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Abstract In the field of material modeling, thermoplastic polymers are often studied because of their complex
material behavior and their prevalence in industry applications due to their low cost and wide range of applica-
tions. Nowadays, where reusability becomesmore andmore important, materials which can undergo reversible
thermomechanical deformations are appealing for, e.g., the construction of car body components. To predict
such complex forming processes with multiple influencing factors, such as temperature, strain rate or underly-
ing material morphology, model formulations are needed that account for these influences simultaneously and
are validated against experimental data. Unfortunately, up to now only a few contributions are available which
consider all these phenomena. In addition, the range of process parameters considered is often narrow due to
the experimental effort required for testing. This usually results in limited predictive capabilities of the model.
To overcome these limitations, in this work, a thermo-mechanically coupled material model is developed that
accounts for the underlying morphology in terms of the degree of crystallinity (DOC). The model formula-
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tion is derived in a thermodynamically consistent manner, incorporating coupled nonlinear visco-elastic and
elasto-plastic material behavior at finite strains. To characterize and further validate the model, mechanical as
well as thermal experiments are conducted for polyamide 6 (PA6). Here, a blending strategy of PA6 together
with an amorphous co-polymer is introduced during specimen production to achieve a wider range of stable
DOCs(approximately 15%). The model formulation is successfully applied to experimental results and its
predictions are in good agreement with experimental observations.

Keywords Polyamide 6 · Compounds · Thermo-mechanical coupling · Degree of crystallinity · Parameter
identification · Finite strains
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1 Introduction

Polymers are macromolecules consisting of repeating units (monomers) with linear, branched or cross-linked
structures. They are typically classified on the basis of their origin (synthetic, natural, modified natural),
the origin of their resources (renewable, fossil), their biodegradability or their physiochemical properties
(thermoplastics, thermosets, elastomers) in terms of their arrangement of monomers on the microlevel. The
latter is of interest in industrial applications, for example, in automotive or aerospace industry, where polymers
are used as engineering materials due to their beneficial high strength to weight ratio, as well as their eligibility
for cost-effective mass-production. In contrast to three dimensional cross-linked network structures, highly
pronounced in thermosets and less distinct in elastomers, thermoplastics primarily consist of long linear or
branched polymer chains without cross-links. This underlying morphology allows for reversible thermoplastic
deformations, needed for technical forming or molding processes, e.g., for car components. Thermoplastics
can either be purely amorphous or semi-crystalline polymers (SCPs), depending on their chain morphology.
Amorphous polymers mainly consist of disordered (coiled) chains that undergo a change from a glassy to
a rubbery state around the glass transition temperature. In contrast, SCPs contain disordered (amorphous)
and ordered (crystalline) regions, resulting in a recrystallization behavior during cool-down from the melt
[1–3]. Hereby, the cooling rate and the production method (e.g., extrusion, injection molding, blow molding,
compaction, etc.) have a crucial impact on the resulting degree of crystallinity (DOC). In industrial applications,
the process stability is most important; therefore, additives such as softening agents, stabilizers, crystallization
agents, dyes or fillers to enhance the mechanical properties are commonly used in plastics manufacturing.
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Nonetheless, these are not the only influencing factors on the resulting material behavior. Besides production
parameters, temperature, heating or loading rate as well as moisture content or aging factors, such as UV
radiation or other environmental factors, can alter the material characteristics. Hence, it is crucial to consider
multiple influencing factors over a wide range when formulating and identifying a material model to reliably
predict the material behavior of plastics.

Over the past decades, multiple models were proposed to simulate the material behavior of polymers under
various influencing factors. Here, contributions for thermoplastic materials are of particular interest. Based on
the modeling approach by [4] for glassy polymers and the idea of a split into a molecular network as well as an
intermolecular resistance [5], several phenomenological models were developed for amorphous (e.g., [6–8])
and semi-crystalline (e.g., [9–11]) polymers. Within the class of phenomenological models, the approaches
differ between purely visco-elastic formulations (e.g., [12,13]) and models that cover the elasto-visco-plastic
material behavior (e.g., [9,11,14]). Several works additionally account for the Bauschinger-like effect upon
unloading (e.g., [15–17]).

Modeling the yielding behavior of thermoplastics requires the identification of an appropriate yield surface.
Here, the well-known von Mises yield criterion, which depends on a single material parameter only (i.e., yield
stress) and originates from the analysis of the inelastic behavior of metals, is not suitable, since it neglects
the hydrostatic pressure dependence known for polymers, see, for example, [18,19]. Possible alternatives are,
for example, the Drucker–Prager yield surface [20] or the paraboloid yield surface by [21]. Both offer the
possibility to consider tension–compression asymmetry in yielding, by introducing separate yield stresses in
tension and compression. This effect is also visible in experiments. [22] showed, e.g., a tension–compression
asymmetry in the onset of yielding for glassy polymers at room temperature, where the stiffer compressive
response resulted from the effect of hydrostatic pressure. The temperature and strain rate sensitivity of yielding
under compression were discussed in [23]. However, the ratio of the tensile and compressive yield stresses is
not affected by the strain rate, as concluded by [24]. [25] investigated the mechanical response of various semi-
crystalline polymers and found out that PA6, among others, shows a strain rate-dependent yielding togetherwith
a higher yield stress in compression. At higher temperatures, [26] tested the response of polyether-ether-ketone
(PEEK) and compared the resulting yield stresses in tension and compression. Their difference decreased with
increasing temperature, especially close to or above the glass transition. Further testing by [19] revealed that
yield criteria based on the hydrostatic stress and second invariant of the deviatoric stress are not sufficient to
predict biaxial stress states or shear banding. In these cases, the third invariant of the deviatoric stress needs
to be considered as well. Another possibility are yield criteria derived from mechanical testing, see, e.g., [27].
These approaches are, however, tailored to a specific material and can therefore not be used for other cases.

Some works considered additional effects at the microlevel, for example, plastic flow occurring via crys-
tallographic slip in the crystalline phase [28] or a change of the plastic flow depending on the glass transition
[29]. Naturally, the morphology of the underlying microstructure, e.g., crystal configuration, lamellae thick-
ness etc., has a significant influence on the overall material response. This motivated modeling formulations
that take into account molecular dynamics or the microstructural constituents, employing analytical or FE-
based homogenization schemes to arrive at the macroscopic material response, see, e.g., [30–34]. However,
due to experimental limitations it is in general difficult and costly to obtain the required physical data for
characterizing the microscopic material behavior. Especially semi-crystalline polymers prove to be difficult
in terms of their different molecular arrangements. With the growing interest in artificial intelligence and
machine learning, efforts have been made to use neural networks for describing the temperature dependence
of mechanical properties of polyurethane [35] and the temperature and rate dependence of polypropylene in
terms of a hybrid model approach, combining constitutive and data-based modeling [36]. Additional appli-
cations included material development, e.g., rubber blend optimization by tracing back targeted visco-elastic
material properties [37] or polymer identification [38]. Similar to micromechanical approaches, the generation
of experimental data sets remains cost and time intensive.

The influence of the internalmicrostructure on themacroscopicmaterial response is only taken into account
in a limited number of works. For example, the amount of crystal volume fraction was taken into account in
[10,39], who incorporated a two-phase representation of the intermolecular resistance, whereas in [40] and [41]
mixture rules based on a crystallinity ratio were used to distinguish between the amorphous and the crystalline
phase. [42] developed a micromechanics-based criterion for the yielding of SCPs, based on the amorphous
volume fraction. In most cases, however, crystalline and amorphous phases are treated in a smeared manner
and the degree of crystallinity serves as a constant input parameter, see, e.g., [11]. Several works additionally
considered the evolution of the DOC as a stress-free pre-process, resulting during cool-down from the molten
state [43], or elaborated a full coupling scheme (e.g., [44] based on [45,46]). However, the validation of such



M.-C. Reuvers et al.

approaches remains cumbersome, since the DOC cannot be measured directly during experimental testing and
additional changes in the sample cannot be excluded, if tested afterward. Commonly, no further differentiation
between fully extended (α-form) and twisted (γ -form) polymer chains is made.

Thermal effects in semi-crystalline polymers need to be accounted for, due to the inherent structural changes
occurring at the lamellae level. In the literature, multiple approaches exist for polymers that take into account
a coupling with the temperature field (e.g., [15,47]). Here, the approaches differ in terms of the treatment of
thermal softening with increasing temperature. [48] and [49], for example, considered material degradation,
whereas in theworks of, e.g., [43,50,51], thematerial parameters themselves are dependent on the temperature.
In regard to the considered temperature range, [52] identified the model framework below the glass transition,
whereas [53] considered processing cases close to the glass transition. In contrary, [16] conducted a modeling
framework that spans a wide temperature range independent of the phase change. Significant self-heating
effects were visible in experiments from [24] for polyamide (PA66), polymethylmethacrylate (PMMA) and
polycarbonate (PC) and in experiments from [54] for PA66 and polypropylene. In a recent publication, [55]
studied the material behavior of PA6 under large deformations including the self-heating effect, prominent at
high loading rates.

Other influencing factors were investigated in, for example, [56], who investigated the effects of a change
in moisture content on the mechanical properties of PA6 by coupling a nonlinear diffusion model with a visco-
elastic material model. In [57], the thermoviscoelastic behavior of PA6 is explored by means of dynamical
mechanical analysis (DMA) under varying moisture contents. Further, [58] experimentally investigated the
effect of UV-aging on polyethylene, whereas [59] incorporated the effect of thermal aging into a micromechan-
ical constitutive model. Besides the influence of environmental factors, multiple attempts were made to model
the failure regime of SCPs. [17] modeled, e.g., ductile damage in polypropylene, nylon 101 and high-density
polyethylene, whereas [60] introduced a thermo-elastic-viscoplastic damage model for PA6. A gradient dam-
age approach was used in [61] to overcome pathological mesh dependence issues in the simulation of PMMA
and polycarbonate (PC) fracture.

Concluding from the review above, considerable efforts were made in the experimental and numerical
analysis of SCPs. However, in most of these works the influencing factors on the material behavior are consid-
ered separately. Only a few works consider multiple influences at once. Especially regarding the temperature
and process-induced morphology, as the degree of crystallinity, a strongly limited number of contributions is
available that covers their correlations over a wide process range [11]. In these cases, mostly the mechanical
model response is investigated, whereas the influence of the DOC on the thermal properties is neglected, in
particular for temperatures above the glass transition. At the same time, the considered range of process param-
eters in experimental testing is often limited. Therefore, a broad overview of the material response is missing.
As a result, material models identified from experimental data are often valid only for small regions, e.g., a
small range of DOCs, limiting the predictive capability of the model for various applications and process-
induced morphologies. Additionally, the production of temperature stable specimens with a significant range
of crystallinities remains a challenge, since quenching during cool-down or post-production treatments, as for
example, annealing, yield only small changes in the DOC that are unstable in temperature and time. Here,
additives like crystallization agents or fillers are needed, to achieve significant and stable changes in the mate-
rials’ crystal content. Compounding such materials with designed properties is a separate research field in
terms of identification of a suitable blend partner, blend composition, mixing technology, and chemical reac-
tions initiated between the components that may require the use of compatibilizers, see, e.g., [62–65]. Further
testing is required to validate the newly generated materials prior to mechanical testing, which increases the
experimental effort.

The objective of this work is to evaluate the influence and interplay between strain rate, temperature and
degree of crystallinity collectively over a wide range of process parameters and develop a corresponding
thermo-mechanical constitutive theory. Therefore, in a first step (see Sect. 2) a thermodynamically consistent
finite strain formulation is derived, where the temperature serves as an additional field variable. The degree
of crystallinity is accounted as an additional constant input quantity. In line with previous works, a coupled
visco-elastic, elasto-plastic model is developed that includes nonlinear kinematic hardening of Armstrong–
Frederick type. The formulation is extended with a tension–compression asymmetry in yielding, necessitating
experimental results in tension and compression to characterize the model. Further, the model is identified in
a staggered manner with new experimental results from polyamide 6 cyclic-olefin-copolymer (COC) blends
with a range of 15 % to 29% DOC (see Sect. 3). Tension, compression and relaxation tests are carried out
for temperatures below and above the glass transition with an emphasis on a wide range of variation in the
tested strains and strain rates. Here, several functions for a nonlinear relaxation time are tested and compared
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Fig. 1 a Schematic illustration of the constitutive model. b Multiplicative splits of the deformation gradient

to experimental data. Additional thermal tests, for example, thermal conductivity measurements or specific
heat capacity measurements, are carried out to identify the models’ thermal properties and their dependence
on the underlying morphology. Following model verification, numerical examples are shown and discussed in
Sect. 4. Finally, a conclusion and outlook are given in Sect. 5.

