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Abstract The current paper presents a theoretical analysis of swirl flow stability, both inside a tube (vortex
tube) and in a free annular swirl flow. The starting concept is the study of the evolution of velocity and
temperature fluctuations. Methods of non-equilibrium thermodynamics are used to describe the magnitude of
fluctuations and their properties. The important role of the total enthalpy follows from a variational analysis.
Moreover, the thermodynamic criterion of the stability is formulated using the total enthalpy, and compared
with experiments, numerical results and classical Rayleigh theory support its applicability. It was shown that
the solid body vortex is at the margin of stability, which is experimentally observed. Analogously, the potential
vortex is by the thermodynamic criterion stable; however, by the Rayleigh criteria it is on the onset of stability.
The classical Taylor experiment of flowbetween two rotating cylinders is analysed from the point of view of this
criterion. These results are underlined by swirl tube experiments at the Institute of Aerospace Thermodynamics
at Stuttgart University and the annular nozzle experiments performed in the Institute of Thermomechanics CAS
in Prague. Both independent experiments confirm the transformation of the initial annular vortex into a stable
potential-type vortex. The results of this theory can also be used to explain the exceptional stability of tropical
cyclones.
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List of symbols

A Cross-sectional area m2

A, B Couette flow parameters –
c Speed of sound m s−1

cp Heat capacity at constant pressure J kg−1 K−1

D Tube diameter m
g Gravitational acceleration m s−2

h Specific enthalpy J kg
hlv = hvl Evaporation/condensation heat J kg−1

L Tube length, temperature slope m, Km−1

ṁ Mass flow rate kg s−1

M Molecular mass kgmol−1

p Thermodynamic (static) pressure Pa
q, qi Heat flux Jm−2 s−1

R1, R2 Inner and outer cylinder radius m
Re Reynolds number −
S Swirl number −
s Specific entropy J kg−1 K−1

tdis, t
i j
dis Stress tensor, dissipative part Pa

T Temperature K
t Time s
u Specific internal energy J kg
ui Velocity fluctuation m s−1

V Average velocity m s−1

v, vi , vr, vϕ, vzVelocity, velocity components m s−1

w Mass concentration -
x = ρv/ρa Vapour concentration -
x, xi , r, rϕ, z Coordinates m

Greek symbols

β Vertical velocity coefficient m−1

δ Fluctuation –
� Circulation m2 s−1

λ Thermal conductivity W m−1 K−1

ε Turbulent dissipation m2 s−3

η = R1/R2 Couette geometrical parameter −
μ, μ = 
2/
1 Dynamic viscosity, Couette flow parameter Pa s, −
ν Kinematic viscosity m2 s−1

π, π̃ Dissipated energy density J m−3 s−1

ρ Density kgm−3

φ Gravity potential, relative humidity J kg−1, −
ω, 
 Angular velocity s−1

Indexes

0 Reference state,
a Air
i, j, k, x, y, z Cartesian components
mol Molecular
r, ϕ, z Cylindrical components
sat Saturation
t Total
v Vapour
w Wall
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Superscripts

˙(a), ḋa Material derivative ȧ(x, t) = ∂a
∂t + vl ∂a

∂xl

The Einstein summation rule is used, i.e. vl ∂a
∂xl

= ∑l=3
l=1 vl ∂a

∂xl

1 Introduction

Despite a large number of experimental and theoretical results, the problem of stability of flow containing
vortices is still open [5,17,25]. Important are some specific technical problems, e.g. the onset of turbulence
in boundary layers on an airfoil, in pipes (especially in hose pipes, where the fluid–structure interaction has
to be included) and especially the onset of the instability of swirl flows in pipes [21]. The problem is to find
a suitable relationship between the magnitude of the velocity and the magnitude of the viscosity-induced
velocity gradient even for flow along curved surfaces or in channels and pipes. In addition to experimental
research, it is necessary to use very complex numerical simulations [6]. Also not fully understood is the flow
stability with phase transition. Phase transition like condensation, evaporation, freezing takes a decisive role
in atmospheric flow stability. Many open questions appear in biological flows where flow pulsations play a
decisive role, for example, blood flow in arteries, bridging veins in the brain, etc. The understanding of the
flow stability scenario is becoming highly important for practical engineering applications—in particular the
applications involving heat transfer between fluid and solid walls, where it provides cues for the ever present
endeavour to increase the transfer intensity. There are good chances to enhance the heat transfer from the walls
of cooling channels by appropriate regulation of the cooling fluid flow parameters and by the design of the
channel geometry [9,25]. Moreover, the instability leads to intensive fluid mixing resulting in higher intensity
of chemical reactions and phase transitions.

Thermodynamics of open systems offers a new concept for the description of material objects, which are
far from equilibrium, so that all real processes like viscous flows, phase transition and chemical reactions
are included [8,14]. The II. Law of Thermodynamics can be interpreted as an evolution law of all material
systems, which are in interaction with their surroundings. Entropy provides additional information about
processes inside systems. The convexity of the entropy informs us about the stability of the system states [11].
Under appropriate outer conditions the fluctuations can drive the systems towards instability. The consequence
is the creation or the decay of dissipative structures. When new dissipative structures appear, the system is
shifted further away from the thermodynamic equilibrium into a stable potential vortex. This transition is
experimentally proved [3,4], numerically simulated [24] but not satisfactory explained.

Themain idea of this new concept is based on the formulation of the condition of attenuation of fluctuations
in the vicinity of the reference (or steady) state. It is essential to consider the existence of dissipative processes,
in our case viscosity and thermal conductivity. The following Sect. 2 explains the theoretical basis, and Sect. 3
shows some consequences of the thermodynamic criterion for a solid body vortex and a free vortex. Both of
these vortices play a decisive role in the operation of the vortex tube; therefore, precise experiments performed
on this tube are used to compare with the conclusions of the mentioned theory. Section4 explains then briefly
the used numerical methods, before Sect. 5 shows several examples (vortex tube, Couette flow, swirling flow
and tropical cyclone) for which thermodynamics stability criterion is validated by experiments and simulations.
Finally the main conclusions are summarized.

