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Abstract Modern manufacturing technologies allow heterogeneous materials with complex inner structures
(e.g., foams) to be easily produced. However, their utilization is not straightforward, as the classical constitutive
laws are not necessarily valid. According to various experimental observations, theGuyer–Krumhansl equation
is a promising candidate for modeling such complex structures. However, practical applications need a reliable
and efficient algorithm capable of handling both complex geometries and advanced heat equations. In the
present paper, we derive new two-field variational formulations which treat the temperature and the heat flux
as independent field variables, andwe develop new, advanced hp-typemixed finite elementmethods, which can
be reliably applied. We investigate their convergence properties for various situations, challenging in relation
to stability and the treatment of fast propagation speeds. That algorithm is also proved to be outstandingly
efficient, providing solutions four magnitudes faster than commercial algorithms.

Keywords Two-field variational formulations · hp-version mixed FEMs · Maxwell–Cattaneo–Vernotte heat
equation · Guyer–Krumhansl heat equation · Transient analyzes

1 Introduction

The engineering practice utilizes several models to describe material behavior, and these equations are called
constitutive equations. The Navier–Stokes, Fourier, and Hooke laws for continuum objects are the most fre-
quent. The common point among them is that all define equality:

q = −λ∂x T, � = −ν∂xv, σ = Eε, (1)

in which q, λ, and T are the heat flux, thermal conductivity, and temperature field; � describes the dynamic
pressure as a consequence of the presence of velocity gradient ∂xv; and the stress tensor σ is proportional with
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the deformation ε. This simple structure usually allows us to easily eliminate the current densities and prescribe
the boundary conditions (BC) using only one field variable, for instance, the temperature for heat conduction
problems. It has also eased the development and implementation of various numerical and analytical solution
techniques.

However, for advanced transport models, the situation becomes more difficult. The constitutive equation is
not an equality but becomes a partial differential equation (PDE). Therefore, the conventional initial and BCs
do not work without further conditions [1,2], and more careful treatment is necessary. A glaring example is
related to the so-called Guyer–Krumhansl (GK) equation,

τ q̇ + q + λ T ′ − κ2 q ′′ = 0 in I × 
 (2)

in which I and 
 are the time and space domain (defining them after Eq. (3)) as well as the partial time
derivative of the heat flux (q̇) appears with a coefficient τ called the relaxation time. Moreover, Eq. (2) consists
of the second-order spatial derivative of q as well, denoted by q ′′.While it is often claimed that the GK equation
can only be well-posed with additional boundary conditions (such as adding the gradient of q as well), it is
proved that the same number of BCs is enough, and well-posed with q-boundaries [3]. This is also supported
by the existing analytical solutions for time-dependent BCs [1,4] and for other BCs [5,6].

Although the GK equation is usually known from the kinetic theory describing wave-type heat conduction
phenomena in crystals [7], it also can be derived on a continuum basis [8]. Thus, the coefficient κ2 is not
related to the mean free path of phonons as in that continuum approach, and the resulting model is independent
of the micro-scale heat transfer mechanisms [8]. Adding that the GK equation is successfully tested in heat
conduction experiments on various rocks and foams as challenging problems, [4,9,10], and this allows us to
consider the GK equation as a promising candidate beyond Fourier and use it for more practical engineering
applications. Hence, it is essential to understand the properties of the GK equation and develop efficient and
reliable numerical solution techniques.

On that basis, a finite difference approach has been elaborated recently [11], but it is strongly limited to
simple (regular) geometries. That numerical methodology is also adapted for rheological and nonlinear models
[12], with carefully investigating the role of initial and boundary conditions analytically, too [1,2]. Therefore,
we aim to develop a hp-version finite element method (FEM), which can preserve the advantageous properties
of the earlier finite difference scheme to handle the initial and boundary conditions reliably and also to be
adaptable for complex geometries and possess high accuracy and fast convergence properties.

Furthermore, COMSOL’s ability to solve the GK equation is not satisfactory, and this is tested by utilizing
COMSOL’s Mathematics Module in version v5.3a and implementing the GK equation using the local form of
PDEs [11]. Three characteristic settings were benchmarked: κ2 = 0 leading to the MCV equation, κ2/τ = α
to reproduce Fourier’s solution, and κ2/τ > α to produce over-diffusive solutions, with α = λ/(ρcV ) being
the thermal diffusivity. In the first two situations, COMSOL can provide a physically valid temperature history,
although its resource requirements—CPU and RAM usage—are rather high. However, in the last one in which
κ2/τ > α, the resulting temperature history was found to be far from realistic [11], false solutions can easily be
found for a stable and seemingly convergent method. These solutions are independent of the applied mesh and
time-stepping algorithm. Figure1 compares the physically valid temperature and the false one fromCOMSOL,
presenting the importance and the need for a reliable, efficient FEM.

We want to underline that this is also the case for simple wave propagation, the built-in wave equation
module of COMSOL, using its built-in time-stepping algorithms, provides different solutions for each algo-
rithm, and eventually, without any supplementary solution technique independent of COMSOL, one cannot
find the valid, physically admissible solution [12].

