? /s and the measured terminal helix radius R* = 8.7 cm. The Reynolds number
is defined as Re = I"* /v* where v* is the kinematic viscosity. In addition, the experiments had a free-stream
velocity of U, = 37 cm/s, and the tip-speed ratio for this case was A = 5.4. The resulting two helices are
visualized in Fig. 2b.

In Fig. 3 vorticity and velocity profiles across the vortex core are extracted from one of the generated
vortices (¢ = 0, ¥; = 0) in the translating frame of reference, and compared against the theoretical profiles
given by (13) and (14). As seen, the method successfully generates a helix with the prescribed vorticity profiles.
Inside the support region of the vorticity profiles, the extracted velocities are also seen to closely match those
of the Batchelor vortex, but outside of this region they differ slightly. This is due to the fact that the vortices
induce a 21"/ h velocity difference between the outside and the inside of the helix [29], which is not accounted
for by (14). For the purpose of comparing the theoretical and extracted axial velocity profiles in Fig. 3d, the
coefficient Uy in (14c) is chosen to be the average difference between the theoretical and the numerical data.
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Fig. 3 Comparison between theoretical Batchelor profiles (solid line) given by (13)—(14), and data extracted from the field
obtained by solving (5) (filled circles). The data are extracted along the normal axis in the Z2(0, 1)-plane

2.4 Vortex adaptation

Although the vortex visualized in 2b fulfills all the desired properties, it is not a solution to the incompressible
Navier—Stokes equations

oU 1
— 4+ U -V)WU=-VP+—VU+F in 9, (21a)

at Re
V.-U=0 in9, (21b)
U=U;+U,, onod9. (21¢)

We insert the derived field as an initial condition for (21) and advect the solution for a short period of
time. To ensure an accurate time evolution, a third-order semi-implicit extrapolation/backwards differenti-
ation (EXT3/BDF3) time-integration is used. The advection term is evaluated using a convective formulation
that is stabilized using over-integration [30] and 1% of filtering [31] applied on the peripheral elements. The
term F on the right-hand side of (21a) is a volume force that in the rotating frame of reference corresponds to
the sum of the centrifugal and the Coriolis force,

Fem =9 (x, v, 0)', Feu=2 (U, -U*, 0)", (22a,b)
and in the translating frame of reference vanishes. (Note that the centrifugal force can be written as the gradient
of a scalar field, i.e. —wp x (wp x (x, y,0)T) = Ve where ¢ = Q%r(x2 + v2)/2, and hence be included into
the pressure-term on the right-hand side of (21a).)

The evolution of a counter- and a co-rotating vortex-pair under the influence of viscosity has been studied
numerically by Sipp et al. [32] and by Le Dizes and Verga [33], respectively. Recently, this process has also
been investigated for the case of a Gaussian helical vortex with different core sizes and reduced pitches [16].
As shown in these studies, the evolution of the vortex until merging may be divided into two different stages,
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namely an initial non-viscous adaptation followed by a viscous diffusion of the vortex. During the initial stage,
every vortex undergoes a rapid adaptation to the strain field produced by the curvature and the neighboring
vortex filaments. This is a non-viscous process characterized by strong oscillations. Once the oscillations have
decayed, the vortex settles into a slowly varying mean state where it evolves on a viscous timescale. During
this stage the vortex cores expand slowly until the merging stage is reached and neighboring vortex loops
rapidly approach each other [34].

To study the development of the present helical vortex, the aspect ratio of the vortex core in the &(0, 1)-
plane will be monitored. In this plane, the vortex centroid (77, 8)T and the vortex dispersion a about the centroid

are obtained from
‘—]// of dndp B—lf/ B dndp

1 . 1
0= [F// ((n—ﬁ)2+<ﬁ—ﬁ>2)@fdndﬂ]z,
S

where @° denotes the t1-component of the vorticity vector, the circulation is I" = f f 7 ot dndg, and the
integrals are taken over ., which is a part of the £2(0, 1)-plane that contains the vortex core [3]. The vortex
dispersion (23c) expresses the spread of the vorticity and may be interpreted as a measure of the vortex core
radius. Similarly, one can interpret

1 ; | ] ;
o = [F / /y(n et dndﬂ} L df = [F / fy(ﬁ _ et dndﬁ} ,

as the vortex dispersion in the different coordinate directions and define the aspect ratio of the core as e = a® /a"
[32].

