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Abstract The onset of self-excited oscillations in airways and blood vessels is a common phenomenon in
the human body, connected to both normal and pathological conditions. A recent experimental investigation
has shown that the onset of self-excited oscillations happens for values of the intramural pressure close to the
contact critical pressure. The goal of this work is to analyse the dependence of the contact critical pressure
on the vessel’s geometric parameters. The methodology is based on the implementation of an experimentally
validated computational model of a collapsible tube. The results confirm the correlation between the contact
critical pressure and the onset of self-excited oscillations in collapsible tubes. Moreover, a set of general
equations to compute the contact critical pressure and the corresponding areas of collapsible tubeswith arbitrary
geometries has been derived.
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1 Introduction

The onset of self-excited oscillations in the cardiovascular and respiratory system of human beings is a common
phenomenon which can happen under normal or pathological conditions [1]. The reason can be found in the
mutual interaction between relatively flexible biological conduits and the physiological flows. This kind of
oscillations is crucial in the generation mechanism of adventitious sounds in the lungs, like wheezing and
crackling [2] and is relevant to the diagnostics of lung diseases like asthma or chronic obstructive pulmonary
disease [3].Other interesting occurrences of this phenomenon in the humanbody can be found in the oscillations
of the retinal vein [4], in the voice production process [5], and in the arterial tree [6]. As a consequence, the
current interest of the scientific community in understanding the physical mechanism of self-excited oscillation
in the flexible conduits of the human body is wide and multidisciplinary, spanning over many different fields,
from engineering [7] to medicine [8].

One simple yet effective model of an airway or blood vessel undergoing self-excited oscillations is a
collapsible tube [9,10]. Despite the simple geometry, collapsible tubes can reproduce the rich phenomenology
of the biological conduits such as the buckling due to large intramural pressure [11] and the onset of self-
excited oscillations [12]. The key parameter which drives the collapse of a flexible conduit is the intramural
pressure [13] i.e. the difference between the internal and external pressure of the domain. If this difference
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Fig. 1 An example of tube law. The blue circles highlight the transition to the post-buckling and post-contact configurations. THe
snapshots of the cross sections show the state of the constriction in the different phases of the collapse. This work focuses on the
analysis of post-contact phase. The area is normalised with respect to the area of the constriction at rest (colour figure online)

become negative, the tube will start to collapse. From a more quantitative perspective, in absence of flow, the
description of the collapse is given by the tube law [14,15] i.e. that relates the intramural pressure with the
area of the smallest cross section of the tube (one example is given in Fig. 1). As shown in Fig. 1, the collapse
of a flexible tube is characterised by three different phases [16]. For low values of the intramural pressure, the
collapse happens symmetrically and the area of the constriction changes slowly with respect to the pressure
(pre-buckling phase). For higher (absolute) values of the intramural pressure, the cross section of the tube is
characterised by a n-buckling configuration [17,18], where n is the number of lobes in the cross section (an
example with n = 2 is shown in Fig. 1). In this regime (post-buckling phase), the area of the central cross
section is more sensitive with respect to variations of the intramural pressure. Finally, when the walls of the
internal part of the domain (the lumen) touch each other, the dependence of the central area on the intramural
pressure changes again (post-contact phase). The transitions between these phases happen at specific values
of the intramural pressure called buckling critical pressure and contact critical pressure, respectively [2]. Due
to its clinical relevance (for instance for the assessment of obstructive sleep apnoea syndrome [19,20]), the
dependence of the buckling critical pressure on the geometric and elastic parameters of an elastic tube has been
extensively investigated in the literature [21]. Interestingly, an analytic expression was already derived by von
Mises in 1914 [22]. However, since its derivation is strongly dependent on shell theory assumptions, vonMises’
equation overestimates the value of the buckling critical pressure for tube geometries relevant for biomedical
applications [23]. For this reason, the buckling critical pressure has been deeply investigated [24] and it is
still an open question [25]. In some more recent attempts, the value of the buckling critical pressure for tubes
geometries relevant for clinical applications has been studied with respect to the thickness of the tube [26] and
its length [27] by employing experiments and numerical simulations. Following the results obtained by Turzi
[28] on circular rings, the authors of this work have employed Landau’s theory of phase-transitions to estimate
the value of the buckling critical pressure in 3D domains and its dependence on the geometric parameters of
the system [15].

