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Abstract In this paper, we present a finite elasto-plasticity theory for large plastic deformations. For the elastic
part of the model, we use the St. Venant–Kirchhoff elasticity. The plastic part is described by the isomorphy
concept, the yield condition is covered by the isotropic J2 theory of (Huber in Czas Techn 22:34,1904; von
Mises in Math Phys 4:582–592, 1913) and (Hencky in ZAMM 9:215–220, 1924), and the yield condition uses
the principle of maximum plastic dissipation. The numeric of this theory is discussed and finally implemented
in a Fortran code to use it as material law in the UMAT subroutine of the finite element program Abaqus.
The material law is validated using different test calculations like tensile and shear tests as well as a large
deformation simulation compared to the Abaqus internal material law. Further, we apply this material model
to determine the effective material stiffness tetrad of large deformed inhomogeneous materials. For these
purposes, we additionally present an automated method for determining material stiffnesses of an arbitrary
material in Abaqus.

Keywords Elasto-plasticity theory · Large plastic deformation · Isotropic yield condition · Principle of
maximum plastic dissipation · Material stiffness tetrad

1 Introduction

In modern engineering, one of the main challenges is to optimize processes regarding costs and efficiency.
In simulation processes, the material model has a big impact on time efficiency and accuracy. All existing
theories are a compromise between generality and applicability. On the one hand, there are detailed material
models which are based on the micro-scale behavior of the material. In this case, the physical properties on
the micro-scale are modeled. These calculations are very expensive especially in the case of structure models.
On the other hand, there are phenomenological models which show the main features of the material on the
macro-scale. An overview of different continuummechanicalmodels is given, e.g. in [4]. Thesemodels provide
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fast calculations but the accuracy strongly depends on the mathematical model and the understanding of the
material behavior.

For predicting large plastic deformations of a material within the finite element program Abaqus there
are generally two different possibilities. The first one is to use the Abaqus internal material laws with the
NLGEOM option (non-linear geometry). The second possibility is to use the material subroutine UMAT. Here
it is possible to develop own material laws which are able to predict the behavior of the material during large
plastic deformation. In this article we will use the second option and develop a finite elasto-plasticity theory
for large plastic deformations. For the elastic part of the model, we use the physically linear elastic St. Venant–
Kirchhoff reference law (see for example [4]) which is constant and denoted with the 2nd Piola-Kirchhoff
stress tensor. For the plastic part the isomorphy concept after [5–9] and [10–12] is used. They have developed
a finite plasticity theory which is based on the transformation of the elastic law during yielding. For many
materials, it is known that the elastic behavior remains almost unchanged during large plastic deformations
in the sense that in every elastic region after any plastic deformation the local elastic law is obtained from a
push-forward of the elastic reference law. Examples are crystal plasticity and isotropic vonMises plasticity.We
use an isotropic yield condition following the J2 theory by [1,2], and [3]. This means that the equivalent stress
only depends on the second principle invariant of the deviatoric part of the Cauchy stresses. The yield condition
is formulated using the principle of maximum plastic dissipation. After formulating the material equations we
present the numerical implementation in the Abaqus user subroutine UMAT with the programming language
Fortran. Finally, we validate the material model by comparing the results with the literature and with the
Abaqus internal material law.

Subsequently, we use this material model to determine the effective stiffness of arbitrary inhomogeneous

materials before and after large deformations. We will perform test deformations
G
E on different materials.

Together with the resulting
2PK
T stresses, we calculate the stiffness tetradK during the post-processing with the

computer algebra systemMathematica. The entire program code is given in theAppendix. A detailed procedure
is described to determine the material stiffness by applying small elastic test deformations. This procedure
can be applied to an initial material or to a material after a certain deformation process. In [13] and [14], the
utility of this procedure described here is extensively demonstrated. In particular, the development of material
stiffness during deformation processes is discussed.

2 Material law

In the following section we develop the material law with its elastic and plastic part. We also present the
numerical implementation into the Abaqus subroutine UMAT and the Fortran source code in the appendix.