The most straightforward classical FE techniques use linear piecewise polynomials to approximate the
solution and achieve the desired accuracy with mesh refinement. The philosophy of using low-order polyno-
mials over successively finer meshes is called h-type approximation technique [13–16]. In most cases [17–24],
that quite well-applicable h-type approaches or other approximation schemes are utilized for the Maxwell–
Cattaneo–Vernotte (MCV, with κ2 = 0 in Eq. (2)), or for the dual-phase-lag (DPL) equations, which models
have much less practical interest. Furthermore, the time fractional version of the MCV model is also used as a
refined heat conductivitymodel, see the theory; and finite difference schemes, as well as spectral method elabo-
rated on its numerical solution in [25]; and [26–28], as well as [29]. Besides, in paper [30] and its improvement
[31], an analytical solution is derived for modeling the laser short-pulse heating process of a solid body by the
use of the Laplace transformation.

However, the conventional h-FEMs can provide slow convergences and low accuracy for specific types of
initial and BCs, as well as when particular material and/or geometric parameters of the considered model prob-
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Fig. 1 Demonstrative solutions for the GK equation for the same set of parameters [11]: α=1e-4m2/s, τ = 0.005 s and κ2=5e-
6m2. Upper: the dimensionless temperature history is obtained with an unconditionally stable finite difference method, validated
with an analytical solution. Lower: COMSOL’s solution

lem are close to their limit value, see for shell problems in [32–34]. In order to circumvent these computational
difficulties, the p-version FE technology will be used as an alternative, promising strategy, being introduced
initially in [35,36]. The idea is to keep the coarse mesh fixed, and the convergence and the high accuracy are
achieved solely by increasing the polynomial degree p of the approximated variables. It was proven that the
rate of convergence is much higher for p-FEM than that is possible with h-FEM, and exponential for smooth
solutions and even for non-smooth solutions using properly chosen mesh refinement coupled with the increase
of the polynomial degree p (hp-strategy) [36]. Besides, the so-called discontinuous Petrov–Galerkin-type
hp-version FEMs are also well suitable for stable and accurate transient heat conductivity equation solutions,
see in [37]. This is the primary motivation behind our research. Thus, the p-type approximation technique is
chosen to develop new FEM for the above-mentioned refined theories of thermodynamics.

Accordingly, the novelty of this paper is on two main accounts: (i) derivation of new two-field variational
formulations for the MCV and GK model of the refined theories of thermodynamics, as well as (ii) the
development of new, advanced hp-version mixed FEMs that handle the temperature and heat flux fields as
independent variables.

Problem formulation

The GK equation (2) is accompanied by the balance of internal energy for heat conduction processes, that is,

ρ cV Ṫ + q ′ = 0 in I × 
 , (3)

where I ∈ (t0, t1] and 
 = [x |x ∈ (0, )] define the considered time and space domain, as well as ρ and cV
are the mass density and specific heat; the source terms are neglected. For the sake of generality, the system
of basic differential Eqs. (2, 3) is subjected to the spatial descriptions

T (t, 0) = T̃ (t) in I , (4)

q(t, ) = q̃(t) in I , (5)

as Dirichlet- and Neumann-type BCs at x = 0 and x = , respectively, as well as the temporal prescriptions

T (0, x) = T0(x) and q(0, x) = q0(x) (6)
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as initial conditions at t0 = 0 s, which has to be compatible with the boundary conditions (4, 5) at x = 0 and
x = :

T0(0) = T̃ (t0) and q0() = q̃(t0) . (7)

The GK-system (2, 3) is a second-order partial differential equation system, more precisely, second-order with
respect to the space coordinate, but first-order in time. If κ (or κ2) tends (or equal to) zero, the MCV-system
is obtained as an entirely first-order partial differential equation system.

2 Two-field mixed hp-version finite element method

In this section, new hp-FEMs will be presented for the numerical solution of the MCV and the GK model,
which is based on two-field mixed variational formulations

2.1 Variational formulations

In this subsection, two new variational formulations will be derived for the MCV and the GK model problem
of the refined theory of thermodynamics, serving as a basis for the hp-FEMs. Some similar mathematical
procedures are elaborated onmixed variational theorems of coupled time-dependent thermoelasticity problems
in [32,38].