2 Theoretical basis: thermodynamic conditions of stability

The stability of the swirl flow in a vortex tube is studied on the base of non-equilibrium thermodynamics. The
fluid viscosity is represented by the dissipative part of the stress tensor tdis and the heat transfer by the heat
flux q. The II. Law of Thermodynamics, the so-called thermodynamic stability criterion, has the form

π = ρ

[

T ṡ − u̇ − p
˙(
1

ρ

)]

︸ ︷︷ ︸
=0...Gibbs entropy definition

−qk

T

∂T

∂xk
+ tkidis

∂vi

∂xk
≥ 0,

−ρ

2
˙

d2u = π ≥ 0 . . . stability condition

(1)
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which is known as the fundamental thermodynamic (Clausius-Duhem) inequality [11,14]. This inequality gives
both the Gibbs definition of entropy by internal energy u = u(s, ρ) and the Gibbs thermodynamic stability

condition d2u ≥ 0 [16]. The Gibbs stability condition is a consequence of the inequality
˙

d2u ≤ 0, which is
taken as the material derivative of the Lyapunov function of the Gibbs stability condition d2u ≥ 0. The stable

thermodynamic systems have to obey both, i.e. the condition d2u ≥ 0 (-stability of the state) and
˙

d2u ≤ 0
(-stability of the process) [11]. The fact that thermodynamic arguments lead to finding a suitable form of the
Lyapunov function, which ensures the stability of the velocity field described by the Navier–Stokes equations,
is shown, for example, in [7].

The fundamental thermodynamic inequality (1) was formulated by the II. Law of Thermodynamics using
the internal energy. However, for the processes with dominant convection is more convenient the specific total
enthalpy [19–23,27]

ht = u + p

ρ
+ v2

2
+ φ = h(T, p) + v2

2
+ φ, (2)

Here we introduce the additional energy φ, which is induced by the gravity or due to the non-inertial motion
of the system as a whole. An important case is, for example, the movement of the Earth’s atmosphere, where
the Coriolis acceleration takes a dominant role [10,20]. For our purpose, it is convenient to formulate the I.
Law of Thermodynamics in terms of total enthalpy

ρḣt − ∂p

∂t
= −qk

T

∂T

∂xk
+ ∂

(
tkidisvi

)

∂xk
(3)

and the fundamental thermodynamic inequality (1) has the alternative form

π̃ = ρ

(

T ṡ − ḣt + 1

ρ

∂p

∂t

)

︸ ︷︷ ︸
= 0 ... entropy definition

−qk

T

∂T

∂xk
+ ∂

(
tkidisvi

)

∂xk
≥ 0,

−ρ

2
˙

d2ht = π̃ ≥ 0 . . . stability condition for processes with convection

(4)

The specific total enthalpy is a function of the entropy and the pressure, i.e. ht = ht(s, p), and satisfies the
general relation

ḣt = T ṡ + 1

ρ

∂p

∂t
. (5)

For the case without convection, it turns into the classical Gibbs definition in Eq. (1) using enthalpy. The
fundamental thermodynamic inequality has the form π̃ ≥ 0. All dissipative processes in the system, which
is in thermodynamic equilibrium, which we will call a reference state (denoted by subscript “0”), are zero.
Considering the rapid temporal change of fluctuations, this reference state changes only very slowly in time.
Such a reference state, ht0 = ht(s0, p0), has a dissipation extremum, i.e. its material (convective) derivative is
equal to zero

T0ṡ0 − ḣt0 + 1

ρ0

∂p0
∂t

= 0, π̃ = π̃0 = 0 (6)

Now, let us suppose that the system deviates (s = s0 + δs, p = p0 + δp) from this reference state and its total
enthalpy changes. The deviations (fluctuations) δs, δp generate a dissipation π̃ ≥ 0, i.e.

T0ṡ − ḣt + 1

ρ0

∂p

∂t
= π̃0 + π̃ = π̃ ≥ 0 (7)
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Expanding the total enthalpy around the reference state (6) and inserting this into the dissipation inequality
(7) gives

ht(s, p) = ht0 + dht0 + 1

2
d2ht0 + · · · ,

− ˙dht0 + T0δ̇s + 1

ρ0

∂δp

∂t
= π̃0 = 0 extremum condition for π̃

−1

2
˙

d2ht0 = π̃ = qk

T

∂T

∂xk
+ ∂(tkidisvi )

∂xk
≥ 0 stability condition

(8)

This inequality is an alternative form of the thermodynamic condition of stability for processes with convection
(4). The dissipation π̃ is the second-order term in the total enthalpy change. The derivation is similar to
the derivation of the classical Gibbs stability conditions (1). Thermodynamic fluid systems with dominant
convection are stable when the inequalities both for the second differential d2ht ≥ 0 and for its material

derivative
˙

d2ht ≤ 0 are satisfied. d2ht ≥ 0 is the Lyapunov function of stability [11]. If the inequality (4) is
violated, convective instability can occur [19–21,23,25].