2.1 St. Venant–Kirchhoff elasticity

For the elastic deformation of the material, we use the physically linear elastic St. Venant-Kirchhoff reference
law. It is constant and denoted with the 2nd Piola-Kirchhoff stress tensor:

2PK
T = J F−1T F−T (1)

with J being the determinant of the deformation gradient F = grad (X), and T the Cauchy stress tensor. The

initial elastic law K 0 can be written with the Green strain tensor
G
E = 1

2 (C − I), the right Cauchy-Green
tensor C = FT F, the second-order unity tensor I and the material stiffness tetrad of fourth-order K0 as

2PK
T = K 0 (F) = K0 : G

E . (2)

With the right Cauchy-Green tensor C = FT F we can write this elastic law as

2PK
T = K 0 (F) = 1

2
K0 : (

FTF − I
)

. (3)
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2.2 Isomorphy concept for large deformations

It is a well-known fact that the elastic behavior of a material hardly changes during large plastic deformations.
Therefore, wewant to use a plasticity theory with isomorphic elastic ranges. To transform between these elastic
ranges, we use a second-order tensor P . With this plastic transformation P , we will be able to calculate the
current elastic law K p for the reference placement (see [12]) by the following equation:

2PK
T = K p (F) = PK 0

(
PTFTFP

)
PT . (4)

If we now insert our chosen elastic reference law K 0 Eq. (3) in Eq. (4), we will be able to calculate the 2nd

Piola–Kirchhoff stress tensor in the reference placement

2PK
T = K p (F) = P

(
1

2
K0 : (

PTFTFP − I
)
)
PT . (5)

which can also be written with the Rayleigh product

2PK
T = K p (F) = 1

2
(P ∗ K0) :

(
FTF − P−T ∗ I

)
. (6)

The Rayleigh product is defined between a second-order tensor and a tensor of arbitrary order

A ∗
〈n〉
K = Ki . . . p︸ ︷︷ ︸

n indices

(Aei ) ⊗ . . . ⊗ (Aep)︸ ︷︷ ︸
n times

, Ki . . . p︸ ︷︷ ︸
n indices

=
〈n〉
K · . . . ·︸︷︷︸

n dots

ei ⊗ . . . ⊗ ep︸ ︷︷ ︸
n times

. (7)

It changes the basis while keeping the components, which can be used, e.g., to represent rotations. For second-
order tensors it can be written as A∗T = AT AT. It is associative in the first factor, i.e. (AB)∗K = A∗(B∗K)
and linear in the second factor, i.e. A ∗ (K1 + αK2) = A ∗K1 + αA ∗K2. Now we continue with Eq. (5) and
use the relation

F̃ = FP (8)

resulting from the isomorphy condition and notate the stresses in all three placements.

• Reference placement:

2PK
T = P

(
1

2
K0 :

(
F̃
T
F̃ − I

))
PT (9)

• Intermediate placement:

˜2PK
T = 1

2
K0 :

(
F̃
T
F̃ − I

)
(10)

• Current placement:

T = 1

J̃
F̃

(
1

2
K0 :

(
F̃
T
F̃ − I

))
F̃
T

(11)



M. Weber, H. Altenbach

2.3 Yield condition

In this section we will introduce a suitable yield condition. We use an isotropic yield condition following the
J2 theory by [1,2] and [3]. This means that the equivalent stress only depends on the second principle invariant
of the deviatoric part of the Cauchy stresses. Together with the yield stress σF = const., we get the yield
condition as

√
3

2
‖T ′‖ − σF = 0 . (12)

We start with the stress power defined as

l = 1

ρ
T : L . (13)

Together with Eq. (8), we write the velocity gradient L as

L = ḞF−1

= (
F̃ P−1)· (F̃ P−1)−1

=
[ ˙̃FP−1 + F̃

(
P−1)·

]
P F̃

−1

= ˙̃FF̃
−1 + F̃

(
P−1)· P F̃

−1
(14)

and insert it into Eq. (13)

l = 1

ρ
T : ˙̃FF̃

−1

︸ ︷︷ ︸
ẇ, elastic

+ 1

ρ
T : F̃ (

P−1)· P F̃
−1

︸ ︷︷ ︸
D, dissipation

. (15)

with F̃ = FP , and assume the principle of maximum plastic dissipation. The dissipation D will be maximal
if the scalar product is maximal and this is the case for T ‖ F̃

