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Abstract This paper provides a thorough investigation of a heat conduction problem that pertains to toler-
ance modelling in layered materials made up of multiple components. These media are functionally graded
materials and thus have varying properties that affect their effectiveness. The proposed equations explain the
conduction of heat in layered composites. The formulation involves partial differential equations, which utilise
smooth and slowly varying functions. Notably, an extension of the unified tolerance modelling procedure is
presented generalising existing models for two-component step-wise functionally graded materials (FGMs).
This extension allows for the analysis of specific issues related to heat conduction inmulti-component stratified
composites with a transversal gradation of effective properties. This is the most important novelty achievement
of the present paper because it will contribute to advancing knowledge and allows researchers, engineers, and
practitioners to use the method in a broader context, addressing a more extensive set of real-world situations
not limited to the number of component materials.

Keywords Parabolic-type heat conduction · Step-wise functionally graded materials · Multi-component
structure · Tolerance modelling

1 Introduction

Layered composites have a wide range of applications in various industries due to their unique combination
of properties. Their specific properties depend on the materials used, the stacking sequence, and the manufac-
turing process. Layered composites often have high strength and stiffness, making them structurally efficient.
The arrangement of layers with different orientations and fibre-reinforced materials enhances the resistance
to applied loads, providing excellent strength-to-weight ratios [1]. Layered composites are known for their
lightweight nature. The use of lightweight reinforcement materials, such as carbon fibres or aramid fibres
combined with a low-density matrix, results in composites with significantly reduced weight compared to
traditional materials like metals. This property contributes to fuel efficiency, improved performance, and ease
of handling. Layered composites also offer excellent thermal and electrical insulation properties [2]. These
and many other specific properties promote layered composites to be used, for instance, in aerospace and
aviation, marine, automotive industry, constructions and infrastructure, electrical and electronics, sporting
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goods, medical and healthcare. However, layered composites can be prone to delamination, which refers to
the separation or failure of the interfaces between individual layers or plies. Delamination occurs primarily
due to excessive inter-laminar stresses or inadequate bonding between layers [3]. It results from either a sig-
nificant mismatch in material properties, inadequate bonding, cyclic loading and fatigue, sudden impacts or
high loading rates or environmental effects, i.e. exposure to moisture [4], temperature variations, or chemicals.
The most crucial mismatches are in stiffness, strength, or thermal expansion coefficients between adjacent
layers, together with an unfavourable changing environment in which the composite remains under loading.
The second critical aspect inmaintaining the integrity of the composite is the adhesive or bondingmaterial used
between the composite layers [5,6]. To avoid delamination for the reasons mentioned above, it is necessary
to take care of the match in stiffness, strength, or thermal expansion coefficients between adjacent layers to
reduce stress concentrations, improve bonding techniques—properly prepare surface and select appropriate
adhesives [7,8], incorporate inter-laminar toughening mechanisms: introducing toughening mechanisms such
as toughened interlayers, nano-reinforcements, or fibre bridging to enhance inter-laminar fracture toughness
and resist delamination propagation [9], utilise through-thickness reinforcement, such as stitching or z-pinning,
to enhance the inter-laminar strength and reduce delamination susceptibility [10,11], provide regular inspec-
tions, non-destructive testing methods, and structural health monitoring techniques to help detect early signs
of delamination and enable timely repair or maintenance [12].

All of mentioned above problems or/and waste of time and funds to mitigate delamination in layered
composites are overcome by replacing conventional laminated composites with materials characterised by
functional gradation. Functional gradation refers to the gradual transition or variation of material properties
within a component or structure. This concept is often used to optimise the performance of a given media or
all of a system by tailoring material properties to specific requirements. Materials that can exhibit functional
gradation of effective material properties are, for example, polymer composites, metal or ceramic matrix
composites (MMCs and CMCs), functionally graded laminates (FGLs), also known as functionally graded
materials (FGMs) and even some biological tissues [13–15]. Some polymer composites aim to mimic the
structure and properties of natural materials, such as bones or nacre [16]. These composites can exhibit
functional gradation by replicating the gradual variation in material composition and microstructure found
in natural materials. This can result in enhanced mechanical performance and damage tolerance. Functional
gradation can be achieved by varying the composition, microstructure, or reinforcement distribution within
the material. The specific materials and fabrication techniques used depend on the desired properties and the
intended application of the functional gradation. Composites with functional gradation refer to composite
materials where the composition, reinforcement, or other characteristics vary gradually within the material.
This gradual variation can be achieved by controlling parameters such as fibre orientation, fibre volume fraction,
or the distribution of other reinforcing elements within the polymer matrix [17–22]. Among composites with
functional gradation, laminates occupy a special place. Laminated composites with functional gradation, also
known as functionally graded laminates (FGLs) or just functionally graded materials (FGMs), composed of
multiple layers or plies and are a type of composite that exhibits a gradual variation in material composition,
properties, or layer arrangement within the laminate structure. Unlike traditional laminated composites, whose
layers are typically uniform, FGLs (FGMs) intentionally introduce a graded transition to achieve specific
functional characteristics. The stacking sequence and the properties of individual layers can be varied to create
new materials with unprecedented qualities. Gradual variation allows for tailoring specific material properties
and functionalities in different regions of the composite. This allows for optimising properties like stiffness,
strength, fracture toughness and thermal or electrical conductivity in different composite regions [23–26].
FGMs are heterogeneous composite materials in which the material properties are gradually varied along a
certain direction or through the thickness of the material as a function of the position coordinates to achieve
desired specific requirements or optimise performance. The grading can be achieved by adjusting factors such
as material composition, fibre volume fraction, fibre orientation, layer thickness, or a combination of these
factors. For example, to have high strength on one side and high toughness on the other, to optimise the
material performance under varying loading conditions or to have regions with different mechanical responses
to optimise load-bearing capacity or tailor structural performance. The key idea behind FGLs or FGMs is
to create a material or structure with a smooth transition between different properties, enabling seamless
integration of functionalities or optimised mechanical response. That is why typical FGMs are composites
which possess continuously varying composition, microstructure and material properties without internal
boundaries [27]. The second group of materials with functional gradation are step-wise graded FGMs. Step-
wise graded FGMs, refer to functionally gradedmaterials that exhibit a stepped or discrete variation in material
composition or properties [28]. Instead of a gradual transition, step-wise graded FGMs have distinct layers with
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different properties. Each layer is homogeneous and exhibits a consistent property within itself. The change in
properties occurs abruptly between adjacent layers. The step-wise grading allows for precise control over the
material properties, but the transition between layers is not as smooth as in FGLs. It should be mentioned here
that when the number of layers is very high, the step-wise graded FGMs at a macro-level can be treated as
having continuously varying microstructure and properties; the individual components (layers) are visible just
at the micro-level (Fig. 1.). Studying on this type of FGMs involves analysis the behaviours, characteristics
of individual elements and its detailed interactions, to gain a comprehensive understanding of composite
as a whole. Both of these types of composites offer unique opportunities for tailoring material behaviour,
and they differ in the nature of their graded transitions, but both of them significantly or completely reduce
stress concentrations [29] and find applications in various fields, including aerospace, automotive, energy,
biomedical, and more, where the graded variations in properties offer advantages in terms of performance,
functionality, or structural integrity. This prevents cracks or failure initiation at interfaces between different
materials, enhancing the component durability.

