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Abstract The post-elastic mechanical behavior of cortical bone, which is represented by extensive microc-
racking once the elastic regime is exceeded, has been characterized by a nonlinear constitutive relationship for
osteonal microcracking. The relationship/model is based on the formalism of Statistical Mechanics, allowing
the degree of irreversibility to be calculated using the increase in entropy associated with the progression of
microcracking. Specific tensile and bending tests were conducted to compare theoretical predictions of consti-
tutive relationships to empirical curves. In addition, the tests were utilized to determine themodel’s parameters,
whose values were used to explicitly calculate the entropy increase. A large sample was used: 51 cortical bone
coupons (dog-bone-shaped specimens) were extracted from the 4th ribs of numerous individuals and subjected
to uniaxial tensile testing. Additionally, fifteen complete 4th ribs were used for bending tests. Displacement
and strain fields were measured for both types of tests using digital image correlation or video recordings of
the tests. All experimental specimen data were successfully fitted to the model, and all constitutive parameter
values were found to be correlated with anthropometric variables. Explicit entropy calculations indicate that
microcracking is minimal for low strain and, initially, stress is nearly proportional to strain. After a certain
point, significant microcracking occurs, and the relationship between stress and strain becomes invalid. Several
significant associations between constitutive parameters and age have also been identified.

Keywords Human rib · Cortical bone · Statistical mechanics · Microcracking · Osteons · Entropy ·
Constitutive models

Abbreviations

DIC Digital image correlation
PMHS Post-mortem human subject
SEDF Strain energy density function
TML Total microcracking length

1 Introduction

The process of microcracking in cortical bone is a thermodynamically irreversible process that eventually
leads to macroscopic fracture of the bone. Such cracking depends on the stress and strain inside the bone. In
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biological tissues, stress depends on mechanical loads which, at the material level, are mathematically related
to strain by means of a constitutive material model. Thus, when a load is imposed on a bone, the material
reacts with a stress–strain response. This response is intrinsic to the material and depends on the magnitude,
the rate, the direction and the duration of the applied load.

A number of comprehensive constitutive mechanical models have been published to mathematically relate
stress and strain. Some of these models use plasticity theory [1–7], continuous damage theory [8–13], rheo-
logical theories [14,15] (including nonlinear viscoelastic and viscoplastic models [16–18]), microstructural
parameters and microcontinuum models [19–21], statistical models such as the random spring network model
(RSNM) [22,23] and even, a combination of the above characteristics [16,24–27].

Although the vast majority of mechanical constitutive models have obvious practical value, only a few of
them analyze the thermodynamic aspects of the cracking process [28,29]. Specifically, few of the proposed
constitutive models allow an explicit calculation of the entropy associated with cracking, which, as an irre-
versible process, must increase as microcracking progresses within the bone. Despite the fact that a certain
number of models describe the microstructure of cortical bone [30,31], the progression of microcracking has
received less attention than other aspects influencing mechanical behavior [32]. In particular, the microdamage
accumulation and the presence of microcracks have received some attention [33,34], as well as the occurrence
of plastic strain [31,35,36]. However, not all published constitutive models address the microcracking pro-
gression and sometimes, models are not accompanied by a great amount of experimental evidence to validate
its performance [16].

The purpose of this study is to develop a thermodynamically consistent mechanical model of bone micro-
cracking progression. The model’s formulation allows for the explicit calculation of the entropy increase
associated with cracking progression (verifying that it is an irreversible process). The innovative aspect of this
paper is the use of Statistical Mechanics to model the microcracking process and calculate the entropy asso-
ciated with the irreversibility of the damage. Moreover, in this study the model is validated with experimental
data from tensile and bending tests of human rib cortical bones, computing the parameters of the model and
determining its relation with anthropometric variables, as well as calculating the entropy associated with the
microcracking that evolves in the microstructure during the tests.

2 Data methods and proposed model

This section describes the theoretical basis for the constitutive relationships as well as the experiments (tensile
and bending tests) used to validate their applicability. The model was used to compute the stress–strain
relationship and the entropy increase for a monotonic mechanical load application. The results were compared
to experimental data. The model does not account for bone remodeling because it assumes that stress will
increase until bone fracture occurs.