The fundamental importance of the specific total enthalpy for continuum mechanics was first shown by
Seliger, and Whitham, who formulated Hamilton’s principle of the least action [27]. After standard analysis
(adoption gradht in the energy equation), and after reorganization of some terms, we obtain the alternative
form of the momentum equation. This equation, which combines the classical balance of momentum (balance
of forces) and the balance of internal energy, is known as the Crocco equation (9). This equation is limited
to the steady case only [2]. The important role of the gradht, grads and the friction forces for the vorticity
generation is evident

(v × rot v)i = ∂ht
∂xi

− T
∂s

∂xi
− ∂t lidis

ρ∂xl
Crocco’s theorem (9)

The friction (dissipative) forces in an actual system are established explicitly by the dissipative part of the stress
tensor tdis. Nevertheless, even within flows of a constant total enthalpy, i.e. ḣt = 0, the entropy gradient can
induce vortex generation. This is the case with an additional heat release, e.g. by condensation T (∂s/∂xi ) =
hvl(∂(wv/∂xi ). Here hvl > 0, [Jkg−1] is the heat of evaporation and wv is the mass concentration of the
vapour. The vortex magnitude can be substantially affected by this process.

For the simplified flow, vϕ = vϕ(r), T = T (r) the thermodynamic condition for the stability of the process
(8) has the form

π̃ = λ

T

(
∂T

∂r

)2

+ μmol

[(
∂vϕ

∂r

)2

+ vϕ

∂2vϕ

∂r2
− vϕ

r

∂vϕ

∂r

]

+ ∂μmol

∂r

(

vϕ

∂vϕ

∂r
− v2ϕ

r

)

≥ 0 (10)

Considering that the thermal conductivity is a positive coefficient λ > 0, the associated term is always positive
and will only have a stabilizing effect. We therefore focus only on the influence of the flow field vϕ(r), where
the molecular viscosity μmol plays a dominant role. The following approximation can be applied as the flow
model in a vortex tube

vϕ = ωr then π̃ = 0 solid body vortex (11)

vϕ = �/r then π̃ = 4μmol
�2

r4
− 2�2

r3
∂μmol

∂r
≥ 0 potential vortex (12)

It follows that the solid body vortex is on the onset of stability and the potential vortex is stable for constant
molecular viscosity μmol. This conclusion is also a consequence of viscosity-induced dissipation (tkidis

∂vi
∂xk

≥ 0,
see (1)). This dissipation is zero for a solid body vortex and nonzero and positive for a potential vortex.
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3 Consequences of thermodynamic stability conditions

The change of the specific total enthalpy (2) for a non-equilibrium state is given by equation (5). From the
second differential of the specific total enthalpy depending on the variables T, p we obtain by the same
procedure, which has obtained the classical Gibbs condition of thermodynamic stability d2u ≥ 0 [11,14,16],
the stability condition for processes with convection. The result is the thermodynamic stability condition of
the reference state (6) in the form

1

2
d2ht = 1

2

[
cp
T

(δT )2 − 1

ρ2c2
(δp)2

]

> 0

for cp = T

(
∂s

∂T

)

p
, c2 =

(
∂p

∂ρ

)

s
(13)

This inequality indicates the destabilizing effect of pressure pulsations (δp �= 0). This effect is generally very
significant and leads to flow instabilities. In some special cases, however, which are practically very significant,
a correlation can be found between pressure and temperature fluctuations such that the inequality (13) can be
satisfied. The destabilizing term can be neglected, e.g. for incompressible fluids with high viscosity. From a
practical point of view, a very important case is a flow in which the total enthalpy of the corresponding material
point, which is moving with the velocity vϕ , is conserved, i.e. ht(T, p) = const . This situation occurs for
steady isentropic flow (5). In this case, the condition is redundant and does not give any additional information.

We will theoretically analyse the flow and temperature fields in the vortex tube while neglecting the effect
of viscosity on the inner walls of the tube. Assume ht(T, p, vϕ) = const , see (2) in the region r ∈ (R1, R2),
where vϕ1 = vϕ(R1), vϕ2 = vϕ(R2) holds at the boundaries of the region. In the case of a purely rotational
flow, the independent variables are

vr, vz � vϕ = vϕ(r), T = T (r), p = p(r), φ = 0. (14)

Then, the temperature and pressure depend on the velocity vϕ .
The material derivative of the specific total enthalpy depends on the radial coordinate r only, i.e.

vr
∂ht
∂r

+ vϕ

∂ht
r∂ϕ

+ vz
∂ht
∂z

= vr
dht
dr

= vr

[
1

2

dv2ϕ
dr

+
(

∂h

∂T

)

p

dT

dr
+

(
∂h

∂p

)

T

dp

dr

]

= 0 (15)

One of the prerequisites for fulfilling this equation is:

vr �= 0 and dht/dr = 0 (16)

The condition (15) defines the steady state of the corresponding reference state (6). The thermodynamic
derivatives in the steady-state condition (15) are

(
∂h

∂T

)

p
= cp,

(
∂h

∂p

)

T
= 1

ρ
− T

(
∂(1/ρ)

∂T

)

p
(17)

so that the condition (15) has the form

dht
dr

= 1

2

dv2ϕ
dr

+ 1

ρ

dp

dr
+ cp

dT

dr
− T

(
∂(1/ρ)

∂T

)

p

dp

dr
= 0. (18)

For an incompressible flow, the last term is equal to zero. However, the fluid compressibility plays a decisive
role for the vortex tube performance.