The temporal evolution of the aspect ratio in the translating frame of reference is shown in Fig. 4a, in
which both of the above-mentioned stages can be identified. (The evolution is similar in the rotating frame
of reference.) Since the initial profile is relatively smooth, the oscillations damp out quickly such that the
adaptation stage only extends up till # & 0.4. From this point onwards, the solution will be close to a steady
solution to the Euler equations [32,33]. Figure 4 also shows the time evolution of the core velocity U, and the
vortex core radius a. The former is estimated by interpolating the velocities in .#’ to a polar grid centered at
(1, B) and averaging in the azimuthal direction, whereas the latter is estimated from (23c). As seen in Fig. 4c,
the expansion of the vortex core closely follows the viscous diffusion law of two-dimensional vortices given

(23a,b)

(23¢)

(24a,b)

by
a(t) = \/a3 + (4/Re)t, (25)

1.16 T -1.2 T 0.038 T

| -1.3 : :

1 1 1

1.12 ! 14 ! 0.036 !

1 1 1

1.08 | o T I 0.034 |

) . : D 16 : N US :
1 1 1

I I / I

1.04 ! -17 ! 0.02} , |

| -1.8 ! ’ !

1 1 1

1 _ 1 1

l0 02 04 0.6 0.8 1'90 02 04 06 0.8 0'030 0.2 04 06 0.8
(a) t (b) t (0 t

Fig. 4 Temporal evolution in the translating frame of reference of a the vortex core aspect ratio, b the axial core velocity and ¢
the vortex core radius (solid line) compared with the viscous core expansion described by (25) (dash-dotted line). The dashed
line indicates the time instance when the baseflow for the stability analysis in Sect. 3 is extracted
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Fig. 5 Cross section of the vortex core in the Z2(0, 1)-plane showing axial vorticity @¢ at a the beginning (t = 0) and at b the
end of the relaxation process (t = 0.4) in the translating frame of reference. Contour levels correspond to |&¢ | / max(| & =0 |) =
{1,0.5,0.1,..., 1073}

where ag is the initial core radius given in Table 1. In Fig. 5, the vorticity in the cross section at the beginning
and at the end of the adaptation stage is compared. During the adaptation, the vortex core develops from an
initially axisymmetric shape into an ellipse. This has been shown to be a stable shape for an inviscid Rankine
vortex in an irrotational strain field, given that the strain to vorticity ratio is small [35].

3 Stability analysis

In this section, the stability of the generated baseflow will be studied. The stability of helical filaments has
previously (among others) been considered analytically by Widnall [36] for a single helix, and by Gupta and
Loewy [37] and Okulov [10] for a helix multiple. _

We consider a perturbation with the ansatz function (u(x, 1), p(x, t)) = (@(x), p(x))e'®" + c.c., where
w € C is an eigenvalue and # € C3?, p € C are velocity and pressure eigenvectors, respectively. This
perturbation ansatz substituted into the linearized Navier—Stokes equations,

B 1
a—l: + W - -VYu+ (VU)u = —Vp+R—V2u+f in 2, (26a)
e
V-u=0 ing, (26b)
u=20 onoa, (26¢)

leads to an eigenvalue problem governing the temporal stability of the flow. Additional information regarding
the receptivity of different eigenvectors can be obtained by considering eigensolutions of the adjoint Navier—
Stokes equations [38]

ou’ . 1 .
_a_ut—(U'V)uTjL(VU)Tu' =—VpT+§V2u' + f7 in2, (27a)
V-u'=0 in 2, (27b)
ut =0 ondP, (27¢)

which are of the form (u'(x, 1), p(x, 1)) = (ftT(x), ﬁT(x))ei‘“*’, where (ﬁT, p") are adjoint velocity and
pressure eigenvectors. (Superscript asterisk denote complex conjugation.) These eigenvalue problems are
solved using a matrix-free approach [39] together with P_ARPACK [40,41].