In building constructions, FGLs and step-wise FGMs find several applications. FGLs can be used in the
construction of structural components such as beams, columns, and slabs. By gradually varying the material
properties, such as stiffness or strength, along the length or thickness of the laminate, FGLs can be designed
to optimise load distribution, enhance structural integrity, and improve overall performance. This allows for
tailored designs that canwithstand specific loading conditions, such as high loads or seismic forces. Also, FGLs
can contribute to sustainable building practices by utilising recycled or environmentally friendly materials in
their composition. By grading the material properties, FGLs can optimise the use of resources, reduce waste,
and promote sustainable construction practices. Step-wise gradedFGMsfind similar applicability. For example,
step-wise graded FGMs can be incorporated into reinforced concrete structures to enhance their load-bearing
capacity and durability. By introducing layers with varyingmechanical properties, such asmodulus of elasticity
or strength, the FGM can provide localised reinforcement where higher stresses or structural weaknesses exist.
This can improve the overall structural performance and resistance to cracking or failure.

One of the benefits of FGLs and step-wise FGMs is good thermal management. FGLs and step-wise FGMs
having variable thermal conductivity or thermal expansion coefficients along the given direction or through
the thickness can be utilised for efficient heat dissipation or thermal barrier coatings. Step-wise graded FGMs,
by having distinct layers with different thermal conductivity or coefficient of thermal expansion, can minimise
heat transfer and thermal stresses fining applications to improve the energy efficiency of building constructions
and reduce thermal fluctuations in walls or roofs [30–32].

The thermal and thermomechanical problem in two-component layered periodic composites, FGLs, and
step-wise FGMs is well-known in the literature. Various thermal and thermomechanical problems for both
periodically and functionally graded heterogeneous stratified structures can be solved using the tolerance
modelling (tolerance averaging technique) proposed in [33,34] and developed in [35]. A characteristic feature
of the tolerance modelling for heterogeneous structures is the replacement of the set of differential equations
with highly oscillating and non-continuous coefficients by equations with smooth and constant (if the structure
is periodic) or slowly varying (if the structure is functionally graded) coefficients. Moreover, these coefficients
depend on the microstructure length parameter [36]. Thus, the tolerance modelling is a valuable tool for the
analysis of the effect of the microstructure length size on the overall (microscopic) behaviour of the composite
[37,38]. In recent years, the tolerance modelling for functionally graded structures has been widely discussed,
e.g. for heat conduction in longitudinally graded structures [39–41], for heat conduction in transversally graded
structures [31,42,43], for thermoelasticity of transversally graded laminates [36,44] and also for biperiodic
composites [45,46]. It must be emphasised that all the above investigations concern two-component structures.

In thermal problems in step-wise graded functionally graded materials (FGMs) or in functionally graded
laminates FGLs, an important issue is the determination of the effective thermal conductivity coefficient,
which represents the overall thermal transport behaviour of the graded material. Various models are available
to calculate this coefficient [47,48]. The choice of model depends on the complexity of the step-wise graded
FGM structure, available data, and desired accuracy. It is important to note that no single model can capture
all the complexities of the graded material, and the accuracy of the predictions may vary depending on the
assumptions and limitations of the chosen model. In the tolerance averaging technique, one of the steps
necessary to solve a given boundary problem is always determining the effective thermal conductivity [49].
The basic concept for tolerance modelling of heat conduction in multi-component composites was presented
by Woźniak [50,51] and applied, e.g. for modelling of heat conduction in periodic structures in [41,52], in
step-wise FGMs in [53], and for modelling of elastostatic problems in [54,55].
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The fundamental difference between tolerance modelling of multi-component composites and modelling
two-component composites is the new form of the fluctuation shape function. This function will be introduced
in the following sections of this paper.

The main aim of this paper is to derive mathematical models for heat conduction in multi-component
step-wise graded FGM as an extension of existing methods for two-component materials with functional
gradation. This extension to a more general case broadens the utility of the tolerance averaging technique by
being applicable to a broader range of problems and scenarios. This will contribute to advancing knowledge
and allows researchers, engineers, and practitioners to use the method in a broader context, addressing a more
extensive set of real-world situations not limited to the number of component materials.

2 Multi-component step-wise FGMs

Multi-component step-wise functionally graded materials involve the integration of multiple constituent mate-
rials or components with different properties and are arranged in a step-wise manner to create graded variations
in composition, structure, or properties. The concept of multi-component step-wise FGMs allows for greater
control over the material properties and performance. By selecting different materials for each component, it
is possible to achieve specific functionalities or optimise desired properties. The step-wise arrangement of the
components enables a smooth transition of properties and facilitates the integration of multiple functionalities
within a single material. It is worth noting that the design and fabrication of multi-component step-wise FGMs
can be challenging due to the need for precise control overmaterial composition, layer thickness, and interfaces.
To achieve the desired graded structures and properties, advanced manufacturing techniques such as additive
manufacturing, powder metallurgy, or physical vapour deposition (PVD) often need to be employed [56]. In
a multi-component step-wise FGM, the material composition or properties change abruptly at each interface
between the constituent components. These interfaces act as distinct layers within the graded material, and the
properties can be tailored by adjusting the composition, thickness, or arrangement of these layers. However,
as was said in the introduction, when the number of layers is very large at the macro-scale, the boundaries
between the different layers become blurred, and the individual components (layers), i.e. the structure of the
composite, are visible at the micro-level. Figure1 presents the scheme of the analysed composite, which is
a rigid heat conductor that occupies the region � ≡ � × (0, L), in the physical space parameterised by
orthogonal Cartesian coordinate system Ox1x2x , where � is a region on the plane Ox1x2. The composite has
an unlimited dimension in the Ox2 direction. The left-hand side of the scheme shows the composite at the
macro-level with blurred interfaces, and the right-hand side of the scheme shows the structure of an example
of one multi-component layer included in the composite on a micro-scale. The composite is assumed to be
homogeneous in the Ox1 and Ox2 directions and multilayered in the Ox direction. On a micro-scale, the
composite consists of a large number N