2.1 Microcracking and statistical mechanics

For the purpose of deriving the microcracking constitutive relationship, it is assumed that bone is composed
of osteons, which serve as the model’s fundamental elements (for this reason, lower hierarchical levels will
not be analyzed). Osteons are aligned predominantly along the longitudinal direction of long bones, resulting
in differential mechanical behavior depending on direction [37–40]. Thus, cortical bone can be considered as
a transversely isotropic material.

To capture the behavior of the nonelastic region, a transversely isotropic mechanical model was developed
forStrainEnergyDensityFunctions (SEDF)using theCanonicalEnsembleFormalismofStatisticalMechanics.
In general, the space between osteons is weaker than the osteons themselves, so there are more microcracks
in the inter-osteon space [41–43]. When cortical bone is subjected to mechanical forces in the directions of
dominant tensile stress, this must be accounted for in a constitutive model and even a fracture model [44,45].

The Canonical Ensemble Formalism permits for the introduction of the quenched-disorder parameter
through the partition function Z(β, E) [46–48]. This quenched-disorder parameter describes the initial micro-
cracking in the specimen (prior to stress application), and the constitutive relationships allow measuring the
progression of microcracking by computing the entropy. Microcracking is modeled as a propagation in an
osteon lattice for this purpose. Therefore, the model relates the energy introduced into the material to the
propagation of microcracks within the osteon-formed microstructure. This microcracking is analyzed using
combinatorics, which computes the number of potential paths along the lattice of osteons.
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2.1.1 Canonical ensemble and Helmholtz free energy

The collection of osteons constitutes an ensemble that forms the cortical bone tissue, and this ensemble is
amenable to a statistical mechanical description. In the Statistical Mechanics formalism, the starting point
is a large number of elementary components that interact by exchanging energy and influencing each other.
Several macroscopic magnitudes characterize a system’s macrostate (in our case, will be the strain and the
total microcracking length), and each macrostate is compatible with manymicrostates. Based on the number of
microstates compatible with each macrostate, Statistical Mechanics attempts to determine the most probable
macrostate, which is proportional to the number of compatible microstates, and the average behavior for each
macrostate [49–51].

Before loading the specimen, the initial state is a partially cracked macrostate with low microcracking,
irregularities and some initial defects.As the load increases, so does the strain, and consequently, themechanical
energy and microcracking in the bone increases. The cracks propagate primarily in the inter-osteon space,
through the interstitial bone and cement lines [52]. To calculate the total microcracking length (TML), a plane
orthogonal to the surfaces which contain cracks is considered (this plane also contains the barycentric axis of
the rib bone). The intersection of all microcracks with such a plane yields the TML (adding lengths for all the
cracks contained in the plane). This TML (�) can be compared to the average length of the osteons �0, and the
cracking number k = �/�0 is then calculated. The cracking number identifies the cracking macrostate for each
strain level (ε), having an energy of Ek = E(k, ε). For a given cracking number k, different configurations or
paths are possible for each crack in the osteon lattice.

To determine the partition function Z(β, E), it is necessary to count the number of potential cracking
configurations in the osteon lattice [46,50,51]. The term cracking microstatewill refer to anymicroscopic con-
figuration that is compatible with a given macrostate or strain. As a result, counting the number of microstates
entails counting the number of configurations that are possible depending on the cracking number k (or, alter-
natively, the TML � = k�0). The partition function Z(β, E) is used to calculate the probability pk of each
macrostate with cracking number k, using the traditional Maxwell–Boltzmann statistics; specifically [50,51]:

pk = gk e−βEk

Z(β, E)
, Z(β, E) =

�∑

j=1

e−βE j (E) (1)

where � is the total number of microstates. Then, the total energy of the system E = ∑
j p j E j is given by

the strain field represented by the tensor E, and β is the quenched-disorder parameter of the system [47,48]. In
the lattice constituted by osteons and their junctions, the increase in microcracking will lead to an increase in
disorder and, therefore, an increase in entropy. However, unlike thermomechanical systems where β = 1/T
the increase in entropy here is not associated with any change in temperature, but with the progression of other
dissipative and irreversible processes. The partition function allows obtaining the strain energy function that
coincides with the free Helmholtz energy density:

�(β, E) = − 1

β
ln Z(β, E) (2)

This function coincides with the SEDF, and from it, all the necessary constitutive relations can be derived.

