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Abstract A new and explicit form of the multi-axial elastic potential for elastic soft materials is constructed
by means of two invariants of the Hencky strain. The new elasticity model with this form can bypass coupling
complexities and uncertainties usually involved in parameter identification. Namely, exact closed-form solu-
tions of decoupled nature are obtainable for stress responses under multiple benchmark modes. Unlike usual
solutions with numerous coupled parameters, such new solutions are independent of one another and, as such,
data sets for multiple benchmark modes can be separately matched with mutually independent single-variable
functions. A comparative study is presented between a few well-known models and the new model. Results
show that predictions from the former agree well with uniaxial and biaxial data, as known in the literature,
but would be at variance with data for the constrained stress response in the plane-strain extension. In con-
trast, predictions from the new model agree accurately with all data sets. Furthermore, exact solutions for the
Poynting effect of freely twisted elastic thin-walled tube are obtained from the new model.
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1 Introduction

Various elastic soft materials serve as constituent materials of artificial and natural structures (cf., e.g., [1]).
Examples for such materials include rubbers, polymer gels, and biological soft tissues, e.g., skins, arteries
and blood vessels, etc. Large elastic strain responses of such soft materials are simulated based on the elastic
potential representing the strain energy. According to the standard procedures in continuum thermodynamics,
each specific form of the latter establishes a hyperelastic constitutive model which specifies the stress response
to each finite strain. A reasonable model should be such that its predictions under multiple modes of loading
agree simultaneously with test data for these modes. Usually, a few benchmark modes are taken into consid-
eration, including the uniaxial extension and compression of a bar, the equi-biaxial extension of a plate, the
plane-strain extension and compression of a strip, etc.

Earlier, simple forms of the elastic potential were presented, such as the Hencky model [2,3], the neo-
Hookean model [4], and the Mooney–Rivlin model [4]. Such simple models would be limited to a moderate
deformation range. Later, various advanced models were established toward matching large strain data for
benchmark deformation modes, such as the Ogden model [5], the Arruda–Boyce model [6], and the Gent
model [7,8], to name but a few. Of them, the latter two with only two adjustable parameters1 stand out in
the sense that their predictions can not only match large strain data for uniaxial extension and plane-strain
extension but can approximately match equi-biaxial extension data. On the other side, the Ogden model with
six parameters can well match large strain data for all three benchmark modes. However, it appears that
applicability of these models still need to be examined even for the plane-strain extension mode. In fact, good
agreement can be achieved with the stress data in the loading direction, but that would not be the case for the
stress data in the constrained direction, as will be evidenced in a comparative study here.

In addition to the benchmark modes in the foregoing, large free torsion of thin-walled tubes under twisting
loads are noticeable with the well-known Poynting effect [10]. In fact, a freely twisted elastic tube with
finite torsion angle will display recoverable changes in the axial length and the wall thickness as well as
the averaged radius. Such noticeable finite strain effects need to be studied particularly for thin-walled tubes
made of soft materials such as polymer gels and biological soft tissues including arteries and blood vessels,
etc. Simulation results with certain simple models may be found, e.g., in Zubov [11], De Pascalis et al. [12],
Zubov and Sheidakov [13], Mihai and Goriely [14], Merodio and Ogden [15], Anssari-Benam and Horgan
[16], and Zingerman et al. [17]. In particular, reference may be made to recent results for torsional behaviors
of biological soft tissues in Balbi et al. [18] and Horgan and Murphy [19].

Since the Poynting effect for elastic soft tubes may be much appreciable up to very large deformations,
objectives in two respects need to be achieved for an accurate analysis. On the one hand, a new elastic
constitutive model should be established toward accurately matching all large strain data for the benchmark
modes, and exact results for the Poynting effect can be derived from this new model, on the other hand.

Toward the above objectives, a new form of the elastic potential will be constructed by means of two
well-designed invariants of Hencky’s logarithmic strain. The hyper-elastic constitutive model with this new
form can bypass coupling complexities and uncertainties involved in identifying a set of coupling adjustable
parameters. Namely, exact solutions of decoupled nature are obtainable for stress responses under multiple
benchmark modes. Unlike usual solutions with an inextricably coupled set of adjustable parameters, such new
solutions are independent of one another and, as such, multiple data sets for the foregoing benchmark modes
can be separately matched with mutually independent single-variable functions. A comparative study will be
presented between a few well-known models and the new model. It will be shown that predictions from the
former agree well with uniaxial and biaxial data, as known in literature, but would be at variance with data
for the constrained stress response in the plane-strain extension. In contrast, predictions from the new model
can agree well with all data sets. Furthermore, with a new technique of treating nonlinear coupling equations
in a most recent study [20], exact solutions for the large torsion of a thin-walled tube with free ends will be
obtained from the new model.