2.1.1 Maxwell–Cattaneo–Vernotte model

In this model problem, as the first step of the derivation, after having divided the constitutive Eq. (2) by λ and
testing it, i.e., multiplying it with the time-independent test function v(x) and integrated it over the domain 

with setting κ2 = 0 we obtain its weakened form∫




(τ

λ
q̇ + q

λ
+ T ′ ) v d
 = 0 . (8)

In the next step of the derivation, multiplying the energy balance equation (3) with another time-independent
test function u(x) and integrating it over the domain 
 we have∫




(
ρ cV Ṫ + q ′ ) u d
 = 0 . (9)

Now spatially integrating-by-parts this equation, as well as building in the BC (5) and the homogeneous form
of the BC (4) for the test function u, the second term of the latter integral becomes∫




q ′ u d
 = [q u]0 −
∫




q u′ d
 = q̃ u() −
∫




q u′ d
 . (10)

This process is called relaxation. Accordingly, upon substitution of the latter equation into (9) we get the
relaxed form of Eq. (3):

−
∫




ρ cV Ṫ u d
 +
∫




q u′ d
 = q̃ u() . (11)

Putting the weak form (8) together with the relaxed form (11), we arrived at a two-field mixed variational
formulation which reads as follows. Find the duet T (t, ·) ∈ H1(
) and q(t, ·) ∈ L2(
) as trial functions
satisfying a priori the BC (4) and the initial condition (6) such that

−
∫




ρ cV Ṫ u d
 +
∫




q u′ d
 = q̃ u() ∀u ∈ H1(
) , (12)
∫




τ

λ
q̇ v d
 +

∫



q v

λ
d
 +

∫



T ′ v d
 = 0 ∀v ∈ L2(
) (13)

satisfying a priori the homogeneous form of the BC (4). Here, H1(
) stands for the Sobolev space of order 1
[39] and represents the space regularity property for T and u, while L2(
) defines square integrable function
space for q and v.
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2.1.2 Guyer–Krumhansl model

In this model problem, as the first step of the derivation repeating the same process as presented in the latter
subsection, i.e., relaxing Eq. (3) with the time-independent test function u(x), we obtain again the variational
equation

−
∫




ρ cV Ṫ u d
 +
∫




q u′ d
 = q̃ u() . (14)

In the next step, after having divided the constitutive Eq. (2) by λ, thenmultiplying it with the time-independent
test function v(x) and integrating the product over the region 
, again we have

∫



(
τ

λ
q̇ + q

λ
+ T ′ − κ2

λ
q ′′

)
v d
 = 0 , (15)

but now, integrating by parts the last term of this variational integral, we get

−
∫




κ2

λ
q ′′ v d
 =

−κ2

λ

[
q ′ v

]
0 +

∫



κ2

λ
q ′ v′ d
 = κ2

λ

[
q ′(0) v(0) − q ′() v()

] +
∫




κ2

λ
q ′ v′ d
 ,

the substitution of which into Eq. (15) results in the variational equation
∫




τ

λ
q̇ v d
 +

∫



q v

λ
d
 +

∫



T ′ vd
 +
∫




κ2

λ
q ′ v′ d
 = κ2

λ

[
q ′() v() − q ′(0) v(0)

]
. (16)

As a result of this derivation, collecting Eqs. (14) and (16), again we arrive at a two-field mixed variational
formulation but with a slightly different space regularity property from Eq. (13). Accordingly, we seek the
variable pair [T (t, ·), q(t, ·)] ∈ H1(
) satisfying a priori the BC (4) and the initial condition (6) in such a
way that

−
∫




ρ cV Ṫ u d
 +
∫




q u′ d
 = q̃ u() ∀u ∈ H1(
) , (17)

∫



τ

λ
q̇ v d
 +

∫



q v

λ
d
 +

∫



T ′ v d
 +
∫




κ2

λ
q ′ v′ d
 = κ2

λ
q ′() v()

− κ2

λ
q ′(0) v(0) ∀v ∈ H1(
) (18)

hold true, ensuring a priori the homogeneous form of the BC (4) once again.

2.2 hp-finite element discretizations

Let us now consider the hp-FE discretization of the domain 
. Thenceforward, 
 is divided into n physical
sub-domain. Then, the master element 
mas := { η | η ∈ (−1, 1)} is mapped onto the i-th physical element
K := {x |xi ∈ (xi , xi+1)} ⊂ 
h with the nodal points xi and xi+1 of the FE mesh 
h : 0 < x1 < x2 <
. . . < xi < xi+1 < . . . < xn < xn+1 =  by the mapping function xi := N1(η)xi + N2(η)xi+1, where
N1 = (1 − η)/2 and N2 = (1 + η)/2, i = 1, . . . , n.

The approximation spaces for the trial-and-test function group, (T, q) and (u, v) are hp-FE function
spaces consisting of piecewise continuous polynomial functions, being spanned over the i-th element by
the external shape functions N1 and N2 for p = 1, as well as their supplemented set with the bubble modes
Nk(η) = [Lk−1(η)−Lk−3(η)]/√2(2k − 3) for p ≥ 2, where Lk(η) are the orthogonal Legendre polynomials,
k = 3, 4, . . . , p + 1 [35,40,41]. The independent trial-and-test functions, T, u and q, v are approximated on
the i-th element of 
h by the polynomial degrees p + 1 and p, or p + 1, respectively, for the MCV and the
GK model according to Table 1, keeping in mind the space regularity assumptions on the trial functions T and
q , as well as the test functions u and v in Eqs. (12, 13) for the MCV model and in Eqs. (17, 18) for the GK
model. Here, p is the actual polynomial degree set to each element.
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Table 1 Polynomial approximation spaces