In similarity to (21a), the force term f on the right-hand side of (26a) corresponds to a volume force that
must be included into the governing equation when considering the rotating frame of reference. However, in
contrast to the baseflow calculation, there is no centrifugal force present in the perturbation formulation and
in this case f = f .o = 22 W, —u*, 0)T (and correspondingly fJf =2Q(—u®Y, u™ 0)T).

We emphasize that the baseflow U does not correspond to a stationary solution of (21) as is commonly
assumed. However, as was noted in the previous section, it is indeed an approximate solution to the steady
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Fig. 6 Eigenvalue spectrum. Translating frame of reference: long-wavelength instabilities (red plusses), short-wavelength insta-
bilities (red crosses). Rotating frame of reference: long-wavelength instabilities (stars), short-wavelength instabilities (bullets).
Growth rates in the rotating frame of reference together with the frequencies in the translating frame of reference estimated using
(28) are plotted with open circles. The numbers refer to the azimuthal wavenumbers k in the ¢-direction (invariant with respect
to reference frame). A close-up on the eigenvalues corresponding to the short-wavelength instabilities in the translating frame of
reference are shown in the inset plot

Euler equations and can be considered to evolve on a larger timescale than the instabilities. We therefore extract
the solution after the relaxation process in Sect. 2.4 is completed (i.e. at t = 0.4) and treat it as being frozen
in time. Such a procedure has also been employed in previous studies e.g. [42—45]. It should be noted that
since no stabilization or restriction (aside from streamwise periodicity) is imposed on the flow, the baseflow
may contain a low amplitude component of possibly unstable eigenmodes at the end of the adaptation stage.
However, given that the relaxation stage is short and the level of the numerical noise is low, the deformation
of the baseflow due to any such modes will be negligible.

The 43 most unstable eigenvalues are sought, and in Fig. 6 the eigenvalue spectra in the rotating and the
translating frame of reference are plotted. (Since the eigenvalues are complex conjugate only the positive
frequencies are shown.) Comparing the eigenvalues in the two reference frames, the growth rates are seen to
be the same, whereas the frequencies are related through the expression

Re(w) = Re(wr) — sgn (Re(wr)) k., (28)

where k is the azimuthal wavenumber in the ¢-direction annotated in Fig. 6. The subscripts r and t are here used
to denote the rotating and the translating reference frames, respectively. See “Appendix B” for a derivation of
(28).

The flow is unstable to both long- and short-wavelength instabilities, which correspond to deformations
of the vortex filaments and of the vortex cores, respectively. As seen, the short-wavelength instabilities are
weaker than the long-wavelength instabilities, which have up to twice as large growth rate. The differences in
frequencies between the two types of instabilities are several orders of magnitude. They are further discussed
in the following sections.

To ensure that all the relevant flow structures are resolved, the eigenvalue computations are performed
using three different polynomial orders, N = {11, 14, 17}. By comparing the different spectra, N = 14 is
found to be sufficient (see the second quadrant of the mesh in Fig. 2a for a visualization of the mesh density). In
addition to the resolution study, the eigenvalue computations are repeated using different temporal separation
between the Krylov vectors [41] in order to certify that no aliasing is present in the spectra [39].
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3.1 Mutual inductance instabilities

The obtained long-wavelength instabilities correspond to the mutual inductance instability [36], which arise
from the self- and mutually induced velocities of the perturbed vortex filaments. By developing a single helical
vortex in the (R¢)z-plane and locally approximating the filaments as a single row of co-rotating infinitely long
slanted vortices, an analogy between the vortex pairing due to the mutual inductance instability and an array
of point vortices was established by Quaranta et al. [20]. This analogy was furthered in [17], where the growth
rates for a two-helix configuration computed using the Biot—Savart law (1) following [37] were successfully
compared against the growth rates of three-dimensional perturbations in a single row of infinitely long vortices
derived by Robinson and Saffman [46].

Following [17], we here compare the numerical growth rates of the mutual inductance instability with the
predictions by Robinson and Saffman [46]. (Details on adapting the theoretical results to the helix geometry
are omitted here and the reader is referred to [17].) To enable the comparison, the numerical growth rates
in Fig. 6 have been scaled with 24%/ T, whereby the maximum growth rate becomes close to /2 (i.e. the
maximum growth rate for point vortices). As seen in Fig. 7, there is a close agreement between the numerical
and the theoretical data sets. Note, however, that the present numerical setup only enables integer azimuthal
wavenumbers in the ¢-direction to be recovered due to the periodic boundary conditions in the streamwise
direction. If the length of the domain would be extended such that more periods of the helix are taken into
account, the eigenvalue spectrum would become richer.