2 New model with new elastic potential

In this section, a new form of the elastic potential will be constructed for the purpose of matching multiple data
sets for the benchmark modes. Results will be derived based upon Hencky’s logarithmic strain [2,3]. Details

1 See also a latest development [9] in this respect.
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for noticeable features of the Hencky strain may be found, e.g., in Hill [21], Anand [22], and Fitzgerald [23].
Reference may also be made to a survey article [24].

2.1 Hencky invariants

Let B = F · FT be the left Cauchy–Green tensor with the deformation gradient F and, moreover, let
χs = λ2s and Bs be the three eigenvalues and the corresponding eigenprojections of B, respectively. Hencky’s
logarithmic strain tensor is designated by h and given by

h = 1

2
ln B = 1

2

3∑

s=1

(ln χs) Bs . (1)

The three basic invariants of the Hencky strain are as follows:

is = trhs = lns λ1 + lns λ2 + lns λ3, s = 1, 2, 3. (2)

The volumetric ratio J is given by

J = det F = λ1λ2λ3.

The incompressibility condition J = 1 is equivalent to

i1 = trh = 0. (3)

In this case, the Hencky strain h and its deviatoric part

h̃ = h − 1

3
i1 I

are equal to each other, i.e.,

h = h̃. (4)

Hence, the three basic invariants of the deviatoric Hencky strain are as follows:

j1 = trh̃ = 0,

j2 = trh̃ 2 = ln2 λ1 + ln2 λ2 + ln2 λ3, (5)

j3 = trh̃ 3 = ln3 λ1 + ln3 λ2 + ln3 λ3. (6)

The constitutive equation of an isotropic, incompressible hyper-elastic solid is expressible as the following
direct potential relation [21,23]:

σ = ∂W

∂h
+ p I . (7)

In the above, p is the indeterminate averaged part of the Cauchy stress σ , I is the identity tensor and the elastic
potential W is a scalar function of the Hencky strain, i.e.,

W = W (h) . (8)

The isotropy condition requires that the above elastic potential be represented by a function of the two basic
invariants j2 and j3 and, generally, a function of any other two equivalent Hencky invariants. For our purpose,
it will be essential to use two well-designed Hencky invariants, designated by ψ and γ and given by (cf., e.g.,
[25])

ϕ =
√
2

3
j2, (9)

γ = √
6

j3
j1.52

. (10)
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It is worth pointing out that similar forms of the mode invariant γ were used in describing finite elastic strains
earlier in Novozhilov [26] and in formulating strength criteria in the stress space recently in Kolupaev [27]
and Altenbach and Kolupaev [28].

With certain favorable properties, the two Hencky invariants ϕ and γ in Eqs. (9, 10) are introduced to
characterize themagnitude and themode of theHencky strain, respectively. In particular, ϕ and−ϕ just provide
the axial Hencky strain for the uniaxial extension mode and the uniaxial compression mode, respectively.
Moreover, the mode invariant γ yields the values 1, -1, 0 for uniaxial extension and compression and plane-
strain extension, respectively. Namely,

ϕ =
{

+ ln λ for uniaxial extension,
− ln λ for uniaxial compression,

(11)

and

γ =

⎧
⎪⎨

⎪⎩

+1 for uniaxial extension,
−1 for uniaxial compression,
0 for plane-strain extension,

(12)

where λ is the axial stretch ratio for an axially loaded bar. Generally,

− 1 ≤ γ ≤ +1. (13)

Details may be found in [25].