For an ideal gas p = ρRT , the enthalpy does not depend on the pressure (∂h/∂p)T = 0. However, for all
real gases the enthalpy slightly depends on pressure. Therefore, this term is very important for the derivation
of the stability condition. The distinction between incompressible and compressible flows gives new insight
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into the rotational flow stability. The pressure gradient for the rotational field (14) follows from the balance of
momentum

v2ϕ

r
= 1

ρ

dp

dr
(19)

Inserting this condition into Eq. (15) T (∂(1/ρ)/∂T )p = 1/ρ, the actual form of the steady-state conditions
(16) is

dht
dr

= 1

2

dv2ϕ
dr

+ v2ϕ

r
+ cp

dT

dr
− 1

ρ

dp

dr
=

d(rvϕ)2

2r2dr︸ ︷︷ ︸
mechanical stability

+ cp
dT

dr
− v2ϕ

r︸ ︷︷ ︸
thermal stability

= 0 (20)

This equation defines the steady state (15), which is stable, if the condition of the total enthalpy minimum (13)
is fulfilled. Therefore, in order to achieve a steady state, the criterion of mechanical stability must be mutually
compensated with the criterion of thermal stability

d(rvϕ)2

2r2dr︸ ︷︷ ︸
Rayleigh criterion

= −cp
dT

dr
+ v2ϕ

r︸ ︷︷ ︸
Thermal criterion

(21)

The fluid flow is stable when if inequalities are satisfied simultaneously. However, it is not valid in general
and the Rayleigh criterion is in contradiction with the thermodynamic stability criterion, according to which
the solid body vortex is on the onset of stability (11). The evolution of the vortex structure in a vortex tube is
discussed in Sect. 5.1. The solid body vortex transforms to a potential vortex, as demonstrated in the following.

3.1 Solid body vortex

The flow field of a solid body vortex is defined as

v = (vϕ, vz, vr), vϕ = ωr, vz = 0, vr = 0, T = T (r), p = p(r), φ = 0 (22)

where ω is the constant angular velocity. The mechanical stability condition results in

d(rvϕ)2

2r2dr
= 2ω2r > 0 (23)

and is satisfied for all ω. After integration (for cp = const.) the corresponding thermally criterion (21) gives

cp(T2 − T1) ≤ v2ϕ2

2
− v2ϕ1

2
= ω2(R2

2 − R2
1). (24)

Accordingly, the temperature T1 at the inner radius R1 of the tube must be lower than the temperature T2 at
the outer radius R2. The inner and outer radii R1, R2, respectively, are only hypothetical, with R1 → 0 and
R2 → D0/2, see Sect. 5.1, where the experiments within a vortex tube are presented. Although the criterions
of mechanical stability and thermal stability are both met, the thermodynamic criterion indicates a state at the
onset of stability (-marginal stability (11)).

The steady-state condition, see Eq. (15), can be satisfied even for the total enthalpy depending on the
coordinate r

vr = 0 and
dht
dr

�= 0. (25)
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This assumption is fulfilled at the fluid entrance of the tube. By using the Crocco theorem (9) for the simplified
flow (22) we have

T
∂s

∂r
+ (v × rot v)r = ∂ht

∂r
− ∂t lrdis

ρ∂xl

T
∂s

∂r
+ vϕ

r

∂(rvϕ)

∂r
= T

∂s

∂r
+ 2rω2 = ∂ht

∂r
(26)

where the vorticity in cylindrical coordinates (ϕ, z, r) is given by

rot v =
(

∂vz

r∂ϕ
− ∂vϕ

∂z
,
∂vr

∂z
− ∂vz

∂r
,
1

r

∂(rvϕ)

∂r
− ∂vr

r∂ϕ

)

(27)

According to assumption (14), we neglect the effect of molecular viscosity on the inner wall of the pipe, so the
dissipative part t lrdis of the stress tensor has no effect on the change in rotation of the inlet vortex and does not
contribute to the radial velocity vr. For an isentropic flow this equation gives after integration a basic relation
for the vortex tube with the solid body approximation

�ht = ht(r) − ht1 = 2ω2
∫ r

R1

rdr = ω2(r2 − R2
1

) = v2ϕ − v2ϕ1 (28)

The parabolic growth of the total enthalpy is confirmed both by experiments and numerical simulations. The
temperature difference between the vortex core, radius R1 and the outer region is given by

ht(r) − ht1 = cpT + v2ϕ

2
− cpT1 − v2ϕ1

2
= v2ϕ − v2ϕ1

T − T1 = v2ϕ − v2ϕ1

2cp
(29)

compared with the inequality (24). The formula (29) gives the maximum temperature difference, which can
be reached close to the inlet. For instance, the maximum velocity at the tube inner wall (radius R2) is vϕ =
166 [ms−1] forω = 6670 [s−1] and for dry air with cp .= 1000 Jkg−1K−1, Eq. (29) gives a limiting temperature
difference of 13.8K. For the actual velocity vϕ = 115 [ms−1] the temperature difference is 6.6K.A comparison
with the experiment is shown in Sect. 5.1.

3.2 Potential vortex

In this case, the flow field is defined by

v = (vϕ, vz, vr), vϕ = �

r
, vz = 0, vr = 0, T = T (r), p = p(r),

where 2π� =
∫ 2π

0
vϕ(r)rdϕ (30)

Here 2π� is the constant circulation of the velocity field of the corresponding vortex. From the Rayleigh
criterion (21), one obtains

d(rvϕ)2

2r2dr
= 0 (31)

and then the thermal criterion (21) has the form

cp(T2 − T1) = v2ϕ1

2
− v2ϕ2

2
= �2

2R2
2

(
R2
2

R2
1

− 1

)

(32)

The inner radius of the vortex (core of the vortex) will in Eq. (30) be denoted by R1 and the outer radius by R2.
Due to the velocity distribution (30) with vϕ1 > vϕ2 , the temperature in the core of the vortex has to be lower
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than the temperature close to the outer wall. As a consequence both conditions of the steady-state stability (15)
are satisfied. In addition, the potential vortex is also stable according to the thermodynamic stability criterion
of the process (12). The balance of momentum (Crocco’s theorem) (9) for the simplified flow (30) reads

(v × rot v)r = 0 = ∂ht
∂r

− T
∂s

∂r
(33)

For an isentropic flow, this equation is satisfied for constant enthalpy, i.e. ht(r) = const . Hence,

cpT1 + �2

2r21
= cpT + �2

2r2
(34)

which has the same form as condition (32)

T − T1 = �2

2cp

(
1

r21
− 1

r2

)∣
∣
∣
∣
∣
r→∞

= v2ϕ1

2cp
(35)

This equation is identical with the classical isentropic concept, see (5) for ∂p/∂t = 0.