Model Function

T, u q, v

MCV p + 1 p
GK p + 1 p + 1

Let us represent now the variational Eqs (12, 13) and (17, 18) in matrix form. For the sake of simplicity,
let h t and hq indicate the column matrices correspond to the time-dependent unknown temperature and heat
flow coefficients, respectively. After carrying out the numerical integrations on each element i , on the spatial
assembling process, we have the following time-dependent matrix equation system

C h ṫ + QT hq = d ,

T h q̇ + Q h t + K hq = 0
(19)

as semi-discrete equations which can be written in the simplified form

A hα̇ + B hα = f , (20)

where

hα =
[

h t
hq

]
, A =

[
C 0
0 T

]
, B =

[
0 QT

Q K

]
and f =

[
d
0

]
, (21)

in which C, T and K denote the consistent matrices of the specific heat, the relaxation term, and the heat
conductivity, respectively, while Q is the consistent coupling matrix of the system.

It is important to note here that the time-dependence of the system is carried by the unknown coefficient
values, i.e., the coefficients appeared in hα (h t and hq). In particular, the shape functions are not time-dependent
at all, thereby seeking the numerical solution using the separation of variables technique. Even in the case of
non-separable analytic solutions (if they exist), the solution can be approximated separately [15].

2.3 Time integration scheme for the semi-discrete system

The considered initial-boundary value problem as semi-discrete system contains seeking the function α(t)
( h t(t) and hq(t)) satisfying first-order time-dependent system (20) and the initial conditions (6) built-in
α0, for the numerical solution of which we use the generalized trapezoidal method. Accordingly, the time
discretized version of Eq. (20) can be written as

(A + θ �t B)αt+�t = [A − (1 − θ)�t B]αt + �t
[
θ f t+�t + (1 − θ) f t] , (22)

which can be simplified into the form

Eαt+�t = Dαt + �t
[
θ f t+�t + (1 − θ) f t] , (23)

where �t is the time step size assumed to be constant and the parameter θ is taken to be in the interval [0, 1],
as well as E = A + θ �t B and D = A − (1 − θ)�t B. Thus, the amplifier matrix of the resulting system

αt+�t = Ã(θ)αt + f̃ (θ) (24)

is computed as Ã = E−1D ( f̃ = �t[θ E−1 f t+�t + (1 − θ)E−1 f t ]). During the numerical investigations,
we choose 1 for the parameter θ in order to make the algorithm unconditionally stable. Besides, on each
convergence test and simulation, the spectral radius and the eigenvalues of Ã, i.e., the stability requirements
on Ã [13,15] is computationally checked.
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3 Numerical experiments

In this section, the newly developed two-field hp-version FEMs will be tested on a representative initial-
boundary value problem, focusing on the transient analysis. In order to demonstrate the computational perfor-
mance of the hp-type mixed FEs, first we investigate the point-wise h- and p-convergence of the relative error
that is measured, respectively, in the maximum norm of the temperature and the heat flow

ehp =
max

t∈[t0,t1]
∣∣ h t − t ref

∣∣
max

t∈[t0,t1]
|t ref | and ehp =

max
t∈[t0,t1]

∣∣ hq − qref
∣∣

max
t∈[t0,t1]

∣∣qref ∣∣ . (25)

The related thermodynamic system (20) is solved numerically for the relatively small time interval t ∈ [0, 10]
s, using the implicit time integration scheme, i.e., the setting θ = 1 [13,15]. The number of the constant time
steps is set to nt = 10000, yielding the time step size�t = 0.001 s. The considered bodies of length  = 0.005
m are made of rock-like materials which have cV = 800 (J/kgK), ρ = 2600 kg/m3. Additionally, the new
parameters τ and κ2 are determined based on earlier experimental data [9] to be realistic; therefore, we choose
τ = {0.05, 0.15, 0.3} s, with κ2 = 8 · 10−6 m2.

However, in order to challenge the numerical procedure, we also test for unrealistically high κ2 = 0.8 m2

as that coefficient greatly influences the characteristic speed of diffusion and makes the propagation faster with
five magnitudes concerning the previous situations.

Furthermore, these are subjected to the time-dependent Neumann-type BCs

q̃0(t) = 10000
c1 c2

c2 − c1

[
exp

(
−c1

t

tp

)
− exp

(
−c2

t

tp

)]
and q̃(t) = 0 (26)

as prescribed heat flows and the initial conditions T0(x) = 293 K and q0(x) = 0, where c1 = 1/0.075, c2 = 6,
tp = 0.008 s; namely these are initially at rest, i.e., in an equilibrium state. The c1 and c2 coefficients are
chosen based on [4] to keep the excitation as realistic as possible.