2 Constitutive modeling of semi-crystalline polymers

The experimental findings of, e.g., [11], imply that, to accurately represent the material behavior of SCPs, a
coupled visco-elastic, elasto-plastic framework, incorporating nonlinear relaxation behavior as well as strain
hardening, is required. To this end, the corresponding modeling strategy is presented in a schematic one
dimensional rheological illustration (Fig. 1a to allow a better understanding of the following derivation.

2.1 Kinematics

In the finite strain regime, the previous assumptions lead to a multiplicative decomposition of the deformation
gradient F into an elastic (Fe1) and a plastic (F p) part (see, e.g., [66–68]) as well as an elastic (Fe2) and
viscous (Fv) contribution (see, e.g., [14,69–71])

F = Fe1 F p = Fe2 Fv, (1)

see Fig. 1. To model nonlinear kinematic hardening, an additional, physically motivated split of the plastic
deformation gradient F p = F pe F pi is introduced, according to [72,73]. Naturally, the above decompositions
of the deformation gradient result in the local intermediate configurations ic1, icv

1 and ic2 for plasticity,
kinematic hardening and viscosity, respectively, with rc defining the reference and cc the current configuration
(cf. Fig. 1).

2.2 Helmholtz free energy

The total Helmholtz free energy per unit mass, as the state potential of the model, is expressed in terms
of physically reasonable deformation measures in the intermediate configurations. Therefore, next to the
symmetric right Cauchy–Green tensor C = FTF, the elastic and plastic Cauchy–Green-like tensors

Ce1 = FT
e1 Fe1 = F−T

p C F−1
p , C pe = FT

pe F pe, Ce2 = FT
e2 Fe2 = F−T

v C F−1
v (2)
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are introduced, according to [74,75]. Here, the general form of the total Helmholtz free energy ψ is additively
decomposed, following the idea presented in Fig. 1

ψ(Ce1,Ce2,C pe, χ, θ) = ψ1(Ce1,C pe, χ, θ) + ψ2(Ce2, θ) + ψc(χ, θ), (3)

where ψ1 and ψ2 denote the energies related to the elasto-plastic and visco-elastic contributions, respectively.
Analogously to [15,43,52,76], the state potential is extended by a caloric contribution ψc in order to ensure
flexibility regarding the function for the heat capacity cT derived in Sect. 2.5. As indicated in (3), all energetic
contributions jointly depend on the temperature field via the absolute temperature θ .

The first term ψ1 contains an elastic part ψe1 based on the elastic right Cauchy–Green tensor Ce1 and the
degree of crystallinity χ

ψ1(Ce1,C pe, χ, θ) = ψe1(Ce1, χ, θ) + ψp(C pe, χ, θ), (4)

to account for the influence of the microstructural morphology. Note here that no distinction is made between
the underlying crystal configurations and that the DOC in this framework serves as a constant input quantity.
In addition, a defect energy ψp related to kinematic hardening is introduced, depending on C pe as well as χ .
The energy related to viscous effects ψ2 is expressed in terms of the elastic right Cauchy–Green-like tensor
Ce2 as the sole deformation measure.

2.3 Second law of thermodynamics: Clausius–Duhem inequality

To ensure non negative internal dissipation, the model equations need to fulfill the second law of thermo-
dynamics. Therefore, the state relations are derived from the local form of the Clausius–Duhem inequality:

S : 1
2
Ċ − ρ0(ψ̇ + ηθ̇) − 1

θ
q0 · Grad(θ) ≥ 0. (5)

Here, S is the second Piola–Kirchhoff stress tensor, ρ0 represents thematerial density per unit reference volume
and η the entropy. The heat flux with respect to the reference configuration is introduced as q0. Considering
the assumed form of ψ1 and ψ2 in Eq.3, the time derivative of the Helmholtz free energy is expressed as

ψ̇ = ∂ψe1

∂Ce1
: Ċe1 + ∂ψp

∂C pe
: Ċ pe + ∂ψ2

∂Ce2
: Ċe2 + ∂ψ

∂θ
θ̇ (6)

The reader is kindly reminded that the derivatives with respect to χ vanish, since the DOC is assumed to
be constant in this constitutive framework. Now, using the chain rule of differentiation and additionally the
relation L p = Ḟ pF−1

p and L pi = Ḟ pi F
−1
pi for the velocity gradients, the derivatives of Ce1 and C pe can be

reformulated as

Ċe1 = −LT
pCe1 + F−T

p Ċ F−1
p − Ce1L p, Ċ pe = −LT

piC pe + F−T
pi Ċ pF

−1
pi − C peL pi . (7)

Here, the identities Ḟ
−1
p = −F−1

p Ḟ
−1
p F−1

p and Ḟ
−T
p = −F−T

p ḞT
p F−T

p have been used for the derivation

of Ċe1 and ˙F pe
−1 = −F−1

pe Ḟ
−1
pe F−1

pe and Ḟ
−T
pe = −F−T

pe Ḟ
T
pe F

−T
pe for the derivation of Ċ pe. The viscous

deformation rate Ċe2 is derived analogously using the corresponding inelastic velocity gradient Lv = Ḟv F−1
v .

In the next step, ψe1 is assumed to be an isotropic function of Ce1; therefore, coaxiality between Ce1 and
∂ψe1/∂Ce1 can be shown. Together with the relation for a scalar product of two second-order tensors (A :
B = tr(ATB) = tr(ABT)), this results in the identity

∂ψe1

∂Ce1
: Ce1L p = Ce1

∂ψe1

∂Ce1
: L p = Ce1

∂ψe1

∂Ce1
: D p. (8)

Here, the velocity gradient L p can be replaced by its symmetric part symL p = D p, the plastic rate of
deformation tensor, since the product of Ce1 and ∂ψe1/∂Ce1 is symmetric. Analogously, ψp and ψe2 are
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assumed to be isotropic functions of C pe and Ce2, respectively. Thus, similar relations as in Eq.8 are obtained
for these quantities. Now, the reformulated energy rate ψ̇ is inserted back into Eq.5

(
S − 2ρ0F−1

p
∂ψe1

∂Ce1
F−T

p − 2ρ0F−1
v

∂ψe2

∂Ce2
F−T

v

)
: 1
2
Ċ

+
(
2ρ0Ce1

∂ψe1

∂Ce1
− 2ρ0 F pe

∂ψp

∂C pe
FT

pe

)
: D p +

(
2ρ0 C pe

∂ψp

∂C pe

)
: D pi

+
(
2ρ0Ce2

∂ψe2

∂Ce2

)
: Dv + ρ0

(
∂ψ

∂θ
+ η

)
θ̇ − 1

θ
q0 · Grad(θ) ≥ 0,

(9)

using the relation Ḋ p = 1

2
F−T

p C pF−1
p . For arbitrary Ċ , the second Piola–Kirchhoff stress tensor S is chosen

according to the Coleman–Noll procedure [77] as

S = S1 + S2, (10)

where S1 and S2 represent the second Piola–Kirchhoff stresses corresponding to the elasto-plastic and visco-
elastic model, respectively

S1 = 2ρ0F−1
p

∂ψe1

∂Ce1
F−T

p , S2 = 2ρ0F−1
v

∂ψ2

∂Ce2
F−T

v . (11)

In addition, definitions for the Mandel stresses M1 and M2 in the intermediate configurations ic1 and ic2 are
introduced

M1 = 2ρ0Ce1
∂ψe1

∂Ce1
, M2 = 2ρ0Ce2

∂ψ2

∂Ce2
. (12)

Moreover, the back stress X related to kinematic hardening in ic1 and the Mandel stress corresponding to
kinematic hardening M1,kin follow to

X = 2ρ0 F pe
∂ψp

∂C pe
FT

pe, M1,kin = 2ρ0 C pe
∂ψp

∂C pe
. (13)

The entropy is specified as
η = −∂ψ/∂θ (14)

to a priori fulfill the thermodynamic restrictions and a heat flux according to Fourier’s law in the reference
configuration

q0 = −J λT C−1 Grad(θ) (15)

is chosen with J = detF and λT (θ) denoting the temperature dependent heat conductivity. Exploiting Eq.9,
together with Eq.10–15 leads to a reduced form of the Clausius–Duhem inequality

(M1 − X) : D p + M1,kin : D pi + M2 : Dv ≥ 0. (16)

2.4 Evolution equations and proof of thermodynamic consistency

2.4.1 Yield function and elasto-plastic evolution

Following [19,21,78], a Tschoegl-type or paraboloid yield criterion

�p = 3J2 + (m − 1) σ 0
t I1 − m (σ 0

t )2 ≤ 0 (17)

is considered,which includes a tension–compression asymmetry in yielding. It depends on the first (I1 = tr(�))
and second (J2 = 1/2 tr(dev((�))2)) invariant of the relative stress � = M1 − X and thus accounts for the
effects of hydrostatic pressure on the yielding behavior. The tension–compressionflowasymmetry is introduced
via the ratio m

m = σ 0
c (χ, θ)

σ 0
t (χ, θ)

, (18)
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between the initial yield stresses in tension σ 0
t and compression σ 0

c . Note here that both material quantities
are assumed to depend independently on the degree of crystallinity and the temperature, resulting in a varying
ratio m with temperature evolution. Under the assumption of associative plasticity, the evolution equation for
the plastic strain rate follows to

D p = λ̇p
∂�p

∂�
= λ̇p

(
3 dev(�) + (m − 1) σ 0

t I
)

, (19)

where λ̇p denotes the plastic multiplier. The evolution equation for D pi is chosen to model nonlinear
Armstrong–Frederick kinematic hardening according to [79]

D pi = λ̇p
b

c
dev(M1,kin), (20)

with the correspondingmaterial parameters b and c. Since theMandel stress of kinematic hardening depends on
c (Eq.37,39), the ratio b/c is introduced for dimensional reasons. Finally, the Karush–Kuhn–Tucker conditions
complete the constitutive equations for the elasto-plastic model part, i. e.

λ̇p ≥ 0, �p ≤ 0, λ̇p �p = 0. (21)

2.4.2 Visco-elastic evolution

The evolution equation for the visco-elastic part in the intermediate configuration ic2 is chosen according to
[71]

Dv = ∂g

∂M2
= 1

2τμ2
dev(M2) + 1

9τK2
tr(M2) I, (22)

where g(M2) is a potential introduced in [71]. Thereby, the bulk modulus K2(θ) as well as the shear modulus
μ2(θ) are temperature-dependent quantities related to the material stiffness defined in Sect. 2.7. The relaxation
time τ determines how fast the material releases stresses and must therefore be larger than zero. In this work,
τ(τ 2, θ) is chosen as a function of the Kirchhoff stress of the visco-elastic part (τ 2) as well as the temperature.
For the specific function, the reader is referred to Sect. 3.

Note on thermodynamic consistency

For a more detailed derivation of the elasto-plastic part, the reader is kindly referred to [74,75]. In these
works, the classical von Mises yield criterion is exploited, in a framework considering isotropic and kinematic
hardening, to derive the plastic flow rule and prove the thermodynamic consistency. The thermodynamic
consistency of the constitutive model presented here can be shown in a similar manner, using the approach of
[71] for the visco-elastic part.