2.2 New elastic potential

As indicated before, the elastic potential of an isotropic, incompressible highly elastic material is expressible
as follows:

W = W (ϕ, γ ). (14)

Given a form of the potential W , the hyperelastic stress–strain relation Eq. (7) may be given in the form (cf.
[25], Eq. (79)):

σ =
[
2

3
ϕ−1 ∂W

∂ϕ
h + 2ϕ−3 ∂W

∂γ

(
2h2 − γ ϕh − ϕ2 I

)] + p I . (15)

Now we construct a new and explicit form of the elastic potential W by means of the Hencky invariants
ϕ and γ in Eqs. (9, 10). The main idea is explained as follows. For the three benchmark modes including the
uniaxial extension and compression as well as the plane-strain extension, it is deduced from Eq. (12) that the
elastic potential Eq. (14) reduces to three single-variable functions of the magnitude invariant ϕ. The latter
three just supply the strain energies for the three modes at issue. Moreover, the value of the derivative ∂W/∂γ
at γ = 0 (i.e., plane-strain extension) just prescribes the stress response in the constrained direction. Thus, a
cubic polynomial form of the elastic potential in γ may be constructed, so that the strain energies for the three
benchmark modes with γ = ±1, 0 as well as the constrained stress response for the plane-strain extension
with γ = 0 can be automatically reproduced. Such a new form of the elastic potential is as follows:

W = ψ3(ϕ)γ 3 + ψ2(ϕ)γ 2 + ψ1(ϕ)γ + ψ0(ϕ) (16)

with

ψ0(ϕ) = wp

(√
0.75ϕ

)
, (17)

ψ1(ϕ) = 1

6
ϕ

[
gp

(√
0.75ϕ

)
− 2ḡp

(√
0.75ϕ

)]
, (18)

ψ2(ϕ) = 1

2
wt (ϕ) + 1

2
wc(−ϕ) − wp

(√
0.75ϕ

)
, (19)
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ψ3(ϕ) = 1

2
wt (ϕ) − 1

2
wc(−ϕ) − 1

6
ϕ

[
gp

(√
0.75ϕ

)
− 2ḡp

(√
0.75ϕ

)]
, (20)

and

wt (h) =
∫ h

0
ft (h)dh, h � 0, (21)

wc(h) =
∫ h

0
fc(h)dh, h � 0, (22)

wp(h) =
∫ h

0
gp(h)dh, h � 0. (23)

As will be seen slightly later, the h in Eqs. (21, 22) is the axial Hencky strain for an axially loaded bar, while
the h in Eq. (23) is the Hencky strain in the loading direction for the plane-strain extension of a strip. Moreover,
the ft (h) and fc(h) are two single-variable functions representing the axial stress responses in uniaxial tension
and compression, respectively, while the gp(h) and ḡp(h) are two single-variable functions characterizing the
plane-strain stress responses in the loading and the constrained direction, respectively. Their forms may be
independently chosen in matching test data for the three benchmark modes. Details will be given in the next
section.

Results in Eqs. (16)–(23) represent a development of the previous study [20,25,29–32]. Here, a new form
is presented with the uniaxial strain energies Eqs. (21, 22) in a broader sense.

3 Exact solutions of decoupled nature

In this section, exact solutions will be presented to the stress responses for the three benchmark modes and the
decoupled nature of them will be explained.

3.1 Uniaxial extension and compression

First, an axially loaded bar is treated. Let e be a unit vector in the axial direction and let σ and λ be the axial
Cauchy stress and the axial stretch ratio, respectively. The Cauchy stress tensor and the deformation gradient
as well as the Hencky strain are of the forms:

σ = σ e ⊗ e, F = λe ⊗ e + λ−0.5(I − e ⊗ e), h = he ⊗ e − 0.5h(I − e ⊗ e), (24)

with the axial Hencky strain h = ln λ. Then, by using Eqs. (11, 12) and Eqs. (15)–(23) the following results
are deduced:

{
σ = ft (h) for h � 0,
σ = fc(h) for h � 0.

(25)

It turns out that the two single-variable functions ft (h) and fc(h) in Eqs. (21, 22) just supply the axial Cauchy
stress responses in tension and compression, respectively, and, accordingly, Eqs. (21, 22) are just the uniaxial
strain energies in tension and compression.

