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Abstract This work presents a new finite element variational formulation for the numerical treatment of
diffusional phase transformations using the discontinuous Galerkin method (DGM). Steep concentration and
property gradients near phase boundaries require particular focus on a sound numerical treatment. There are
different ways to tackle this problem ranging from (i) the well-known phase field method (PFM) (Biner et al.
in Programming phase-field modeling, Springer, Berlin, 2017, Emmerich in The diffuse interface approach in
materials science: thermodynamic concepts and applications of phase-field models, Springer, Berlin, 2003),
where the interface is described continuously to (ii) methods that allow sharp transitions at phase boundaries,
such as reactive diffusion models (Svoboda and Fischer in Comput Mater Sci 127:136–140, 2017, 78:39–46,
2013, Svoboda et al. in ComputMater Sci 95:309–315, 2014). Phase transformation problems with continuous
property changes can be implemented using the continuous Galerkin method (GM). Sharp interface models,
however, lead to stability problems with the GM. A method that is able to treat the features of sharp interface
models is the discontinuous Galerkin method. This method is well understood for regular diffusion problems
(Cockburn in ZAMM J Appl Math Mech 83(11):731–754, 2003). As will be shown, it is also particularly well
suited to model phase transformations. We discuss the thermodynamic background by review of a multi-phase,
binary system. A new DGM formulation for the phase transformation problem with sharp interfaces is then
introduced. Finally, the derived method is used in a 2D microstructural evolution simulation that features a
binary, three-phase system that also takes the vacancy mechanism of solid body diffusion into account.
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1 Introduction

The numerical simulation of phenomena like phase growth has gained popularity over the last decades, and even
more so in the last years when it became feasible to make predictions about the failure behavior of various
components, e.g., in microelectronics. There are essentially two very different approaches to modeling the
domain of reactive diffusion. First, the phase fieldmethod [8] has to bementioned as themost elegant approach.
Other than to directly solve the usual conservation/diffusion formalism the evolution equation is obtained
from solving a variational minimization problem containing also non-conserved phase describing variables.
The functional to be minimized is usually constructed using empirical functions that are at least three times
continuously differentiable such as a double-well potential [8]. In the simplest cases, the variable of interest (for
example the concentration) is just penalized for obtaining values beyond the usual equilibrium concentrations.
Additionally, the interface curvature could be penalized (see for example “Cahn–Hilliard Equation” [4]). This
concept can even be expanded to model microstructural grain growth (see “Allen–Cahn Equation” [4]). On the
other hand, we have, as indicated before, methods that aim at directly solving conservation/diffusion evolution
equations, taking the phase-varying properties into account by introducing them as concentration-dependent
functions. Therefore, no empirical functions like the double-well potential have to be introduced and the
equations solely include formalisms obtained directly from thermodynamics. These methods shall loosely be
called sharp interface models, which is of course due to their tendency to create sharp transitions between
phases. This is in strong contrast to the PFM that is characterized by smooth concentration transitions in
interface domains, where the width of the interface can be controlled by acting on empirical model parameters.
Although sharp interface methods promise higher efficiency in the treatment of complex microstructures,
special care must be taken to choose the right numerical method in the implementation. For the Galerkin
method, there occur numerical stability problems when trying to solve reactive diffusion problems with the
methodology described in this paper. To get around these stability problems, the Finite Difference Method,
the Finite Volume Method (FVM) and the Discontinuous Galerkin Method can be employed. The DGM is of
special interest for scientists that are familiar with the FEM or want to solve coupled multi-physics problems
that require maximum flexibility regarding solution methods. This is because the DGMwas designed to fit the
FEM-framework.