2.5 First law of thermodynamics: energy balance

In the following section, the local form of the energy balance with respect to the reference configuration

ρ0 ė + Div(q0) − S : 1
2
Ċ = 0 (23)

is evaluated to derive the heat generation in a thermodynamically consistent manner. Therefore, the time
derivative of the internal energy

ė = ψ̇ + η̇ θ + η θ̇ (24)

is exploited. Subsequently, the rate of the total Helmholtz free energy (Eq.6) is inserted in Eq.23 and Eq.14
is recalled to derive the entropy rate η̇ = −∂ψ̇/∂θ . Using the relations derived in Eq.7- 13 as well as Eq.16,
the partial differential equation for the temperature field follows to

ρ0 cT θ̇ = re + rp + rv − Div(q0) (25)
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re = θ

(
∂S1
∂θ

: 1
2
Ċ + ∂S2

∂θ
: 1
2
Ċ

)
(26)

rp =
(
M1 − θ

∂M1

∂θ

)
: D p −

(
X − θ

∂X
∂θ

)
: D p +

(
M1,kin − θ

∂M1,kin

∂θ

)
: D pi (27)

rv =
(
M2 − θ

∂M2

∂θ

)
: Dv (28)

Here, the specific heat capacity was introduced as

cT = −θ
∂2ψ

∂θ2
. (29)

From Eq.29, it can be seen that the heat capacity in theory is a complex function of all internal variables.
However, coming back to the definition of the total Helmholtz free energy in Eq.3, a caloric energy term ψc
was added to ensure flexibility regarding the function for the heat capacity which otherwise would be a priori
defined. In reality it is hard to asses these energetic contributions experimentally for inelastic materials and thus
derive the heat capacity in closed form [15,52,76]. Therefore, in this work, the heat capacity is approximated
by a constant value cT = cT (χ, θ) for each DOC and test temperature according to cited literature. In Sect. 3,
experiments are conducted to determine the specific heat capacity for the underlying morphology.

2.6 Representation of the constitutive equations in the reference configuration

In the preceding sections, the constitutive equations of the model were derived in a thermodynamically consis-
tent manner, resulting in quantities in multiple configurations. However, since the intermediate configurations
are non-unique, all quantities defined with respect to ic1, ici1 and ic2 can not be computed directly without fur-
ther treatment [80]. Thus, several pull-back operations are needed to arrive at unique and therefore calculable
quantities in the reference configuration. Simultaneously, this procedure allows the application of an exponen-
tial map algorithm [74] to integrate the evolution equations which automatically preserves the symmetry of
the internal variables as well as the material’s incompressibility.

Sinceψe1 andψe2 are isotropic functions of Ce1 and Ce2, respectively, one can directly show that S1 andS2
are unique using the concept of invariants [81]. Now, the relations from Eq.2 can be used to reformulate the
Second Piola–Kirchhoff stresses in terms of C and C p or Cv . A similar observation can be made for the back
stress tensor in the reference configuration X̄ . The rates of the plastic and viscous right Cauchy–Green-like
tensors are defined as

Ċ p = 2 FT
p D p F p, Ċ pi = 2 FT

pi D pi F pi , Ċv = 2 FT
v Dv Fv. (30)

Using the aforementioned relations together with Eq.19, 20 and 22, the evolution equations can be represented
in the reference configuration as

Ċ p = 2 λ̇p FT
p

∂�p

∂�
F p, Ċ pi = 2 λ̇p

b

c
FT

pi dev(M1,kin) F pi , Ċv = 2 FT
v

∂g

∂M2
Fv. (31)

Next, the thermodynamic driving forces of the elasto-plastic part are pulled back to the reference configuration

M1 = 2 ρ0 Ce1
∂ψe1

∂Ce1
= 2ρ0F−T

p CF−1
p

∂ψe1

∂Ce1
F−T

p FT
p = F−T

p CS1FT
p (32)

X = 2 ρ0 F pe
∂ψp

∂C pe
FT

pe = 2ρ0 F p F
−1
pi

∂ψp

∂C pe
F−T

pi FT
p = F p X̄ FT

p

= F−T
p FT

p F p X̄ FT
p = F−T

p C p X̄ FT
p (33)

M1,kin = 2ρ0 C pe
∂ψp

∂C pe
= 2ρ0 F

−T
pi C p F

−1
pi

∂ψp

∂C pe
F−T

pi FT
pi

= F−T
pi C p X̄ FT

pi = F−T
pi Ykin FT

pi (34)
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showing that M1 and C S1 as well as X and C p X̄ are similar tensors1 and share the same eigenvalues. Now,
the relative stress can be reformulated as

� = M1 − X = F−T
p (C S1 − C p X̄) FT

p = F−T
p Y FT

p . (35)

Thus, since the yield function �p is an isotropic function of �, it can equally be expressed as �p = �p(�) =
�p(Y). In the same manner, pull-back operations for the visco-elastic part can be deduced (see Table1),
since it can be shown that M2 and CS2 are similar. Regarding the internal dissipative heat sources, pull-back
operations need to be applied to rp and rv as well. Here, it is made use of Eq.30-34, to arrive at the final form.
Finally, all quantities are expressed in terms of C and the internal variables C p, C pi and Cv . An overview of
the constitutive equations in the reference configuration is given in Table1.

2.7 Specific choice of the Helmholtz free energy

Until this point, the constitutive framework has been presented in a quite general manner, to allow for a flexible
adaption of the model to other polymeric materials. To proceed with the identification of the model using the
experimental results in Sect. 3, however, a particular choice for the energetic contributions is required. Note,
for consistency the subsequent energies are expressed in terms of the elastic right Cauchy–Green tensors Ce1
and Ce2 in the intermediate configurations. They can of course be equivalently reformulated in terms of the
corresponding quantities of the reference configurations C,C p and Cv as well.

For the elasto-plastic model part, the elastic contribution ψe1 is chosen as a compressible Neo-Hookean-
type energy

ψe1 = μ1

2
(tr(Ce1) − 3) − μ1ln (Je1) + �1

4
(det(Ce1) − 1 − 2 ln(Je1))

− 3 K1αT �θ ln(Je1), (36)

including the two Lamé constants μ1(χ, θ) and �1(χ, θ) dependent on the DOC and temperature. Here,
Je1 = det(Fe1) is the determinant of the elastic deformation gradient Fe1. The elastic energy is extended by
a term related to volumetric thermal expansion with the elasto-plastic bulk modulus2 K1(θ), the coefficient of
thermal expansion αT (θ) and the temperature difference �θ = θ − θ0 between the current temperature θ and
the reference temperature θ0. Alongside the elastic energy, a nonlinear plastic defect energy is introduced to
account for kinematic hardening

ψp = c

2
(tr(C pe) − 3) − c ln(

√
Jpe), (37)

where Jpe = det(C pe) holds. Here, c(χ, θ) and the second dimensionless parameter b(χ, θ) that only shows
up in the evolution equation of Dpi or Ċ pi are material parameters (cf. [79]). With Eq. (11) and (13), the
second Piola Kirchhoff stress for the elasto-plastic part and the thermodynamic conjugate force for kinematic
hardening in the reference configuration follow to

S1 = μ1(C−1
p − C−1) + �1

2

(
det(C)

det(C p)
− 1

)
C−1 − 3K1αT (θ − θ0)C−1 (38)

X̄ = c (C−1
pi − C−1

p ). (39)

Similar to ψe1, the visco-elastic energy contribution is defined as

ψ2 = μ2

2
(tr(Ce2) − 3) − μ2 ln(Je2) + �2

4
(det(Ce2) − 1 − 2 ln(Je2))

− 3 K2αT (θ − θ0)ln(Je2), (40)

1 Two arbitrary tensors A and B are similar if A = C B C−1 holds for invertibleC . By evaluating the characteristic polynomial,
it can be shown that A and B share the same eigenvalues and thus the same physical interpretation. Consequently, the invariants
of A and B are interchangeable.

2 The bulk moduli K∗, ∗ = 1, 2 are defined by the two Lamé constants μ∗ and �∗ as K∗ = �∗ + 2μ∗
3

.
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where μ2(θ) and �2(θ) are the viscous Lamé constants and K2 is the visco-elastic bulk modulus2. The
determinant Je2 for volumetric thermal expansion is defined as Je2 = det(Fe2). Following Eq.11, the inelastic
second Piola–Kirchhoff tensor Se2 takes the form

S2 = μ2(C−1
v − C−1) + �2

2

(
det(C)

det(Cv)
− 1

)
C−1 − 3K2αT �θ C−1. (41)

2.8 Numerical implementation

The presented thermo-mechanically coupledmodeling framework is implemented as a usermaterial subroutine
UMATandUMATHT into the commercial FEMsoftwareABAQUS/Standard. During the solution of a thermo-
mechanically coupled boundary value problem, at eachGaussian integration point, the deformation gradient F,
the temperature θ and the spatial temperature gradient grad(θ ) are passed down to the subroutine together with
a vector containing all internal variables from the last converged time step. Here, for the time discretization
of the local residuals of Ċ p, Ċ pi and Ċv , the exponential map algorithm is exploited as an implicit time
integration scheme. The starting point is a reformulation of the evolution equations from Table1:

Ċ p = λ̇p f 1(C,C p,C pi , θ) = λ̇p g1(C,C p,C pi , θ)C p (42)

Ċ pi = λ̇p f 1,kin(C,C p,C pi , θ) = λ̇p g1,kin(C,C p,C pi , θ)C pi (43)

Ċv = f 2(C,Cv, θ) = g2(C,Cv, θ)Cv (44)

with the second-order tensors

f 1 = (6 dev(Y) + 2 (m − 1) σ 0
t )C p, g1 = f 1C

−1
p (45)

f 1,kin = 2
b

c
dev(Ykin)C pi , g1,kin = f 1,kinC

−1
pi (46)

f 2 =
(

1

τμ2
dev(CS2) + 2

9τK2
tr(CS2) I

)
Cv, g2 = f 2C

−1
v (47)

To integrate equations (42)–(44), an exponential map algorithm proposed by [74,82] is used. This leads to
the final form of the discretized evolution equations, displayed in a residuum format together with the yield
surface:

r1,p = −C−1
p,n + U−1

p exp (�λp U−1
p f 1U

−1
p )U−1

p = 0 (48)

r1,pi = −C−1
pi,n + U−1

pi exp (�λp U
−1
pi f 1,kin U

−1
pi )U−1

pi = 0 (49)

r1,σ = �p = 0 (50)

r2,v = −C−1
v,n + U−1

v exp (�t U−1
v f 2U

−1
v )U−1

v = 0 (51)

Here, the relations �λp = �t λ̇p, U p = √
C p, U pi = √

C pi and Uv = √
Cv are introduced. The index

n refers to quantities from the last time step, whereas quantities without index n relate to the current time
step. For a more detailed description of the time integration procedure, the reader is kindly referred to [74,75].
Due to the symmetry of the internal variables, a system of 13 nonlinear equations, corresponding to the local
plastic residual vector r1,loc = (r1,p, r1,pi , r1,σ )T = 0, must be solved for the elasto-plastic part. Using the

Newton–Raphson scheme, the plastic solution vector x1,loc = (Û
−1
p , Û

−1
pi , �λp)

T is obtained. This procedure
requires an additional linearization of the residuals (for constant C and θ ) and the calculation of the Jacobian
matrix J1 = ∂ r1,loc/∂x1,loc. The latter is obtained by automatic differentiation using the software AceGen
(cf. [83]). Likewise, for the visco-elastic part a system of 6 nonlinear equations r2,loc = r2,v = 0 is solved for

Û
−1
v .
After local convergence is achieved, ABAQUS requires the Cauchy stress tensor σ and the volumetric heat

generation r from the UMAT and the heat flux q from the UMATHT together with the material sensitivities
for the global Newton iteration. The rate of the right Cauchy–Green tensor needed for the calculation of the
internal heat generation is approximated by Ċ ≈ (C −Cn)/�t . Since the heat generation and the heat flux are
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derived with respect to the reference configuration (see Table1), they firstly need to be related to the current
configuration

q = −λT grad(θ) (52)

r = 1

J
(re + r1 + r2). (53)

In terms of the material sensitivities, ABAQUS requires the material tangent modulus Cσ
D = 1/J Cτ

D (DDS-
DDE), which is related to the tangent modulus tensor Cτ

D for the Jaumann rate of the Kirchhoff stress tensor
τ . The linearized incremental form of the Kirchhoff stress can be expressed as

�τ − �Wτ − τ�WT = C
τ
D�D, (54)

where �D and �W refer to the incremental symmetric and antisymmetric parts of the incremental velocity
gradient �L, respectively. Further, the thermal tangent modulus Cσ

θ (DDSDDT) and the derivatives of the
internal heat sources with respect to the strain increment Cr

D (DRPLDE) and the temperature Cσ
θ (DRPLDT)

are needed:

�σ = Cσ
θ �θ (55)

�r = Cr
D : �D (56)

�r = Cr
θ�θ. (57)

These quantities are obtained in a consistent manner from the corresponding expressions in the reference con-
figuration utilizing the algorithmic differentiation tool AceGen. Thus, quadratic convergence within the global
Newton–Raphson iteration is achieved. The push forward operations are found in Appendix A.1 alongside a
more detailed derivation of the tangent operators.