3.2 Plane-strain extension

Next, the plane-strain extension of a plate strip is taken into consideration. Let e, ē and a be three orthonormal
vectors in the loading, the constrained and the unconstrained direction, respectively, and let σp and σ̄p be the
normal stresses in the loading and the constrained direction. Then, the Cauchy stress tensor, the deformation
gradient and the Hencky strain are of the forms:

σ = σpe ⊗ e + σ̄p ē ⊗ ē, F = λe ⊗ e + λ−1a ⊗ a, h = h(e ⊗ e − a ⊗ a), (26)

where λ ≥ 1 and h = ln λ ≥ 0 are the extension ratio and the Hencky strain in the loading direction.
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Again, by using Eqs. (15–23) with

γ = 0, ϕ =
√
4

3
h,

the results below are derived:
{

σp = gp(h),

σ̄p = ḡp(h).
(27)

It turns out that the two single-variable functions gp(·) and ḡp(·) in the elastic potential in Eqs. (16)–(23)
prescribe the stress responses in the loading and the constrained direction and, besides, Eq. (23) supplies the
strain energy for the plane-strain extension.

3.3 Coupled versus decoupled

A number of unknown parameters are introduced in various known models. Coupling complexities and uncer-
tainties should be treated in fitting benchmark test data for the uniaxial, bi-axial and plane-strain extension
modes, as exemplified below with the Ogden model.

The three-term Ogden potential is of the form:

WO =
3∑

i=1

μi

αi

(
λ

αi
1 + λ

αi
2 + λ

αi
3 − 3

)
, (28)

where the λr are the principal stretches and the (μi , αi ) are six unknown parameters that are coupled with one
another in fitting test data for the three benchmark modes, as explained below.

First, for the uniaxial extension and compression as specified by Eq. (24), the axial stress response is given
by

σ = λ1
∂WO

∂λ1
− λ2

∂WO

∂λ2
, (29)

where

λ1 = λ, λ2 = λ3 = λ−0.5.

Next, for the plane-strain extension as specified by Eq. (26), the stress responses in the loading and the
constrained direction are prescribed by

{
σp = λ1

∂WO
∂λ1

− λ3
∂WO
∂λ3

,

σ̄p = λ2
∂WO
∂λ2

− λ3
∂WO
∂λ3

,
(30)

where

λ1 = λ, λ2 = 1, λ3 = λ−1.

It may be evident that the responses in Eqs. (29, 30) are inextricably coupled with one another in fitting
the six unknown parameters μi and αi to test data for the three benchmark modes.

As contrasted with the above coupling complexity, the stress responses Eqs. (25, 27) derived from the
new model are of decoupled nature. Namely, the four single-variable functions therein may be independently
chosen to separately match test data for the three benchmark modes. Such single-variable functions can further
be presented in explicit forms, as shown below.
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Fig. 1 Freely twisted thin-walled tube subjected to twisting moment M

3.4 Stress–strain functions in explicit forms

The uniaxial tensile and compressive stress–strain functions in Eq. (25) may be given by a rational function in
a uniform form (cf., e.g., [25,29]):

σ = f (h) = E(1 − α)h + Eαh(
1 − h

ht

)(
1 + h

hc

) (31)

with

σt = f (h), h ≥ 0, (32)

σc = f (h), h ≤ 0. (33)

In Eq. (31), E is Young’smodulus at the infinitesimal strain,α > 0 is a dimensionless parameter, and the ht > 0
and hc > 0 are referred to as the extension limit and the compression limit characterizing the strain-stiffening
effects in extension and compression, respectively.

On the other side, for the plane-strain extension, the stress–strain function in Eq. (27) for the stress response
in the loading direction is given as follows:

σp = 4

3
Eh

⎛

⎜⎜⎜⎝1 − αp + αp

1 − h2

h2p

⎞

⎟⎟⎟⎠ , (34)

while the stress–strain function in Eq. (27) for the constrained stress response by

σ̄p = 2

3
Eh

⎛

⎜⎜⎜⎝1 − ᾱp + ᾱp

1 − h2

h̄2p

⎞

⎟⎟⎟⎠ . (35)

In the above, the two parameter pairs (αp, h p) and (ᾱp, h̄ p) characterize the stress responses in the loading
and the constrained direction, respectively.

4 Exact analysis for large free torsion

Let r0 and t0 be the initial average radius and the wall thickness of a thin-walled cylindrical tube, respectively.
Large free torsion of a tube subjected to the twisting moment M is schematically shown in Fig. 1. Each cross
section of a freely twisted tube will be rotated about the symmetry axis of the tube through an angle and
changes will be expected in the length, the averaged radius and the wall thickness. Details are given below
(cf., e.g., [20]).
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Fig. 2 Pure shear of a rectangular plate element

4.1 Kinematics

The torsion angle per unit current length is denoted as φ and the ratios of the current average radius, axial length
and wall-thickness to their undeformed counterparts are designated by ξ1, ξ2 and ξ3, respectively. Moreover,
the shear stress on each cross section is uniform and signified by τ .