(
P−1

)·
P F̃

−1
with an undetermined skew part

of F̃
(
P−1

)·
P F̃

−1
which is arbitrary. Together with the consistency parameter λ the yield condition has the

following form:

F̃
(
P−1)· P F̃

−1 = λ

ρ
T . (16)

Now we replace the Cauchy stress tensor T by the 2nd Piola-Kirchhoff stress tensor
˜2PK
T

F̃
(
P−1)· P F̃

−1 = λ

ρ J̃
F̃

˜2PK
T F̃

T
. (17)

We use the relation ρ0 = J̃ρ and rewrite as follows:

(
P−1)· P = λ

ρ0

˜2PK
T F̃

T
F̃. (18)

We take the deviatoric part of the right Cauchy-Green tensor C̃ because det (P) = 1 and therefore

tr
((

P−1
)·
P

)
= 0

(
P−1)· P = λ̃

(
˜2PK
T C̃

)′

(19)

and end up with the final form of our evolution equation

Ṗ = −̃λP

(
˜2PK
T C̃

)′

. (20)
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2.4 Numerical implementation

This section shows the implementation of the material model in the Abaqus user subroutine UMAT with the
programming language Fortran. To solve the problem, we use the implicit Euler scheme (see [15])

Pn+1 = Pn + �t Ṗn+1 (21)

together with the flow rule we get

Pn = Pn+1

⎛

⎝I + λ

(
˜2PK
T n+1C̃n+1

)′⎞

⎠ . (22)

As the next step, we use the exponential map (see [16]) to ensure P ∈ Unim+. With the power series for the
exp (x) function

exp (x) = 1 + x + x2

2! + x3

3! + ... ≈ 1 + x , (23)

we obtain

Pn ≈ Pn+1 exp

⎛

⎝λ

(
˜2PK
T n+1C̃n+1

)′⎞

⎠ . (24)

The final residuum to solve the problem with Newton’s method (see [17]) reads

R = ln
(
P−1
n+1Pn

)
− λ

(
˜2PK
T n+1C̃n+1

)′

. (25)

The algorithm for this method is found in Appendix B.5.

3 Python script

For a better overview, the Python script generating the RVEs and performing the starting and test calculations
is divided into different parts. In Fig. 1 a flowchart provides an overview over the different Python scripts,
Fortran subroutines and functions and the Mathematica post-processing.

3.1 Starting calculation 1: “0_A.py”

The main part which has to be started is called “0_A.py” (see Appendix A.1). This script first calls “0_subrou-
tines.py” (see Appendix A.9) to initialize subrountines like the calculation of a matrix determinant or a matrix
multiplication. Afterward the displacement gradient H0 is prescribed. Next the script “0_RVE.py” is called.

After that, the material parameters will be imported from the file 0_material.py (see Appendix A.11). At
this point, the subrountine 0_rve.py is finished.

The next step is to write the Abaqus input file. We are able to distinguish between different operating
systems like Windows or Linux on which the Python script is running. The syntax slightly differs.

Hereinafter, the Abaqus Step definitions are given. Step 1 is the loading step prescribing the deformation
as displacement following H0. In Step 2, the unloading takes place. Two different methods are distinguished.
In case of uni-directional tension, the load is gradually removed (tension components, two shear components,
finally the whole H0) to avoid rotations. H0 is removed at once in all other cases.