The full post-buckling behaviour of a collapsible tube, including the contact, has a great interest for both
clinicians and researchers interested in the modelling of human vessels [9]. Most of the literature focuses
on the behaviour of the fluid flow in the post-buckling [29] and in the post-contact [30] phase. However,
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the value of the contact critical pressure and its dependence on the geometric parameters of the system has
been investigated in a less intensive manner. In a seminal paper by Flaherty et al. [31] this analysis has been
carried on for an elastic ring spanning the full post-buckling behaviour of the system until its complete closure.
However, this work relies on strong geometrical assumptions (1D elastic ring) and the effects connected to the
tube thickness, length, and axial pre-stretch are consequently neglected. The analysis of the contact critical
pressure has nonetheless a great interest for the study of self-excited oscillations. Indeed, as shown in a recent
experimental investigation by Gregory et al. [2], the onset of self-excited oscillations happens for values of the
intramural pressure comparable with the contact critical pressure.

In this work, the dependence of the contact critical pressure of a collapsible tube on its geometric parameters
is analysed. The method relies on the implementation of an experimentally validated 3D numerical model of
a collapsible tube. Moreover, by employing the non-dimensional variables proposed in [2], a set of general
equations for the contact critical pressure is derived. This work is limited to a solid-only analysis. However, the
presented methodology can be employed without modifications in a fully-coupled fluid–structure interaction
setting and will be object of future investigations.

2 Problem setup

In the next sections, an in-depth description of the problem setup in terms of its geometry and boundary
conditions is given. The details of the numerical model implementation, its validation, and the computation of
the tube law are discussed.

2.1 Geometry and boundary conditions

The system under investigation is a collapsible tube with a thick external wall and under the effect of an initial
axial stretch. Axial pre-stretch is commonly observed in human vessels, with strain values up to 60% of the
length at rest [32]. One advantage of the simple geometry of a collapsible tube is that it needs a relatively small
number of parameters to be described. Given the value of the inner diameter of the tube D and its length at
rest l0, the following three non-dimensional variables completely characterise the geometry of the system:

d = l0
D

, γ = h

D
, l = L

l0
, (1)

whereh indicates the thickness of the externalwall of the tube, and L represents the length of the domain after the
imposition of the axial pre-stretch. In the following, the triplet (d, γ, l)will be employed to indicate the specific
conditions investigated within the geometrical parameters space of collapsible tubes. The range of values of
these parameters has been chosen to focus the study on the human airways. In a seminal paper byHorsfield [33],
the correspondence between a given airway in the lungs and a collapsible tube is described. Human airways
show a large distribution of thickness values (γ ∈ [0.04, 0.1]) and are relatively short (d ∈ [3, 6]) [33]. Another
important aspect is that they operates under the effect of a remarkably high axial pre-stretch (l ∈ [1.1, 1.8] [32]).
Such large value is going to largely influence the effective stiffness of the system, and it is therefore interesting
to analyse the sensitivity of the contact critical pressure with respect to the axial pre-stretch.

To ensure the well-posedness of the problem, the system is subject to the following boundary conditions
(see also the schematics in Fig. 2). One short side of the tube is clamped. The other short side is initially axially
stretched by a quantity which depends on the value of the parameter l and then clamped. The external walls of
the system are subject to an inward isotropic pressure pext whose value increases linearly in time according to

pext(t) = pmax

τ
t, (2)

where pmax > 0 is the maximum value of the external pressure and t ∈ [0, τ ]. The values of pmax employed
in the study vary between 4000 and 8000 Pa. These are the typical values present in the lungs under forced
expiration, depending on the size of the patient [34], for instance in presence of asthma [35]. As discussed in
Sect. 1, the collapse of the system is driven by the intramural pressure. In formulae, the intramural pressure is
determined by the following relation

pintr = pint − pext (3)

where pint is the pressure inside the lumen. Since in this study the fluid flow is neglected, the internal pressure
vanishes and the intramural pressure is only determined by pext i.e. the external pressure.
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Fig. 2 Schematics of the boundary conditions imposed on the system. The black box represents the initial configuration of the
tube, before the pre-stretching. The left side of the tube is clamped, whereas the right one is pre-stretched by l. The linearly
growing isotropic pressure pext is represented by the red arrows. The colour represents the displacement in the axial direction
(colour figure online)