During the p-convergence tests, 8-, 52- and 20-element equidistant meshes are fixed on the domain 

for the GK model along with the parameter settings κ2 = 0.8 m2, κ2 = 0.000008 m2 and the MCV model,
respectively, while the polynomial degree p is ranging from 2 to 8 for all of FEs. During the h-convergence
studies, the domain 
 is uniformly refined in 7 steps from the element number n = 8, 52 and 20 to 20, 88
and 44, respectively, for the GK model with κ2 = 0.8 m2, κ2 = 0.000008 m2 and the MCV model. In each
mesh refinement step, the polynomial degree p is equal to 2 and unchanged for all elements. Furthermore, the
number of degrees of freedom (DOF) is equal to the number of the unknown coefficients occurring in α, i.e.,
the size of α.

The relative error-convergence curves of the front- and rear-side temperature, T (t, 0) and T (t, ), as well
as the mid-side heat flow q(t, /2) obtained for the MCV model, and the GK model with relatively large and

Fig. 2 Convergence histories of the relative errors measured in the maximum norm for the front- and rear-side temperature, as
well as the mid-side heat flow—MCV model
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Fig. 3 Convergence histories of the relative errors measured in the maximum norm for the front- and rear-side temperature, as
well as the mid-side heat flow—GK model with κ2 = 0.8 m2

Fig. 4 Convergence histories of the relative errors measured in the maximum norm for the front- and rear-side temperature, as
well as the mid-side heat flow—GK model with κ2 = 0.000008 m2

small value of κ2 (0.8 m2 and 0.000008 m2) are plotted against the number of DOF on log–log scales in Figs. 2
and 3, 4 for the relaxation time τ = 0.3 s, τ = 0.15 s, and τ = 0.05 s, respectively.

The relative error behavior exhibits fast convergences not only for p- but also for h-approximation. As
expected, the p-convergence is much faster than the h-convergence. Namely, the higher-order polynomial
approximation helps a lot to increase the convergence rate. Thus, the desired accuracy is achieved with the use
of a much less number of DOF by the p-approximation. In the asymptotic range, the exponential type of the
p-convergence behavior is observed, while the h-convergence shows an algebraic type of convergence instead.

It can also be experienced that there is no significant influence of the relaxation time τ on the convergence
rates. However, the convergence curves are shifted down (without changing their slopes) as τ decreases,
achieving a lower relative error value. Besides, it can be seen that the error level is around a very small value
(approximately 10−8), i.e., the computational accuracy is very high in Figure 6.

Besides, it is worth mentioning that during all of the convergence tests, the amplifier matrix has been
spectrally stable as expected in Figure 10.

Giving now as the illustration of the hp-FE solutions for the MCVmodel and the GK model with the quite
small value of κ2 (0.000008 m2), the time histories of the dimensionless rear- and front-side temperature are
depicted, separately for the three different relaxation times τ = 0.3 s, τ = 0.15 s, and τ = 0.05 s, in Figs. 5,
7 and, 9, 11, respectively, using a 100-element-mesh with the relatively high polynomial degree p = 10 and
comparing all the results to the hp-FE solution of the classical, Fourier model. Figures8 and 12 represent the
time series of the dimensionless rear- and front-side temperature for “over-diffuse” thermodynamic system,
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Fig. 5 Time series of the dimensionless rear-side temperature for the MCV and GK model with κ2 = 0.000008 m2 – τ = 0.3 s,
p = 10 and n = 100

Fig. 6 Time series of the dimensionless rear-side temperature for the MCV and GK model with κ2 = 0.000008 m2 – τ = 0.15
s, p = 10 and n = 100

i.e., for κ2 = 0.8 m2, zooming the hp-FE solutions in the rapidly change and very small time region [0, 0.02]
s. These figures show that the τ -value has no significant effect on the solution for “over-diffuse” system.

It is important to mention here that oscillation-free simulation results of the MCV model are regained
from the GK model as well if we precisely substitute zero into the GK model for the diffusivity parameter κ2.
From both the GK and the MCV model, the simulation results of the Fourier model can be obtained without
oscillations, substituting precisely zero values for both the relaxation time τ and the diffusivity parameter κ2

in the GK and/or the MCV model. Namely, the hp-FEs exhibit oscillation-free behavior even if τ and κ2 are
exactly equal to zero.

4 Discussion

Here, we have presented novel numerical approacheswhich are based on (1) newly derived two-field variational
formulations that consider the temperature and heat flux field as independent variables and (2) new, advanced
hp-version mixed FEMs. Within this new concept, we have focused specifically on the FE solution of the
Guyer–Krumhansl equation, as that model could have a significant practical interest in engineering based on
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Fig. 7 Time series of the dimensionless rear-side temperature for the MCV and GK model with κ2 = 0.000008 m2 – τ = 0.05
s, p = 10 and n = 100

Fig. 8 Influence of τ on the time series of the dimensionless rear-side temperature for the GK model with the over-diffuse setting
κ2 = 0.8 m2—p = 10 and n = 100

the available experimental data. We successfully demonstrated that the solutions converge, thus are stable and
consistent, and reproduce the experimentally observed required characteristics, contrary to COMSOL [11].
That is essential since the usual approaches do not work, and it is not possible to use the temperature as a
single field variable for heat flux BCs [2]. The advantage of the presented hp-FEMs is as follows:

(i) Since the derived variational formulations and the related FEMs are two-field ones, we obtain numerical
results directly for both the temperature field and the heat flux, thereby decreasing the computational
cost and time of the postprocessing subroutine of the code.