After the step definitions, the subroutine “0_job.py” is called (see Appendix A.10) using the before defined
input file name “inpname” and the “cpunumber”. The script will detect when the job is finished by checking
the lock file. Also the successful execution is verified, else an error file is generated.
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Fig. 1 Flowchart giving an overview of the used Python, Fortran, and Mathematica codes
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print ’=========================================================’
print ’Run job’
print ’=========================================================’
i f "posix" in os .name:

execfile ( ’0_job .py’ )
# Wait for lck fi le , then wait for lck f i le is deleted −> job finished
t0 = time . time() ;
while not os . path . i s f i l e (inpname+" . lck") :

time . sleep(0.1)
tn = time . time() ;

while os . path . i s f i l e (inpname+" . lck") :
time . sleep(0.1)
tn = time . time() ;

# Check i f calculation was successful , else STOP
time . sleep(5)
f = open(inpname+’ . sta ’ , ’ r ’ )
sta = []
for line in f :

sta .append( str ( line . rs t r ip () ) )
f . close ()
i f sta [ len( sta )−1] == ’ THEANALYSISHASCOMPLETEDSUCCESSFULLY’ :

print sta [ len( sta )−1]
else :

print sta [ len( sta )−1]
f = open( ’0_Auswertung_ERROR_in_’+inpname+’ . txt ’ , ’w’)
f . close ()
time . sleep(5)
sys . exit ("Calculation cancelled")

In the last section of the Python script “0_A.py”, the post-processing is performed. Therefore the node
numbers of the three artificial nodes are searched. Then the output database ODB is opened and the reaction
forces (RF1, RF2 and RF3) such as the displacements (U1, U2 and U3) are read out. The predeforma-
tion is saved in the text file “K0_ANLAUFRECHNUNG_H0.txt” and the unloaded placement as H1 as
“K0_ANLAUFRECHNUNG_H1.txt”.

3.2 Starting calculation 2: “0_A2.py”

Next we need a second starting calculation “0_A2.py” (see Appendix A.2) to calculate the 2nd Piola-Kirchhoff

stresses
2PK
T 1. For this purpose, we prescribe H1 from “0_A1.py” directly after the pre-deformation H0.

Following the post-processing is performed like described for “0_A1.py”. Additionally, the reaction forces

divided by the volume result in the 1st Piola-Kirchhoff stresses
1PK
T 1. Using the equations

F1 = H1 + I (26)

and

2PK
T 1 = F−1

1

1PK
T 1 , (27)

we are able to calculate the 2nd Piola-Kirchhoff stresses
2PK
T 1. The stresses are saved in the text file

“K0_ANLAUFRECHNUNG_T1.txt”.
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# Generate matrix T1PK
T1PK = nullmatrix(3 ,3)
T1PK[0][0] = session .xyDataObjects[ ’RF:RF1 PI : FIBBI−1 N: %d’ %K1NR] .data[increm][1]/V0
T1PK[0][1] = session .xyDataObjects[ ’RF:RF2 PI : FIBBI−1 N: %d’ %K1NR] .data[increm][1]/V0
.
.
.
T1PK[2][2] = session .xyDataObjects[ ’RF:RF3 PI : FIBBI−1 N: %d’ %K3NR] .data[increm][1]/V0

del session .xyDataObjects[ ’RF:RF1 PI : FIBBI−1 N: %d’ %K1NR]
del session .xyDataObjects[ ’RF:RF2 PI : FIBBI−1 N: %d’ %K1NR]
.
.
.
del session .xyDataObjects[ ’RF:RF3 PI : FIBBI−1 N: %d’ %K3NR]
odb. close ()

# Calculate T2PK
# F1 = H1 + 1
F1 = nullmatrix(3 ,3)
for i in range(3) :

for j in range(3) :
F1[ i ][ j ] = H1[ i ][ j ]

F1[0][0] += 1.
F1[1][1] += 1.
F1[2][2] += 1.
F1i = invert3 (F1)
T2PK = matmul(F1i ,T1PK)

print ’H1 end’
for line in H1: print line
print ’T1PK end’
for line in T1PK: print line
print ’T2PK end’
for line in T2PK: print line

#ausT.write( ’T2PK\n’ )
ausT = open( ’K0_ANLAUFRECHNUNG_T1. txt ’ , ’w’)
for i in range(3) :

for j in range(3) :
ausT.write( ’%e’ %(T2PK[ i ][ j ]) )
i f j != 2: ausT. write ( ’ , ’)

ausT.write( ’ \n’ )
ausT. close ()

3.3 Elastic test strain calculations : “0_1.py” to “0_6.py”

Now the unloaded placement H1 and the residual stresses in the unloaded placement
1PK
T 1 are known. In the

six elastic test calculations (i=1...6) to determine the stiffness tetrad K1 the following three steps are applied:

• Step 1: load step by prescribing H0
• Step 2: unload step by prescribing H1
• Step 3: elastic test strain by prescribing H i

2 .