1.1 Properties of the fluxes in reactive diffusion

Consider a system containing n substitutional components with their respective site fractions1 given by yi for
i = 0, 1, .., n, where y0 corresponds to vacant (empty) sites in the lattice (vacancies). The flux j

k
of a species

k is, according to Eq. (1), given by the sum of the gradients of chemical potentials μi scaled with so-called
Onsager coefficients Lik [8,10,11,16,36].

j
k

:=
n∑

i=1

Lik∇μi k = 1, .., n (1)

In general, the chemical potentials and Onsager coefficients can be dependent on the site fractions of all
components as well as the pressure and temperature. For the derivations in this paper, it is only necessary to
consider their dependency on the composition:

Lik := Lik(y0, y1, ..., yn), (2)

μi := μi (y0, y1, ..., yn), (3)

Additionally, the restrictions (4) and (5) must hold at all times.

n∑

i=0

yi = 1, (4)

1 The composition of a material is usually expressed in terms of mole fractions. For crystalline materials like metals, it is
reasonable to express the composition in terms of the site fraction that is defined as the number of atoms of a component that
occupy sites in the lattice (crystal) divided by the total number of available lattice sites. If the reader is only interested in the
mathematical aspects of the model the term site fraction may be replaced by concentration.
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n∑

i=0

j
i
= 0, (5)

The chemical potential of component i can, according to a derivation in [32], be computed from the molar
Gibbs Free Energy Gm as

μi := Gm +
n−1∑

k=1

(δik − yk)
∂Gm

∂yk
i = 1, .., n, (6)

with the assumption that yn is, according to Eq. (4), expressed in terms of the other site fractions and does not
appear as independent variable:

yn := 1 −
n−1∑

i=0

yi (7)

In (7), δik denotes the Kronecker Delta. As multiple phases are considered, the molar Gibbs Free Energy has to
be phase dependent as well. In this article, the special case of diffusional phase transformations is considered,
following the works of Svoboda [34,35,37]. This implies that the lattice conversion is instantaneous and that
the phase is completely determined by the composition of the lattice. This assumption is reasonable for slow
diffusion as observed in solid metals, where the transformations are purely diffusion driven. For a general
approach, it has to be acknowledged that the lattice conversion also takes up time which is considered by the
PFM [8]. The derivation is continued assuming a system consisting of p phases named φl for l = 1, 2, .., p. It
is furthermore assumed that the molar Gibbs Free Energy of every phase is known and given in terms of the
composition:

Gφ�
m := Gφ�

m (yφ�

1 , yφ�

2 , .., yφ�
n ) (8)

Thenewly introducedvariables yφ�

1 , yφ�

2 , .., yφ�
n refer to the site fractions of the components explicitly associated

with phase φ�. These variables have to satisfy the following equations:

yi =
p∑

�=1

yφ�

i φ� i = 1, .., n (9)

Where φ� are phase describing functions (as known from the PFM) that obey the constrains:

0 ≤ φ� ≤ 1 � = 1, .., p (10)
p∑

�=1

φ� = 1 (11)

Wherever φ� = 1, the lattice consists entirely of phase φ� and so on. Wherever multiple phase describing
functions are nonzero, an interface is assumed. Using the introduced functions, the total Gibbs Free Energy of
the multi-component, multi-phase system can be formulated:

G :=
∫

�

1

�m

p∑

�=1

φ�G
φ�
m d� (12)

Note that � denotes the mathematical domain of the whole system while �m refers to the molar volume
of components. In this article, the molar volume is assumed to be constant for all components and phases,
respectively. There are, however, general formulations that review reactive diffusion with phase-dependent
molar volumes [36]. The Gibbs Free Energy functional is the starting point for derivations for both the PFM as
well as the reactive diffusion methodology developed by Svoboda [35–37]. While the flux defined in Eq. (1)
follows from maximization of the entropy production rate2 the evolution of phase describing functions φ�

strives to minimize the Gibbs Free Energy functional. The main idea of Svoboda’s methodology is to solve for

2 Also referred to as Thermodynamic Extremal Principle (TEP) [36].
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Fig. 1 Molar Gibbs free energy curves of three phases in a binary system