4 Applied numerical methods

Numerical simulations provide additional details about the physics and stability in a vortex tube. In a previous
work, the swirl tube was simulated via detached Eddy simulations (DES) using the open-source code Open-
FOAM and validated by experimental data [4]. The Spalart-Allmaras turbulence model [26] was used, which
solves the near-wall region with the RANS (Reynolds-averaged Navier–Stokes) equations and the free stream
region via LES (Large Eddy Simulation). Numerical simulations of the flow in a vortex tube give additional
insight into the distribution of all measurable parameters, see Sect. 5.1. The dissipation, that is not directly
measurable, is defined as

ε = ν
∂ui
∂x j

∂ui
∂x j

(36)

Here ν is the kinematic viscosity and ui is the velocity fluctuation. The size of the dissipation is partly influenced
by the used calculation algorithm and the size of the used calculation mesh. From the good agreement between
numerical results with experiments, it follows that the dissipation corresponds to reality. A detailed description
is given in [24].

5 Experiments and comparison with numerical simulation

Flow properties in vortex tubes have been studied both theoretically and experimentally since their invention
[13]. A specific use is the energy separation, which is a consequence of the specific properties of the swirl
flow. To determine the basic properties of this flow, two types of experiments were proposed: a vortex in a
cylindrical tube—(vortex tube) and a vortex in free space—(swirl flow).

Two kinds of independent experiments were performed to prove the transformation of an annular swirl
flow into a potential vortex flow. Experiments based in a vortex tube were carried out at the Institute of
Aerospace Thermodynamics in Stuttgart, and experiments in an annular nozzle were performed at the Institute
of Thermomechanics CAS in Prague.
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5.1 Vortex tube experiments

The vortex tube measurements have been taken at the experimental apparatus at the Institute of Aerospace
Thermodynamics in Stuttgart shown in Fig. 1. Flow field measurements via PIV (particle image velocimetry)
have been taken as well as heat transfer measurements using the well-established transient thermochromic
liquid crystal (TLC) technique. The flow through the apparatus is sucked by a vacuum pump, and the mass
flow is measured with a laminar flow element (1) [3].

The flow is then seeded with oil particles for the PIV measurements or heated in a mesh heater (3) for
the TLC experiments. Next, the air enters tangentially into the swirl tube (5) and exits into an outlet plenum,
which is connected to the vacuum pump. The dimensions and the used coordinate system are shown in Fig. 2.
The tube represents an upscaled generic model of a turbine blade leading edge swirl chamber. The tube has
an inner diameter of D0 = 50 mm and a length of L/D0 = 20. The swirl is induced through two tangential
injections. The first experimental values showing the local distribution of velocity and temperature performed
using the PIV method and the thermochromic crystal technique are shown in Fig. 3.

Flow parameters of the experiments are defined by the inflow Reynolds number Rez0, which is based on
the tube inlet diameter D0 = 2R0 and the corresponding incoming mass flow rate ṁ, therefore

Rez = 4ṁ

πD0μ
(37)

Moreover, the fluid rotation is defined by the dimensionless swirl number

S = 2π
∫ R0
0 ρvϕvzr2dr

2πR0
∫ R0
0 ρv2zrdr

(38)

Since the velocity profiles are not known in advance, a geometric swirl number [24] is introduced

Sgeo = πR2
0(R0 − h/2)

2R0wh
(39)

where the parameters h andw represent the height and the width of the tangential inlet, respectively, see Fig. 2.
The velocity profile in the pipe has been measured by using PIV. Results are shown in Fig. 3 [3] for four

axial positions z/D0. The profile is characterized as a solid body vortex in the inlet region and as a potential
vortex near the outlet [23]. This is schematically illustrated in Fig. 3a. The temperature distribution along the
tube is depicted in Fig. 3c

With the assumption of a homentropic flow (uniform entropy s) the radial enthalpy is evaluated based
on the velocities using Crocco’s theorem (9), as follows ∂hc/∂r = (v × rot v)r and is shown in Fig. 4c. A
parabolic growth of the total enthalpy near the inlet is apparent, and the magnitude decreases towards the tube
outlet.

Figure 4 showsnumerical predictionbyusing the compressible delayeddetachedEddy simulations (DDES).
All numerical simulations were conducted with a no-slip condition at the wall (vw=0) and an isothermal wall

Fig. 1 Experimental apparatus (CAD) with (1) laminar flow element, (2) inlet plenum, (3) mesh heater, (4) swirl generator, (5)
swirl tube and (6) outlet plenum [3]
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Fig. 2 Convergent swirl chamber [24]

Fig. 3 a Rankine vortex formation. A forced vortex has the properties of a solid body vortex. A free vortex represents a potential
vortex. b Tangential velocities distribution Vϕ and temperature differences c in radial direction for different distances from the
inlet. Tube diameter is constant D0 = 50 mm, and Rez = 40,000 [3,24]

temperature (Tw = 293 K). Consequently, the total enthalpy at the wall yields

ht,w = cpTw + v2w
2

= cpTw = 295.344
J

kgK
(40)

In Fig. 4 the radial coordinate r is scaled by the local tube radius R(z) (see Fig. 2, Table 1), whereas the values
of the velocity and the total enthalpy represent absolute quantities. The axial flow shows the maximum near
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Fig. 4 Flow field in convergent swirl chambers Fig. 2 [24]. Absolute circumferential velocity Vϕ , see a absolute axial velocity
Vz, see b and parabolic growth of ht (28) and its deviation from the total enthalpy htw, value (40), see c, respectively

the wall and a back flow region in the tube centre. This flow separation is caused by the Ranque–Hilsch effect,
which creates a radial energy (temperature) separation in a vortex tube, see Fig. 3 [3].