As discussed in [20], the largest growth rate in the case of an array of point vortices is obtained for
perturbations that are out-of-phase on neighboring vortices. Considering three-dimensional disturbances on
two helical vortices, Fig. 7 shows that successive peaks in the growth rate curve correspond to perturbations
that are either in- or out-of-phase (i.e. have phase difference equal to 0 or 7 radians, respectively). A sample
of eigenvectors corresponding to the three most unstable modes is visualized in Fig. 8. The most unstable
mode is shown in Fig. 8a. It corresponds to the eigenvalue w = 4.742i with wavenumber £ = 0. Since it
has a zero frequency, the eigenvalue is not visible in Fig. 6 (due to the logarithmic scaling of the horizontal
axis). Moreover, it is invariant with respect to the frame of reference. This mode corresponds to a relative
displacement of the two helices relative to each other, whereby one helix contracts and the other expands. This
induces a uniform pairing of the helices. The effect of the core size, the Reynolds number and the reduced
pitch on the growth rate of this mode has recently been investigated in [44]. In Fig. 8b, c the eigenvectors
corresponding to k = 1 and k = 2 are visualized. These modes induce a local pairing of the neighboring vortex
loops at 2k locations in the azimuthal direction, and correspond to perturbations that are in- and out-of-phase
on the two helices, respectively.

By visualizing the axial vorticity of the eigenvectors in Fig. 8 in a coordinate system aligned with the vortex
filament (as done in Fig. 9a for the mode with k£ = 0), they are seen to consist of two lobes with opposite
sign vorticity that is concentrated within the vortex core (r < a) and decrease in strength outside of it. This is
in contrast to the shape of the corresponding adjoint eigenvector (see Fig. 9b), which vorticity field features
opposite signed slender elongated structures. These structures are located far away from the cores and are seen
to bridge neighboring vortex filaments. Since all the eigenvectors are normalized to have unit L?-norm, the
resulting amplitude of the direct eigenvector can not be inferred from the values of the adjoint eigenvector
[38]. However, by comparing the relative strength of the different velocity components, it is noted that in-
plane momentum forcing in the n - and b j-directions tends to most effectively excite the direct eigenvectors.

(2h2/D)Im(w)

6

Fig. 7 Comparison of the growth rates 2h? / I)Im(w) of the mutual inductance instabilities (stars) with the theoretical growth
rates of three-dimensional perturbations on infinitely long straight vortices adapted to the helix geometry for in-phase (solid line)
and out-of-phase (dashed line) perturbations [17,46]. As reference, the value of /2 is plotted (dotted line)
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(b)

Fig. 8 Mutual inductance instability modes. Eigenvector with azimuthal wavenumber a k = 0, b k = 1, ¢ k = 2. Streamwise
component #° is visualized with white and black contours indicating positive and negative velocities, respectively. The baseflow
is shown in green using the Az-criterion [23]
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Fig. 9 Cross section of the mode with azimuthal wavenumber k = 0 in the Z2(0, 1)-plane showing contours of a ¢ and b &'¢.
As reference, a circle with radius a|,—g 4 (see Fig. 4c) that represents the vortex core is plotted

These results are consistent with the prevailing understanding of the mutual inductance instability, since such
perturbations would seek to displace the filaments orthogonally to the tangent of the vortex center lines, and
thus promote pairing of the filaments.