3 Parameter identification procedure

In this section, a staggered parameter identification scheme is described, to obtain a set of material parameters
for each test temperature. Therefore, firstly the experimental data base is discussed (see Sect. 3.1), followed
by a successive model characterization with a focus on the dependence on the degree of crystallinity and the
temperature.

3.1 Experimental data base

3.1.1 Specimen preparation

All experimental results used in this work for model identification purposes were conducted at the Institute of
Mechanics, University of the German Federal Armed Forces, Munich. To that end, the required test specimens
were injection molded at Polymer Service GmbH Merseburg (PSM) as type 1A and 1BA specimens of DIN
EN ISO 527-2:2012. In the following, 1BA specimens were used for monotonic tension as well as relaxation
tests, whereas the 1A specimens were used to cut smaller specimens (10 × 4 × 50 mm3) from the middle
section for compression tests in line with DIN EN ISO 604:2003. Prior to specimen production, the PA6 type
B granulate, kindly provided by Bond Laminates (Lanxess), was compounded with an amorphous co-polymer
(cyclic olefin copolymer (COC), type: Topas 9506F-500) in four different ratios PA6:COC (1:0, 0.85:0.15,
0.70:0.30, 0.55:0.45). The test specimens were then injection molded from the granulates. The idea of this
blending technique is to achieve different thermally stable volume-crystallinities with a wide range of DOCs,
where the change in DOC stems purely from the change in the PA6 mass content to the total compound
mass. The resulting material behavior of the blends should therefore reflect the material behavior of pure PA6.
Consequently, the blend partner COC was chosen to have a similar glass transition temperature compared to
PA6, as well as a stiffness around 4 GPa which corresponds to the stiffness of the amorphous phase of pure PA6
below Tg . Below the glass transition, the material behavior of the blends is influenced by both the amorphous
and the crystalline phase. In this case, the similarity of the chosen blend partner to the amorphous PA6 phase
should result in a comparable material behavior to pure PA6. Above the glass transition, the stiffness of the
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Table 1 Overview over the constitutive equations in the reference configuration

Table 2 Differential scanning caliometry (DSC) results for four different blends as well as pure COC. Experimental results from
green colored blends are used for model identification, blue colored blends are used for verification purposes

amorphous phase reduces to individual MPa; therefore, the crystalline phase is mainly responsible for the
material performance. Here, the blending technique should enable testing on a broad variety of DOCs, while
at the same time post-crystallization is avoided. Other methods that alter the DOC, for example, quenching
at the end of the injection molding process or post-processing methods, like annealing, where the specimens
are stored at high temperatures for several hours to enforce further crystallization, result in recrystallization
when tested above the glass transition. Here, annealed specimens behave more thermally stable compared to
quenched specimens; however, the change in DOC in annealed specimens is only minor and unpredictable. On
the other hand, the use of blends should ensure a broad, predictable and most important controllable variety
of DOCs, outweighing the complex manufacturing. After the production process, the specimens were stored
in a dry chamber (MP Dry Cabinet IV ST ) at 40◦ C, until the moisture content, obtained from an Aquatrack
measurement, measured less than 0.1%.
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3.1.2 Differential scanning calorimetry (DSC)

In a first step, the degree of crystallinity of each blend was determined by differential scanning calorimetry
(DSC), using a Q2000 machine from TA instruments. Samples of between 5 and 8mg were cut from the 1BA
specimens and heated up from room temperature way above the melting point with a constant heating rate
of 10 K/min, repeating the process for each blend. The heat absorption during the endothermic melting of
the crystalline regime or, more specifically, the integrated heat flow over time of the melting peak yielded
the change in specific enthalpy �Hm . Together with the specific fusion enthalpy for a hypothetical 100%
crystalline material as �H0 = 190 J/g from [84], the absolute DOC is obtained by

χ = �Hm

�H100
0

. (58)

In this way, the four DOCs 0.29, 0.24, 0.18 and 0.15 (from highest to lowest PA6 content) were obtained,
which will be used for model identification and verification. It should be noted that the DOC for pure PA6
multiplied by the respective blend ratio corresponds well with the measured DSC results for the three blends.
Therefore, the authors conclude that the DOC of polyamide 6 blends can be approximated with the DSC results
for pure PA6 together with the respective blend ratio leading to a possible reduction in experimental effort.
Additional measurements conducted by PSM Merseburg GmbH in the first cooling and second heating run
confirmed a predictable DOC based on blending ratios. The reproducible DOCs measured 0.4, 0.34, 0.28 and
0.24 from highest to lowest PA6 content. Further, a DSCmeasurement on pure COC showed a DOC lower then
1% which confirmed that the addition of the co-polymer does not change the resulting crystallization behavior
in the specimens. An overview of the DSC results for all four PA6 blends as well as COC is found in Table2.
For model identification and verification, the DSC results from the first heating run are used. These results
were obtained from samples untreated after injection molding and therefore contain the production history in
terms of, e.g., cooling rate. Since no further (thermal) treatment is applied on the remaining test specimens,
the DOC of the first heating run reflects the experimentally tested material morphology. In addition, the glass
transition temperature was identified from DSC results. All specimens showed a glass transition temperature
at around 58◦C, independent of the blend ratio, which supports the hypothesis of an unaltered caloric material
behavior through the blending strategy.

3.1.3 Monotonic tension tests

For the mechanical tests, a Zwick/Roell Z020machine with 2000 N and 500 N force sensors was used, together
with a temperature furnace for the test temperatures above room temperature. Preliminary simulations by
[85] identified the relevant magnitude of experimental inputs such as strain and strain rates. Concomitant, the
specimens were subjected to displacement controlled loading at various loading rates between 0.05 and 1 %
per second. Each loading procedure was repeated several times for all four blends at temperatures below and
above the glass transition, namely at 23◦ C, 50◦ C, 100◦ C, 130◦ C and 150◦ C.

In Fig. 2, the results of the monotonic uniaxial tension tests above the glass transition (Tg) for an exemplary
loading rate of 0.05 % per second are shown for a stretch of approximately 20%. The true (Cauchy) stress over
the logarithmic strain in the loading direction is determined under the assumption of incompressible material
behavior, which is reasonable comparing the experimentally determined Poisson’s ratio (cf. Sect. 3.2). The
interested reader is referred to Appendix A.3 for the conversion between engineering (1. Piola–Kirchhoff) and
true (Cauchy) stress. In addition, the true stress relation allowed for the investigation of self-heating effects at
higher loading rates, which generally lead to thermal softening in polymers. This effect cannot be accurately
identified using the engineering (1. Piola–Kirchhoff) stress, since relating the current force to the reference
area results in additional geometric softening at high strains. As a result, both effects overlap and no clear
distinction can be made. Here, the dashed lines represent the mean values used in the following sections for
identification (green) and validation (blue), whereas the deviation of the experimental results is plotted in
terms of minimum and maximum values. Note here that the number of tests per DOC and temperature was too
small for the calculation of further statistical measures (e.g., standard deviation) with a useful significance. As
expected, a pronounced influence of the temperature and the degree of crystallinity on the material response
is visible, in line with, e.g., [11,23,86,87]. An increase in temperature led to a decrease in the overall material
stiffness, whereas an increase in crystallinity resulted in a higher initial stiffness, hardening and yield stress. In
addition, a gradual roll-over to yielding is apparent; therefore, the yield stress in tension cannot be determined
directly from the peak in the stress–strain curve, nor from the intersection of the initial slope and the hardening
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Fig. 2 Monotonic uniaxial extension: Experimental true strain and stress curves at ε̇x ≈ 0.0005 s−1 for multiple degrees of
crystallinity (DOC) and temperatures above the glass transition regime

slope (e.g., [26]). Hence, it is chosen as an additional fitting parameter for the identification of the plastic
regime. Note here that a similar observation is made for the compressive yield stress, see Fig. 6. Below the
glass transition, the influence of the DOC is less pronounced, see Fig. 3, which can be related to a lower chain
mobility in the amorphous phase [11]. Interestingly, at 23◦ C the blends of PA6 and COC failed earlier than the
samples consisting of pure PA6 with a higher total stiffness. This effect can be related to the additional phase
boundaries introduced by creating blends. Although binding agents were introduced during compounding to
prevent this effect, the apparent heterogeneity of the blends contradicts the hypothesis of an unaltered material
behavior below the glass transition temperature. To investigate the material behavior of PA6 for a wide range
of crystallinities below the glass transition, other methods, for example, the addition of nucleation agents
(see, e.g., [88–90]) to pure PA6 or different compatibilizers in the blends, could be tested to improve the
results. At 50◦ C, the experimental results showed the distinct influence of the crystallinity at large strains
above 5%. Similar to the test results above Tg , the total stress increased with increasing DOC. However, this
trend was not visible in the elastic regime and equally during plastic yielding (see Fig. 3). Here, the results
from the two blends with the highest COC content (χ = 0.18 and χ = 0.15) differed severely from the
results for χ = 0.29 and χ = 0.24 for all measured strain rates. Both curves showed a high initial stiffness
and a first yield point, followed by a stress reduction and a second yielding around 10 % strain. This effect
is similar to the double yield (DY) phenomenon, reported for amorphous polymers [5] and polyamide 6 in,
e.g., [55,87,91]. The first yield point is related to the amorphous phase [28], whereas the second yield point
corresponds to the crystalline regime [55]. At this point, it is unclear why this effect was only visible for the
two lowest DOCs; however, the authors believe that it could be related to the higher amount of amorphous
phase in these specimens. Nevertheless, micromechanical analysis as, for example, the determination of crystal
configurations via X-ray diffraction and DSC [92] or additional density measurements, would be necessary, to
further investigate whether the observed effects are related to the blend composition. In the elastic regime, the
influence of the DOC on the initial stiffness differed from the observationsmade for the other test temperatures.
Here, especially for χ = 0.29 and χ = 0.24 a softening in the elastic regime is visible, before the onset of
yield is reached. To investigate this phenomenon, an additional dynamic mechanical analysis (DMA) was
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Fig. 3 Monotonic uniaxial extension: Experimental true strain and stress curves at ε̇x ≈ 0.0005 s−1 for multiple degrees of
crystallinity (DOC) and temperatures below the glass transition regime

conducted to determine the storage modulus (stored elastic energy) over the temperature (see Appendix A.2).
Here, the decrease in material stiffness started already at around 45◦C with a slightly later beginning with
decreasing DOC. The glass transition temperature obtained from DMA lies around 58◦C as determined in the
DSC tests. The authors therefore conclude that the tests at 50◦C were conducted in the glass transition regime
of the specimens, where changes in the underlying morphology of the amorphous phase led to a change in
the initial stiffness. Here, the glass transition started earlier for blends with a higher DOC; consequently, this
effect was more pronounced for these blends since their stiffness degradation was further along.
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Fig. 4 Monotonic uniaxial extension: Results for χ = 0.29 at various temperatures and strain rates
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Fig. 5 Long-term stress relaxation: Experimental true stress over time curves for multiple degrees of crystallinity (DOC) at small
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The influence of the loading rate on the material behavior of PA6 is depicted in Fig. 4 for various tempera-
tures and a DOC of χ = 0.29. Here, four different strain rates in the range of nearly two decades were tested.
In line with findings from [11,86], the initial elastic material response appeared to be mainly independent of
the strain rate, especially below the glass transition. In the visco-elastic, elasto-plastic regime, an increasing
velocity led to an increase in hardening, especially for temperatures below Tg . In this temperature regime,
the failure behavior is affected as well, with a premature failure at high loading rates, corresponding to the
increase in the yield stress (cf. χ = 0.29 and ε̇x = 0.01 s−1 ). Above the glass transition, the influence of
the strain rate is less pronounced. These observations correspond with those of [86], who stated that the yield
stress increased logarithmically with an increasing loading rate and that the influence of the velocity reduces
in general with increasing temperatures. In addition, thermal softening due to dissipative effects related to
material self-heating is observed at higher strain rates (see, e.g., [93]). This effect is mainly visible for tem-
peratures below Tg , where the slope of the stress–strain curve for ε̇x = 0.001 s−1 decreased, compared to
the curve corresponding to a velocity of ε̇x = 0.0005 s−1. The curves intersect already at moderate strains of
approximately 7%. For temperatures above Tg , this intersection is slightly delayed to strains of around 15%;
nonetheless, also here self-heating is prominent. To further investigate this effect, experiments using infrared
thermography (IR) would be necessary, as done, for example, in [11].