2.1.2 Microstates, macrostates and energy levels

As previously stated, each load level carries a well-defined strain which is intrinsic to the corresponding
macrostate’s specific energy Ek . In addition, for each macrostate, the number of possible crack configurations
(microstates) in the osteon lattice will be determined. Consequently, Z(β, E) is defined by a sum over all
possible microconfigurations. As in most systems, the number of microstates increases as the total energy and,
consequently, the strain level increases. If the number of microstates or configurations compatible with each
energy level is known, however, Z can be rewritten as a sum over the various energy levels:

Z(β, E) =
∑

k

g(Ek)e
−βEk (E) (3)

where g(Ek) is a function that counts the number of cracking paths compatible with the energy level Ek (which
will be studied in the next section). Then, it follows that as the load increases, both the energy Ek and the



44 S. García-Vilana, D. Sánchez-Molina

TML increase, since each individual crack in the osteon lattice can take different paths. Thus, each macrostate
k specified by Ek implies a new stage of crack propagation that lengthens it. We assume that the energy of
each macrostate in expression (3) is given by Ek = kψ0, where k is the cracking number and ψ0 is the SEDF
of a transversely isotropic material (without cracking), calculable as a combination of the following invariants
[53,54]:

ψ0(E) = ψ0(I1(E), I2(E), I3(E); I4(E, a), I5(E, a)) (4)

where a is a vector field giving the preferential alignment direction of the osteons along the rib, and the
invariants Ii are the trace or linear invariant (I1), the quadratic invariant (I2), the determinant (I3), and the
linear and quadratic invariants representing transversal anisotropy (I4, I5):

I1(E) = tr(E)

I2(E) = 1
2 [tr2(E) − tr(E2)],

I3(E) = det(E)

I4(E, a) = a · Ea

I5(E, a) = a · E2a
(5)

Given the low strain values for cortical bone, any function of strain can be adequately approximated by a
polynomial of small degree. Because the highest order invariant I3 is cubic in strain tensor in this case, a
polynomial of degree three which is a combination of all the above invariants will be considered (as it is the
smallest degree that permits the use of all invariants):

ψ0 ≈ μ2 I
2
1 + μ3 I

3
1 + ν2 I2 + ν3 I1 I2 + ς3 I3 + ρ2 I

2
4 + ρ3 I

3
4 + τ2 I5 + τ3 I4 I5 (6)

where terms with degree higher than three in strain have not been considered due to the limited low values of
strain in bone, and μi , νi , ρi , τi are parameters of the model that must be fitted. The parameters with subscript
2 (�2) multiply quadratic in the strain components; those of subscript 3 (�3) multiply cubic in the strain. Note
that, unlike � in Eq. (2), ψ0 does not incorporate the progressive degradation of the specimen.

It is also worth noting that neither internal damage variables α nor evolution equations α̇ = f (α, E) are
specifically included [55]. This is due to the fact that, in a mechanical test with monotone loading at constant
velocity, as in our case, the equation of damage evolution is integrable and can be expressed only in terms of
longitudinal deformation ε. Use the chain rule for time derivative to see it:

dα

dt
= dα

dε
ε̇ = f (α, E(ε)) (7)

and E(ε) because of relationships (23) and (24). Integrating this last equation we have α = �(ε) = �̂(E). In
other words, we are not proposing a comprehensive constitutive model here [32,56], but rather a constitutive
relationship that can be compared to the tensile and bending tests we have conducted.

2.1.3 Counting microstates: possible paths for microcracks

With the above considerations, partition function (3) is constructed, which in turn allows computing the SEDF
� using expression (2), which finally gives the constitutive relation sought. This procedure requires first
calculating the numbers gk = g(Ek) that give the number of microstates compatible with the energy Ek of
each macrostate. The number gk is given by the number of possible paths for a crack in osteon lattice (number
of microstates compatibles with Ek and � = k�0).

Considering a lattice with osteons, separated by bonds corresponding to the osteon interface, microcracks
are considered to propagate along these interfaces, in a way that a TML � = k�0 developed in k steps.