In the post-processing part the differences

�
G
E = G

E2 − G
E1 (28)

and

�
2PK

T = 2PK

T 2 − 2PK

T 1 (29)



Elasto-plasticity theory for large plastic deformation and its use for the material stiffness determination

are calculated. Therefore Green’s strain tensor of the placements H1 and H2 are needed:

G
E1 = 1

2

(
FT
1 F1 − I

)
(30)

G
E2 = 1

2

(
FT
2 F2 − I

)
. (31)

The 2nd Piola-Kirchhoff stresses
2PK
T 1 are already known. The

2PK
T 2 stresses are calculated according to Eqs.

(26) and (27). For the further post-processing with the computer algebra system Mathematica, two files are
generated. Both are saved as text file. The first one is “K0_matheEGREEN_einzeln.txt” and consists of the
difference �EG in the Abaqus notation of Cowin:

�
G

E =

⎛

⎜⎜
⎜⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜⎜
⎜
⎝

�
G

E11

�
G

E22

�
G

E33

�
G

E12

�
G

E13

�
G

E23

⎞

⎟⎟
⎟⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟⎟
⎟
⎠

Bi (32)

of all six calculation so that the file has 36 entries (see Appendix). Analogously the second file consists of the

difference of the 2nd Piola-Kirchhoff stresses
2PK
T and is saved in the text file “K0_matheT2PK_einzeln.txt” as

�
2PK

T =

⎛

⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜
⎝

�
2PK

T 11

�
2PK

T 22

�
2PK

T 33

�
2PK

T 12

�
2PK

T 13

�
2PK

T 23

⎞

⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟
⎠

Bi (33)

4 Validation of the material model

In this section we validate the material with its elastic and plastic behavior. Therefore we compare with the
Abaqus internal material model.

4.1 Elastic

First we validate the elastic behavior of our material model by calculating the stiffness tetrad of a homogeneous
material and compare the results with literature and the Abaqus material. To determine the stiffness tetrad,
we use the difference quotient with a small elastic test deformation δ. In Fig. 2, we compare the deviation
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Fig. 2 Error regarding the original stiffness tetrad of the St. Venant-Kirchhoff user material and the Abaqus material over δ value
of difference quotient (log-log)

Fig. 3 Tensile test: 100% strain

of the resulting stiffness tetrad to the analytically one in dependence of δ. Our own material model shows
a better convergence even for larger δ-values. Within the shown figure, the largest relative error (0.0001)
for the St. Venant-Kirchhoff model corresponds to the smallest error of the Abaqus model within the range
1e−9 < δ < 0.001. As a result, we find that our model firstly calculates the correct stiffness tetrads and
secondly this is done with a better convergence.

4.2 Plastic

To validate the plastic behavior of our material model, we perform a tensile (see Fig. 3) and a shear test (see
Fig. 4) with the material parameters Young’s modulus E = 100GPa, Poisson’s ratio ν = 0.3 and yield stress
of σF = 100MPa.

The results show, as expected, a constant stress level while yielding for the tensile and the shear test. This
means, we get proper results. The slope of both curves differs slightly due to the application of the different
boundary conditions.

For a final test, we compare the results of a 10% tensile test of our material model and the Abaqus elastic–
plastic material applied on a notched cylindrical bar (Fig. 5) with the same material parameters as above.
As a result, the von Mises stresses in Fig. 6 show a very good agreement comparing both material models.
Additionally, we find a very good agreement of the von Mises stress distribution depicted in Fig. 6. Even small
details look exactly the same.
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Fig. 4 Shear test: shear number γ = 1

Fig. 5 Mesh of a notched cylindrical bar

Fig. 6 Von Mises stresses of the Abaqus material (left) and the St. Venant-Kirchhoff user material (right)

5 Calculation of the effective material stiffness

In this section, we introduce an example inhomogeneous fiber material and present a method to determine the
effective stiffness of it before and after large deformations using the described material model.