( 1
N << 1

)
of layers with constant (identical) thickness η, η = L

N .
Each layer is composed of P sublayers made of M homogeneous, perfectly combined materials. The

number of sublayers is at least equal to the number of materials. Moreover, hereby, we assume that such
materials are orthotropic because most of the existing analytical solutions in the literature apply to bodies
as such, and because materials, e.g. wood, many crystals or rolled metals are orthotropic. Furthermore, for
laminated composites or fibre-reinforced materials, there are many methods for calculating accurately, to
a certain extent, the components of the thermal conductivity tensor with knowledge of the structure of the
materials, thermal conductivities, and volume fractions of the individual components. This makes it possible
to compare the provided results with already existing solutions.

The thermal properties of the p-th sublayer made of a given material are described by the second-order
heat conduction tensor:

Kp =
⎡

⎣
k11p 0 0
0 k22p 0
0 0 kp

⎤

⎦ ,

and the volumetric heat capacity scalar Cp (product of the mass density and specific heat capacity). In each
multi-component layer, it can be introduced the midplane of this layer, xn ≡ η

2 + (n − 1) η, n = 1, . . . , N .
Moreover, to describe the structure of the composite, i.e. the distribution of the materials, let us establish
continuous functions ϕp (·) ∈ C1 ([0, L]), such that ϕ1 (x) + · · · + ϕP (x) = 1 for every x ∈ (0, L) and
η

∣∣∂xϕp (x)
∣∣ � 1 where p = 1, ..., P . These functions should slowly change their values along the Ox axis.

This means that two adjacent layers are indistinguishable from each other. The values of these functions on
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Fig. 1 Scheme of a multi-component step-wise FGM at the macro-scale and view of its one layer at the micro-scale

the midplane assigned to the n-th layer will be interpreted as the material fraction of the p-th sublayer in this
layer.

The thicknesses of sublayers in the n-th layer are assumed to be equal to ηp = ϕp (xn) η and the region

occupied by p-th sublayer of the n-th layer can be written as �p = � ×
(
xn − η

2 + ∑p−1
i=1 ηp−1 (xn), xn − η

2

+ ∑p
i=1 ηp (xn)

)
.

If ϕp (·) are constant functions, then the composite is characterised by periodic structure, i.e. the structure
is regular, and each layer has the same arrangement of sublayers.

3 Parabolic-type heat conduction in multi-component step-wise FGMs

The parabolic heat conduction equation is derived from Fourier’s law of heat conduction [57], which states
that the heat flux in a material is proportional to the negative gradient of temperature. It takes into account the
thermal conductivity of the material and the temperature distribution within it. Denoting by θ = θ (x, t) the
temperature field in region � (x = (

x1, x2, x
)
, t ∈ [0, t∗]), the heat conduction equations, assuming that the

internal heat generation is equal to 0, will take the form:

kαβ∂α∂βθ + ∂ (k∂θ) − C∂tθ = 0, (1)

where kαβ (·) and k (·) are the components of the heat conduction tensor, which are kαβ (·) = kαβ
p (·) and

k (·) = kp (·) when x ∈ �p, C (·) is the specific heat, which is equal to Cp (·) when x ∈ �p, α and β take the
values of 1 and 2 (summation is performed over repeated subscripts), ∂α = ∂

∂xα , ∂β = ∂
∂xβ , ∂ = ∂

∂x , ∂t = ∂
∂t .

Equation (1) represents a partial differential equation with discontinuous and highly oscillating coefficients
kαβ (·), k (·) and C (·), which depend only on x coordinate. The direct application of Eq. (1) in most cases is
too complicated from the practical point of view. Below will be formulated the approximate tolerance models
for the heat conduction problems, where Eq. (1) is replaced by equations having smooth and slowly varying
coefficients.

4 Modelling concepts

The basic concepts and assumptions of the tolerance modelling method are presented, for example, in [35]. In
this paper, these definitions will be adapted to the object of the analysis as it was done in [58].
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4.1 Tolerance

The starting point of consideration is the concept of tolerance. As is well-recognised, any observation, mea-
surement or numerical calculation is done with a certain degree of accuracy. The concept of a tolerance system
in applications to mechanics was introduced byWoźniak in [59] and is a specific generalisation of the tolerance
space defined by Zeeman [60].

Overall, the concept of tolerance in mechanics highlights the importance of robustness and stability in
understanding the behaviour of complex systems, especially in the presence of small perturbations or parameter
variations.Woźniak’s relationship of tolerance is interpreted as a specific “relationship of indistinguishability”.
For every (μ, ν) ∈ R2 from a computational viewpoint, the relationμ ∼δ ν means thatμ can be approximated
with a required accuracy δ by ν and vice versa, if and only if |μ − ν| ≤ δ.

The main new result of this paper is to obtain four mathematical models, using the extended concept
of slowly varying functions, for heat conduction in multi-component composite with step-wise functionally
graded material properties.

4.2 Slowly varying functions

The concept of tolerance is used to formulate definitions of slowly varying functions on which the tolerance
modelling is based. These definitions have been extended in [58,61] to formulate new mathematical models
for heat conduction in a two-component composite with step-wise functionally graded material properties.
Five systems of tolerance model equations were conceived there for special kinds of slowly varying functions.

Definitions of two classes of slowly varying functions—weakly slowly varying function (WSV ) and slowly
varying function (SV ) will be quoted below after [58] but limited to space R.