3.2 Elliptic instabilities

The short-wavelength instabilities observed in the stability analysis correspond to the elliptic instability, which
has been a topic of intense research over the past decades (see [34] for a recent review, and [47] for details
regarding the curvature instability, which is another short-wavelength instability in curved Batchelor vortices).
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The elliptic instability originates from a resonance between two Kelvin modes on an originally axisymmetric
vortex core that has been distorted by an external strain field [48]. In a local cylindrical coordinate system
aligned with the vortex filament, these modes may be described as

a(r,0,s,1) = u(rye!@tmi—on 4 ¢c. (29)

where «, m € R are the axial and the azimuthal wavenumbers, w € C is the frequency and the growth rate, and
it € C? represents the eigenvector. The elliptic deformation of the vortex core (see Fig. 5b) due to the strain
induced by the neighboring vortices can be viewed as a stationary (Re(w) = 0) and axially homogeneous
(o = 0) wave with azimuthal wavenumber m = +2. Therefore, the condition for resonance reads

a) =az, |mp—my| =2, Re(w;)=Re(w), (30a,b,c)

where the subscripts 1 and 2 refer to the two interacting Kelvin modes [34]. Possible resonance combinations of
frequencies and wavenumbers are determined by the dispersion relation, where the most unstable configurations
typically correspond to crossing points between branches of the dispersion relation that have the same label
[, so called principal modes [49]. The label [ represents the number of zero-crossing in the radial direction of
i [50]. For straight Lamb-Oseen vortices, the most unstable mode corresponds to a combination of Kelvin
modes with azimuthal wavenumbers m = 1 and m = —1. However, in the case of Batchelor vortices, this
configuration has been shown to stabilize with increased axial flow, and be replaced by other unstable resonance
configurations [42,43]. Recently, the elliptic instability of curved Batchelor vortices has been investigated by
Blanco-Rodriguez and Le Dizes [51]. These authors computed the growth rates for certain combinations of
Kelvin modes using the following equation

%
(w —we. —ilm(w1) — Q1 (¢ — a¢) — iR—l, — 82D§€))
e

V.
x (a) — we — iTm (w2) — 02 (@ — o) — iR—2, - 82D§>) (31)
e
_ 4 (&) (&)
=¢ <SR12 + R12> (SRZI + R21 ) s
which can be applied to different vortex configurations after appropriately specifying the case specific strain

rate parameter S. Blanco-Rodriguez et al. [12] gave an expression for this parameter in the case of M helical
vortices as

o__3, ¢ 4(02+1)° M2 + 2 (206* 4 1202 +9)
T (@) e ) 962
e+ &
Gkl 4) +MY gim®), (32)

j=1
where

e+ 3 (241’ e+ 1)”?

2 T 03

[ ()= (@] (o0 (0]
e (7)o (0 (3]

and /;(-) and K ; () are modified Bessel functions of the first and second kind. One also has that e = Ra/ (R%+

L?),and as before, ¢ = L/R is the dimensionless reduced pitch. Approximate relations for the other coefficients
appearing in (31) are given in Appendix C of [51] (note also the corrigendum to some of these relations appended
to [47]). The Reynolds number used in (31) is defined as Re’ = Re/(2r).

Since the elliptically deformed vortex cores are incorporated into the baseflow, the unstable resonance
conditions discussed above will appear as unstable eigenmodes in the present stability calculations. A close-up

gj(f) =
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Fig. 10 Elliptic instability modes. a Single eigenvector with azimuthal wavenumber k = 45, and b a superposition of two
eigenvectors with k = 46 that correspond to the same eigenvalue. Streamwise component %7 is visualized with white and black
contours indicating positive and negative velocities, respectively. The baseflow is shown in green using the A;-criterion [23]

0.2 500 0.2 680
0.1 330 0.1 : 340
N
A
Q 0 \g@ 160 Q 0 0
Q
-0.1 -10 -0.1 < -340
0% oq 0 0.1 02 180 S (T a— 0 0.1 02 080
n n
(a) (b)

Fig. 11 Cross section of the mode with azimuthal wavenumber k = 45 in the Z?(0, 1)-plane showing contours of a &° and b
'€, As reference, a circle with radius a|,_ 4 that represents the vortex core is plotted

of the numerically determined eigenvalues associated with the elliptic instability is shown in the inset of Fig. 6.
In Fig. 10a, the eigenvector corresponding to the most unstable elliptic instability with the global wavenumber
k = 45 is visualized. This mode assumes the shape of a pair of secondary helices that winds around the vortex
filament.