2.2 Numerical model and validation

Once the geometric parameters (d, γ, l) are specified, the numerical model of the corresponding collapsible
tube is implemented in the software Star-CCM+ (Siemens, version 2210). The geometry is defined by means
of the built-in CAD software. The cross section of the tube is designed as an ellipse whose major axis is r and
minor axis is 0.99r . In this way, it is possible to control the direction of the buckling. The boundary conditions
of the system are imposed as discussed in the previous section. A second-order unsteady solver is implemented
to compute the displacement vector field of the collapsible tube at each time step. The time step is the same
for all the simulations and is �t = 0.1 s. To enhance the convergence of the solution, each time step is divided
into 10 inner iterations. This number of inner iterations ensures an average residual error of the order of 10−14

at the end of each time step. The domain is discretised by means of two radial layers, 64 angular layers and
50 longitudinal layers of hexahedral cells. A sensitivity study for the mesh has been performed in [15] on the
same model, showing that such mesh setup ensures reasonable convergence. Moreover, previous validations
of the flow solver have been carried out for constricted geometries mimicking flow through the vocal folds in
terms of LES pressures as compared with pressure from experimental data on the system walls [36] or in the
case of cardiovascular flows in the thoracic aorta [37].

The material law chosen to model the full post-buckling and post-contact behaviour of the system is a
hyperelastic Neo-Hookean model. As shown below, such model is able to reproduce the experimental results.
One advantage of Neo-Hookean elasticity is that its parameters are defined from the Poisson’s ratio and the
Young’s modulus of the tube material and do not require any ad-hoc assumption [38]. The strain energy is
defined as

U = α(I1 − 3) + β

2
(D − 1)2, (4)

where D is the determinant of the deformation gradient, and I1 is the first invariant of the right Cauchy-Green
deformation tensor.

α = 1

4

E

(ν + 1)
, β = Eν

(1 + ν)(1 − 2ν)
, (5)

given E and ν as the Young’s modulus and the Poisson’s ratio, respectively. In this study, the value of the elastic
parameters are E = 1 MPa and ν = 0.49, which are the same of the experimental setup used to validated
the numerical model [39] (see below for further details). The deformation energy in Eq. (4) can be further
improved by considering its regularisation with high order or micro-morphic models [40–42]. However, as
discussed at the end of this subsection, the displacement computed by means of the model in Eq. (4) is able
to replicate the experimental data. However, the comparison of the results in terms of different generalisation
of elasticity theory [43–45] will be treated in a future work. Modelling the contact between different parts
of the domain is an open challenge in computational mechanics [46,47]. In this work, the contact between
the internal walls of the tube is treated by employing a repulsive virtual plane (see Fig. 3). This virtual plane
coincides with the major axis of the elliptic cross section of the tube (see Fig. 3). When the virtual plane and
the internal walls of the tube are closer than a threshold distance (in this case 5 × 10−6 m), the walls start
to be affected by a repulsive force (| �Frep| = 1012 N) oriented with the same direction of the normal of the
plane. By accurately tuning the threshold distance and the module of the repulsive force, it is possible to mimic
the contact behaviour described mathematically in [31] and observed experimentally in [27]. These works
described qualitatively the behaviour of a collapsible tube in its post-contact phase which is well reproduced
by the numerical model. When the intramural pressure reaches the contact critical pressure value, a pair of
points at the opposite sides of the cross section touches each other (see Fig. 3a). As the intramural pressure
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Fig. 3 The numerical model is able to reproduce the post-contact behaviour described in literature. The colour corresponds to the
radial displacement. The black dashed line indicates the position of the repulsive plane employed to model the contact (colour
figure online)

reaches larger negative values, the contact region becomes a straight-line segment (see Fig. 3b). For larger
negative values of the intramural pressure, the length of the segment increases and tends to approximate the
length of the perimeter of the cross section (see Fig. 3c).