The shown profiles represent compressible delayed detached Eddy simulations for an axial inflowReynolds
number Rez0 = 10,000 and a design swirl number Sgeo = 5.3 for different geometries, according to Table 1.
The transformation of the circumferential velocity vϕ from a solid body vortex, can be seen in Fig. 4a, and the
equalization of the total enthalpy ht is evident towards the end of the tube that is nicely visible in Fig. 4c.

5.2 Couette flow

To show the generality of the thermodynamic stability condition (8), the classical Couette flow between two
cylinders [5] was investigated. Provided that the flow is isothermal and the fluid has a constant density and a
constant viscosity, the exact solution of the Navier–Stokes equations for the flow field between two rotating
cylinders was found to be a superposition of a solid body vortex and a potential vortex—(inviscid assumption).
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Table 1 Investigated geometries

Geometry D0 (mm) Area ratio Aout/A0 Angle β Diameter

1 50 1 0 deg Linear
2 50 1/2 0.42 deg Linear
3 50 1/3 0.61 deg Linear
4 50 1/4 0.72 deg Linear
5 50 1/4 Varying Hyperbolic

The velocity field v = (vr, vϕ, vz) and the pressure p = p(r) depend for this case on the radius r

vr = vz = 0 = vϕ = vϕ(r) = ω(r)r for ω(r) = Ar + B

r2

A = −
1η
2 1 − μ/η2

1 − η2
, B = 
1

R2
1(1 − μ)

1 − η2
for μ = 
2/
1, η = R1/R2 (41)

The radius of the outer cylinder is R2 and its angular velocity is 
2 and for the inner cylinder is R1, 
1,
respectively. The non-dimensional quantities are −∞ < μ = 
2/
1 < 1, 0 < η = R1/R2 < 1, 0 <
r̃ = r/R2 < 1. The Rayleigh criterion (21) gives


̄R(μ − η2)[η2(1 − μ) + r̃2(μ − η2)] ≥ 0,

where 
̄R = 4
2
1

r̃2
(1 − η2)2 > 0 and 0 < μ < 1,

then μ = 
2/
1 > η2 or 
2R
2
2 > 
1R

2
1 is a stability condition (42)

According to this criterion, the Couette flow is stable if the angular momentum ρrvϕ increases in the r−
direction. Considering that for a given ratio of R1/R2, which is always less than 1, the inner cylinder can rotate
even faster than the outer one, see Fig. 5.

The thermodynamic stability criterion of the process (10), which respects the existence of viscosity, supple-
ments the purely mechanical Rayleigh criterion with an additional condition that can be interpreted as the onset
of coherent structures (Taylor–Couette flow). For the flow field specified by Eq. (41), we apply the simplified
form (10) and we get

π̃

μmol
= 4
2

1η
4(1 − μ)2

r̃4(1 − η2)2
≥ 0 (43)

This inequality can also be interpreted in the following way

π̃

μmol
= 4
2

1η
4

r̃4
> 0

for (1 − μ)2 = (1 − η2)2 -onset of coherent structures

or 
1 = 
2

(
R1

R2

)−2

and 
1 = 
2

(

2 −
(
R1

R2

)2
)−1

(44)

According to the thermodynamic criterion of stability of the process, the Taylor–Couette flow in this simplified
formulation (41) is always stable. Only in the case of 
1 = 
2 it is at the limit of stability (solid body vortex
(11) and coherent structures emerge. At high Reynolds numbers Re = ρ(R2 − R1)
1R1/μmol, the viscosity
loses its stabilizing effect so coherent structures break up and laminar flow turns into turbulent flow. The limits
of the onset of coherent structures are shown in Fig. 5.
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Fig. 5 Onset of coherent structures (instability) for a viscous flow between two rotating cylinders for η = R1/R2 = 0.8798
(Taylor–Couette flow) [28], see the sketch in Fig. The onset of instability is given by the black straight lines 
1 = 1.292
2, for

2 > 0- (right) and for −
2 ∈ (−250, 0) by 
1 = −
2(

R1
R2

)2−2
= 0.815
2-(left)

Fig. 6 The annular nozzle and tested configuration. 1: outer nozzle body, 2: nozzle centrebody, 3: axial air flow supply, 4:
swirling air flow supply through a pair of tangential ports (diameter 3.1 mm); H : nozzle-to-wall spacing, E : centrebody extension.
Dimensions: D2 = 17.6mm, D1 = 15.85mm, and E = 4.1mm

5.3 Annular swirling jet experiments

The flow field of annular swirling jet was investigated experimentally with air as the working fluid [1]. The
scheme of the present setup is shown in Fig. 6. The jets were issued from the annular nozzle with an outer
and inner exit diameters of D2 = 17.60mm and D1 = 15.85mm, respectively (i.e. the nozzle slot width is
b = (D2 − D1)/2 = 0.88mm and the diameter ratio is D1/D2 = 0.90).
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The nozzle centrebody is extended at the outer nozzle lip by a distance of E = 4.1mm. The settling
chamber located upstream of the nozzle operated as the swirl generator. For this purpose, the chamber was
supplied with axial (main) and swirling (tangential, control) air flow inlets with the mass fluxes ṁz and ṁϕ ,
respectively. Both fluxes were adjusted independently and were evaluated by the volumetric measurements by
a pair of rotameters.