To begin with, the tolerance parameter should be specified. As was said, this parameter is a criterion that
determines the acceptable deviation or error from a desired or specified value. Here, tolerance parameter is a
triplet of the real positive number d ≡ (η, δ0, δ1). In addition, let � = (0, L) stands for an arbitrary convex
set in the space R and let f ∈ C1

(
�

)
be an arbitrary real-valued function. Then:

1. Function f is weakly slowly varying ( f ∈ WSV 1
d (�) ⊂ C1 (�)) if the condition |x − y| ≤ η yields to

the conditions | f (x) − f (y)| ≤ δ0 and |∂ f (x) − ∂ f (y)| ≤ δ1 for all pairs (x, y) ∈ �2.
2. Function f is slowly varying ( f ∈ SV 1

d (�)) if f ∈ WSV 1
d (�) and additionally the condition η |∂ f (x)| ≤

δ0 is satisfied for every x ∈ �. Clearly, WSV 1
d (�) ⊃ SV 1

d (�).

It is necessary to define the tolerance parameter as a set of three parameters because the distance between two
points (x, y) ∈ �2, the functions depending on the coordinates of the position of these two points f (x) and
f (y), and their derivatives ∂ f (x) and ∂ f (y) are determined with different accuracies since they are endowed
with different units of measure. Two points of the interval � = (0, L) will be indistinguishable only if the
distance between two points endowed with unit measures of length is less than the tolerance parameter η, that
is, |x − y| ≤ η. Meanwhile, the derivative of order k of the function f ∈ Cm

(
�

)
, where k = 0, . . . ,m and

m ≥ 0 should be assigned the tolerance parameter δk . Thus, it is easy to see that the tolerance is defined by an
m + 1-element sequence of tolerance parameters (δ0, δ1, . . . , δm). Thus, in the considerations carried out, the
sequence of tolerance parameters relating to the function f took the form (δ0, δ1) because f ∈ C1

(
�

)
.

Note also that in the definition of slowly varying function appears an additional postulate η |∂ f (x)| ≤ δ0
that absolute values of the linear part of increments of f ∈ C1

(
�

)
are negligibly small in � = (0, L).

This condition appeared already at the stage of description of the composite which is the subject of
consideration in the paper. Step-wise FGMs composites are a group of media with deterministic structure
which on a macro-scale are characterised by a continuous change (gradation) of effective properties, and from
the theoretical point of view the first problem to be solved is to formulate a physical mathematical description
of the structure of this composite which would be reliable. At the micro-level, every two adjacent layers are
indistinguishable from each other; however, layers lying at a considerable distance on a micro-scale can be
distinguished even with the naked eye.

We remark also that Nagórko and Woźniak in [61] formulated similar subclasses of slowly varying func-
tions to extend the tolerance modelling technique for bidirectionally graded heat conductors, and for more
comprehensive information regarding the concept of tolerance in tolerance modelling, we encourage to take a
closer look at the paper [62].
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Fig. 2 A scheme of the local interval and local fluctuation shape function

4.3 Averaging operator and tolerance averaging approximations

Independently of the tolerance in the modelling procedure, there is also the introduction of the notion of
averaging operator and tolerance averaging approximations.

In order to establish a clear understanding of averaging operator for some function h (·), the following
notations are needed:

• interval  ≡ (−η
2 ,

η
2

)

• local interval (x) ≡ (
x − η

2 , x + η
2

)
for every x ∈ (η

2 , L − η
2

)
(Fig. 2).

• local cell. Each interval (x), together with kαβ
x (·) kx (·) ,Cx (·) and local fluctuation shape function γx (·)

defined almost everywhere on  (x), will be described the local cell.
• material cell. If x = xn , n = 1, . . . , N then the local cell will be termed the material cell.
• arbitrary integrable function hx ∈ L2 ((0, L)).

Then, the averaging operator for the function h (·) is defined as:

〈h〉 (x) ≡ 1

η

∫

(x)
hx (z)dz. (2)

Now having functions hx ∈ L2 ( (x)) and f ∈ WSV 1
d ((0, L)), the main mathematical tool of the tolerance

modelling procedure can be formulated, i.e. the tolerance averaging approximations are:

〈h f 〉T (x) ≈ 〈h〉 (x) f (x) ,

〈h∂ f 〉T (x) ≈ 〈h〉 (x) ∂ f (x) . (3)

This means that in averaging equations involving weakly slowly varying or slowly varying functions and
their derivatives, the left-hand sides of formulas (3) will be approximated respectively by their right-hand sides.
It has to be emphasised that the function f represents unknown fields in the problem under consideration.
Moreover, all that is known about these functions is that their values have to be calculated within the tolerances
determined respectively by certain tolerance parameters. If these parameters are specified, then the criteria of
applicability of tolerance averaging approximations can be verified a posteriori, i.e. after finding the functions
f .

If the tolerance parameters are not specified, then they can be calculated after finding functions f from the
conditions f ∈ WSV 1

d ((0, L)); in this way, the accuracy of the obtained solutions can be evaluated [63].
The presented tolerance averaging approximations allowamathematical description of physical phenomena

and processes that cannot be described, for example, within the framework of asymptotic homogenisation
theory. It should be noted that the proposed approach first uses some general physical concepts and only later
gives these concepts a mathematical form. The proof of these propositions is given in [34].

4.4 Global and local fluctuation shape function

Fluctuation shape functions are a fundamental component of tolerance modelling and provide a mathematical
representation of the variation of unknown quantities within each element of composite structure [64]. These
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Fig. 3 A scheme of the real interval and global fluctuation shape function

functions describe the spatial distribution of the unknown quantity within the analysed element and allow for
the approximation of the field variable across the entire structure domain. The fluctuation shape functions
typically have specific mathematical properties and are defined based on the structure type and its geometry.