The numerical model employed in this study is also able to reproduce quantitatively the full post-buckling
and post-contact behaviour of a collapsible tube. The experimental validation of the model has been performed
by using a set of publicly available experimentalmeasurements [2,39]. In the experimental routine, a collapsible
tube with relevant values of the geometric parameters [15] has one side clamped and one axially stretched and
then clamped. The intramural pressure is controlled by a syringe andmonitoredwith amanometer. A 3Dcamera
system is able to register the deformation of the collapsible tube and area of the central cross section of the tube
is determined. The corresponding value of the intramural pressure is registered. This information is sufficient
to reconstruct the experimental tube law of the collapsible tube from the pre-buckling configuration to the post-
contact phase. The same geometry, initial and boundary conditions are implemented in the current numerical
setup to replicate the experiments. The corresponding tube law is then compared with the experimental one
(see next section for the details of the computation of the tube law). As shown in Fig. 4, the numerical results
are able to reproduce the full experimental tube law.

2.3 Computing the tube law

The output of the simulation is the tube law of the system i.e. the relation between the intramural pressure and
the corresponding central cross-sectional area.As discussed in the next section, the tube lawwill be employed to
estimate the contact critical pressure. The central cross section (in the pre-stretched configuration) is of interest
because is the most collapsed, being the furthest cross section from the constrained sides of the tube. At each
time step, the value of the intramural pressure is registered as piintr = −piext, where the index i = 1, . . . , M
represents the i-th time step. To compute the value of the corresponding area, the radial coordinates (θ ij , r

i
j ) of

the central cross-sectional perimeter are registered at each time step, where the index j runs over the N = 64
mesh elements on the perimeter. It is then possible to compute the area Ai of the central cross section at the
i-th time step by:

Ai = 1

2

N−1∑

j=1

∣∣∣θ ij+1 − θ ij

∣∣∣
(
r ij

)2
. (6)

The tube law is defined as the couple
{
piintr

}M
i=1,

{
Ai
intr

}M
i=1.

3 Analysis of the contact critical pressure

At the transitions between the pre to the post-buckling phase and from the post-buckling to the post-contact
phase (blue circles in Fig. 1), the tube law shows a clear change of regime connected to the different collapse
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Fig. 4 Comparison [15] of the numerically computed tube laws with the corresponding ones measured experimentally [2,39].
The error bars are computed as the absolute difference between the maximum and minimum value of the initial area, which has
been measured 3 times

mechanisms that the tube experiences when the intramural pressure reaches more negative values. In [15], the
authors of this work have demonstrated that it is possible to treat the transition between the pre to post-buckling
configurations as a second-order phase transition (see also the work by Turzi [28] on 1D rings). Moreover,
the buckling critical pressure has been estimated by using Landau’s theory of phase transition. However, it
does not appear possible to estimate the contact critical pressure by means of such methodology. The main
reason is that there is no clear symmetry breaking in the system before and after the contact. Moreover, the
nature of the contact is intrinsically discontinuous, i.e. the transition between the state of the system before
and after the contact happens instantaneously and not continuously as in the case of a second-order phase
transition. Consequently, the main assumptions of the methodology described in [15] are not valid for the
treatment regarding the contact critical pressure. The discontinuous nature of this transition, however, can be
exploited to address the problem. The main observation is that the first contact between the internal walls of
the system corresponds to a sudden change in the slope of the tube law. It is possible to estimate the value of
the contact critical pressure by looking for the corresponding discontinuity in the first derivative of the tube
law computed with respect to the intramural pressure (see Fig. 5). It is important to take into account the effect
of the repulsive virtual plane discussed in Sect. 2.2 (see Fig. 3) since it will interact with the internal walls of
the tube before the actual contact happens. A careful analysis of this effect shows that the virtual plane induces
two small additional discontinuities in the tube law (blue and green dots in Fig. 5). Consequently, the contact
critical pressure is estimated as the pressure value at the end of the discontinuity in the derivative of the area
with respect to the intramural pressure (i.e. the red dot in Fig. 5). The methodology to determine the contact
critical pressure is the following:

1. For any triplet (d, γ, l) of geometric parameters, the corresponding numerical model is implemented
according to Sect. 2.2.