In order to be able to compare the numerically obtained growth rates with the theoretical results from (31),
the axial velocity and core size at the end of the relaxation process must be used. From Fig. 4b, ¢ U¢|;—94 =
—1.5249 and a|,—p4 = 0.0347 are obtained, which give the scaled vortex core velocity 2w (aU¢)|;—04 =
—0.3328. For a vortex core velocity of this magnitude, the resonance configuration that is expected to be most
unstable is (m1, ma,1) = (—2,0, 1) [51]. The axial vorticity inside the vortex core @t for the eigenvector
visualized in Fig. 10a is shown in Fig. 11a, which indeed closely resembles the structure of the mode (—2, 0, 1)
(c.f. figure 3c of [51] as well as figure 15a and 16 of [42]). All other modes that appear in the spectrum of Fig. 6
and correspond to the elliptic instability are of the same type. In Fig. 12, the growth rates of these eigenmodes
are plotted together with the largest root of (31) for different axial wavenumbers a|;—g 4 o (Where o = k/y).
This figure shows that the flow is unstable around the wavenumber for ideal resonance [52] o & 1.49 in the
interval 1.286 < al,—g4 o < 1.788. The agreement between the numerics and the theory is overall good,
although the theory slightly underestimates the growth rates of the instabilities. This small discrepancy might
be associated with the approximate expressions used to evaluate the coefficients in (31), possible changes in
the helix radius R (which is assumed constant during the relaxation time), the estimation of the vortex core
size a, or the estimation of the axial center line velocity U,. The theoretical results are noted to be sensitive
with respect to these parameters. For instance, a minor increase in the estimated core radius about 2% yields
a nearly perfect match.

In Fig. 11b, the adjoint of the (—2, 0, 1)-mode is visualized. In a Z?(s, j)-plane, this mode assumes the
shape of a spiral structure located outside the vortex core. To gain further insight into the receptivity mechanisms
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Fig. 12 Comparison of the numerically determined growth rates for the elliptic instability scaled with 27 a|,—( 4 (stars) and the
theoretical growth rates obtained from (31) (solid line)

of this mode, the components of the strain rate tensor in a Frenet—Serret frame may be examined. In such a
local coordinate system, the strain rate tensor is expressed as

- 1
S(s, ¥j) = 2 [TGs,v)) (VU) + (VO)T) T, Wj)_l] , (34

where (VU) is the velocity gradient tensor of the baseflow in the Cartesian coordinate system, and
T(s, ;) is the transformation operator between the Cartesian and the Frenet—Serret coordinate systems (see
“Appendix A”). The components along the diagonal of the strain rate tensor represent the strain in the # -,
n - and b;-directions, whereas the off-diagonal elements represent shear. These components are visualized

in Fig. 13. (Note that é(s, ¥;) is symmetric and hence only has six unique components.) From this figure,

it is readily seen that the components S, S and SPP spatially coincide with the adjoint (-2, 0, 1)-mode,
whereas the other components either attain their largest amplitude inside the core or are relatively week. This
suggests that velocity perturbations outside the vortex core that alters the strain and shear of the vortex in a
plane orthogonal to the helix line, most effectively excite the elliptic instability of the present type.

Another interesting remark is that every complex eigenvalue —iw in Fig. 6 that represent an elliptic
instability has a geometric multiplicity of two, meaning that there are two linearly independent eigenvectors
corresponding to every such eigenvalue. The two eigenvectors either differ by (i), a simple reversal in sign
of the velocity on one of the helices, or (ii), a reversal in sign of the velocity on one of the helices for the
complex conjugate eigenvector phase shifted by 7 /2 radians. If we consider a superposition of two eigenmodes
and denote the phase difference between them by y. Then, as visualized in Fig. 10b, eigenvectors with
k = {41,43, 46, 47} that satisfy property (i) will cancel out on one helix and enhance each other on the other
one for y = 0, and vice versa when x = m. Correspondingly, eigenvectors with k = {42, 44, 45, 48} that
satisfy property (ii) will enhance each other on both helices when x = +m /2. Such constructive and destructive
interference between the modes suggests that the breakdown to turbulence due to the elliptic instability is likely
to appear different on the two vortices.