Figure1 compares three regular lattices in order to calculate the number of paths gk for a specific cracking
number k or energy Ek . The first lattice is an orthogonal lattice,whose cells represent osteons and lines represent
interfaces between them. For each phase of crack advancement, there are three possible paths (Fig. 1a). The
total number of paths is 3 ·3 ·3 · · · = 3m , wherem is the total number of steps of propagation. However, cracks
in a material have a tendency to advance and not to make abrupt direction changes that result in a higher energy
level. Consequently, limiting the retreat of the crack advance (Fig. 1b), there are 2 · 2 · 2 · · · = 2m possible
paths (microconfigurations) compatible with a given TML �.

Analyzing a triangular lattice, the possible paths are 5·5·5 · · · = 5m , whereas these paths are 3·3·3 · · · = 3m

without backward movements (Fig. 1c, d). In a hexagonal lattice, there are 2 ·2 ·2 · · · = 2m paths in the general
case, but 2 · 1 · 2 · 1 · 2 · · · = (

√
2)m in the case for a crack that only advances (Fig. 1e, f).
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Fig. 1 Three idealized lattices:Orthogonal: a the crack encounters three possible paths gk = 3k b without backward movements;
the crack has two permissible directions such that gk = 2k . Triangular: c the crack has five possible paths gk = 5k , d the crack
has three permissible directions without backward movements, and gk = 3k . Hexagonal: e the crack has two possible paths
gk = 2k , f for no backward movement; there are 2 · 1 · 2 . . . possible paths and gk = (

√
2)k

According to the previous analysis, the number of possible paths is of the form gk = rk , where r is the
lattice parameter. In the lattices analyzed, r satisfies

√
2 ≤ r ≤ 3. The maximum number of advance steps

is defined as N (assuming the average cortical thickness is 0.8 mm and the diameter of osteons is 0.2 mm,
N ≈ 5). However, a lattice of osteons is less ideal than regularly analyzed lattices, so it will be established
that 1< r ≤ 3 and r and N will be determined from the fitting procedure, see Sect. 2.3.2.

2.1.4 Proposed model for microcracking

After obtaining the function gk = rk that defines the number of possible microcrack paths, partition function
(3) is given by:

Z(β, E) =
N∑

k=1

rke−βkψ0(E) = re−βψ0
1 − (re−βψ0)N

1 − re−βψ0
(8)

where the sum goes up to N , being N the total number of steps of crack advance (which cannot be infinite),
and Ek = kψ0. Clearly, Z can then be rewritten as a closed-form expression. Then, the SEDF � is obtained
by using (4) and deriving � = (1/β) ln Z . Thus, the stress tensor can be calculated as follows:

S(E) = ∂�(β, E)

∂E
= − 1

ψ0

∂ ln Z

∂β

∂ψ0

∂E
(9)

from Eqs. (2) and (8). Additional details related to the convenient change of derivation variable E to β are
described in appendix section 5.1. Using the same details of the appendix, it can be seen that the constitutive
relationships take the form:

S(E) = S̄(E)

(
1

1 − re−βψ0
− NrNe−βψ0N

1 − r N e−βψ0N

)
= S̄(E) · �(β,ψ0(E), N , r) (10)

where S̄ is the “crackless stress,” see Eq. (22), and � is the crack function that corrects S̄ to account for
microcracking effects. Moreover, ψ0 is the “crackless SEDF” defined in (6), β is the quenched-disorder
parameter, and N , r are parameters that define the possible paths that a crack can take in the osteon lattice;
specifically, r is the lattice parameter (1 < r ≤ 3) and N is of the same order as the number of osteon layers
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(N ≈ 5). Therefore, the parameters to be determined are θ = (μ2, μ3, ν2, ν3, ς3, ρ2, ρ3, τ2, τ3), which are
included in the strain energy function ψ0 along with the additional parameters β, N , r . Once these parameters
are fitted, the Canonical Ensemble Formalism allows computing the derivative of SEDF (2):

H(E, β) = β2 ∂�

∂β
= ln Z(E f , β) − β

∂ ln Z(E f , β)

∂β
(11)

In Sect. 3 explicit computations of the increment in entropy will be presented.