Fig. 2 Chemical potentials of component 1 and 2 for the system depicted in Fig. 1. The domains where a certain phase is stable
are colored according to the color scheme in Fig. 1

the phase describing functions beforehand, therefore, assuming instantaneous phase transitions and viewing
phases entirely determined by composition. Therefore, the phase describing functions are not needed in the
presented method. This is achieved by solving the following optimization problem:

Gm(y1, y2, .., yn) := min
y
φ�
i ,φ�

G (13)

Subject to the constraints (9), (10) and (11), where (9) must be incorporated to the functional by using
Lagrange multipliers. For the inequality constraints (10), special methods for highly nonlinear systems have
to be applied such as homotopy methods. This is the usual approach to compute phase diagrams also referred
to as CALPHAD3 methodology [33]. In Figs. 1 and 2, an example for the computation of chemical potentials
from Gibbs Free Energy curves using Eqs. (7) and (13) is depicted. Solving optimization problem (13) can be
interpreted geometrically as constructing a convex hull curve around the molar Gibbs Free Energy curves seen
in Fig. 1. Therefore, it is also possible to calculate the chemical potentials by the so-called common-tangent
construction [16]. It can be thermodynamically favorable to have multiple phases at different fractions at a
given chemical composition. Regions where this is the case are the interfaces between two phases or junctions
among multiple phases. These regions are characterized by the fact that the overall chemical potential of a

3 CALPHAD stands for CALculation of PHAse Diagrams.
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component is constant, as can be seen in Fig. 2. Everywhere else, that is where a certain phase is clearly
favorable, the chemical potential of the preferable phase is active [25]. For the overall system, we can at least
conclude that the chemical potential of a component is a C0 continuous function of site fractions. Therefore,
its derivative is a discontinuous function. Due to Eq. (1), it can be concluded that fluxes are discontinuous for
the reviewed model. This is the main reason why numerical treatment with the Galerkin method will fail, and
its discontinuous counterpart has to be employed.

2 Methodology

2.1 The discontinuous Galerkin method for reactive diffusion

The most fundamental fact about diffusion of conserved quantities can be stated as follows: The total change
in the amount of a conserved species y in the domain � is equal to the amount that enters or leaves the domain
across its boundary ∂�. In mathematical terms, this can be expressed by the following integral equation:

∫

�

ẏ dxxx +
∫

∂�

j · n dsss = 0, (14)

To derive the diffusion equation from statement (14), the divergence theorem and the fundamental lemma
of the calculus of variations [13] have to be applied in order to achieve a localization4 of the conservation
law. In the discontinuous Galerkin method, the same fundamental mathematical considerations as in equation
(14) apply. Other than in the derivation of the variational form of the diffusion equation for the GM, however,
the divergence theorem must not be applied as it requires the flux to be a sufficiently smooth (differentiable)
function [13]. As was shown in the previous chapter, this is a property the flux cannot satisfy in reactive
diffusion (as it is discontinuous across phase boundaries). This is the reason the GM does not suffice to solve
reactive diffusion problems as discussed in this paper. The DGMuses Eq. (14) directly, but it is not only applied
to the whole domain � but to every finite element � consists of. In the following, the terms “finite element”
will be replaced by the more modern designation “cell”. The domain of an individual cell e is denoted �e with
its boundary ∂�e.

∫

�e

ẏ dxxx +
∫

∂�e

j · n dSSS = 0, (15)