4 Discussion

An accurate baseflow is the starting point for every stability analysis. In most cases, the basic state will be
completely determined by the geometry of the problem and the boundary conditions, and can in many situations
be obtained by merely integrating the governing equations in time. Simple as it might seem, this task turns
out not to be entirely trivial for a flow that features an infinitely long vortex multiple. In this situation, the
obvious boundary conditions would be to impose a constant streamwise velocity or a solid body rotation in
the far-field, and have periodic boundary conditions in the streamwise direction. This implies that the vortex
necessarily must be positioned in the flow through the initial condition. The question thus becomes how to
determine an initial field that will enable an accurate representation of the flow inside the vortex core, and
still capture the external strain field due to the surrounding vortex filaments. In this respect, all the techniques
that are known to us appear to fall short in one way or the other, and therefore disqualify for a study of the
instability mechanisms in the flow.

In this article, a straightforward step-by-step algorithm to generate a suitable baseflow is proposed. The
method has been implemented in a general purpose Navier—Stokes solver and is discussed in the context of a
pair of helical vortices whose characteristics recently have been determined in an experiment [17]. The resulting
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Fig. 13 Strain rate tensor S evaluated for the baseflow and visualized in the 2 (0, 1)-plane. The superscripts &, 1 and f that
appear in the subcaptions refer to the directions given by the vectors #1, r1 and b1, respectively. As reference, a circle with radius
al;—o.4 that represents the vortex core is plotted

flow field is seen to satisfy all the specified properties, and a stability analysis is observed to capture both long-
wavelength mutual inductance instabilities and short-wavelength elliptic instabilities. Both the translating and
the rotating frame of reference have been discussed, and the stability properties determined in these different
frames been compared.

Although both the long- and the short-wavelength instabilities have been analyzed before, they are for the
first time obtained through a single computation, which is remarkable given that the difference in frequency
is several orders of magnitude. To the best of the authors’ knowledge, the elliptic instability is for the first
time captured and analyzed numerically in a helical vortex multiple. Subsequently, the first validation of
the theoretical growth rate expressions derived by Blanco-Rodriguez and Le Dizes [51] is presented. Good
agreement between the numerical and the theoretical results is reported. The geometric multiplicity of the
corresponding eigenvalues suggests that this instability will develop differently in the different vortices of
the helix multiple. Regarding the mutual inductance instabilities, good agreement is also observed between
the numerical eigenvalues and the theoretical predictions by Robinson and Saffman [46] adapted to the helix
geometry [17]. The fact that both of these instabilities are captured simultaneously, enables their relative
importance to be studied. It is shown that the mutual inductance instability for the present configuration has
twice as large growth rate as the elliptic instability, and hence can be expected to dominate the transition
process. This finding agrees well with the experimental observations by Quaranta et al. [17], where the mutual
inductance instability always was observed for the parameters listed in Table 1. In addition, the receptivity of
the two instability types have been studied and adjoint eigenvectors been reported. It is shown that the mutual
inductance instability is most sensitive to disturbances that enhance vortex pairing by altering the distance
between neighboring filaments. By comparing the spatial support of the adjoint eigenvectors for the elliptic
instability with the distribution of the individual components of the strain rate tensor for the baseflow, it is
found that the (— 2, 0, 1)-mode obtained for the present flow configuration is most sensitive to perturbations
outside of the vortex core that affects the straining and shearing of the vortex in a plane orthogonal to the
vortex center line.
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Taken together, the presented way of imposing a vortex inside the numerical domain appears rather appeal-
ing and capable of increasing our understanding about instabilities in vortex systems. Since only periodicity in
the streamwise direction is assumed, the present approach can readily be used to investigate many other con-
figurations of higher complexity. Examples involve curved helices that are inscribed in a torus, which may be
used to investigate the instabilities and breakdown of horizontal axis wind turbine wakes during yawed inflow
conditions [53]. Another interesting configuration that might be considered is that of twin helices arising in
rotor applications where vane tips are implemented [54]. A direct means of studying the elliptic instability in
a geometry with curvature and torsion is also provided. For studies where an inflow/outflow arrangement is
more suitable than a periodic configuration, the derived flow field may be used to extract an accurate inflow
condition. This would in turn enable the optimal forcing of the flow to be computed, as well as transient
analysis involving impulse response and optimal perturbation to be carried out.
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Appendix A: Coordinate transformations