2.2 Materials and experimental setting

Author-obtained experimental data were used to evaluate the suitability of the proposedmodel. The experimen-
tal data are derived from both tensile tests of small specimens of cortical bone and bending tests of complete
ribs. These tests allowed the model’s parameters to be fitted, which enables the calculation of several additional
quantities, including entropy. The subsequent sections describe the material used, its origin, the specifics of
the mechanical tests and the mathematical procedure of numerical fitting.

Specimens of human ribs were obtained from forensic autopsies conducted at the Forensic Pathology
Service of the Legal Medicine and Forensic Science Institute of Catalonia (IMLCFC). According to the
protocol approved by the monitoring committee of the collaboration project between our research center and
the forensic institute, all specimens were obtained from individuals whose thorax-related deaths were not the
result of trauma.

Tensile and bending tests were performed with a MicroTEST EM2/20 (MicroTEST®, Madrid), and the force
was measured with a 500-N HBM S9M load cell attached to a Spider 8–30 acquisition system of HBM®

(Spider, Darmstadt). The strain rate was in both cases less than ε̇ = 0.02 sec−1 to reproduce nearly quasistatic
conditions. The tests were recorded with a high-speed (60 Hz) and high-resolution (megapixel) camera (PCO
1200s) for the subsequent processing of the images and the calculation of strain.

The displacement and strains were calculated using changes in the position of the specimen material points
from one image of the video to the next, allowing the creation of extremely accurate curves with minimal
experimental noise and the calculation of displacement and strain fields with high precision, using digital
image correlation (DIC), as described in Sect. 2.3.1.

2.3 Mechanical testing

In this section, the details of the mechanical tests, the number of specimens, and the experimental set used in
each case are provided:

• Uniaxial tensile tests. For the tensile tests, nT = 51 specimens (35 males and 16 females) aged 55±20
years (from 21 to 91 years) were used. According to the procedure described in [57–59], these ribs were
machined to obtain coupons from the anterior rib region. First, soft tissue was removed and rib cortical
slices were obtained with a low-speed diamond saw from the anterior portions of the rib. Then, two holes
of 2mmwere performed on the slices, at a distance of 20mm between each other (for centering of the slice
and fixation in the clamping system of the tensile test). Lastly, coupon shape was machined with a milling
machine and meticulously polished to ensure a constant gauge thickness. The specimens measured 28mm
in length and 8mm in width, with a gauge length of 6mm and a gauge width of 2mm and an approximate
thickness of 0.5 mm (Fig. 2a). This size is small enough to ensure a constant cross section in all the gauge
length of the specimen.

In the tensile tests, the coupons were placed in the machine and the deformation was increased until
the specimen was broken by the reference length. From the set of images of the video recorded during the
test, the displacements of various points on the specimen throughout the test were obtained through a DIC
procedure of Matlab®, according to the methodology of [59]. To do this, a rectangular mesh of points
was created in the reference length and the displacements of these points were determined during the test
(previously, a random dot pattern was painted on the specimen to identify the position of these points), see
Fig. 2b.
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Fig. 2 a Coupon dimensions for the specimens machined from rib cortical bone. b The initial grid used for defining a collection
of material points which will be tracked during the elongation of the specimen. Points are separated between them 50 pixels

• Plane Bending tests. Each rib was subjected to bending within a plane, using a methodology developed by
the authors previously [60]. Before the tests, soft tissue and costal cartilage were removed. The complete
ribs were placed in the plane of the machine, introducing their ends in a U-guide placed on the upper bench
and the outer central region in contact with the actuator that exerts the force. The upper guide was covered
with lubricant, and the rib ends were wrapped in polytetrafluoroethylene tape to minimize friction. Thus,
the ends of the rib could slide freely in the guide while it was pressed on the center of the rib, causing a
bending moment that produced a loss of curvature of the rib, which resulted in the appearance of a traction
zone and a compression zone. Moreover, each rib was placed between four safety rods, which have not
been in contact with the specimen. For the tests nB = 15 complete ribs (11 men and 4 women) from a
sample ranging in age from 26 to 62 years have been utilized (sample average 51±11 y. o).