(ii) Fast p-convergence with high precision has experienced in both the temperature and the heat flow
computations. It means that highly accurate FE solutions can be achieved with relatively low-density
mesh by means of very high degree polynomial approximation, i.e., the desired (high) accuracy is mainly
reached much earlier by the p-type approximation because the p-convergence is much faster than the
h-convergence, thereby verifying the effectiveness of the hp-FE code.

(iii) The developed hp-FEMs are locking-free, producing robust (uniformly stable) FE solutions at each time
instant, i.e., providing reliable numerical results for both the temperature and the heat flux.
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Fig. 9 Time series of the dimensionless front-side temperature for the MCV and GK model with κ2 = 0.000008 m2 – τ = 0.3
s, p = 10 and n = 100

Fig. 10 Time series of the dimensionless front-side temperature for the MCV and GKmodel with κ2 = 0.000008 m2 – τ = 0.15
s, p = 10 and n = 100

The only disadvantage of the constructed mixed hp-FEMs is that these can lead to large sparse matrices,
thereby increasing (but not significantly) the memory usage and the runtime during the solution. However, this
can be easily remedied by the generation and use of preconditioners for the main matrix blocks. However, the
preconditioning has not been necessary up to now, thanks to the excellent convergence test results described
above.

Moreover, that technique is incredibly more efficient than the one offered by COMSOL and runs about four
magnitudes faster, thanks to the low number of DOFs and elements. That advantage becomes more significant
in two and three-dimensional problems; therefore, our next aim is to improve and implement the present
approach for complex geometries in higher spatial dimensions. Additionally, due to the global energy crisis
and chip shortage, the efficiency of algorithms has increasing importance. That massive increase in speed
would enable the real-time monitoring of heterogeneous materials with complex inner structures without
massive computational capacity.
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Fig. 11 Time series of the dimensionless front-side temperature for the MCV and GKmodel with κ2 = 0.000008 m2 – τ = 0.05
s, p = 10 and n = 100

Fig. 12 Influence of τ on the time series of the dimensionless front-side temperature for the GK model with the over-diffuse
setting κ2 = 0.8 m2 – p = 10 and n = 100

Acknowledgements Project no. TKP-6-6/PALY-2021 has been implementedwith the support provided by theMinistry ofCulture
and Innovation of Hungary from the National Research, Development and Innovation Fund, financed under the TKP2021-NVA
funding scheme. This paper was supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences.
The research reported in this paper and carried out at BME has been supported by the grants National Research, Development
and Innovation Office-NKFIH FK 134277.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit
line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To
view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Funding Open access funding provided by University of Miskolc.

http://creativecommons.org/licenses/by/4.0/


Two-field mixed hp-finite elements

References

1. Kovács, R.: Analytic solution of Guyer–Krumhansl equation for laser flash experiments. Int. J. Heat Mass Transf. 127,
631–636 (2018)

2. Kovács, R.: Analytical treatment of nonhomogeneous initial states for non-Fourier heat equations. Int. Commun. Heat Mass
Transfer 134, 106021 (2022)

3. Ramos, A.J.A., Kovács, R., Freitas, M.M., Almeida Júnior, D.S.: Mathematical analysis and numerical simulation of the
Guyer–Krumhansl heat equation. Appl. Math. Model. 115, 191–202 (2023). https://doi.org/10.1016/j.apm.2022.10.054

4. Fehér, A., Kovács, R.: On the evaluation of non-Fourier effects in heat pulse experiments. Int. J. Eng. Sci. 169, 103577 (2021)
5. Zhukovsky, K., Oskolkov, D.: Exact harmonic solutions to Guyer–Krumhansl-type equation and application to heat transport

in thin films. Continuum Mech. Thermodyn. 30, 1207–1222 (2018). https://doi.org/10.1007/s00161-018-0648-4
6. Zhukovsky, K., Oskolkov, D.: Correction to: exact harmonic solutions to Guyer–Krumhansl-type equation and application

to heat transport in thin films. Continuum Mech. Thermodyn. 31, 603 (2019). https://doi.org/10.1007/s00161-018-0651-9
7. Guyer, R.A., Krumhansl, J.A.: Thermal conductivity, second sound, and phonon hydrodynamic phenomena in nonmetallic

crystals. Phys. Rev. 148, 778–788 (1966). https://doi.org/10.1103/PhysRev.148.778
8. Ván, P., Fülöp, T.: Universality in heat conduction theory—weakly nonlocal thermodynamics. Annalen der Physik Berlin