The total amount that flows into or out of the cell through its boundary causes a change in the amount y that
remains in the cell. The localization in the DGM is therefore achieved by requiring the species to be conserved
with respect to each cell. By assuming the site fraction to be constant over this cell, we also imply that a
specific function space for the trial- and test functions is to be used. Let D0 denote the function space of DG
functions of degree zero. D0 contains all piecewise constant and globally discontinuous functions. That means
constant over cells and discontinuous at the cell boundaries, also called “facets”. Every cell is assigned just one
trial and one test function which obtains the value one in its assigned cell and the value zero everywhere else.
Special attention is needed to consider the boundary terms. It is clear that every cell has its boundary ∂�e, but
the mathematical boundary of the domain ∂� consists in general of “facets” [20] of multiple cells. Therefore,
certain cell boundaries will be part of the mathematical boundary of the problem as well. Facets of cells are
therefore always shared between two cells or are part of the mathematical boundary. To increase readability,
the boundary of individual cells with shared facets shall be named � as depicted in Fig. 3. Requiring Eq. (15)
to hold for every cell can now be expressed by the following variational formulation:

∫

�

ẏv dxxx +
∫

∂�

v j · n dsss +
∫

�

[v j] dSSS = 0 ∀v ∈ D0, (16)

To account for the discontinuities at the internal boundaries �, the jump operator “[·]” is introduced
[20,38]:

[v] := (v+ − v−)n, (17)

4 In this context, localization refers to the idea of requiring the conservation of species (as imposed by Eq. (14)) to hold not
only for the whole domain � but also for every infinitesimal volume element that � consists of. In practice, this is done by
multiplying the integral equation by a trial function of a suitable function space and requiring the generated variational form to
hold for arbitrary trial functions.
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Fig. 3 Schematic domain displaying the different parameterizations of themathematical boundary and the internal cell boundaries

Fig. 4 Schematic of two neighboring cells e− and e+ that share the Facet �+−

The jump operator can be interpreted as a numerical tool that allows to account for the discontinuous
“jump” when integrating over the internal cell facets � as depicted in Fig. 4. Imagine the individual facet �+−
to be the shared facet of two cells e+ and e−. When integrating over �+− , the function values on both sides of
the facet have to be considered:

∫

�+−
( f +v+ − f −v−) n · dS =

∫

�+−
[ f v] dS, (18)

For the flux between two cells, we choose, according to Eq. (1), j = L(y)∇μ(y), where L(·) and μ(·) are
arbitrary nonlinear functions. On the mathematical boundary, we keep j to represent the inflow or outflow to
be applied by the user as von Neumann boundary condition.

∫

�

ẏv dxxx +
∫

∂�

v j · n dsss +
∫

�

[vL∇μ] dSSS = 0 ∀v ∈ D0, (19)

To complete the derivation, another special operator has to be introduced, namely the average operator
“< · >”, which is defined as follows [38]:

< v >:= 1

2
(v+ + v−), (20)

It computes, as the name suggests, the average value of two cells in their shared facet. This operator comes
into play when an expression containing the jump operator shall be simplified. For this, the jump identity is
introduced [38]:

[uv] := [u] < v > + < u > [v], (21)

Application to variational form (19) yields:
∫

�

ẏv dxxx +
∫

∂�

v j · n dsss +
∫

�

[v] < L > < ∇μ > · n + < v > [L] < ∇μ > · n
+ < v > < L > [∇μ] dSSS = 0 ∀v ∈ D0, (22)

Since the Onsager coefficient L is in general a nonlinear but continuous function of the site fraction y,
it must also behave continuous in a weak sense. This is achieved by setting [L] = 0. As was pointed out
in the introduction, the equilibrium conditions require the chemical potential to be constant over interfaces.
Therefore, we additionally require [∇μ] = 0 to hold over all facets and drop the corresponding terms.

∫

�

ẏv dxxx +
∫

∂�

v j · n dsss +
∫

�

[v] < L > < ∇μ > · n dSSS = 0 ∀v ∈ D0, (23)
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While it is clear that ∇μ must vanish in the cells due to the type of trial function used, it is, however, up to
the user to define the behavior of ∇μ at the facets. As there occur jumps in the site fraction between cells, it
would be unreasonable to neglect this term. In order to use this method, however, the behavior of this function
has to be further investigated. Therefore, we concentrate again on an individual facet between two cells e+
and e− and replace the gradient with a difference quotient:

∫

�+−
< ∇μ > · n dSSS ≈

∫

�+−
<

μ(y+) − μ(y−)

le
> dSSS, (24)

Here, le denotes the cell length. As we already required [∇μ] = 0 to hold, it is clear, that < ∇μ > = ∇μ
must be true:

∫

�+−
∇μ · n dSSS ≈

∫

�+−

μ(y+) − μ(y−)

le
dSSS, (25)

Definition (25) can be simplified to yield the jump operation:

∫

�+−
∇μ · n dSSS ≈

∫

�+−

1

le
[μ] dSSS, (26)

While fluxes are not allowed to have jumps across facets, the mole fraction y is, at least in this method
allowed to have discontinuities. This is a widely used simplification for diffusion problems (see symmetric
interior penaltymethod (SIP/DGM) [6,7,30]). The fundamental cause for the fluxbetween two cells is therefore
the difference in the site fraction of the cells. Assuming the relationship between the gradient and the jump
also explains why this method gives almost identical results as the finite difference method. Substituting this
relationship gives the final variational formulation.

∫

�

ẏv dxxx +
∫

∂�

v j · n dsss +
∫

�

< L >

le
[v][μ] dSSS = 0 ∀v ∈ D0, (27)

Interestingly, the strong form of the diffusion equation is actually never used in this derivation as this
requires the application of the divergence theorem that can necessarily only be applied to smooth functions.
Note that regular diffusion problems (simple diffusion problems where the fluxes are evoked by Fick’s law
j = D∇ y, where D is the constant diffusion coefficient) are very well investigated by the DGM community.
There even exists a variational formulation for these problems that is independent of the degree of the used trial
and test functions [38]. This formulation yields the following variational formulation if functions of degree
zero are utilized, such as in the derivation above:

∫

�

ẏv dxxx +
∫

∂�

v j · n dsss +
∫

�

D

le
[v][y] dSSS = 0 ∀v ∈ D0, (28)

The similarities to the variational form for reactive diffusion with the fluxes in canonical form come as no
surprise. By choosing L = D = const. and μ(y) = y, the variational forms become identical, as expected.
Although this is a new variational formulation, it can therefore be assumed that the assumptions made are
correct and lead to valid results. For completeness, the reader is also referred to [14] where a similar case was
studied. Another notable mention is [9] where the so-called harmonic average instead of the average operator
of this work was employed to solve the advection–diffusion equation with locally vanishing diffusivity. Note
that the discontinuous Galerkin Method for diffusion (28) is, if forward Euler time integration is used, in fact
so closely related to the “forward time, central space” diffusion scheme of Finite Difference Methods that the
stability criterion of the latter can be applied to find a stable time increment [38]:

0 ≤ D�t

(le)2
≤ 1

2
, (29)
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3 Results

3.1 Vacancy-controlled diffusion of a binary, three-phase system in a two-dimensional domain

To generate the following solutions to the discussed variational problems, the legacy version of FEniCS5

has been used. FEniCS [2,20] is developed by many scientists and consists of the modules dolfin [22,23],
ffc [17,21,24] and fiat [18,19]. This finite element software can be used with a python 3 [39] interface. All
graphics have been generated with Paraview [1,3]. To demonstrate the capabilities of the presented method, a
microstructural evolution problem is considered. For a detailed derivation of the model, the reader is referred
to [36]. A first implementation of the model can be found in [34] where the equations were solved using a
finite difference scheme on a one-dimensional domain. The chosen system is inspired by the binary Cu-Sn
system, although the simulation will not use real thermodynamical data and material parameters. This system
is of technical importance since tin-based alloys are to replace lead-based solders in various microelectronic
devices [15,31]. These solders are used to attach and connect all kinds of microelectronic components to circuit
boards and are often exposed to multiple stresses such as temperature fluctuations and mechanical loads. Due
to the small scale of solders and the constant attempts of further downsizing, effects like phase growth cannot
be neglected to fully understand the damage mechanisms. The two components of the model are given in
terms of their site fractions y1 and y2, respectively. Additionally, the site fraction of vacancies y0 is considered.
Using (4) as constraint, the system is fully defined by using y0 and y1 as variables since y2 = 1 − y1 − y0
(or y2 ≈ 1 − y1, since y0 � y1). Due to the incorporation of the vacancy mechanism, the model has several
special features. Since vacant sites in the lattice are just empty space, they are not conserved and can emerge
and vanish at sources and sinks for vacancies. Therefore, the evolution equations of the model are not strictly
diffusion equations but a more general form of transport equations:

ẏ0 = −�m∇ · j
0
+ (1 − y0)α (30)

ẏ1 = −�m∇ · j
1
− αy1 (31)

Here, α denotes the rate of generation and annihilation of vacancies. For a stress free system, it is defined
as

α := − μ0

K�m
, (32)

where μ0 is the chemical potential of vacancies and K is the bulk viscosity as introduced in [12]. In general,
K is variable over the domain, obtaining different values at grain- and phase-boundaries, but for the sake of
simplicity it is assumed to be constant in this example. The chemical potential of vacancies is defined as

μ0 := RT ln

(
y0
yeq0

)
, (33)

where R and T are gas constant and temperature, respectively, and yeq0 is the equilibrium site fraction of
vacancies. The Onsager coefficients are computed according to

Lik := Akδik + (1 − f )

f

Ai Ak∑
j A j

, (34)

with f being the so-called vacancy correlation factor ( f = 0.7815 for fcc and f = 0.7272 for bcc alloys)
[34]. The coefficients Ak are defined as:

Ak := y0
yeq0

yk
Dk

�m RT
(35)

Dk is the Diffusion coefficient of component k in the bulk. In general, the diffusion coefficients can be
phase dependent, but again we assume them constant for the sake of demonstration. Having the equations of

5 FEniCS is a popular open-source computing platform for solving partial differential equations (PDEs) https://fenicsproject.
org/.

https://fenicsproject.org/
https://fenicsproject.org/
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Fig. 5 Initial condition of y1. The mesh consists of 73441 quadrilateral finite elements

Fig. 6 Initial condition of the chemical potential of vacancies. y0(t = 0) = yeq0

the model defined, we continue to solve them by the derived DG approach. The variational formulations of
Eqs. (30) and (31) read:

∫

�

(yt0 − y0) v dxxx +
2∑

i=1

2∑

j=1

∫

�

�t �m
< Li j >

le
[μ j ][v] dSSS +

∫

�

�t (1 − y0) α v dxxx = 0 ∀v ∈ D0

(36)
∫

�

(yt1 − y1) w dxxx +
2∑

j=1

∫

�

�t �m
< L1 j >

le
[μ j ][w] dSSS −

∫

�

�t y1 α w dxxx = 0 ∀w ∈ D0 (37)

These two nonlinear variational problems were solved using a fully coupled backward Euler scheme on
a two-dimensional unit square domain using a total of 73441 quadrilateral finite elements. The calculation
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Fig. 7 Site fraction of component one (y1) after 0.3 [ms]. Clearly, two new phases φ2 and φ3 have formed

Fig. 8 Site fraction of component one (y1) after 0.6 [ms]

was performed using the following parameters: D1 = 1
[
m2

s

]
, D2 = 2

[
m2

s

]
, RT = 1

[ J
mol

]
, K = 1

[
Js
m3

]
,

�m = 1×10−5
[
m3

mol

]
, yeq0 = 0.001 [–] and f = 0.7815 [–]. The Diffusion coefficient of component two, D2,

was chosen twice as large as the diffusion coefficient of component one in order to trigger the Kirkendall effect
[34]. The initial condition of y1 can be viewed in Fig. 5. The initial distribution was created using a Neper6

generatedMicrostructure with 200 grains. Hundred of these grains were randomly chosen and assigned with an
initial site fraction of 0.03 [–], while the other grainswere set to a value of 0.97 [–]. As driving force of diffusion,
the chemical potentials of Fig. 2 are used. The initial distribution of vacancies (y0) was chosen to be constant
over the domain with its equilibrium site fraction as can be seen in Fig. 6. Note that the chemical potential of
vacancies was plotted instead of just the site fraction to clearly point out where shortage and exess of vacancies