As described in Sect. 2.3.1, both tests were captured on video and the frames were analyzed using DIC
methods, which enabled the placement of a series of reference points throughout the trial in order to determine
the displacement field and strain field.

2.3.1 Data processing and digital image correlation

This section describes the strain calculation for tensile and bending tests. It is possible in both instances
to determine stress and strain from two-dimensional images due to the absence of stress in the direction
perpendicular to the recording plane (explicit forms of the strain tensor are given in section 5.2). In both
situations, the position of a mesh of material points is explicitly measured. The displacement field is computed
using interpolation from a collection of measured point coordinates. By comparing the obtained displacements
to the initial coordinates of the points, it is possible to compute the deformation gradient and strain field
numerically.

As illustrated in Fig. 2, the uniaxial tensile tests use a mesh of orthogonal points. A DIC motion tracking
procedure identifies specific patterns around each point, and the location of each material point of the mesh
is determined for each instant of time (60 readings are made per second and 200 points are used, so it is easy
to interpolate in time and space with a high degree of precision). From the instantaneous point positions, the
displacements u(x)were determined, and the finite deformation theorywas applied to calculate the components
of the Green–Lagrangian strain tensor as follows:

Ei j = 1

2

(
∂ui
∂x j

+ ∂ui
∂x j

+
∑

k

∂uk
∂xi

∂uk
∂x j

)
(12)

for i, j ∈ {1, 2} [being x1 = x and x2 = y]. In this way, the longitudinal and transverse deformations
(Exx = Elong and Eyy = Ezz = Etrans, respectively), related to the applied stress level, were determined. The
stress was calculated at each time with Eq. (10) (it should be noted that even when we compute the real or
instant area, it is always close to the initial area, because cortical tissue strain is very low, typically 3%).
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Fig. 3 Experimental setting for the bending tests: the rib ends are inserted into the lubricated guide and the force is exerted in the
lower center area. With increasing force, the ends open freely. The four safety rods protect against slipping

Figure3 shows the experimental setting and the set of points used in the DIC procedure that gives the point
positions along the outline of the specimen. As before, motion tracking identifies the points in each frame as
the rib is deformed (the XY plane coincides with the frame plane). Thus, the displacements of various points
on the upper and lower contour of the specimen were determined and the displacements of the midline y(x)
between these contours were computed, which was considered as the barycentric line of the rib (it was verified
with a CT that the error committed between considering the barycentric line real and the median line was
3± 2.5% in the central zone). From the displacements and the current midline yt (x), the current curvature χt
of the midline was computed as:

χt = y′′
t (x)

[1 + y′
t
2
(x)]3/2 (13)

from this curvature, the strain εt was calculated using Eqs. (25) and (26). For this computation the Frenet-Serret
coordinates (ξ, η, ζ ) were used, following the procedure described in a previous work [60]. The midline is
the set of points with ξ = 0, while η is an orthogonal coordinate to midline (following the direction of the
normal vector n to midline), and ζ is the coordinate orthogonal to ξ - and η-coordinate lines (thus, ζ grows in
the direction of the binormal vector b to midline), see Fig. 8.

In section 5.2 of appendix, further details are given for the computation of coordinates and the strain tensor
for tensile and bending tests.

2.3.2 Fitting procedure

The force and strain were computed for each instant of time. These data are used to fit the model’s constituent
parameters: θ = (μi , νi , ρi , τi , ςi ) which appear in Eq. (6), along with the (r, N , β) which appear in partition
function (8). For the least squares problem, some penalty functions �K (θ; β, r, N ) are defined as a sum of
squares, which must be minimized numerically. In the case of tensile tests, the problem is somewhat simpler,
since it is possible to calculate the stress directly:

�T (θ; β, r, N ) =
m∑

t=1

[
S̄(t)
xx − Sxx (Ē

(t)
xx , Ē

(t)
yy ; θ , β, r, N )

]2
(14)

for minimization, aboutm ≈ 3500 different instants of time (this number depends on the specimen) were used.
For each instant, the experimental stress S̄(t)

xx = σt is computed. In addition, using a DIC procedure (see Sect.
2.3.1), the strains on the plane Ē (t)

xx and Ē (t)
yy were computed for each instant t ; then constitutive relationship

(10) allows obtaining Sxx (Ē
(t)
xx , Ē

(t)
yy ; θ , β, r, N ).