The transformation operator mapping a point in the Cartesian coordinate system to the Frenet—Serret coordinate
system is obtained by substituting (7) into (9)

—Lsin@) + ;) Keos@(s) +v))
T(s, ¥;) = | —cos(p(s) + ;) —sin(e(s) + ;)
%sin(qb(s) + ;) —% cos(p(s) + ¥;)

(35)

R[x OXI~

where ¥; = 27(j — 1)/M, y = ~/R% 4+ L2 and ¢(s) is defined by (8). The inverse mapping operator
is well-defined and simply given as the transpose of (35). The Frenet—Serret coordinates are related to the
local cylindrical coordinates through the common transformation formulae between rectangular (&, n, 8) and

cylindrical coordinates (r, 6, &)
r=y/n*+p% 0 =atan2(B,n). (36)

The operators mapping vector quantities between these systems read

0 cos(@) sin(f)
FO)=|0 —sin(@) cos@®) |, Fo)! =F@©)". (37)
1 0 0

Appendix B: Disturbances in the rotating and the translating frame of reference

In this section, a relation between the frequencies of a disturbance in the rotating and the translating frame of
reference is derived. We consider a rotating reference frame that rotates with the angular speed Q¢ around a
fixed axis zf, and a translating reference frame that translates along zf with the speed Uy These coordinate
systems are thus related as

Xr cos(Qt)  —sin(Qgt) 0 Xt 0
ye | = | sin(Qet)  cos(Qet) Of |y |+] 0 ], (38)
Zr 0 0 1 2t Ut
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where the subscripts r and t refer to the rotating and the translating frame, respectively. By considering points
along a helix curve €j(s) (that is stationary in the both frames), and inserting (7) into (38), one obtains upon
simplification that

Ut
¢(s0) = p(s0) + Qe P(se) = @(s) + Tft' (39a,b)

Equating (39a) and (39b) yields the relation Q. = Ug./L between the motions of the two reference frames,
which were used in Sect. 2.2. In the local helix-oriented cylindrical coordinate system, the perturbations are
assumed to be homogeneous in the 8- and s-direction and inhomogeneous in the radial direction, as specified
by (29),

@(r,0,5,1) = i(r)e! @D 4 cc.

The flow considered in this work is helically symmetric, which means that the structures are invariant under
a rotation §/L around the z¢-axis, and a translation § along zr. The mapping between the reference frames
defined by (38) corresponds to such a pair of operations. This can be realized by letting § = Uy T denote
the displacement during the time 7', for which (39) yields Q7 = §/L. As a result, it follows that 6, = 6;
and r; = rq. Substitution of these relations, (39a) and (8) into (29), gives the following expressions for the
perturbation in the rotating and the translating frame of reference

iy (e (1) e (00). 5¢(50). 1) = dte () Crstmeb—of—aryQul)tolt 4 ¢ ¢ (40a)
i, (re, 61, 50, 1) = diy () (@sFmb—oinFoit L ¢ o (40b)

where the superscripts r and i denote the real and imaginary parts, respectively. In order for the helical symmetry
to hold, we require the spatial dependency of the perturbation to be invariant with respect to reference frame.
Hence, oy = oy = o, my = my = m and @, = &, = u. Furthermore, we require the temporal dependency of
the perturbation to be the same in the two frames, i.e. w; = } and

o] = wp — ay Q. (41)

Due to the assumption of periodicity in the s-direction, it follows from (8) that the perturbation also will be
periodic in the global azimuthal ¢-direction with the wavenumber k = «y. It is noted from (41) that positive
frequencies in the rotating frame of reference will be mapped to negative frequencies in the translating frame
of reference if k is sufficiently large. This is for instance the case for the elliptic instabilities discussed in
Sect. 3.2. As a result, the frequency of the mode in the rotating frame of reference increases monotonously
with the wavenumber k, whereas in the translating frame of reference it does not (see Fig. 6). Since the Navier—
Stokes operator governing the stability problem is real, the sets of eigenvalues {—iw;} and {—iw} will appear
in complex conjugate pairs. Therefore, we write (41) as

w; = oy — sgn(wy)kQy,

which is equivalent to (28) and is the relation between the frequencies in the rotating and the translating frame
of reference plotted in Fig. 6.
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