The deformation state of the free-twisted tube can be described by the deformation of a rectangular thin
plate element embedded, with the plate sides in the axial and circumferential directions of the tube. Such a
plate element experiences pure shear deformation, as depicted in Fig. 2. With Xi and xi the initial and current
Cartesian coordinates of this plate element, the deformation of such a plate element may be prescribed as
follows:

x1 = ξ1X1 + ωX2, x2 = ξ2X2, x3 = ξ3X3. (36)

In the above, the ω is known as the shear amount given by

ω = ξ2 tan φ . (37)

Then, the deformation gradient and the left Cauchy–Green tensor are given by

F = ∂xi
∂X j

ei ⊗ e j = ξ1e1 ⊗ e1 + ξ2e2 ⊗ e2 + ξ3e3 ⊗ e3 + ωe1 ⊗ e2 , (38)

B = (
ξ1

2 + ω2) e1 ⊗ e1 + ξ2
2e2 ⊗ e2 + ξ3

2e3 ⊗ e3 + ωξ2 (e1 ⊗ e2 + e2 ⊗ e1) . (39)

The incompressibility condition yields:

ξ1ξ2ξ3 = 1. (40)

On the other side, the stress tensor is as follows:

σ = τ(e1 ⊗ e2 + e2 ⊗ e1) . (41)

The current average radius and thickness r and t are given by

r = ξ1r0 , t = ξ3t0 , (42)

and hence the twisting moment M by

M = (2πr tτ) · r = 2πr20 t0ξ
2
1 ξ3τ . (43)

For future use, the three eigenvalues of the left Cauchy–Green tensor B are given by:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

χ1 = λ21 =
(
1
2

(√
(ξ1 + ξ2)

2 + ω2 +
√

(ξ1 − ξ2)
2 + ω2

))2
,

χ2 = λ22 =
(
1
2

(√
(ξ1 + ξ2)

2 + ω2 −
√

(ξ1 − ξ2)
2 + ω2

))2
,

χ3 = λ23 = (ξ1ξ2)
−2 ,

(44)
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and the three corresponding eigenprojections of B by

B1 = B̄ − χ2 Ī
χ1 − χ2

, B2 = B̄ − χ1 Ī
χ2 − χ1

, B3 = e3 ⊗ e3 , (45)

where

B̄ = B − (ξ1ξ2)
−2e3 ⊗ e3 , (46)

Ī = I − e3 ⊗ e3 . (47)

Hence,

hs = (
lnsλ1

)
B1 + (

lnsλ2
)
B2 + (

lnsλ3
)
B3, s = 1, 2. (48)

4.2 Exact solutions

Let the content in the square brackets at the right-hand side of Eq. (15), i.e., the gradient ∂W/∂h, be designated
by A. By using Eq. (40), it may be inferred that each non-vanishing component Ai j is a function of ξ1, ξ2 and
ω. From this and Eqs. (15, 41), the governing equation may be derived as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

A11 (ξ1, ξ2, ω)+ p = 0,
A22 (ξ1, ξ2, ω) + p = 0,
A33 (ξ1, ξ2, ω) + p = 0,
A12 (ξ1, ξ2, ω) = τ.

(49)

In the above, expressions for the four non-vanishing components Ai j are obtained by using Eqs. (44)–(48) and
given as follows [20]:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

A11 = 1
3ψ

−1 (z1 + z2)
∂W
∂ψ

− √
1.5 j−2.5

2 (z1 − z2)2 ( j2 + 3z1z2) ∂W
∂γ

,

A12 = (z1 − z2)
(
1
3ψ

−1 ∂W
∂ψ

+ 3
√
1.5 j−2.5

2 (z1 + z2) ( j2 + 3z1z2) ∂W
∂γ

)
,

A22 = A11, A33 = −2A11 ,

(50)

with

z1 = 0.5 lnχ1, z2 = 0.5 lnχ2, j2 = 2z21 + 2z22 + 2z1z2, j3 = −3z21z2 − 3z1z
2
2 . (51)

Toward working out solutions for ξ1, ξ2 and τ in terms of the shear amountω, strong coupling complexities
need to be treated in resolving Eq. (49) with Eqs. (50, 51). Except for simple models, results are obtained
by means of numerical approximations. With a new technique in a most recent study [20], exact results are
obtainable from the new model. Below are the main procedures and the main results.