3.1.4 Relaxation tests

Moreover, long-term relaxation test data was obtained at all test temperatures and various strains, to provide
additional insight into the time dependent material response. To investigate the visco-elastic regime, relaxation
tests at 1% strain were carried out, whereas the visco-elastic, elasto-plastic regime was tested at around
19% strain. The experimental results are shown in Fig. 5 for exemplary temperatures of 130 ◦C and 150 ◦C.
Noteworthy, due to the extensive relaxation times (cf. Fig. 5), it was not possible to repeat this test with the
current set of specimens. In contrast to, e.g., [11], the total relaxation time throughout all samples was very
high, with a low initial relaxation time and therefore sudden stress reduction in the beginning of the relaxation
step. Similar to the tension tests, a temperature dependence was present also in the relaxation tests, where the
relaxation time decreased with increasing temperature (see also Sect. 3.3). Furthermore, the amount of stress
relaxation in the beginning of the relaxation step increased notably at higher strains. This influence, as well as
the impact of the degree of crystallinity that is not visible directly from the experimental results, is studied in
detail in Sect. 3.3., where a post-processing method by [94] is applied to the experimental data.

3.1.5 Compression tests

To obtain insights into the deformation under compression, monotonic uniaxial compression tests were con-
ducted at various temperatures for χ = 0.29 and χ = 0.15. Therefore, additional samples were cut with a cross
section of approximately 3.77× 10mm2 and tested at ε̇x = 0.0005 s−1 with a Zwick/Roell Z020machine under
23◦ C and 130◦ C. Additional measurements were carried out at PSM for temperatures of 100◦ C and 150◦ C.
However, no complete data set for all DOCs was available at the present point of time. The experimental results
are displayed in Fig. 6. Here, a significant stiffening at high strains, typical for materials under compression,
can be observed for all specimens, except for χ = 0.15 at 150◦ C. Similar to the results in tension, no yield



M.-C. Reuvers et al.

Legend

Deviation

σ
x
[M

P
a]

εx [%]

θ = 23◦C

θ = 100◦C

θ = 130◦C

θ = 150◦C

χ = 0.29

χ = 0.15

Fig. 6 Compression tests for χ = 0.29 and χ = 0.15 at various temperatures below and above the glass transition

stress was directly detectable from the stress–strain curve for temperatures above the glass transition. The
observed influence of temperature and degree of crystallinity is in agreement with the tensile results, where
an increasing temperature led to a decrease in stiffness and an increasing DOC resulted in a generally stiffer
material response. Further tests for the remaining blend ratios and test temperatures are necessary to confirm
these findings in the future.

3.1.6 Thermomechanical analysis (TMA)

To conclude the set of experimental results, additional measurements were conducted to obtain insights into the
thermal properties of the material. A thermomechanical analysis (TMA) was conducted on a TMA/SDTA841e
fromMettler Toledo to obtain the coefficient of thermal expansion (CTE) αT . The results are shown in Fig. 7a,
where the thermal expansion is plotted against the temperature for all DOCs. The corresponding plot of the
evaluated CTE (gradient of the graph of dimensional change vs. temperature) plotted over the DOC is found in
Sect. 3.5. The CTE generally depends on the glass transition, since thermal expansion is enforced by molecular
motions and mobility which are low in the glassy state of the amorphous phase and higher in the rubbery state
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Fig. 7 a Thermomechanical analysis (TMA): Thermal expansion over the temperature for all blends. b Specific heat capacity
from DSC measurements for all blends. The trend lines are of the form cT (χ) = c1χ + c2
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above the glass transition. This was also visible in the experimental results (cf. Fig. 7), where the thermal
expansion increased significantly above the glass transition. The dependence of the CTE on the DOC was not
pronounced below the glass transition, whereas above Tg a decrease of αT with increasing DOC was visible.
In semi-crystalline polymers, the crystalline phases are interspersed with amorphous regions; therefore, their
thermal expansion behavior is more complex as in purely amorphous polymers. For example, amorphous
regions close or connected to the crystalline phases, the so-called rigid amorphous phase, show less thermal
mobility than the bulk amorphous phase (e.g., [95,96]). In addition, the amorphous blend partner COC adds
separate amorphous regions with particular characteristics; therefore, the compatibility of the two materials
was important during blend composition.

3.1.7 Specific heat capacity

To determine the specific heat capacity and its dependence on temperature and DOC, the DSC measurements
conducted at PSMMerseburgwere evaluated further. To that end, the evolution of the specific heat capacitywith
increasing temperature is shown in Fig. 7b for all four blend ratios. The heat capacity can then be identified
as the tangent to the experimental curve, with the remaining changes corresponding to structural changes
associated with melting of the crystalline phase. There is no clear dependence on the DOC in the experimental
results. However, the specific heat increases linearly with increasing temperature, with a lower total value
below the glass transition (see Fig. 7).

3.1.8 Thermal conductivity measurement

The thermal conductivity λT wasmeasured using theHot-Discmethod, in which a temperature sensor is placed
between two samples that are subjected to a defined heating protocol. Subsequently, the thermal conductivity
was derived from the temperature profile over the time as the average of several measurements. To that end,
Hot-Discmeasurements were taken for multiple test temperatures and a DOC of χ = 0.29, as well as all DOCs
at a temperature of 130◦ C, see Fig. 8. The experiments showed an inconclusive dependence of the thermal
conductivity on the temperature (see Fig. 8a, where the thermal conductivity firstly increased with increasing
temperature and then decreased for all temperatures above the glass transition. The thermal conductivity can be
related to the product of thermal diffusivity, density and specific heat capacity (see, e.g., [97]). While the heat
capacity increaseswith increasing temperature (cf. Fig. 7), the thermal diffusivity aswell as the density decrease
simultaneously (cf. [97,98]). Consequently, the effect of the temperature on the thermal conductivity can be
related to the change in the aforementioned quantities. Here, further measurements on the density and thermal
diffusivity at various temperatures and for all other DOCs would be necessary to clearly explain the changes in
the thermal conductivity. Since the changes in the thermal conductivity with increasing temperature are only
small, the temperature dependence is neglected in this work. In terms of the crystal content, an increase with
increasing DOC is visible. Consequently, for the identification procedure described in Sect. 3.5, the thermal
conductivity is assumed to depend only on the DOC, hence λT (χ).
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Fig. 8 Thermal conductivity measurements: a for χ = 0.29 and various temperatures b for all blends at 130◦ C. The linear trend
line is of the form λT (χ) = c1χ + c2
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Fig. 9 Density measurements at room temperature. The linear trend line is of the form ρ(χ) = c1χ + c2

3.1.9 Density measurements

Lastly, density measurements were carried out at room temperature, using a gas pycnometer by the company
Anton Paar. The resulting density showed an increase with increasing DOC (see Fig. 9) which was expected
due to the higher density of crystalline phases compared to amorphous regions.

3.2 Elastic constants

The elastic constants, in terms of the Youngs’ modulus and the Poisson’s ratio, are obtained from the initial
elastic response fromuniaxialmonotonic tension tests at all respective test temperatures.Here, the totalYoung’s
Modulus Etot (χ, θ) is determined for each blend, according to DIN EN ISO 527-2:2012, and plotted over the
DOC in Fig. 10. Next, the dependence of Etot on the DOC is examined; therefore; the Trust-Region algorithm
in the software toolMATLAB is exploited. The data shows an exponential relation of the form

Etot(χ, θ) = C1(θ) exp(C2(θ) χ). (59)

Here, C1 and C2 are temperature dependent material parameters. Interestingly, the nonlinear dependence
of Etot on the DOC is more pronounced for temperatures above the glass transition. As suspected, at 50◦ C
no trend is found, due to the differences in the elastic regime between the samples with different COC content
(cf. Fig. 3), which is related to testing in the glass transition region. Therefore, during identification, for the
temperature of 50◦ C only twoDOCswill be considered, i.e., χ = 0.29 andχ = 0.24. From the experimentally
identified Etot, the Youngs’ moduli E1 and E2 for the elasto-plastic and visco-elastic part, respectively, are
determined using long-term relaxation data at small strains.With regard to [11], who conducted cyclic loading–
unloading–recovery experiments at room-temperature for polyamide 6 with 23 % DOC, it can be concluded
that at 1% strain the material still behaves visco-elastically and no plastic deformation has occurred yet. Hence,
the equilibrium stress, measured at the end of the relaxation step, is assumed to correspond solely to the elastic
spring of the elasto-plastic part of the model (see Fig. 1). Concomitant, E1, is determined using Eq.38 and
the relations for the Lamé constants3. Interestingly enough, the ratio mE between the Young’s modulus of the
elasto-plastic part E1 and the total Young’s modulus Etot is found to be crystallinity dependent, with values
ranging from 0.5 for χ = 0.15 to approx. 0.72 for χ = 0.29. This finding corresponds to the blend composition
and, for example, the density measurements, where a lower DOC means a higher content of amorphous phase
and therefore increased viscous behavior. A clear dependence on the temperature is not visible; therefore, this
influence is neglected. The ratiomE (χ) is approximated by a linear function, and the Young’s modulus for the
elasto-plastic term is determined according to E1 = mE Etot. The Youngs’ modulus for the visco-elastic part
followed from E2 = Etot − E1.

3 The 1. Lamé constant is calculated using the relation λ = (Etotνtot)/((1 + νtot)(1 − 2νtot)) and the shear modulus as (2.
Lamé constant) μ = Etot/(2(1 + νtot)).
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Fig. 10 Crystallinity dependence of the total Young’s modulus below and above the glass transition temperature

To obtain the Poisson’s ratio, 2D measurements evaluated using digital image correlation (DIC) are nec-
essary. The corresponding tests were conducted using a Limess Q400 system. Following Sect. 2 and the
assumptions made therein, the Poisson’s ratio is chosen to be constant in this work, i.e., νtot (θ) = ν1 = ν2.
No trend on the DOC was visible in the experimental results; therefore, the dependence on the crystallinity is
neglected. Furthermore, the dependence of the Poisson’s ratio on the temperature is observed to be relatively
small above the glass transition; thus, a constant value of νtot,Above Tg = 0.45 is concluded, which is close
to incompressible material behavior. For temperatures below Tg , the experimentally determined Poisson’s
ratio was lower compared to the results above the glass transition. However, the experimental data showed
a pronounced strain rate dependence that is not yet clarified. Therefore, the Poisson’s ratio below the glass
transition is approximated with νtot,Below Tg = 0.35.

3.3 Viscous quantities: nonlinear relaxation function

To represent the relaxation behavior of semi-crystalline polymers, a single Maxwell element in combination
with a constant relaxation time τ generally is not sufficient (see, e.g., [14,48,94]). Therefore, other approaches
must be utilized, for example combining several Maxwell elements or employing a nonlinear relation for the
relaxation time (e.g., [11,49,94]). In this work, the latter approach is chosen, since the addition of further
Maxwell elements increases the number of material parameters significantly. With the governed elastic con-
stants, a post-processing scheme, originally proposed by [94] for the identification of the viscosity and adapted
for the relaxation time in the three-dimensional case by [11], is applied. Here, long-term relaxation test data at
large strains (see Fig. 5) is used for identification purposes, whereas results at small strains and stepwise tests
are utilized for model validation. The relaxation tests at small total strains were explicitly excluded from iden-
tification where possible, since [11] concluded that the nonlinearity of the relaxation time is more pronounced
at finite strains. At 23◦ C, only experimental data at small strains was available, due to early failure in three of
the four blends.