524(8), 470–478 (2012)
9. Both, S., Czél, B., Fülöp, T., Gróf, G., Gyenis, Á., Kovács, R., Ván, P., Verhás, J.: Deviation from the Fourier law in

room-temperature heat pulse experiments. J. Non-Equilib. Thermodyn. 41(1), 41–48 (2016)
10. Lunev, A., Lauerer, A., Zborovskii, V., Léonard, F.: Digital twin of a laser flash experiment helps to assess the thermal

performance of metal foams. Int. J. Therm. Sci. 181, 107743 (2022)
11. Rieth, A., Kovács, R., Fülöp, T.: Implicit numerical schemes for generalized heat conduction equations. Int. J. Heat Mass

Transf. 126, 1177–1182 (2018)
12. Pozsar, A., Szücs, M., Kovács, R., Fülöp, T.: Four spacetime dimensional simulation of rheological waves in solids and the

merits of thermodynamics. Entropy 22(12), 1376 (2020)
13. Bathe, K.-J.: Finite Element Procedures. Prentice Hall, Upper Saddle River, New Jersey (1996)
14. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland Publishing Company, Amsterdam (1978)
15. Hughes, T.J.R.: The Finite Element Method. Linear Static and Dynamic Finite Element Analysis. Prentice Hall, Englewood

Cliffs, New Jersey (1987)
16. Reddy, J.N.: Energy Principles and Variational Methods in Applied Mechanics, 2nd edn. John Wiley & Sons, New York

(2002)
17. Aouadi, M., Copetti, M.I.M.: Exponential stability and numerical analysis of a thermoelastic diffusion beam with rotational

inertia and second sound. Math. Comput. Simul. 187, 586–613 (2021). https://doi.org/10.1016/j.matcom.2021.03.026
18. Deka, B., Dutta, J.: Finite element methods for non-Fourier thermal wave model of bio heat transfer with an interface. J.

Appl. Math. Comput. 62, 701–724 (2020)
19. Deka, B., Dutta, J.: Convergence of finite element methods for hyperbolic heat conduction model with an interface. Comput.

Math. Appl. 79(11), 3139–3159 (2020). https://doi.org/10.1016/j.camwa.2020.01.013
20. Gómez, H., Colominas, I., Navarrina, F., Casteleiro, M.: A finite element formulation for a convection-diffusion equation

based on Cattaneo’s law. Comput. Methods Appl. Mech. Eng. 196(9), 1757–1766 (2007). https://doi.org/10.1016/j.cma.
2006.09.016

21. van der Merwe, A.J., van Rensburg, N.F.J., Sieberhagen, R.H.: Comparing the dual phase lag, Cattaneo–Vernotte and Fourier
heat conduction models using modal analysis. Appl. Math. Comput. 396, 125934 (2021). https://doi.org/10.1016/j.amc.
2020.125934

22. Yang, Z.B., Wang, Z.K., Tian, S.H., Chen, X.F.: Analysis and modelling of non-fourier heat behavior using the wavelet finite
element method. Materials (2019). https://doi.org/10.3390/ma12081337

23. Nazmdeh, H., Vahabi, M., Nazari, M.A.: Finite element modeling of Non-Fourier heat transfer in a cancerous tissue with
an injected fat layer during hyperthermia treatment. J. Therm. Biol. 100, 103073 (2021). https://doi.org/10.1016/j.jtherbio.
2021.103073

24. Xu, B., Li, B.Q.: Finite element solution of non-Fourier thermal wave problems. Numer. Heat Trans. Part B Fundam. 44(1),
45–60 (2003). https://doi.org/10.1080/713836333

25. Yu, Y.J., Deng, Z.C.: Fractional order theory of Cattaneo-type thermoelasticity using new fractional derivatives. Appl. Math.
Modell. 87, 731–751 (2020)

26. Ghazizadeh, H.R., Maerefat, M., Azimi, A.: Explicit and implicit finite difference schemes for fractional Cattaneo equation.
J. Comput. Phys. 229(19), 7042–7057 (2010). https://doi.org/10.1016/j.jcp.2010.05.039

27. Liu, Z., Cheng, A., Li, X.: A second order Crank-Nicolson scheme for fractional Cattaneo equation based on new fractional
derivative. Appl. Math. Comput. 311, 361–374 (2017). https://doi.org/10.1016/j.amc.2017.05.032

28. Nikan, O., Avazzadeh, Z., Tenreiro Machado, J.A.: Numerical approach for modeling fractional heat conduction in porous
medium with the generalized Cattaneo model. Appl. Math. Model. 100, 107–124 (2021). https://doi.org/10.1016/j.apm.
2021.07.025

29. Li, H., Jiang, W., Li, W.: Space-time spectral method for the Cattaneo equation with time fractional derivative. Appl. Math.
Comput. 349, 325–336 (2019). https://doi.org/10.1016/j.amc.2018.12.050

30. Qi, H.-T., Xu, H.-Y., Guo, X.-W.: The Cattaneo-type time fractional heat conduction equation for laser heating. Comput.
Math. Appl. 66(5), 824–831 (2013). https://doi.org/10.1016/j.camwa.2012.11.021. (Fractional Differentiation and its
Applications)