Previous papers concerning tolerance modelling analysed mainly two-component composites. The fluctu-
ation shape function formulated there had a form which was proper only for structures of this type [31,42,44].
Furthermore, due to the specific form of fluctuation shape function used there, a limit passing to a one-
component body was impossible. The term of a fluctuation shape function for heat conduction problems,
introduced at a Polish local conference by Woźniak [51] and applied by Szlachetka and Wągrowska [41,65],
makes it possible to describe the structure of periodic multi-component layered composite. In [41], it was
proved that the global fluctuation shape function is equal to zero on the interfaces between the layers only if
the structure of the periodicity layer is symmetrical with respect to the midplane of this layer. In other variants
of material distribution, on the interfaces they had values different from zero. Woźniak, at other Polish local
conferences, introduced the form of fluctuation shape function for multi-component step-wise FGMs for elas-
todynamics problems. Szlachetka and Wągrowska reformulated this function for heat conduction problems
[53,66]. This function allows the limit to pass from a multi-component to a one-component body. The form of
fluctuation shape function for elastostatic problems in multi-component step-wise FGMs was also proposed
in [54,55].

Below it will be presented the global fluctuation shape function for heat conduction problems used in this
paper. The real-valued function γ (·) ∈ C0 ([0, L]) is a global fluctuation shape function in every interval
(
xn − η

2 , xn + η
2

)
, if γ (·) is linear in intervals:

((
xn − η

2 + ∑p−1
i=1 ηp−1 (xn)

)
,
(
xn − η

2 + ∑p
i=1 ηp (xn)

))
,

with values on the interfaces between sublayers of a layer given by γ n
p = γ n

p−1 + ηϕp (xn)
(
ke f f (xn)
kp(xn)

− 1
)
,

p = 1, 2, ..., P , n = 1, 2, ..., N where ke f f (·) is effective conductivity coefficient ke f f (xn) ≡
(

ϕ1(xn)
k1

+ ... + ϕP (xn)
kP

)−1
and 〈γ 〉 = 0. Taking the assumptions mentioned above into consideration, the

equation for global fluctuation shape function γ (·) can be written in the form:

γ (x) = γp − γp−1

ηϕp (x)
· x + γp−1 − γp − γp−1

ϕp (x)

p−1∑

i=0

ϕi (x), (4)

with the condition that γp=P = 0.
Independent of the global fluctuation shape function γ (·) that describes the real geometry of the composite,

the modelling process requires defining the local fluctuation shape function γx ∈ C0 ( (x)) for every x ∈
(0, L). Obviously γxn (·) = γ (·) | (xn) , i = 1, ..., n. The diagrams of the functions γ (·) and γx (·) are shown
in Fig. 2 and Fig. 3, respectively.

5 Tolerance modelling procedure

The process of the tolerance averaging technique is based on two assumptions.
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Assumption 1 The first assumption, called micro–macro-decomposition of the temperature field θ (·) says
that the temperature field θ (·) in the considered structure can be approximated by θ̃ (x, t) which is the sum
of macro-temperature (averaging temperature) ϑ (·) and the product of global fluctuation shape function and
amplitude of temperature fluctuations ψ (·):

θ (x, t) ≈ θ̃ (x, t) = ϑ (x, t) + γ (x) ψ (x, t) . (5)

Functions ϑ (·) andψ (·) are two new unknowns that, in the next step of the modelling process, we will assume
to be weakly slowly varying functions or slowly varying functions to obtain some specific systems of model
equations similar to those in [58].

Under the decomposition introduced by (5), the governing equations of parabolic heat conduction given
by (1) are satisfied only in a certain averaged form. To provide clarity, it should be defined the function rx (·)
which is defined almost everywhere in � × (0, t∗):

rx (·) ≡ kαβ
x ∂α∂β θ̃ (·) + ∂

(
kx∂θ̃

)
(·) − Cx∂t θ̃ (·) , (6)

where θ̃ (·) is given by (5).
Assumption 2 The second assumption says that the residuum function (6) satisfies on its domain some orthog-
onal conditions for every x ∈ (0, L):

〈r〉T (x) = 0,

〈rγ 〉T (x) = 0. (7)

This approach, for example, was also used by Ostrowski and Jędrysiak in their consideration of the dependence
of temperature fluctuations on randomised material properties in two-component periodic laminate [67] and
by Pazera and Jędrysiak [36] in consideration of the effect of microstructure in thermoelasticity problems of
FGM laminates.

In this modelling step, instead of introducing the function (6) and deriving themodel equations from conditions
(7), the heat conduction in the considered composite can be described by an action functional in which the
Lagrangian involved is assumed to be weakly slowly varying or slowly varying. Then, the variation of this
functional is calculated and equated to zero, which leads to the Euler–Lagrange equations. Then, using these
equations and taking into account the assumption of micro–macro-decomposition (5) and the concepts of the
tolerance averaging approximations (3), the equations of the model are obtained. This approach is used by
many authors using the tolerance averaging technique, for example, by Tomczyk and Gołąbczak in [38] for
modelling dynamic thermoelasticity problems in thin micro-periodic cylindrical shells and by Kubacka and
Ostrowski in [45] for modelling heat conduction problems in biperiodic composites. Both ways lead to the
same model equations.

6 Tolerance models

The following subsections will present the four tolerance models for heat conduction in multi-component
step-wise graded FGM as an extension of existing models for two-component step-wise FGM.

6.1 General model

The derivation of the equations of the general model will be presented below.
Let us recall that ϑ (�, ·, t) and ψ (�, ·, t) are weakly slowly varying functions, i.e. ϑ (�, ·, t) ∈

WSV 1
d ((0, L)) and ψ (�, ·, t) ∈ WSV 1

d ((0, L)). Firstly, by using the first condition from (7), i.e. 〈r〉T (x) =
0, and substituting θ̃ (·) given by Eq. (5), one gets:

〈
kαβ∂α∂β (ϑ + γψ) + ∂ (k∂ (ϑ + γψ)) − C∂t (ϑ + γψ)

〉
T = 0, (8)
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when expanded, one obtains:
〈
kαβ∂α∂βϑ

〉
T + 〈

kαβ∂α∂β (γψ)
〉
T + 〈∂ (k∂ϑ)〉T + 〈∂ (k∂ (γψ))〉T − 〈C∂tϑ〉T − 〈C∂t (γψ)〉T = 0. (9)

If further expanded and using the definition of tolerance averaging (3), weakly slowly varying functions, i.e.
ϑ and ψ and their derivatives, can be excluded from averaging.