6 Neper (https://neper.info) is an open-source software for microstructure generation and meshing [26–29].

https://neper.info
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Fig. 9 Chemical potential of vacancies after 0.3 [ms]. There is an excess of vacancies in the inclusions due to the Kirkendall
effect

Fig. 10 Chemical potential of vacancies after 0.6 [ms]

are located. In Figs. 7 and 8, the evolution of the microstructure is depicted at different timesteps using the
site fraction y1. As can be seen, the phases φ2 and φ3 from Fig. 1 form at the interface between the initially
unmixed components. The Cu–Sn system is also known to form two intermediate phases, often accompanied
by so-called Kirkendall voids [34]. These voids or pores form due to vacancy accumulation triggered by the
Kirkendall effect. Since Sn-atoms are known to have a higher diffusion coefficient than Cu-atoms, the flux
of Sn-atoms out of Sn-rich regions can not be fully balanced by the Cu-atoms leading to an accumulation
of vacancies in Sn-crystals (this is due to the flux balance equation) (5)). This causes the Kirkendall effect
as can be observed in Figs. 9 and 10, where red and blue regions indicate excess and shortage of vacancies,
respectively. Another observation that can be made in Fig. 9 is that regions with high interface curvature are
at higher risk of Kirkendall voiding. As time progresses, it can be seen in Fig. 10 that the magnitude of the
chemical potential of vacancies is generally sinking, which indicates that the system is approaching the final
equilibrium state. To address the theme of mesh dependence, the calculation was also carried out with two
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Fig. 11 Site fraction of component one (y1) after 0.6 [ms]. The mesh consists of 11881 quadrilateral finite elements

Fig. 12 Site fraction of component one (y1) after 0.6 [ms]. The mesh consists of 4624 quadrilateral finite elements

coarser meshes. The resulting distribution of y1 at time t = 0.0006 [s] is given in Fig. 11 for a mesh with a
total of 11881 quadrilateral finite elements and in Fig. 12 for a mesh consisting of just 4624 finite elements.
While the method is stable and convergent for all mesh sizes it is obvious that the DG0 formulation benefits
from fine meshing since the phase boundaries will be resolved more accurately.

4 Conclusion

In the present paper, the DGM was used to derive a new variational formulation (27) for reactive diffusion
problems.Themain advantageof the presentedmethodover thePFMis the fact that thermodynamical principles
can be used accurately and no empirical functions have to be introduced to smooth the phase transitions. The
method also shows excellent properties in terms of stability and flexibility. The ability to model effects like the
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vacancymechanismof solid body diffusion helps to obtain a better understanding of phenomena likeKirkendall
voids and other kinds of vacancy related damage mechanisms. With its simplicity and robustness, the method
can handle the added complexity of the vacancy mechanism well, promising to get hold of other ambitious
phenomena in the future, such as segregation and trapping models. On the downside, it must be mentioned
that for the presented method it is not yet possible to include interface energies to the Gibbs Free Energy,
which is possible with the PFM. Furthermore, fine meshing is necessary to resolve detailed microstructures
which is of course due to the properties of piecewise constant interpolation functions. Other than for the PFM
where the focus lies on resolving the interface area in all its detail the presented method aims at simulating
more macroscopic effects of diffusion on the overall bulk, thus idealizing the interface and representing it
sharply. The DGMs discussed in this paper are restricted to the special case of trial and test functions of degree
zero, e.g., piecewise constant functions. For some applications, it might be worth considering higher degree
approximations. This case, however, would require deriving new variational formulations.
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