31. Xu, G.Y.,Wang, J.B., Han, Z.: Notes on the Cattaneo-type time fractional heat conduction equation for laser heating. Comput.
Math. Appl. 71(10), 2132–2137 (2016). https://doi.org/10.1016/j.camwa.2016.03.011

32. Tóth, B.: Natural frequency analysis of shells of revolution based on hybrid dual-mixed hp-finite element formulation. Appl.
Math. Model. 98, 722–746 (2021). https://doi.org/10.1016/j.apm.2021.06.001

https://doi.org/10.1016/j.apm.2022.10.054
https://doi.org/10.1007/s00161-018-0648-4
https://doi.org/10.1007/s00161-018-0651-9
https://doi.org/10.1103/PhysRev.148.778
https://doi.org/10.1016/j.matcom.2021.03.026
https://doi.org/10.1016/j.camwa.2020.01.013
https://doi.org/10.1016/j.cma.2006.09.016
https://doi.org/10.1016/j.cma.2006.09.016
https://doi.org/10.1016/j.amc.2020.125934
https://doi.org/10.1016/j.amc.2020.125934
https://doi.org/10.3390/ma12081337
https://doi.org/10.1016/j.jtherbio.2021.103073
https://doi.org/10.1016/j.jtherbio.2021.103073
https://doi.org/10.1080/713836333
https://doi.org/10.1016/j.jcp.2010.05.039
https://doi.org/10.1016/j.amc.2017.05.032
https://doi.org/10.1016/j.apm.2021.07.025
https://doi.org/10.1016/j.apm.2021.07.025
https://doi.org/10.1016/j.amc.2018.12.050
https://doi.org/10.1016/j.camwa.2012.11.021
https://doi.org/10.1016/j.camwa.2016.03.011
https://doi.org/10.1016/j.apm.2021.06.001


B. Tóth et al.

33. Tóth, B., Burmeister, D.: Dual-mixed hp-version axisymmetric shell finite element using NURBSmid-surface interpolation.
Acta Mech. 231, 2457–2483 (2020). https://doi.org/10.1007/s00707-020-02661-3

34. Tóth, B., Kocsán, L.G.: Comparison of dual-mixed h- and p-version finite element models for axisymmetric problems of
cylindrical shells. Finite Elem. Anal. Des. 65, 50–62 (2013). https://doi.org/10.1016/j.finel.2012.11.002

35. Szabó, B., Babuška, I.: Introduction to Finite Element Analysis: Formulation. Verification and Validation. John Wiley &
Sons, New York (2011)

36. Szabó, B., Babuška, I., Katz, I.N.: The p-version of the finite element method. SIAM J. Numer. Anal. 18, 515–545 (1981)
37. Roberts, N.V., Henneking, S.: Time-stepping DPG formulations for the heat equation. Comput. Math. Appl. 95, 242–255

(2021). https://doi.org/10.1016/j.camwa.2020.05.024. (. Recent Advances in Least-Squares and Discontinuous Petrov-
Galerkin Finite Element Methods)

38. Tóth, B.: Dual andmixed nonsymmetric stress-based variational formulations for coupled thermoelastodynamicswith second
sound effect. Continuum Mech. Thermodyn. 30, 319–345 (2018). https://doi.org/10.1007/s00161-017-0605-7

39. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 3rd edn. Springer, New York (2008)
40. Demkowicz, L.: Computingwith hp-Adaptive Finite Elements. One—and Two-Dimensional Elliptic andMaxwell Problems.

AppliedMathematics and Nonlinear Science, vol. I. Chapman&Hall/CRC Press, Taylor & Francis Group, NewYork ( 2007)
41. Düster, A., Rank, E., Szabó, B.: Part 1: Solids and Structures. In: Stein, E., Borst, R., Hughes, T.J.R. (eds.) The p-Version

of the Finite Element and Finite Cell Methods, 2nd edn., pp. 1– 35. John Wiley & Sons, Ltd, online ( 2017). https://doi.org/
10.1002/9781119176817.ecm2003g

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

https://doi.org/10.1007/s00707-020-02661-3
https://doi.org/10.1016/j.finel.2012.11.002
https://doi.org/10.1016/j.camwa.2020.05.024
https://doi.org/10.1007/s00161-017-0605-7
https://doi.org/10.1002/9781119176817.ecm2003g
https://doi.org/10.1002/9781119176817.ecm2003g

	Two-field mixed hp-finite elements for time-dependent problems in the refined theories of thermodynamics
	Abstract
	1 Introduction
	2 Two-field mixed hp-version finite element method
	2.1 Variational formulations
	2.1.1 Maxwell–Cattaneo–Vernotte model
	2.1.2 Guyer–Krumhansl model

	2.2 hp-finite element discretizations
	2.3  Time integration scheme for the semi-discrete system

	3 Numerical experiments
	4 Discussion
	Acknowledgements
	References