The Reynolds number is defined as Re = V D2/ν, where V is the time average velocity at the nozzle exit,
V = (ṁz + ṁϕ)/(ρA) and A is the nozzle exit cross-sectional area, A = π(D2

2 − D2
1)/4. The Reynolds

number based on the nozzle annular slot is defined as Reb = Vb/ν.
The swirling strength of the flow is characterized by the swirl number S, similar to Eq. (38), and it is defined

as the ratio of the axial flux of the angular momentum to the axial flux of the axial momentum multiplied by
a characteristic radius

S =

∫ D2/2

D1/2
2πρvzvϕr

2dr

Dm

2

∫ D2/2

D1/2
2πρv2zrdr

. (45)

Here vz and vϕ are the axial and tangential velocity components at the nozzle exit, respectively, Dm is the mean
diameter defined as Dm = (D2 + D1)/2, and ρ is the air density and r is the diameter. In the present case with
a narrow annular slot, the average axial and tangential velocity components at the nozzle exit cross section are
assumed to be vz and vϕ , respectively. Hence, the swirl number can be evaluated by S ∼ vϕ/vz tan(ϕ), where
ϕ is the angle of yaw of the vector of the outlet velocity flow.

The experiment results in Fig. 7 show how the annular flow forms into a potential vortex. If the viscosity of
the fluid is nonzero, the potential vortex is more stable under the given conditions than the solid body vortex,
as can be seen from the thermodynamic stability condition (11) and (12).

5.4 Tropical cyclones—Rankine vortex approximation

Tropical cyclones can be approximated fairly well by a Rankine vortex [15]. The inner part (so-called eye)
of the cyclone is modelled by a solid body vortex. In the following it is assumed that dry air of density ρa
contains water in the form of vapour of density ρv. The mass concentration of the vapour is wv = ρv/ρ. The
total density of the moist air is equal to

ρ = ρa + ρv = Ma p

RT

[

1 +
(
Ma

Mv
− 1

)

wv

]−1

for p = pa + pv (46)

The molecular mass of air and water are Ma = 0.02896 kgmol−1 and Mv = 0.018015 kgmol−1, respectively.
The gas constant is R = 8.314 Jmol−1K−1 and cp a = 1006.5 J kg−1 is the specific heat at constant pressure
of air. The concentration of water in the air in the form of water vapour is

wv = x

1 + x
= Mvφpsat

Ma p − (Ma − Mv)φpsat
, x = ρv

ρa
, φ = pv

psat
(47)

where φ is the relative humidity, psat is the saturation pressure, and x = wv/(1 − wv)
.= wv, for wv � 1 is

the specific humidity (humidity ratio). The saturation pressure depends on the temperature only

psat = 610.94 exp

[
17.625(T − 273.15)

T − 30.11

]

[Pa], T [K] (48)

For the description of atmospheric phenomena such as cyclones, which take place in the troposphere
(from the surface of the earth to a maximum altitude of 18km), the dependence of temperature, pressure
and density on altitude z is important. Considering that the standard parameters at the Earth surface are
p0 = 101.325 kPa, T0 = 288.15K, ρ0 = 1.225 kgm−3 the following relations hold with sufficient accuracy

T (z) = T0 − Lz [K]
for L = −dT

dz
= 0.0065Km−1 for moist air, Ld = g/cp = 0.0098Km−1 for dry air
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Fig. 7 PIV measurement with cross-stream velocity profiles and streamwise velocity component at different distances measured
from the bottom part of the nozzle centrebody (0.2–2)D2. The experiments were performed at Re = 5000 for five variants of the
jets depending on the swirl number S from 0 to 0.32

dp

dz
= −ρg = −Magp

RT
, or p(z) = p0

(

1 − Lz

T0

)0.03417/L

[kPa], gMa/R = 0.03417

ρ(z) = ρ0

(

1 − Lz

T0

)(0.03417/L−1)

[kgm−3] (49)

Using the above relations, we can determine the thermodynamic properties of the atmosphere for any altitude.
The most important effect is the change in air humidity with the corresponding evaporation (latent) heat of
water hlv = 2264 kJkg−1.

Heat supplied by solar radiation increases the amount of water vapour above the ocean T ds = hlvdwv,
and the balance of momentum (26) can be written as

T
∂s

∂r
+ 2rω2

z = hvl
wv

∂r
+ 2rω2 = ∂ht

∂r
(50)

After integration from r = 0 to the edge of the solid body vortex Rmax, where the maximum circumferential
velocity vϕ,max) is reached, we obtain

�ht = ht, Rmax − ht,0 = hvl(wv, Rmax − wv, 0) + v2ϕ,max, for vϕ,max = Rmaxωz. (51)

Thus, in the case of a flow field in the form of a solid vortex, the total enthalpy increases during evaporation
hvl > 0. The amount of vapour ρv increases radially outwards. Thus, the total energy of tropical cyclones
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and twisters increases with the evaporation of water due to solar activity. However, in the potential part of the
vortex, the total enthalpy decreases, which also follows from Eq. (50)

∂ht
∂r

= T
∂s

∂r
= hvl

∂wv

∂r
(52)

which yields after integration from Rmax to r2 
 Rmax

ht, r2 − ht, Rmax = hvl
(
wv, r2 − wv, Rmax

)
for vϕ = ωzR2

max

r
, r > Rmax (53)

The total enthalpy ht,r2 at the outer edge of the potential vortex is because of condensation less than at the edge
of the eye, i.e.wv, r2 � wv, Rmax . Tropical cyclones are accompanied by rain at their outer edges [15,18]. Using
the sum of Eqs. (51), (53) we eliminate the term hlvwl, Rmax and get the relation for the maximum velocity of
moist air at the outer boundary of the cyclone eye

v2ϕ,max = hvl(wv, 0 − wv, r2) + ht, r2 − ht, 0, for vϕ,max = ωzRmax (54)