5.1 Representative volume element of the example material

Wewill use a representative volume element (RVE) of an uni-directionally reinforcedmaterial with an effective

transversal isotropic material symmetry (see Figs. 7 and 8) to perform test deformations
G
E. Together with the

resulting
2PK
T stresses, we calculate the stiffness tetradK during the post-processing with the computer algebra

system Mathematica. We will determine the stiffness of the undeformed material (K0) and the stiffness tetrad
of a deformed material after a large plastic deformation (K1). The stiffness tetrads will be calculated and
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Fig. 7 RVE with uni-directional reinforcement. Left: Fiber parts, Middle: Matrix parts, Right: Assembly

Fig. 8 One unit-cell of the uni-directional RVE with effectively transversal isotropic symmetry. Left: undeformed, Right: largely
deformed unit-cell

compared in the reference placement and therefore we use the 2nd Piola-Kirchhoff stresses
2PK
T and Green’s

strain tensor
G
E. For calculating the stiffness tetrads, we use the difference quotient out of six test calculations.

Within the test calculations, six different small elastic test strains δi with i=1...6 are applied to the presented
materials (RVEs). With the definitions

H0: displacement gradient of the unloaded placement
�H i : displacement gradients of the 6 different elastic deformations

and the scheme in Fig. 9, we are able to calculate a stiffness tetrad by the equation:

�
2PK
T i = K : �

G
Ei . (34)

5.2 Validation of the stiffness calculation

Wewill compare the calculated stiffness tetrads to the literature to validate our implementation. If we prescribe
F0 = 0 we will get the stiffness of the undeformed material K0. For F1 being the unloaded placement after a
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Fig. 9 Scheme to determine the test stresses �
2PK
T i and the test strains �

G
Ei out of the test displacement gradients �H i for

calculating the stiffness tetrad K

Table 1 Material parameters for the isotropic material on the micro-scale

Material Young’s modulus E Poisson’s ratio ν Yield stress σF

Matrix 100 GPa 0.3 200 MPa
Fiber 100 GPa 0.3 200 MPa

large plastic deformation we will get the stiffness K1. To compare both, it is necessary to push-forward K1 to
the new stress-free placement using the deformation gradient F and the Rayleigh product ∗.

K0 = F ∗ K1 (35)

The Rayleigh product is defined between a second-order tensor and a tensor of arbitrary order,

A ∗
〈n〉
K = Ki . . . p︸ ︷︷ ︸

n indices

(Aei ) ⊗ . . . ⊗ (Aep)︸ ︷︷ ︸
n times

, Ki . . . p︸ ︷︷ ︸
n indices

=
〈n〉
K · . . . ·︸︷︷︸

n dots

ei ⊗ . . . ⊗ ep︸ ︷︷ ︸
n times

. (36)

It changes the basis while keeping the components, which can be used, e.g., to represent rotations. For second-
order tensors it can be written as A∗T = AT AT. It is associative in the first factor, i.e. (AB)∗K = A∗(B∗K)
and linear in the second factor, i.e. A ∗ (K1 + αK2) = A ∗ K1 + αA ∗ K2.