To this end, a uniaxial tension test is conducted, where the loading direction coincided with the direction of
the principal stretch λx . The specimen is loaded until a maximum total strain of approximately 19% is reached,
followed by a constant displacement (u = constant) during the relaxation step. At the termination point of the
experiment, stress equilibrium was assumed, where the remaining or equilibrium stress (σ1,x ) corresponded
to the contribution of the elasto-plastic part of the model. Note here that a polynomial function is fitted to
the results to reduce the oscillations in the experimental data, related to readjustments of the machine during
testing. In general, experimental noise likely yields non-physical results and results in spikes when evaluating
the relaxation time. During testing, DIC is used to obtain two-dimensional deformation data in terms of the
stretches in the principal directions λx and λy to determine the deformation gradient F for every experimental
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Fig. 11 Results of the visco-elastic post-processing procedure: Inelastic stretch over time and relaxation time over Kirchhoff
stress at 100◦ C for all DOCs

time step. In the third direction, the evolution of the stretch λz is assumed to be equal to λy , according to [11].
Subsequently, the true (Cauchy) stress σx in loading direction is obtained by relating the machine force to
the current area A = A0 λy λz , which is calculated using the reference area A0, as well as the corresponding
stretches in y- and z-direction. The overstress σ2,x in loading direction corresponding to the visco-elastic
part is then calculated at each experimental time step by σ2,x (t) = σx (t) − σ1,x and used together with the
deformation gradient F as input data for the post-processing scheme. The associated coefficient matrices read:

F =
⎛

⎝
λx 0 0
0 λy 0
0 0 λz

⎞

⎠ , σ2(t) =
⎛

⎝
σx (t) − σ1,x 0 0

0 0 0
0 0 0

⎞

⎠ (60)

From the experimental data, the second Piola–Kirchhoff stress during the relaxation step is obtained by a
pull-back operation S2(t) = J F−1σ 2(t)F−T . Subsequently, Eq.41 is solved for the viscous right-Cauchy–
Green like tensor Cv at each experimental time step. The corresponding evolution of the viscous stretch λv,x in
loading direction over the time is shown in Fig. 11 exemplary for all DOCs at 100◦ C. Exploiting the exponential
map algorithm, Eq.31 is integrated over the time

Cv = exp

(
�t

(
1

τ μ2
dev (CS2) + 2

9 τ K2
tr (CS2) I

))
Cv,n (61)

and further solved for the relaxation time τ . Here, the index (∗)n indicates quantities from the last converged
time step tn , whereas quantities from the current time step tn+1 are given without index. Since the coefficient
matrices from the preceding time step are known and all tensor valued quantities commute, Eq.61 can be solved
in terms of a system of scalar-valued equations. The resulting relaxation time at each experimental time step
is plotted in Fig. 11 over the Kirchhoff stress τ2,x for an exemplary temperature of 100◦ C. Similar to [11,94],
a nonlinear relation of the relaxation time is observed, despite the slight noise in the data. However, no clear
dependence of the relaxation time on the DOC is visible in the results of the post-processing procedure (see
Fig. 11), the same holds for the other test temperatures. Thus, the relaxation time is concluded to be independent
of the DOC. Furthermore, a significant decrease in the relaxation time with increasing temperature is observed
as well as a nonlinear dependence on the overstress (see Fig. 11). These findings motivate the use of a nonlinear
function for the relaxation time, depending on the temperature and the overstress.

Following the findings from [99], who investigated various functions for the viscosity in the context of
viscoelasticity models for rubber and brain tissue, several functions for the relaxation time are identified with
the results from the post-processingmethod and compared to experimental data. Here, only functions are tested
that showed an improvement in [99] for rubber compared to a constant viscosity and that have a relatively low
number of material parameters (see Table3). A constant relaxation time serves as the benchmark. Functions
2–4 depend purely on the stress in terms of the Kirchhoff overstress τ 2, whereas in function 5 an additional
dependence on the total deformation in terms of the left Cauchy–Green tensor B = FFT is introduced.
From function 6 onwards, a dependence on the inelastic deformation is assumed. Here, it is made use of the
equivalence of the norm ||Bv|| = ||Cv|| and ||B−1

v || = ||C−1
v || as well as the trace I1,v = tr(Bv) = tr(Cv).

Unlike all other functions, function 6 contains a dependence on the visco-elastic Mandel stress M2 which
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Table 3 Overview of investigated functions for the relaxation time, based on [99] (Para. stands for number of material parameters)

No. Name & source for corresponding viscosity function Relaxation time function [s] Para.

1 Const. relaxation time τ0 1
2 Power law [100] τ0 ||τ 2||−δ 2
3 Exponential law, [101] τ0 exp(−δ ||τ 2||) 2
4 Hyperbolic sine power law, [102] τ0 (sinh(δ ||τ 2||))−γ , γ > 0 3

5 Amin and Lion, [94] τ0
||B||γ
||M2||δ 3

6 Lion, [14] τ0 exp

(
−δ

||M2||
||B−1

v ||3
)

2

7 Modified Lion τ0 ||Bv ||γ exp(−δ ||τ 2||) 3

8 Bergström & Boyce [103] τ0 ||τ 2||−δ

(√
I1,v
3

− 1 + ϕ

)γ

, ϕ = 0.01 (const.) 3

can be related to the viscous Kirchhoff stress as M2 = FT
e2τ 2F

−T
e2 . Therefore, M2 and τ 2 share the same

eigenvalues and ||M2|| = ||τ 2|| holds. Additionally, a modified version of the function from [14] is proposed
in function 7, depending on the Kirchhoff stress τ 2 and the inelastic deformation B−1

v . An overview of the
functions adapted for the relaxation time is given in Table3. For a detailed description and investigation of
further functions for the viscosity, the reader is kindly referred to [99] or the literature cited therein.

To identify the function best suited to describe the present behavior of the relaxation time, the Trust-Region
algorithm is exploited in MATLAB. A least squares problem is solved, where the residual is defined as the
sum of the squared differences between the experimentally post-processed relaxation time τ (see Fig. 11)
and the corresponding function value (see Table3). In accordance with [99], the range of feasible material
parameter values for the identification procedure is chosen such that the second law of thermodynamics is
satisfied (τ > 0). The fitting results for all functions are shown in Fig. 12 together with the corresponding
fitted material parameters. Note here that each function was identified simultaneously for all DOCs. Function
1 with a constant relaxation time clearly yielded an insufficient approximation of the nonlinear behavior of
the relaxation time. Thus, it served as the reference solution for the comparison. In contrast, all other tested
functions showed a significant improvement. The power law-type functions 2, 5 and 8 are, however, inferior
to the exponential approaches as well as to the hyperbolic sine power law (function 4), which behaves like a
power law for small stresses and as an exponential law for large stresses. Interestingly, the identified parameters
for the relaxation time τ0 in function 3, 4 and 6 (cf. Fig. 12) reflected the extrapolated value for the relaxation
time at the termination point of the relaxation step, where the overstress is zero. Hence, this value could
be determined during post-processing, reducing the number of material parameters during identification. The
errors for function 3, 4 and 6 are almost identical (cf. Fig. 12); therefore, these approaches can be seen as equally

a) b)

Fig. 12 a Identification results for the nonlinear relaxation time functions from Table3 at 100◦ C normalized to a constant
relaxation time. b Corresponding material parameters
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Fig. 13 Results of the visco-elastic post-processing procedure: a Relaxation time over Kirchhoff stress at 23◦ C for all DOCs. b
Fitting results for the nonlinear relaxation time functions from Table3

suited to model the nonlinear relaxation time. In combination with the findings about the initial relaxation time
τ0 and considering the number of material parameters, functions 3 and 6 are best suited. However, function
7 shows an even lower error, compared to function 3 and 6. Here, the influence of the inelastic deformation
is considered, depending on the exponent γ , whereas function 6 assumed a constant ratio between overstress
and viscous deformation.

For a temperature of 23◦ C, long-term relaxation data were only available at a total strain of 0.5%.Applying
the post-processing scheme to the experimental data, a rather linear relation for the relaxation is visible (see
Fig. 13), similar to the results of [11]. When comparing different nonlinear functions for the relaxation time,
this resulted in a comparatively weaker improvement, compared to the constant relaxation time (see Fig. 13).
Here, the use of multiple Maxwell elements with different relaxation time functions could improve the results.
However, this investigation is beyond the scope of this paper. Function 8 performed worse than the benchmark
test and is therefore excluded from the plot. In the case of small strains, function 7 yielded similar improvement,
compared to function functions 3, 4 and 6. Finally, function 7 is identified for all remaining tests temperatures
and further implemented in a ABAQUS user material subroutine UMAT. The comparison of the identification
results at the other test temperatures is given in Appendix A.5, and the corresponding material parameters for
function 7 are found in Table4.

3.4 Plastic material parameters

In the final identification step for the mechanical parameters of the isothermal model, the remaining parameters
related to plastic deformations are characterized. These are the parameters c(χ, θ) and b(χ, θ) that describe
the nonlinear kinematic hardening behavior. Due to the inconclusive data for the yield stresses in tension
and compression above the glass transition, also the parameters σt (χ, θ) and σc(χ, θ) are still undetermined.
Therefore, a nonlinear multi-curve fitting procedure in MATLAB is used together with monotonic tensile
data to identify these four parameters for all DOCs at each test temperature. A least squares problem is
formulated, where the error is defined as the squared difference between the experimental true stress in loading
direction and the Cauchy stress obtained from a single element test. Thus, in each iteration of the optimization,
ABAQUS and the corresponding UMAT are called with the current set of plastic parameters. The boundary
value problem for the single element test is displayed in Fig. 25 in Appendix. For the discretization inABAQUS,
a single C3D8T element is used together with isothermal boundary conditions. Concerning the optimization,
the genetic algorithm is used in series with the Downhill-Simplex algorithm. This procedure is favorable,
since the parameter range, apart from the yield stresses, is kept relatively large and for the Downhill–Simplex
algorithm alone no restrictions can be applied to the parameter domain. Consequently, also negative, non-
physical values are possible. Furthermore, convergence is unlikely if the initial parameters are too far away
from their final values. The genetic algorithm therefore narrows down the range of possible solutions and its best
fitted parameter set serves as the starting values for theDownhill–Simplex algorithm. In contrast to the gradient-
based Levenberg–Marquardt algorithm or the closely related Trust-Region algorithm, the genetic algorithm
as well as the geometrical Downhill–Simplex algorithm are gradient free and due to their construction not
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Fig. 14 Results for the parameter identification from single curve fits at 100◦ C. The linear trend line is of the form (•) =
c1 χ + c2, with (•) = σ 0

t , σ 0
c , c, b

restricted in the direction of the iteration. Thus, in comparison they are more robust when used in combination
with numerical simulations.

Similar to [50], who investigated the thermo-viscoelastic material behavior of polyurethane and introduced
temperature-dependent shift functions to relate the identified value at room temperature to higher temperatures,
in this work a function for eachmaterial parameter depending on the DOC is identified. In this way, a parameter
set for each test temperature is found. Therefore, in a first step single fits at each constant temperature and
for each DOC need to be conducted using the aforementioned nonlinear optimization procedure. Besides the
yield stresses, for which the parameter range can be restrained by identifying the intersection of the initial
slope of the stress–strain curve with the inconclusive hardening slopes, the parameter range for the hardening
parameters is kept large for the identification. The resulting plastic parameters for each blend are subsequently
plotted against the degree of crystallinity (see Fig. 14). Now, the dependence of each parameter on the DOC
can be determined as a post-processing step, by exploiting the Trust-Region algorithm in MATLAB. As done
in all previous identification steps, the blend with χ = 0.18 is not considered for identification and serves
for validation purposes. Here, a linear ansatz is chosen and the identified relation is visualized exemplary for
a temperature of 100◦ C in Fig. 14. For the identification, only experimental curves from three degrees of
crystallinity (χ = 0.15, 0.24, 0.29) are taken into account. Notably, the identified parameters for χ = 0.18
are overall in good agreement with the parameters of the other DOCs. Only for the kinematic hardening
parameter c, a higher deviation is visible which is also apparent in the result for χ = 0.15. The results for the
other temperatures above the glass transition are found in Appendix A.6. For the temperatures below Tg , the
fitting results are not visualized, since at 23◦ C three of the four blends failed before significant plastification;
therefore, the parameters, apart from the onset of yielding, are identified with a single fit for χ = 0.29. At
50◦ C, the blends with χ = 0.18 and χ = 0.15 were excluded from identification, since inconclusive material
behavior occurred, related to testing in the glass transition regime. Thus, only two blends remain for the
characterization; therefore, the fitted linear trend line agrees perfectly with the results, leaving no possibility
for validation. The identified parameters for the linear functions for all plastic parameters are listed in Table4.