Dissipative processes caused by viscosity and thermal conductivity of air were neglected in deriving this
relationship, resulting in a high velocity value. For this reason, the result is more qualitative. Nevertheless, it
follows that the cyclone disappears under the following conditions

wt, 0 → wt, r2 , and ht, r2 − ht, 0 = cp(Tr2 − T0) → 0, for r2 → ∞. (55)

This usually happens when the cyclone leaves the ocean and travels over land, such that the rising moist air
disappears. If we take the experimentally determined maximum speed vϕ max = 62m/s for Rmax = 32 km,
[15] we can calculate the circulation (30) on the outer edge of the eye of the cyclone � = ωzR2

max =
1.984 · 106 m2 s−1, where ωz = 1.94 · 10−3 s−1, see Fig. 8. Equation (54) can be evaluated for the following
two extreme cases:

• The temperature in the core of the cyclone eye is the same as at its edge, i.e. T0 = Tr2 then the water content
of the air in the eye is greater, specifically wv, 0 = wv, r2 + 0.0017

• The water content of the air in the core of the eye is the same as at its edge, i.e. wv, 0 = wv, r2 leading to a
higher temperature at the edge, specifically Tr2 = T0 + 3.8K

This qualitative estimate neglects the strong influence of dissipative processes (turbulence at the Earth’s sur-
face), and the potential vortex is not fully developed, similar to a vortex tube, see Figs. 3 and 4. It follows
that the cyclone is maintained by an imbalance of humidity and/or temperature, or a combination of both.
Nevertheless, it follows that the air inside the vortex must contain more vapour than the air at the far edge of
the vortex.

The existence of a cyclone is not possible without the vertical flow of wet air. Provided that the partial
pressure of water vapour is much less than the partial pressure of air, i.e. for pv → 0 � pa, from Eq. (46)
results that the moist air has less density than dry air, specifically ρ

.= ρa [1 + (Ma/Mv − 1) wv]−1. The
vertical movement of moist air is induced by buoyancy, and its speed can be estimated from the balance of
momentum

1

2

dv2z
dz

= − 1

ρ

∂p

∂z
− g

︸ ︷︷ ︸
=0, see (49)

−
(

1 − ρa

ρ

)

= g

(
Ma

Mv
− 1

)

wv (56)

The specific humidity wv(z) only depends on the temperature T (z) from Eq. (49) and decreases with altitude,
similar to the saturated vapour pressure (48) [12]

dwv(z) = −βwv(z)dz, or wv(z) = wv(0) exp(−β(z − z0)) forβ � 3.77 · 10−4 [m−1] (57)

Here, the magnitude of the coefficient β is approximated and serves to estimate the dependency of the vertical
velocity of moist air on the altitude. We introduce this dependence in Eq. (56). After integration in the range
(0, z) we get

vz(z) =
√(

Ma

Mv
− 1

)
2gwv(0)

β

[
1 − exp(−βz)

]1/2
, for vz(0) = 0 (58)
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Fig. 8 Comparison of a qualitative analysis of cyclone dynamics with experimental results presented in the more detailed analysis
[15]. Values for determining the potential vortex circulation � (12), were taken from the experiment [15], i.e. � = vϕ,maxRmax =
1984. � = 2600 was used to demonstrate better fitting of the experiment

This formula gives a speed of vz = 20.7m/s at an altitude of z = 3 km for specific humidity at the ocean
level wv(0) = 0.02. It should be taken into account that at high altitudes water vapour is supersaturated
pv/psat > 1 and condensation occurs. As a result, the air flow is inhibited. The magnitude of air deceleration
with condensation can be estimated from the total enthalpy (5)

ḣt = cpṪ + v̇2z

2
+ gż = T ṡ + 1

ρ

∂p

∂t

∣
∣
∣
∣
z

(59)

In case the atmosphere is in a steady state (∂p/∂t |z = 0), a parcel of a moist air at high altitude is slowed down
according to the relationship

v̇z = cp

⎡

⎢
⎢
⎢
⎢
⎣

hlv
cp

dwv

dz
−

(
dT

dz
+ g

cp

)

︸ ︷︷ ︸
=0 for dry air

⎤

⎥
⎥
⎥
⎥
⎦

≈ hlv
dwv(z)

dz
< 0 (60)

For example, at an altitude of 10 km, the decrease in relative humidity is dw/dz = 1.74 × 10−6m−1, and the
corresponding deceleration is v̇z = −4.5m s−2.
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6 Conclusion

In spite of the huge amount of publication concerning the Ranque–Hilsch effect and many experiments, which
proved its actual function, its physical origin is still under discussion [25]. Theoretical analysis supported by
experiments and numerical simulations provided a large amount of partial knowledge. These findings can be
satisfactorily unified by using the properties of total enthalpy. The important role of the total enthalpy for
inviscid flow followed from the variational analysis [22,27]. The use of total enthalpy offers a more general
view on the stability of flow of viscous fluids. Moreover, the thermodynamic criteria of stability of the steady
state and the stability of the processes are applied to specific cases.

This theory was verified for all modifications of the Couette flow, even for a solid body rotation, where
the Rayleigh condition failed. It was shown that the solid body vortex is at the margin of stability, which is
experimentally observed. Analogously, the potential vortex is stable in the case of the thermodynamic criterion
and plays an important role in clarifying the function of the vortex tube. These conclusions can even be applied
to processes in the atmosphere (estimation of the power of hurricanes and tornadoes [18]). The increase in
total enthalpy caused by the evaporation of water in the inner part of a tropical cyclone (solid body vortex) and
the decrease of enthalpy in its outer part (potential vortex) leads to great stability and long persistence of this
atmospheric phenomenon.
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