〈
kαβ

〉
∂α∂βϑ + 〈

kαβ∂α∂βγ
〉
ψ + 〈

kαβ∂βγ
〉
∂αψ + 〈

kαβ∂αγ
〉
∂βψ + 〈

kαβγ
〉
∂α∂βψ

+∂ (〈k〉 ∂ϑ) + ∂ 〈k∂γ 〉 ψ + ∂ 〈kγ 〉 ∂ψ − 〈C〉 ∂tϑ − 〈C∂tγ 〉ψ − 〈γ 〉 ∂tψ = 0. (10)

Because the shape function is linear and does not depend on time and x1 and x2 coordinates, the single-line
underlined contributions in (10) are equal to zero.

Moreover, equation (10) simplifies because some averages are equal to zero 〈γ 〉 = 0 and 〈kγ 〉 = 0,〈
kαβγ

〉 = 0 for α, β = 1, 2. Terms that vanish due to the above reason are underlined in (10) with a double
line.

Finally, the first equation of the general model takes the following form:
〈
kαβ

〉
∂α∂βϑ + ∂ (〈k〉 ∂ϑ) − 〈C〉 ∂tϑ + ∂ (〈k∂γ 〉 ψ) = 0. (11)

To deduce the second equation of the general model, we substitute θ̃ (·) given by (5) in (6) and make use of
the second condition from (7), i.e. 〈rγ 〉T (x) = 0, i.e.

〈
γ kαβ∂α∂β (ϑ + γψ) + γ ∂ (k∂ (ϑ + γψ)) − γC∂t (ϑ + γψ)

〉
T = 0. (12)

Below, each part of the above equation will be considered separately.
When the first term in (12), i.e.

〈
γ kαβ∂α∂β (ϑ + γψ)

〉
T is expanded and is purged from averaging weakly

slowly varying functions, i.e. ϑ and ψ and their derivatives, by using the definition of tolerance averaging (3),
we get:

〈
γ kαβ∂α∂β (ϑ + γψ)

〉
T = 〈

γ kαβ
〉
∂α∂βϑ + 〈

γ kαβ∂α∂βγ
〉
ψ + 〈

γ kαβ∂βγ
〉
∂αψ

+ 〈
γ kαβ∂αγ

〉
∂βψ + 〈

kαβ (γ )2
〉
∂α∂βψ (13)

which reduces to:
〈
kαβ (γ )2

〉
∂α∂βψ (14)

because the parts of the expression in (13) including
〈
kαβγ

〉
vanish.

The second term in (12) can be rewritten as shown below:

〈γ ∂ (k∂ (ϑ + γψ))〉T ≡ 〈∂ (γ k∂ (ϑ + γψ))〉T − 〈(k∂ (ϑ + γψ)) ∂γ 〉T . (15)

By expanding and excluding the vanishing terms originated from averaging weakly slowly varying functions,
i.e. ϑ and ψ and their derivatives, we have:

∂ (〈γ k〉 ∂ϑ) + ∂ 〈γ k∂γ 〉ψ + ∂
〈
(γ )2 k

〉
∂ψ − 〈(∂γ k)〉 ∂ϑ − 〈∂γ kγ 〉 ∂ψ − 〈

(∂γ )2 k
〉
ψ (16)

and because 〈kγ 〉 = 0, the only persistent term remains the following:

∂
〈
(γ )2 k

〉
∂ψ − 〈(∂γ k)〉 ∂ϑ − 〈

(∂γ )2 k
〉
ψ. (17)

Finally, the third term in (12) can also be rewritten as shown below:

〈γC∂t (ϑ + γψ)〉T ≡ 〈∂t (γC (ϑ + γψ))〉T − 〈
(ϑ + γψ) ∂ tγC

〉
T . (18)

Because the shape function is linear and does not depend on time, then the term
〈
(ϑ + γψ) ∂ tγC

〉
T is equal

to zero. By expanding 〈∂t (γC (ϑ + γψ))〉T , we get:
∂t 〈γC〉ϑ + 〈

C (γ )2
〉
∂tψ (19)
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and remembering that 〈Cγ 〉 = 0, there will only be:

〈
C (γ )2

〉
∂tψ. (20)

Putting together (14), (17) and (20), the equation (12) takes the form:

∂
(〈
k (γ )2

〉
∂ψ

) + 〈
kαβ (γ )2

〉
∂α∂βψ − 〈

k (∂γ )2
〉
ψ − 〈k∂γ 〉 ∂ϑ − 〈

C (γ )2
〉
∂tψ = 0. (21)

Therefore, the derived set of equations are:

〈
kαβ

〉
∂α∂βϑ + ∂ (〈k〉 ∂ϑ) − 〈C〉 ∂tϑ + ∂ (〈k∂γ 〉 ψ) = 0,

∂
(〈
k (γ )2

〉
∂ψ

) + 〈
kαβ (γ )2

〉
∂α∂βψ − 〈

k (∂γ )2
〉
ψ − 〈k∂γ 〉 ∂ϑ − 〈

C (γ )2
〉
∂tψ = 0,

(22)

together with Eq. (5) represents the general tolerance model for the heat conduction in multi-component
step-wise FGMs composite.

The coefficients in Eq. (22) are slowly varying functions of argument x ∈ (0, L) and are given by:

〈k〉 =
p∑

i=1
kiϕi ,

〈
kαβ

〉 =
p∑

i=1
kαβ
i ϕi ,

〈k∂γ 〉 =
p∑

i=1
sgn (ai ) ki ,

〈
k (∂γ )2

〉 =
p∑

i=1

ki
ϕi

,

〈
k (γ )2

〉 = ∫ x− η
2+∑p

i=1 ηp

x− η
2+∑p−1

i=1 ηp−1
kp

(
γp−γp−1

η ϕp
· x + γp−1 − γp−γp−1

ϕp

p−1∑

i=0
ϕi

)2

,

〈
kαβ (γ )2

〉 = ∫ x− η
2+∑p

i=1 ηp

x− η
2+∑p−1

i=1 ηp−1
kαβ
p

(
γp−γp−1

η ϕp
· x + γp−1 − γp−γp−1

ϕp

p−1∑

i=0
ϕi

)2

,

〈C〉 = ∑p
i=1 Ciϕi ,

〈
C (γ )2

〉 = ∫ x− η
2+∑p

i=1 ηp

x− η
2+∑p−1

i=1 ηp−1
Cp

(
γp−γp−1

η ϕp
· x + γp−1 − γp−γp−1

ϕp

p−1∑

i=0
ϕi

)2

,

(23)

where ϕ0 = 0, γP = 0, and ai is the slope of the fluctuation shape function in a given sublayer.
The above coefficients (23) depend on material properties as well as on the functions ϕp (·).
The general model represents the starting point for deriving ulterior models. Note that a specific analysis

of the direct applications of the general model to obtain solutions for engineering problems has not been
conducted yet.