First, the difference of the first two equations in Eq. (49), viz.,
A11 − A22 = 0

yields

ξ2
2 = ω2 + ξ1

2 . (52)

Next, the difference of the last two equations in Eq. (44), namely,

A22 − A33 = 0

produces

j22 (z1 + z2)
∂W

∂ψ
− 3(z1 − z2)

2 ( j2 + 3z1z2)
∂W

∂γ
= 0 . (53)
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The two eigenvalues χ1 and χ2 in Eq. (44) are recast in the forms:

χ1 = ξ21 + ω2 + ω

√
ξ21 + ω2, χ2 = ξ21 + ω2 − ω

√
ξ21 + ω2 . (54)

From Eqs. (51, 54), it may be clear that, for each value of the shear amount ω, the solution to the averaged
radius ratio ξ1 may be obtained by resolving Eq. (53), namely,

ξ1 = ξ1 (ω) . (55)

Then, solutions to ξ2 and ξ3 are obtained from Eqs. (52, 40) and given by

ξ2 = ξ2 (ω) =
√

ξ21 + ω2 , (56)

ξ3 = ξ3 (ω) = 1

ξ1

√
ξ21 + ω2

. (57)

Moreover, by using Eq. (49)4 and Eq. (50)2, the solution to the shear stress may be derived as follows:

τ = τ(ω) = 1

6
ψ−1 (ln χ1 − ln χ2)

(
1 + 3

(
ln χ1 + ln χ2

ln χ1 − ln χ2

)2
)

∂W

∂ψ
. (58)

Finally, by using Eqs. (43, 58), the dimensionless twisting moment is obtained below:

N = N (ω) = M

2πr20 t0E
= ξ1√

ξ21 + ω2

τ

E
. (59)

5 Model validation with comparison

Toward validating the newmodel with comparison to a few known models, numerical results will be presented
with Treloar’s classic data [33] for sulfur rubber and recent data [34] for soft polymer gel, separately. With
the new model, such data sets for the three benchmark modes will be matched independently with the four
stress–strain functions in Eqs. (31)–(35). Simulation results will be compared with those derived from the
Arruda–Boyce model [6] and the Ogden model [5]. Moreover, given values of the shear amount ω, results for a
freely twisted tube will be obtained from Eq. (53) for the averaged radius ratio ξ1 and then from Eqs. (56)–(59)
for the axial length ratio ξ2, the thickness ratio ξ3 and the shear stress τ , as well as the dimensionless twisting
moment N , separately.

5.1 Benchmark data for sulfur rubber

We first take Treloar’s data [33] for sulfur rubber into consideration. With the following parameter values:

E = 1.1MPa, α = 2.3, ht = ln 8.8, hc = ln 44 ,

αp = 3.4, h p = ln 11, ᾱp = 5.2, h̄ p = ln 18 ,

the stress–strain curves for the three benchmarkmodes are calculated fromEqs. (31)–(35) and depicted in Fig. 3.
Moreover, results from the Arruda–Boyce model and the Ogden model are also calculated and incorporated
in Fig. 3 for comparison. Parameter values for these two models are as follows:

α1 = 1.3, μ1 = 6.3MPa; α2 = 5.0, μ2 = 0.012MPa; α3 = −2.0, μ3 = −0.1MPa,

for the Ogden model (cf., Eq. (28)), and

Nkθ = 0.27MPa, n = 26.5,

for the Arruda–Boyce model [6]
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Fig. 3 Comparison of three models in matching Treloar’s data [33]

As evidenced in Fig. 3, the Ogden model agrees well with all data for the uniaxial tensile stress σu , the
equi-biaxial tensile stress σeq and the plane-strain tensile stress σ3 in the loading direction, except for a few
uniaxial tension data for very large stretches exceeding 7.2.2 On the other side, the Arruda–Boycemodel agrees
well with the uniaxial and plane-strain data until large stretch, but would deviate from the bi-axial tension data
from moderate to large stretches and that would also be the case for uniaxial tension data for large stretches
exceeding 6.4.