2. The corresponding tube law, i.e. the two sets {piintr}Mi=1, {Ai }Mi=1, is computed as discussed in Sect. 2.3.
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Fig. 5 The main plot shows the derivative of the tube lawwith respect to the intramural pressure in a neighbourhood of the contact
critical pressure. The smaller sub-figure shows the corresponding portion of the tube law. The blue and green dots highlight the
spurious discontinuities due to the repulsive plane. The red dot indicates the value of the intramural pressure corresponding to
the actual contact (colour figure online)

3. The tube law is pre-processed. The pre-buckling region of the tube law is neglected. The derivative of
the area of the central cross section with respect to the intramural pressure is numerically computed (an
example is shown in Fig. 5) by using a Python algorithm employing the numpy.diff function [48].

4. The value of the contact critical pressure is estimated by identifying the discontinuity of the derivative of
the tube law (the red dot Fig. 5). The contact critical pressure and the corresponding area are registered.

As discussed in Sect. 4, the results obtained using this method are experimentally confirmed.

3.1 The role of the geometric parameters

By following the methodology described in the previous section, it is possible to study how the geometric
parameters of the system affect the contact critical pressure. As first, the dependence of the contact critical
pressure on the length-to-diameter ratio d is analysed. The values of the contact critical pressure pcontcrit cor-
responding to d ∈ (3, 3.5, 4, 4.5, 5, 5.5, 6) are shown in Fig. 6a. The corresponding tube laws are plotted in
Fig. 6b. The relation between pcontcrit and d is well described by the following relation

− pcontcrit = AdB + C (7)

where A, B,C are free parameters whose values are listed in Table 1. This model shows that for longer tubes the
absolute value of the contact critical pressure decrease. This is compatible with the behaviour of the buckling
critical pressure analysed in [15], whose estimated values are indicated as black boxes in Fig. 6b and in the
following figures.

Let now analyse the effect of the thickness-to-diameter ratio γ on the contact critical pressure. The values
of the contact critical pressure pbucklcrit corresponding to γ ∈ (0.05, 0.06, 0.07, 0.08, 0.09) are shown as circles
in Fig. 7a. The corresponding tube laws are plotted in Fig. 7b. The relation between pbucklcrit and γ is well
described by the following function

− pbucklcrit = Aγ B + C (8)

where A, B, C are free parameters whose values are shown in Table 1.
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Fig. 6 The left panel shows the values of the contact critical pressure estimated according to Sect. 3 and the fit model in Eq. (7).
In the right panel, the tube laws associated with the different values of d are displayed. The black boxes are the values of the
buckling critical pressures estimated in [15], while the black circles are the contact critical pressures

Fig. 7 The left panel shows the values of the contact critical pressure estimated according to Sect. 3 and the fit model in Eq. (8).
In the right panel, the tube laws associated with the different values of γ are displayed. The black boxes are the values of the
buckling critical pressures estimated in [15], while the black circles are the contact critical pressures

Finally, the relation between the contact critical pressure pbucklcrit and the pre-stretch ratio l is considered. The
values of the contact critical pressures for l ∈ (1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8) are shown in Fig. 8a. The
corresponding tube laws are shown in Fig. 8b. The relation between the contact critical pressure and the
pre-stretch ratio has been obtained via fitting procedure with the following model:

− pbucklcrit = A tanh(Bl) + C (9)

where A, B, C are free parameters whose values are listed in Table 1. Interestingly, the contact critical pressure
tends asymptotically to a constant value for higher value of the pre-stretch ratio, as depicted in Fig 8a.