6.2 Standard model

In the standard model, the first equation from (22) remains unchanged. In the second equation, the term
∂

(〈
k (γ )2

〉
∂ψ

)
vanishes because in this case, we assume that ϑ (�, ·, t) and ψ (�, ·, t) are slowly varying

functions, i.e. ϑ (�, ·, t) ∈ SV 1
d ((0, L)) and ψ (�, ·, t) ∈ SV 1

d ((0, L)).
In this case, the set of equations is:

〈
kαβ

〉
∂α∂βϑ + ∂ (〈k〉 ∂ϑ) − 〈C〉 ∂tϑ + ∂ (〈k∂γ 〉ψ) = 0,

〈
kαβ (γ )2

〉
∂α∂βψ − 〈

k (∂γ )2
〉
ψ − 〈k∂γ 〉 ∂ϑ − 〈

C (γ )2
〉
∂tψ = 0,

θ (x, t) ≈ θ̃ (x, t) = ϑ (x, t) + γ (x) ψ (x, t) . (24)
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6.3 Local homogenisation model

The local homogenisation model is obtained with the additional extra assumption that the term
〈
C (γ )2

〉
∂tψ

in the second equation of (24) can be neglected. Moreover, we assume that ψ (�, ·, t) ∈ SV 1
d (�) and, thus,

the term
〈
kαβ (γ )2

〉
∂α∂βψ in the second equation of (24) also vanishes.

In this case, the set of equations is:
〈
kαβ

〉
∂α∂βϑ + ∂ (〈k〉 ∂ϑ) − 〈C〉 ∂tϑ + ∂ (〈k∂γ 〉 ψ) = 0,

〈
k (∂γ )2

〉
ψ + 〈k∂γ 〉 ∂ϑ = 0,

θ (x, t) ≈ θ̃ (x, t) = ϑ (x, t) + γ (x) ψ (x, t) . (25)

From the second equation of (25), it can be obtained that:

ψ = − 〈k∂γ 〉
〈k(∂γ )2〉∂ϑ. (26)

Then substituting Eq. (26) into the first equation of (25), equation for ϑ (·) takes the form:
〈
kαβ

〉
∂α∂βϑ + ∂

(
ke f f ∂ϑ

) − 〈C〉 ∂tϑ = 0, (27)

where ke f f ≡ 〈k〉 − (〈k∂γ 〉)2〈
k(∂γ )2

〉 ≡
(

ϕ1
k1

+ · · · + ϕP
kP

)−1 ≡
(∑P

i−1
ϕi
ki

)−1
.

The local homogenisation model is the simplest one and is suitable for analysing heat conduction issues in
multi-component composites if the near-surface zone, i.e. at the edges crossing the layering, is not important.
It is beneficial when one initially wants to determine the temperature distribution inside the composite. This
model is applicable to simple engineering applications. In laboratory pilot tests for two-component periodic
composites conducted by Jurczak [68] and by Szlachetka, Bagdasaryan, Wągrowska, and Dohojda [69], very
good agreement was obtained between the model and measurements of the temperature inside the structure.

6.4 Local homogenisation model with a boundary layer effect

In this case, the set of equations is:
〈
kαβ

〉
∂α∂βϑ + ∂

(
ke f f ∂ϑ

) − 〈C〉 ∂tϑ = 0,
〈
kαβ (γ )2

〉
∂α∂βψ̄ − 〈

k (∂γ )2
〉
ψ̄ = 0,

θ (x, t) ≈ θ̃ (x, t) = ϑ (x, t) + γ (x) ψ (x, t) ,

ψ (x, t) = ψ̄ (x, t) + ψ̃ (x, t) , (28)

where ψ̃ is given by the right-hand side of (26).
In this model, equations for ϑ and ψ̄ are independent, and the corresponding boundary value problems

for these functions are coupled only by the boundary conditions. The second equation of system (14) will be
called the boundary layer equation because it describes the perturbation of the temperature field associated
with the form of the boundary conditions for θ (x,t).

These four models are most often used in practice.

7 Example

This section presents the solution to a specific boundary value problem determined in the local homogenisation
model for multi-component step-wise FGM. It will be considered the one-dimensional, stationary problem of
heat conduction in the direction perpendicular to layers.

Composite occupies the region � ≡ R × R × (0, L) where L = 0.2m, and composed of N = 20 layers
with constant thicknesses η = 0.01 cm. Each layer consists of five sublayers made of three different materials.
The sublayers are symmetrically distributed with the midplane of the interval (layer). All materials of the
discussed composite are assumed to be homogeneous and isotropic. The material fractions in sublayers are
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Fig. 4 Global fluctuation shape function for considered example, a throughout the composite, b in the first layer, c in the fifth
layer, d in the fifteenth layer, e in the twentieth layer

dependent on functions ϕ1 (·), ϕ2 (·), ϕ3 (·), ϕ4 (·) = ϕ2 (·) and ϕ5 (·) = ϕ1 (·). The above functions take the
form in considered example: ϕ1 = ϕ5 = 1

8
L−x
L , ϕ2 (x) = ϕ4 (x) = 1

4
x
L , ϕ3 (x) = 3L−x

4L . The thicknesses of
each sublayer in several layers are not constant, but it is important to notice that every two adjacent layers can
be treated as indistinguishable.

The thermal conductivity coefficients related to the corresponding sublayers are equal to K1 = K5 =
10 W/mK, K2 = K4 = 1 W/mK, K3 = 5 W/mK.