First, we study an isotropic material. The material parameters of the matrix and the fiber are identically and
chosen as example (see Table 1). The components of the stiffness tetrad of an isotropic material can be found
in the literature and are represented in Table 2. Using our implementation, we get the following stiffness tetrad
K0 (values given in [GPa]) for the undeformed material (Table 3). It correctly represents an isotropic material.
The next step is to validate the implementation for a plastically deformed material and to calculate the stiffness
tetrad K1. First, we choose a 50% tensile test, unload the material sample and measure the stiffness tetrad.
The resulting stiffness tetrad F ∗K1 in Table 4 is identical to K0. The second test is a shear test with γ = 0.5
perpendicular to the fiber direction. After unloading and measuring the stiffness tetrad F ∗ K1, we find it is
again identical to K0 (see Table 5). In the foregoing section, the material was isotropic. We want to study
an anisotropic material and again use the RVE with the uni-directional reinforcement. But now the material
parameters of the matrix and fiber material are different (see Table 6). The stiffness tetrad of a transversal
isotropic material is given in literature with the following five different material parameters (see Table 7).
Using again our implementation, we get the following stiffness tetrad K0 for the undeformed transversal
isotropic material (see Table 8). It correctly represents the transversal isotropic material from literature. Next,
we validate the implementation for the plastically deformed material and calculate the stiffness tetrad K1.
First, we choose a 50% tensile test, unload the material sample and measure the stiffness tetrad. The resulting
stiffness tetrad F ∗K1 in Table 9 is identical toK0 of the transversal isotropic material. Again, the second test
is a shear test with γ = 0.5 perpendicular to the fiber direction. After unloading and measuring the stiffness
tetrad F ∗K1, we find it is not identical toK0 (see Table 10). The shear test of this anisotropic material shows
the first time that the calculation of K0 = F ∗ K1 fails when we change the symmetry of the material during
the deformation. There is a difference between both stiffness tetrads which means that for certain deformation
the stiffness tetrad evolves.

5.3 Results for an uni-directional reinforcement

The following three examples will show the deviation between the initial stiffness tetrad K0 and the stiffness
tetrad K1 measured after a large deformation. We will investigate the three characteristic shear tests for the
uni-directional reinforced material Hxy (equivalent to Hyx), Hxz (equivalent to Hyz) and Hzx (equivalent to



M. Weber, H. Altenbach

Table 2 Stiffness tetrad of an isotropic material

K =

⎡

⎢
⎢
⎢
⎢
⎣

K1111 K1122 K1122 0 0 0
K1111 K1122 0 0 0

K1111 0 0 0
K1111 − K1122 0 0

sym K1111 − K1122 0
K1111 − K1122

⎤

⎥
⎥
⎥
⎥
⎦
Bi ⊗ B j

Table 3 Stiffness tetrad K0 of the calculated isotropic material

K0 =

⎡

⎢
⎢⎢
⎢
⎣

135 58 58 0 0 0
135 58 0 0 0

135 0 0 0
77 0 0

sym 77 0
77

⎤

⎥
⎥⎥
⎥
⎦

GPa Bi ⊗ B j

Table 4 Initially isotropic material after the tension test

F ∗ K1 =

⎡

⎢⎢
⎢
⎢
⎣

135 58 58 0 0 0
135 58 0 0 0

135 0 0 0
77 0 0

sym 77 0
77

⎤

⎥⎥
⎥
⎥
⎦

GPa Bi ⊗ B j

= K0 =

⎡

⎢
⎢
⎢
⎢
⎣

135 58 58 0 0 0
135 58 0 0 0

135 0 0 0
77 0 0

sym 77 0
77

⎤

⎥
⎥
⎥
⎥
⎦

GPa Bi ⊗ B j

Table 5 Initially isotropic material after the shear test

F ∗ K1 =

⎡

⎢
⎢
⎢⎢
⎣

135 58 58 0 0 0
135 58 0 0 0

135 0 0 0
77 0 0

sym 77 0
77

⎤

⎥
⎥
⎥⎥
⎦

GPa Bi ⊗ B j

= K0 =

⎡

⎢⎢
⎢
⎢
⎣

135 58 58 0 0 0
135 58 0 0 0

135 0 0 0
77 0 0

sym 77 0
77

⎤

⎥⎥
⎥
⎥
⎦

GPa Bi ⊗ B j

Table 6 Material parameters for the anisotropic material on the micro-scale

Material Young’s modulus E Poisson’s ratio ν Yield stress σF

Matrix 10 GPa 0.3 100 MPa
Fiber 100 GPa 0.3 200 MPa
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Table 7 Stiffness tetrad of a transversal isotropic material