4 Non-dimensional equations

It is possible to employ the results of the analysis presented in the previous section to derive a system of
general equations for the contact critical pressure and the corresponding cross-sectional area. These equations
depend on the elastic and geometric parameters of any collapsible tube in a reasonable neighbourhood of
the validated model. In [2], by using experimental data relevant for biomedical flows, Gregory et al. have
demonstrated that by re-scaling the intramural pressure and the central cross-sectional area as shown in Eq. 10,
tube laws corresponding to different geometric and elastic parameters would collapse in a single curve. The
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Fig. 8 The left panel shows the values of the contact critical pressure estimated according to Sect. 3 and the fit model in Eq. (9).
In the right panel, the tube laws associated with the different values of l are displayed. The black boxes are the values of the
buckling critical pressures estimated in [15], while the black circles are the contact critical pressures

Table 1 Values of the parameters obtained from the fit of the contact critical pressures with Eqs. (7–9)

Parameters Eq. (7): d-dependence

A = (3.68 ± 0.23) × 103 Pa
B = −2.32 ± 0.07
C = (8.79 ± 0.42) × 102 Pa

Parameters Eq. (8): γ -dependence

A = (4.94 ± 0.61) × 105 Pa
B = −1.86 ± 0.06
C = (8.56 ± 1.06) × 102 Pa

Parameters Eq. (9): l-dependence

A = (7.67 ± 1.14) × 105 Pa
B = 2.95 ± 0.07
C = (7.60 ± 1.14) × 105 Pa

Fig. 9 (Left panel) All the tube laws analysed in this work. (Right panel) By scaling the intramural pressure and the cross-sectional
area by means of Eq. (10), the tube laws tend to collapse on a single line [15]

non-dimensional variables are defined as:

p̂intr = pintr
E/(1 − ν2)

l−2γ −1d, Â = A

πr2
l. (10)

By applying the definitions in Eq. 10 to the tube laws shown in Figs. 6b, 7 and 8b, the same behaviour is
observed, as computational data tend to collapse, with a relatively small dispersion, around a single line (see
Fig. 9).



226 M. Laudato, M. Mihaescu

Let consider the set of all the contact critical pressures and the corresponding cross-sectional areas obtained
by means of the method described in Sect. 3 spanning the geometric parameters (d, γ, l). By re-defining these
values in terms of Eq. 10, the following two sets are derived

{
p̂kcont

}R

k=1
,

{
Âk
cont

}R

k=1
, (11)

which are defined as the sets of the all non-dimensional contact critical pressures and contact critical areas
derived in this work. The index k runs on all the different (R = 20) combinations of geometric parameters
analysed in this study. By computing the corresponding average and the standard deviation and by combining
the results with Eq. 10, the following general equations are derived:

pcritcont

E/(1 − ν2)
d (l)−2 (γ )−1 = −0.104 ± 0.013; Acrit

cont

πr2
l = 0.309 ± 0.014. (12)

These values are compatiblewithin the errorwith the ones estimated byGregory [2] for the onset of self-exciting
oscillations, here reported for the reader’s convenience:

p̃critcont

E/(1 − ν2)
d (l)−2 (γ )−1 = −0.12 ± 0.02; Ãcrit

cont

πr2
l = 0.27 ± 0.07. (13)

This observation experimentally confirms the methodology adopted in this work for the treatment of the
contact of the internal walls of a collapsible tube and endorses the observation that the self-excited oscillations
in collapsible tubes are triggered for values of the intramural pressure compatible with the contact critical
pressure.

5 Conclusions

The dependence of the contact critical pressure of a collapsible tube on the geometric parameters of the
system has been analysed in this work. The methodology is based on the post-processing of numerical data
obtained via the implementation of the numerical model of a digital replica of the collapsible tube under
given boundary conditions. The numerical model has been experimentally validated. A set of general non-
dimensional equations for the contact critical pressure and the corresponding central cross-sectional area has
been derived. The results are compatible with the experimental observation by Gregory et al. [2] that the value
of the intramural pressure for the onset of self-excited oscillations in collapsible tubes is close to the contact
critical pressure. The main advantage of the presented methodology is that it can be generalised to a two-way
fluid–structure interaction analysis without further assumptions, which will be the aim of a following work.
The main limitation of the presented modelling scheme is the absence of friction between the internal walls of
the tube. Currently, the possibility to integrate the friction by means of a strategy similar to the one discussed
in [49] in the present modelling scheme is under investigation. Another interesting perspective is to include in
the modelling scheme the effects of damage [50] due to the repeated loading and large deformation.
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