3.5 Thermal quantities

To obtain an expression for the coefficient of thermal expansion, it is calculated by αT = �L/(L�T ) from the
thermal expansion curve in Fig. 7 for every blend at each test temperature. Here,�L is the thermal expansion, L
is the initial length of the specimen, and�T is the temperature difference. Next, the Trust-Region algorithm is
exploited in the commercial software toolMATLAB to describeαT as a function of the degree of crystallinity for
each test temperature separately. Again,χ = 0.18 is only used for validation purposes. The results are shown in
Fig. 15, where it can be seen that the characterized curves are in good agreement with the experimental results.
However, it is not clear as to why the behavior at 100◦ C differs so much from the remaining temperatures
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Fig. 15 Coefficient of thermal expansion at different temperatures andDOCs. The linear trend line is of the formαT (χ) = c1χ+c2

above Tg . A possible explanation could be changes in the ratio of the amorphous to the crystalline phase,
related to post-crystallization.

Concerning the specific heat capacity cT , the results of the identification procedure were already shown in
Fig. 7. The corresponding material parameters are summarized in Table5. Note here that no clear dependence
on the DOC is present. For the thermal conductivity, a multifit using the Trust-Region algorithm inMATLAB is
conducted, corresponding to Sect. 3.4. The results of the fitting procedure are visualized in Fig. 8. An overview
of the thermal parameters including the density is given in Table5.

3.6 Identification results

The results of the identification procedure are shown in Fig. 16 for all temperatures above the glass transition and
in Fig. 17 for the temperatures below Tg . Good agreement of the identification resultswith the experimental data
can be observed, which is especially remarkable keeping in mind the extensive range of DOCs to be described
by the model. The model prediction for χ = 0.18 also captures the experimental results well, especially the
elastic regime and the onset of yielding. However, at large strains the deviation between model and experiment
is notable. This can be traced back to the deviation between the function for each plastic parameter compared
to the plastic parameters obtained in a single fit for χ = 0.18 (cf. Figures14 and 27). For instance, at a
temperature of 100◦ C, the initial elastic response as well as the yield stress are accurately captured. However,
the prediction of the hardening slope is inaccurate, since the hardening parameter c is not in good agreement
with the single fit results (cf. Fig. 14). Similar observations can be made for the other temperatures above Tg ,
though here, additionally the onset of yielding differs from the identified relation through the multifit.

Below Tg , the results for a temperature of 23◦ C in Fig. 17 are in good agreement with the experimental
data. Here, the elastic regime as well as the onset of yielding are accurately captured. Regarding the hardening
slope, only results for one blend were available for identification; therefore, naturally, the hardening behavior
is well represented. For a temperature of 50◦ C, the model response already differs from the experimental
results in the elastic regime, though the hardening behavior is well captured. This difference results from a
material softening visible in the experimental data (see Sect. 3.1) and the DMA results in Appendix A.2, where
the slope of the experimental curve flattens compared to the initial material stiffness before the onset of plastic
yielding is reached at around 2.5 % strain. The authors believe that this behavior is related to testing in the
glass transition regime. Since the gradual transition of the underlying morphology of the amorphous phase
and its associated effect are, however, not incorporated in the model formulation, the difference is expected.
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Fig. 16 Monotonic, uniaxial extension: Identification results for multiple degrees of crystallinity (DOC) and temperatures above
the glass transition regime

Fig. 17 Monotonic uniaxial extension: Identification results for multiple degrees of crystallinity (DOC) and temperatures below
the glass transition regime
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Table 4 Set of mechanical material parameters at different temperatures

Function Parameter at: 23◦ C 50◦ C 100◦ C 130◦ C 150◦ C

Etot(χ) = C1(θ) exp(C2(θ) χ) C1 [MPa] 2397 2270* 143.1 96.875 102.1
E2 = Etot − E1 C2 [–] 0.9106 –0.8716* 5.133 5.565 5.373
E1 = mE (χ)Etot mE [–]
mE = 1.07143χ + 0.38935
νtot(θ) = ν1 = ν2 [–] 0.35 0.45 0.45 0.45 0.45
σ 0
c = c1(θ)χ + c2(θ) c1 [MPa] 72.19 138.8 26.95 20.86 13.19

c2 [MPa] 41.96 –21.913 –3.192 –2.969 –1.436
σ 0
t = c3(θ)χ + c4(θ) c3 [MPa] 72.19 131.24 25.38 20.27 12.93

c4 [MPa] 41.96 –20.984 –3.006 –2.884 –1.407
c = c5(θ)χ + c6(θ) c5 [MPa] c = 17.756** 20.86 834.5 597.3 523.8

c6 [MPa] 92.213 –94.56 –69.42 –67.89
b = c7(θ)χ + c8(θ) c7 [–] b = 1.276** 0 355.4 150.2 196.3

c8 [–] 60.438 –53.15 –22.39 –28.3
τ = τ0(θ) ||Bv ||γ (θ) exp(−δ(θ) ||τ 2||) τ0 [s] 1853.653 1511.952 1035.238 737.245 573.899

γ [–] 4.57 4.416 4.3 4.872 4.289
δ [–] 0.539 0.814 0.759 0.866 0.873

*Inconsistent results due to testing in the glass transition regime
**Constant values obtained for χ = 0.29 only, due to early failure of the remaining blends
Remark: The reader is kindly reminded that although some coefficients of the identified functions
determining the material parameters are negative, the material parameters themselves are always positive
for the range of DOCs (χ = 0.15 − 0.29) the model spans

3.7 Model validation

In order to validate the proposed constitutive framework, further results are compared to the test data. Therefore,
only experimental data that have not been used for identification are compared to the corresponding model
response. The boundary value problem, in terms of a single element test, is given in Fig. 25 in Appendix. In
a first step, the model prediction for the long-term relaxation behavior corresponding to Fig. 5 is shown for
χ = 0.18 and all temperatures above the glass transition. It should be emphasized that the relaxation function
was identified with experimental results for the other three blends only. Therefore, the specimens were loaded
with ε̇x = 0.01 s−1 to a strain level of approximately εx = 0.19 and subsequently relaxed for 32,000s. The
corresponding model response for χ = 0.18 is given in Fig. 18. Overall the model prediction is in good
agreement with the experimental data, especially at 100◦ C.

To validate the small strain regime, a stepwise loading–unloading test is carried out for a DOC of 29% at
130◦ C. Here, the specimen undergoes a stepwise deformation of εx = 0.01, until a maximum strain of εmax,x
is reached (see Fig. 19). Subsequently, the specimen is unloaded at the same pace up into the compression
regime. The corresponding loading rate was ε̇x = 0.0001 s−1, and the specimen was held at constant strain for
15,000s in each step. In comparison with the experimental results, the model prediction underestimated the
material behavior, especially at larger strains. However, the shape of the model curve corresponds well to the
experimental data. The authors believe that this behavior results from the identification and characterization

Table 5 Set of thermal material parameters at different temperatures

Function Parameter at: 23◦ C 50◦ C 100◦ C 130◦ C 150◦ C

αT (χ) = c9(θ)χ + c10(θ) c9[10−4/K] –0.2601 –0.3586 –5.857 –3.336 –2.238
c10[10−4/K] 0.8756 1.218 3.122 2.565 2.431

cT (χ) = c11(θ) θ + c12(θ) c11[J/gK2] 0.00471 0.00401 0.00401 0.00401 0.00401
c12 [J/gK] 1.25313 1.52299 1.52299 1.52299 1.52299

λT (χ) = c13χ + c14 c13[W/mK] 0.4338 0.4338 0.4338 0.4338 0.4338
c14[W/mK] 0.1855 0.1855 0.1855 0.1855 0.1855

ρ0(χ) = c15χ + c16 c15 [g/mm3] 0.4878 0.4878 0.4878 0.4878 0.4878
c16 [g/mm3] 0.9897 0.9897 0.9897 0.9897 0.9897

Remark: The reader is kindly reminded that although some coefficients of the identified
functions determining the material parameters, are negative, the material parameters themselves
are always positive for the range of DOCs (χ = 0.15 − 0.29) the model spans
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Fig. 18 Long-term stress-relaxation at finite strains for temperatures above Tg . Experimental stress over time data and corre-
sponding model predictions (χ = 0.18)

process to finite strain data only. As previously seen for small strain test data at 23◦ (cf. Fig. 13), the nonlinear
function for the relaxation time does not fit the linear relation between relaxation time and stress. As suggested
in [99], the use of a second Maxwell element, identified with the relaxation behavior at small strains, could
lead to an improvement. Moreover, it should be noted that the corresponding strain rate of ε̇x = 0.0001 s−1

has not been used for identification of either tensile, compressive or relaxation data and differs by two decades
from the strain rate used for identification of the relaxation function (ε̇x = 0.01 s−1).

Besides stepwise tests at small strains, also stepwise tests at large strains were conducted for ε̇x =
0.0001 s−1 (see Fig. 20). Therefore, the specimens were exposed to a maximum strain of εmax,x = 0.16,
distributed over four load steps of 4 % strain each. The holding period was 15,000s per step. Again, the model
predictions are less accurate, while the shape of the curves is in good agreement. Nevertheless, the predictions
are good, keeping in mind that the strain rate is two decades lower than the one used for identification. Com-
pared to the small strain case in Fig. 19 for the same strain rate, the experimental results for the large strain case
are in better agreement with the test data. This supports the findings made in Sect. 3.3 that the chosen function
for the relaxation time works best for finite strains. As mentioned earlier, the addition of further Maxwell
elements could improve the model results.

Fig. 19 Stepwise long-term stress-relaxation at small strains for χ = 0.29 at 130◦ C. Experimental strain and stress over time
data and corresponding model predictions
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Fig. 20 Stepwise long-term stress-relaxation at large strains for multiple DOCs at 130◦ C. Experimental strain and stress over
time data and corresponding model predictions

The validation for the tensile tests is already given in Figs. 16 and 17 for χ = 0.18. Overall, as discussed in
Sect. 3.6, the prediction is in good agreement with the experimental results. Especially the elastic regime and
the onset of yielding are accurately captured, only the hardening behavior is underestimated. Unfortunately, it
was not possible to validate the compression regime, since all available test data were used for identification.
In the future, further compression tests on the remaining blends and temperatures are planned to close this gap.

4 Numerical example

To demonstrate the capabilities of the developed and validated constitutive framework in capturing the material
response in multi-axial stress states, a structural example at ambient (θ = 23◦ C) and elevated (θ = 100◦
C) temperature is conducted. To this end, type 1BA (ISO 527-2:2012) specimens were modified by drilling
a circular hole with approximately 1mm diameter into the center of the measurement area (cf. Fig. 21).
Here, various DOCs were tested to validate the model response. At room temperature, only the highest DOC
(χ = 0.29) was tested, since the other DOCs suffered from early failure (cf. Fig. 3). For a temperature of 100◦
C, three DOCswere tested, χ = 0.29 and χ = 0.24which served for identification purposes and χ = 0.18 that
is used for prediction only. The loading rate was controlled by the cross head speed of the Zwick/Roell Z020
machine and prescribed to ε̇x ≈ 0.0005 s−1. During testing, the heterogeneous strain field around the hole was
measured using the Q-4xx Istra 4D digital image correlation (DIC) system. The corresponding measurement
area is highlighted in light blue in Fig. 21. Each experiment was repeated only two to three times due to good
reproducibility and only small scatter in the recorded force over time data (cf. Fig. 21).

To reduce computation time, the symmetry of the specimen is exploited. Consequently, only one eighth of
the specimen is modeled. The corresponding specimen dimensions were approximated from ISO 527-2:2012.
Similar to [11], at the boundary of the measurement area, the evolution of the cross section was calculated from
the initial cross section A0 = 5·2mm2 and themeasuredmean stretch in y-direction by A(t) = λy(t)2A0. Note
here that the assumption λy(t) ≈ λz(t) is made in line with the findings from [11]. In this way, the evolution
of the true stress in longitudinal direction could be computed from the recorded force data and the deformed
cross section as σx (t) = F(t)/A(t). In the following, the respective true stress over time relation served as a
traction boundary condition for the finite element model. In Fig. 21, the geometry for the FEM simulation is
presented, where reduced eight-node solid elements (C3D8RT) from the ABAQUS/Standard element library
are used for discretization. Note here that for visualization purposes a coarse mesh is shown. Prior to obtaining
the simulation results, a mesh convergence study was conducted and a finer mesh distribution was chosen. The
corresponding material parameters for each DOC are taken from Tables4 and 5.