K =

⎡

⎢
⎢
⎢
⎢
⎣

K1111 K1122 K1133 0 0 0
K1111 K1133 0 0 0

K3333 0 0 0
2K2323 0 0

sym 2K2323 0
K1111 − K1122

⎤

⎥
⎥
⎥
⎥
⎦
Bi ⊗ B j

Table 8 Stiffness tetrad K0 of the calculated transversal isotropic material

K0 =

⎡

⎢
⎢
⎢
⎢
⎣

35 14 15 0 0 0
35 15 0 0 0

73 0 0 0
23 0 0

sym 23 0
21

⎤

⎥
⎥
⎥
⎥
⎦

GPa Bi ⊗ B j

Table 9 Initially transversal isotropic material after the tension test

F ∗ K1 =

⎡

⎢
⎢
⎢
⎢
⎣

35 14 15 0 0 0
35 15 0 0 0

73 0 0 0
23 0 0

sym 23 0
21

⎤

⎥
⎥
⎥
⎥
⎦

GPa Bi ⊗ B j

= K0 =

⎡

⎢
⎢
⎢
⎢
⎣

35 14 15 0 0 0
35 15 0 0 0

73 0 0 0
23 0 0

sym 23 0
21

⎤

⎥
⎥
⎥
⎥
⎦

GPa Bi ⊗ B j

Table 10 Initially transversal isotropic material after the shear test

F ∗ K1 =

⎡

⎢
⎢
⎢
⎢
⎣

35 12 14 0 0 0
40 16 0 0 0

73 0 0 0
18 0 0

sym 22 0
25

⎤

⎥
⎥
⎥
⎥
⎦

GPa Bi ⊗ B j


= K0 =

⎡

⎢
⎢
⎢⎢
⎣

35 14 15 0 0 0
35 15 0 0 0

73 0 0 0
23 0 0

sym 23 0
21

⎤

⎥
⎥
⎥⎥
⎦

GPa Bi ⊗ B j

Hzy). The first case is the shear test with Hxy. Figure 10a shows that we have a transport of the fibers which
leads to a change of the symmetry. The fiber direction remains the same. This type of deformation leads to a
change of about 8% between the stiffness tetrads.

K1 − F−1 ∗ K0 / K1 = 7.7% (37)

In Fig. 10b, we see the shear test Hxz = 0.5 and no transport of the fibers. Instead, the fiber direction
changes which leads to a change of the symmetry. We find the largest change in the stiffness tetrad as shown
in Eq. (38).

K1 − F−1 ∗ K0 / K1 = 35.2% (38)
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Fig. 10 Three different shear tests of the uni-directional reinforced material

The shear test Hzx = 0.5 is depicted in Fig. 10c and shows that we have a transport of fibers in the fiber
direction. The fiber direction remains the same so this motion has nearly no effect on the symmetry.

K1 − F−1 ∗ K0 / K1 = 0.5% (39)

We see that the deviation of the stiffness tetrad K1 from K0 can be considerable. A shear parallel to the
fiber normal plane with γ = 0.5 results in a deviation by approximately 35%.

6 Conclusion

In this paper, an elastic–plastic material model for large deformations was presented. The elastic behavior was
captured by the St. Venant–Kirchhoff elasticity and the plastic behavior by the mentioned isomorphy concept.
The yield condition follows the isotropic J2 theory by [1,2] and [3]. The yield condition was written in terms
of the principle of maximum plastic dissipation. The model was validated regarding the elastic and plastic
material behavior. We can conclude that the material model on the micro-scale provides reliable results during
large plastic deformations following our validation process. To use this material model we show the entire
Fortran implementation in the Appendix B and C. The main part of this article deals with the determination
of material stiffness. The procedure was described in detail and the implementation was presented as Python
code. This can be viewed in the Appendix A. The described procedure can easily be applied to the most diverse
material classes, microstructures or composites. All that is required is to create a representative sample within
the Abaqus program environment and insert it into the existing code. All calculations are then performed
automatically.
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