The newmodel agreeswell with all data for three benchmarkmodes. Also, comparison ofmodel predictions
is shown for the constrained stress in the plane-strain extension. Here, no data for the constrained stress σ1 in the
plane-strain case are available. This stress is underestimated by both the Ogden model and the Arruda–Boyce
model, as shown in Fig. 3. Further comparison with complete data will be made in the next subsection.

5.2 Benchmark data for PAAm-CG-6 gel

No data for the constrained stress response in the plane-strain extension case are available in Treloar’s data.
Recently, Yohsuke et al. [34] have performed experiments for polymer gels and supplied complete data for the
three benchmark modes. Here, the data for PAAm-CG-6 gel are simulated.

With the parameter values:

E = 17 kPa, α = 1.8, ht = ln 6.56, hc = ln 21, αp = 3, h p = ln 9.5,

ᾱp = 8.5, h̄ p = ln 23 ,

again the stress–strain curves for the three benchmark modes are calculated from Eqs. (31)–(35) and depicted
in Fig. 4. As before, results from the Arruda–Boyce model and the Ogden model are also incorporated in Fig. 4
for comparisons. Parameter values for these models as follows:

α1 = 1.9, μ1 = 5 kPa; α2 = 4, μ2 = 0.09 kPa; α3 = −2.35, μ3 = −0.2 kPa,

for the Ogden model (cf., Eq. (28)), and

Nkθ = 4.8 kPa, n = 20,

for the Arruda–Boyce model [6].
As shown in Fig. 4, the new model agrees well with all data for the three benchmark modes. Both the

Ogden model and the Arruda–Boyce model agree well with the data for uniaxial and plane-strain extension.
On the other hand, the Ogden model agrees approximately with the bi-axial data, while the Arruda–Boyce
model would appreciably deviate from these data. In particular, either the Arruda–Boyce model or the Ogden
model would lead to appreciable deviations from the data for the constrained stress σ1.

2 Usually, such data in Treloar [33] are not simulated for the sake of clarity.
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Fig. 4 Comparison of three models in matching PAAm-CG-6 gel data [34]

Fig. 5 Axial length ratio ξ2 in free torsion with PAAm-CG-6 gel data in [34]

Fig. 6 Averaged radius ratio ξ1 in free torsion with PAAm-CG-6 gel data in [34]

5.3 Predictions for large free torsion

With test data in [34], model predictions for a freely twisted tube made of PAAm-CG-6 gel are calculated from
Eqs. (53)–(59). Results are obtained in terms of the shear amount ω and depicted in Figs. 5, 6, 7, 8, 9 for the
axial length ratio ξ2, the averaged radius ratio ξ1, the thickness ratio ξ3, the shear stress τ and the dimensionless
twisting moment N , separately.
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Fig. 7 Thickness ratio ξ1 in free torsion with PAAm-CG-6 gel data in [34]

Fig. 8 Shear stress τ in free torsion with PAAm-CG-6 gel data in [34]

Fig. 9 Dimensionless twisting moment N in free torsion with PAAm-CG-6 gel data in [34]

In a course of free torsion with increasing shear amount ω, the tube is lengthening with the length ratio ξ2
increasing and becomes slender and thinner with both the averaged radius ratio ξ1 and the thickness ratio ξ3
decreasing, and, moreover, both the shear stress τ and the dimensionless twisting moment N monotonically
increases.

6 Concluding remarks

With two well-designed invariants representing the magnitude and the mode of the Hencky strain, a new hyper-
elastic constitutive model for isotropic, incompressible elastic soft materials has been established with a new
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form of the elastic potential. Exact closed-form solutions to the stress responses for three benchmark modes
have been obtained in terms of four mutually independent single-variable functions.With these solutions, large
strain data for three benchmark modes can be accurately and independently matched without involving usual
complexities in identifying a strongly coupled set of unknown parameters. The new model has been used in
an exact large strain analysis for free torsion of elastic thin-walled tubes. Numerical examples for both sulfur
rubber and soft polymer gels have been presented for the purpose of model validation.

A parameter-free smooth interpolating technique (cf., e.g., [32,35,36]) may be used for the purpose of
automatically and accurately matching large strain data. Moreover, the constrained torsion of thin-walled
cylindrical tubes with fixed ends needs to be treated by developing the procedures in Sect. 4. Generally, large
constrained and free torsion need to be studied for thin-walled tubes with composite sections.
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