Figures22 and 23 show the comparison of the true strain contours in longitudinal (x) and transverse (y)
direction, obtained from both, the finite element simulation and the DIC images. For χ = 0.29 at room
temperature, two time steps A (t = 25 s) and B (t = 50 s), highlighted in Fig. 21, are presented. At 100◦ C,
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Fig. 21 Top:Geometry and boundary value problemof type 1BA (ISO527-2:2012)with circular hole, includingDICmeasurement
area. Bottom: Recorded force data for various DOCs at room (θ = 23◦C) and elevated (θ = 100◦C) temperature. Note: The
orange area indicates where the evaluation of the DIC measurement was not possible or only possible with the exclusion of larger
areas around the hole, due to large deformations and flaked off DIC pattern

the results are shown at t = 75 s (point C) and t = 150 s (point D) for all three DOCs and at t = 225 s (point
E) for χ = 0.24 only.

Since the area close to the hole cannot be evaluated in the DIC data due to the chosen facet size and since
therefore no strains are available, this area is excluded from the comparison with a light-gray patch. The size
of the light-gray patch was chosen such that any area of the DIC where no strain data was available at that
experimental time step was covered. Consequently, the patch size increased with increasing time (cf. Figs. 22
and 23). For the contour plots of the simulation, the chosen patch was mirrored at the x-axis and the legend
of the DIC results was adopted for plotting. In the region close to the hole, however, the extreme values of the
simulations occur. Thus, the extrema are included in red and blue color next to the legends.

The predicted strain fields in longitudinal and transverse direction are in very good agreement with the
experimental results. Considering the formation of a multi-axial strain field close to the hole, the prediction is
especially impressive, since the constitutive model was identified with uniaxial test data only. In addition, for
model identification no DIC data apart from the Poisson’s ratio was available and the true stress–strain data
was obtained via the assumption of incompressibility. In terms of the results for χ = 0.18 (cf. Fig. 22) which is
used purely for model validation, no big differences compared to the other DOCs can be observed, confirming
the validity of the model for polyamide 6. For χ = 0.24 at 100◦ C, a third time step E at t = 225 is evaluated.
Here, the deformation of the specimen in the region close to the hole was already very large; therefore, a bigger
area needed to be grayed out. To provide a better understanding, the resulting deformation of the specimen
after testing is visualized in a photograph in Fig. 23. In addition, for this time step the temperature field is given
as well, indicating a slight increase in temperature for the whole specimen originating from the area close to
the hole, where large strains in longitudinal direction are present. Infrared thermography measurements during
mechanical testing would be needed to validate this result in the future, which is caused by dissipative heating.
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Fig. 22 True strain contours in longitudinal and transverse direction: Comparison between experiment and model response for
different temperatures and DOCs. Note here that the red and blue colored values correspond to the simulation extrema in the area
close to the hole

5 Conclusion and outlook

In this work, a thermo-mechanically coupled constitutive framework was presented to predict the material
behavior of semi-crystalline polymers at finite strains. To this end, a visco-elastic and an elasto-plastic con-
tribution were combined to capture the complex nonlinear material behavior. Hereby, the derivation of the
model equations was carried out in a thermodynamically consistent manner. To account for the Bauschinger
effect, nonlinear kinematic hardening of Armstrong–Frederick type was incorporated together with a tension–
compression asymmetry in yielding. The corresponding yield surface incorporates a hydrostatic pressure
sensitivity, typically observed in polymers. Besides the strain rate dependency, the temperature was consid-
ered as an influencing factor; therefore, the temperature field was fully coupled with the mechanical part of
the model to account for self-heating effects. Moreover, the degree of crystallinity served as a constant input
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Fig. 23 True strain contours in longitudinal and transverse direction: Comparison between experiment and model response for
different temperatures and DOCs. Note here that the red and blue colored values correspond to the simulation extrema in the area
close to the hole

parameter to predict the effect of the underlying material morphology on the material behavior, as well as
the interplay between the biphasic microstructure and applied thermal conditions. The implementation in the
commercial FEM software ABAQUS/Standard, together with the use of the algorithmic differentiation tool
ACEGEN, provided a flexible framework for current and future model adjustments.

To identify and validate the constitutive framework, an extensive experimental study was conducted,
including a wide range of temperatures, finite strains as well as strain rates over two decades. Here, a novel
blending technique was used during specimen production to achieve a wide range of degrees of crystallinities
that were stable regarding time and temperature. In total, a range of approximately 15 % DOC, ranging from
χ = 0.15 to χ = 0.29, was realized in the specimens. However, the addition of a co-polymer also had
negative effects on the material response. Monotonic tensile tests revealed that the material strength below
the glass transition regime is drastically reduced due to the increasing number of phase boundaries. Above
Tg , no such effects were visible. In order to investigate the complex visco-elastic, elasto-plastic material
behavior, different loading procedures (i.e., monotonic tension, monotonic compression and relaxation tests)
were conducted. The set of experimental data was completed by thermal experiments (i.e., TMA, DSC, Hot-
Disc measurements, density measurements). The conducted experimental study provided important insights
into the complex dependencies of temperature, strain rate and DOC and closed several gaps left in earlier
works. Nonetheless, also further questions arose, especially related to the field of blend production. Here,
further additives should be tested in the future. Especially the comparison of blends produced with a co-
polymer or with crystallization agents could be of interest when it comes to producing specimens with a wide
range of DOCs. In addition, the influence of adding different compatibilizers on the material response below
the glass transition regime should be examined carefully.

Based on the experimental data base, a successive identification procedure for the proposed framework was
presented to obtain a set of material parameters for each test temperature. At the same time, various functions
for a nonlinear relaxation time were compared to a benchmark test to identify the best suited relation. Lastly,
against the odds, the evaluation of the crystallinity dependence of the thermal quantities revealed that the
influence was less pronounced as in the mechanical tests, apart from the thermal expansion coefficient.
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Subsequently, validation studies were performed that showed good agreement with the experimental data
in the case of monotonic tension. The prediction for the relaxation tests was, however, less accurate for strain
rates that were not used during identification. Probably, this can be accounted to the range of two decades
that were considered during experimental testing. Overall, the constitutive framework was able to predict the
material behavior of PA6, as demonstrated in the structural examples, where experimental data for various
DOCs and temperatures were considered. Here, the temperature field was visualized as well, demonstrating a
slight increase in the overall specimen temperature due to dissipation.

In the future, forming experiments are planned, where large variations in temperature during the heating,
consolidation and cooling steps will demonstrate the need for the thermo-mechanical coupling in a more
elaborate way. Furthermore, the experimental data set will be completed with additional compression tests
for the remaining blends and cyclic tension and compression tests to analyze the hysteresis loop. Further,
experiments on more complex loading scenarios, for example, pure shear, are planned to validate the choice of
the yield surface with respect to experimental findings. Finally, crystallization kinetics will be incorporated into
the constitutive framework to study the effect of strain-induced crystallization as well as cold crystallization
for further use in thermoforming simulations.
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A Appendix

A.1 Consistent tangent operators

In this section, the computation of the consistent tangent operators required by ABAQUS (cf. Sect. 2.8) is
discussed in more detail. Since all model quantities are computed in the reference configuration (cf. Sect. 2.6),
push forward operations are needed before use in ABAQUS. Without further derivation, the linearization of
the weak forms of the balance of linear momentum as well as the energy balance are given as

�S = KE

[
1

2
�C

]
+ K θ�θ (62)

�r = LE : 1
2
�C + Lθ�θ. (63)

The Jaumann rate of the Kirchhoff stress tensor from Eq.54 can be reformulated to

τ − Wτ − τWT = τ̊ + Dτ + τ D = C
τ
D[D], (64)

using the Lie derivative (∗̊) of the Kirchhoff stress (cf. [104])

τ̊ = F
(
d

dt
(F−1τ F−T )

)

︸ ︷︷ ︸
Ṡ

FT = �τ̇ − Lτ − τ LT. (65)

http://creativecommons.org/licenses/by/4.0/
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With the definition of the stress rate of the second Piola–Kirchhoff tensor Ṡ = 1/2KE [Ċ] and the rate of
deformation Ċ = 2FTDF, the material tangent modulus Cτ

D can now be calculated (Figs. 24, 25, 26, 27).
The push forward operations for the remaining three material sensitivities are defined in the following

Cσ
θ = 1

J
F K θ FT (66)

Cr
D = 2

J
F LE FT (67)

Cr
θ = 1

J
Lθ . (68)

Here, the algorithmic tangents corresponding to the stress increment �S and the derivatives related to the
increment of the internal heat generation �r are expressed as
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∂S
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To indicatewhich variables are held constant for the respective partial derivative, the set� = {C,U−1
p ,U−1

v , θ}
was introduced for the stress. Likewise, for the internal heat generation the setϒ = {C,U−1

p ,U−1
pi , λp,U−1

v , θ}
was introduced for brevity and a more clear representation. As discussed in detail in Sect. 2.8, the automatic
differentiation tool AceGen is used to obtain the partial derivatives for the algorithmic tangents. Here, firstly
the functions for the stress and the internal heat generation are implemented and C,U−1

p ,U−1
pi , λp,U−1

v and θ ,
as well as all internal variables from the last converged time step, serve as input quantities. Consequently, the
derivatives of S and r can be obtained rather easily after reaching local convergence. In the next step, the

remaining derivatives of the two solution vectors x1,loc = (Û
−1
p , Û

−1
pi , λp)

T and x2,loc = (Û
−1
v )T with respect

to the global unknowns xglo = (C, θ)T are derived. For the elasto-plastic part, an additional linearization of
the converged local residual vector r1,loc = (r1,p, r1,pi , r1,σ )T is performed and implemented in AceGen.

0 = r1,loc︸ ︷︷ ︸
=0

+ ∂ r1,loc
∂x1,loc

∣∣∣∣C
θ

· �x1,loc + ∂x1,loc

∂ Ĉ

∣∣∣∣ θ
x1,loc

: �Ĉ + ∂ r1,loc
∂θ

∣∣∣∣ C
x1,loc

�θ

= ∂ r1,loc
∂x1,loc

∣∣∣∣C
θ

· �x1,loc + ∂ r1,loc
∂xglo

∣∣∣∣
x1,loc

· �x1,glo = J1�x1,loc + J2�x1,glo. (73)

Using the relation above, the incremental change of the local elasto-plastic variables x1,loc with respect to an
incremental change of the global variables x1,glo can be expressed by J = −J−1

1 J2. From this expression,
the remaining derivatives for the elasto-plastic part can be extracted. The derivatives for the visco-elastic part
are obtained in the same manner and therefore not further discussed.
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A.2 Dynamical Mechanical Analysis (DMA)

The DMA tests were conducted on a TA instruments AR-G2 rheometer.

Fig. 24 Dynamical mechanical analysis—storage modulus for various DOCs

A.3 Conversion between engineering and true stress

The engineering or nominal stress in terms of the 1. Piola–Kirchoff stress (P) is converted to the true (Cauchy)
stress (σ ) under the assumption of perfect incompressibility

J = det(F) = 1. (74)

Using Eq.74, the deformation gradient for uniaxial monotonic tension or compression can be obtained by
means of the experimentally measured stretch in loading (x-) direction

F = Fexp =
⎛

⎝
λx 0 0
0 1/

√
λx 0

0 0 1/
√

λx

⎞

⎠ . (75)

Now, the true (Cauchy) stress is calculated by a pushforward of the 1. Piola–Kirchhoff to the current configu-
ration

σ = J−1 P FT. (76)

Here, P is the engineering or nominal stress,

P = Pexp =
⎛

⎝
F/A0 0 0
0 0 0
0 0 0

⎞

⎠ , (77)

which, in the case of uniaxial tension or compression, is the current experimentally measured force (F) in
loading (x-) direction over the reference cross section (A0).
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A.4 Single element boundary value problem

Fig. 25 Single element test—boundary value problem for a uniaxial monotonic tension/compression test

A.5 Results at remaining temperatures for the comparison of different nonlinear functions for the relaxation
time

Fig. 26 Fitting results for different nonlinear functions for the relaxation time: a and b above the glass transition regime c at 50◦
C. Note here that due to the reduced set of experimental data (only χ = 0.29 and χ = 0.24 were considered at this temperature),
a comparatively better fit is achieved
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A.6 Results at remaining temperatures for the parameter identification from single curve fits

Fig. 27 Results for the parameter identification from single curve fits for temperatures above Tg . The linear trend line is of the
form (•) = c1 χ + c2, with (•) = σt , σc, c, b. Note here that the fit for parameter b is weighted for both temperatures to avoid a
function that leads to negative results for χ = 0.15
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