The boundary conditions on the macro-temperature are: ϑ (0) = ϑ0 = −5◦C , ϑ (20) = ϑL = 25◦C .
Figure 4 presents the global fluctuation shape function related to the analysed structure. For a better view,

the part of the function assigned to the sublayer made of a particular material in the layer is drawn in a different
colour. In addition, the form of the global fluctuation shape function in several selected layers is shown.
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Fig. 5 Distributions of the macro-temperature field ϑ (·) for x ∈ (0, 0.2)

Fig. 6 Distribution of the approximated temperature field θ̃ (·) for x ∈ (0, 0.2)

The distribution of the macro-temperature field ϑ (·) determined from Eq. 13 is shown in Fig. 5.
It can be observed that the distribution of macro-temperature ϑ (·) is not a linear function as in periodic

multi-component layered composite (see [41]). The macro-temperature equation is in the form:

ϑ (x) = 411.29x2 + 67.7419x − 5. (29)

The distribution of the temperature field θ̃ (·) in the analysed composite is shown in Fig. 6, and the distribution
of both ϑ (·) and θ̃ (·) in the 1st, 5th, 15th and 20th layers is shown in Fig. 7.

It is easy to notice that the distribution of field θ̃ (·) varies along the Ox axis. Let us emphasise that if
we take an example where coefficients of thermal conductivity are equal to each other, the fluctuation shape
function is reduced to 0. Thus, implying that θ̃ (·) = ϑ (·). Thismeans that the introduced concept of fluctuation
shape function gives the possibility of the limit passing from a multi-component to a one-component body.

In this example was considered an unlimited composite in the Ox1 and Ox2 directions. The question arises
what if the composite also had a finite dimension in the Ox2 axis direction? In the interior of the conductor,
the approximate temperature distribution will be as in Fig. 6; unfortunately, the same distribution will be on
the edges crossing the layering. This indicates that the boundary conditions on these edges are not met. On the
edges crossing the layering, the graph of the approximate temperature field should be smooth—without any
oscillations.

The solution of the same compositewill be presented below, however, assuming that it has a finite dimension
in the direction of the Ox2 axis L2 = 1m. A local homogenisation model with a boundary layer effect will be
used for the solution.

After solving the system of equations (28), equation for temperature field θ (·) takes the form:

θ ≈ θ̃ = ϑ − γ
〈k∂γ 〉

〈k(∂γ )2〉∂ϑ + γ
〈k∂γ 〉

〈k(∂γ )2〉∂ϑe
−

√
〈k(∂γ )2〉
〈k(γ )2〉 ξ

(30)

where ξ =
{

x2

L2 − x2
depending on the region of which of the edges cross the layering, and we determine

the temperature distribution. In formula (30), ξ has a physical sense when substituted in centimetres.
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Fig. 7 Distribution of the temperature field ϑ (·) (dashed line) θ̃ (·) (solid line) in a the first layer, b the fifth layer, c the fifteenth
layer, d the twentieth layer

Figure 8 presents the temperature field distribution θ (·) including the boundary layer effect at different
distances from the edge crossing the layering for the last layer of the composite. The graph shows that as one
moves away from the edge, the approximate temperature distribution approaches the temperature distribution
given in Fig. 6.

8 Concluding remarks

This paper presents four mathematical models for the heat conduction in multi-component step-wise FGMs as
an extension of existing tolerance modelling method for two-component step-wise FGMs. This extension to
the more general case extends the utility of the tolerance averaging technique by applying it to a wider range
of problems and scenarios.

What is already known from the literature, but is worth noting, is that the tolerance modelling technique
cannot be treated as a purely mathematical method like homogenisation, for instance, since the tolerance
averaging approximation is based on some physical premises rather than on certain formalised procedures.
However, this approach leads to the collection of mathematical tolerancemodels describing various thermome-
chanical processes and phenomena. Thus, it should be emphasised that in tolerance modelling, the concept of
tolerance used as a relationship of indistinguishability must use physical premises, and, therefore, knowledge
and experience of the issue under study hold great importance.

As a result of applying tolerance modelling to describe the parabolic heat conduction problem for layered
multi-component step-wise FGM-type structures, the equation with discontinuous strongly oscillating coef-
ficients has been replaced by one with slowly varying coefficients. In this form, the equation does not create
computational complications. Thus, the validity of the method was confirmed.

The introduced concept of fluctuation shape function allows the limit passing from a multi-component to
a one-component body.
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Fig. 8 Temperature distributions in twentieth layer of the composite at various distances from the edge crossing layering

The general model represents the starting point for deriving more specified models. Note that the direct
applications of the general model were not analysed to obtain solutions to specific engineering problems.

The local homogenisation model is the simplest one and is suitable for analysing heat conduction issues in
multi-component composites if the near-surface zone, i.e. at the edges crossing the layering, is not important.
It is beneficial when one initially wants to determine the temperature distribution inside the composite. This
model is applicable to simple engineering applications.

In contrast, a local homogenisation model with a boundary layer effect allows for meeting the boundary
conditions on edges crossing the layering and for analysing the temperature distribution in the near-surface
zone.

The examples of the application of the local homogenisation model and local homogenisation model with
boundary layer effect presented in the paper are primarily illustrative in nature, being limited to tasks that
can be solved analytically. Nevertheless, these examples provide a benchmark that can be used to help solve
tasks that require the use of numerical techniques, as well as other model problems. Above all, the following
statements emerge from the examples presented:

a. The approximate temperature distribution shows a relationship with the heterogeneous structure of the
considered structure;

b. For issues of heat conduction in a multi-component composite with inhomogeneity in one direction only,
the sawtooth fluctuation shape function reflects well the nature of the structure of such a composite;

c. Temperature disturbances arise only in the near-side areas. These areas are very small compared to the
dimensions of the entire area occupied by the composite. Because the composite is not periodic, the depth
of disturbance is not constant.
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32. Mazur, Ł, Bać, A., Vaverková, M.D., Winkler, J., Nowysz, A., Koda, E.: Evaluation of the quality of the housing environment
using multi-criteria analysis that includes energy efficiency: a review. Energies 15, 1–24 (2022). https://doi.org/10.3390/
en15207750
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Częstochowskiej, Częstochowa (2000)
35. Awrajcewicz, J., Jemielita, G., Kołakowski, Z., Matysiak, S.J., Nagórko, W., Pietraszkiewicz, W., Śniady, P., Świtka, R.,
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, Zielona Góra – Łagów (2013)
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