The fitting is somewhat different for tensile tests than for bending tests, because in the former it is possible
to calculate the tension directly from the force and area of the cross section. For bending tests, because it is
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Fig. 4 a Tensile tests: stress–strain experimental data (symbols) for three specimens and fittings to the model (lines). b Bending
tests: stress–strain curves for two specimens (dotted lines) and fittings to the model (continuous line)

not possible to use a Navier-like formula for a nonlinear material [60], a different penalty function was used,
which involved the bending moment Mb associated to the pushing force:

�B(θ;β, r, N ) =
N∑

j=1

[
M̄ (t)

b − Mb(χt ; θ , β, r, N )
]2

(15)

where the bending moment Mb(χt ; θ , β, r, N ) is a expression depending on the current curvature of the rib,
which can be computed by means of expression (27) in appendix Sect. 5.3.

3 Results

The suitability of the model was assessed by comparing the experimental curves from the mechanical tests
with the curves obtained by fitting the parameters of constitutive relationship (10). Stress and strain data were
obtained for tensile tests of nT = 51 coupons (dog-shaped specimens) of human rib cortical bone and for
nB = 15 entire 4th ribs. Five typical stress–strain curves for tensile and bending tests and a comparison with
the model fittings are presented in Fig. 4. It can be clearly seen that specimens exhibit a typical nonlinear
behavior, consisting in a loss of stiffness by strain increase, which is captured by the model in both tensile and
bending situations.

As it is shown in the same figure, the proposed stress–strain relationship was able to reproduce properly the
experimental stress–strain curves with high precision. Indeed, for all fittings, a correlation R2 > 0.9999 was
obtained. The stress–strain data were used to compute the constitutive parameters μi , νi , γi , ςi ;β, N , r , for
each specimen. Table 1 shows the average parameter values for tensile and bending tests. Moreover, the mean
values for both test types, divided in age groups, can be seen in Tables 2 and 3 of Appendix section 5.4. In
almost all instances, the estimation error for the parameters in bending tests is greater than that computed error
for tensile tests. This may be partially attributable to the size-dependent effects observed for the mechanical
properties of cortical bone [61], or to the limitations of bending tests [60].

In most cases, μ2, ρ2, β, N and r had positive values, whereas the remaining parameters had negative
values. In addition, r and N always took a value of N ≈ 3 and r ≈ 1.30, respectively.
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Table 1 Parameter values for the coupon specimens under uniaxial tensile tests fitted using the model proposed, in age groups

Test μ2 −μ3 −ν2 −ν3 β

Tensile 4428 ± 187 271820 ± 21699 4616 ± 191 137857 ± 19712 2.01 ± 0.17
Bending 4168 ± 311 62717 ± 31696 5891 ± 440 -11069 ± 205779 1.57 ± 0.15

Test ς3 ρ2 τ2 N r

Tensile 172842 ± 28252 6652 ± 336 5860 ± 338 3.08 ± 0.08 1.31 ± 0.03
Bending 375559 ± 118777 2732 ± 1363 2727 ± 5231 3.01 ± 0.20 1.37 ± 0.10

Fig. 5 a PCA of the set of parameters obtained, where CP1 represents the 38.8% of the variability and CP2 the 23.9%, and μ2
and ν2 are mainly aligned with CP1, while ρ2 and τ2 are mostly aligned with CP2, b comparison for the values of microcracking
parameters (β, N , r) obtained in tensile (T) and bending (B) tests

There is a clear trend of β to increase with age (see Table 2). This trend was supported by a linear regression
analysis, which revealed a statistically significant rise in β with age (p < 0.0001).

In order to comprehend the relationships between the constitutive parameters, a Principal Component
Analysis was conducted to examine the joint variability of the model’s constants in the sample [62]. Only four
Principal Components (PC) are required to account for the 80.5% of the observed variability in the sample,
with PC1 representing a 38.8% and PC2 a 23.9%. As seen in Fig. 5b, the largest contributions to PC1 are μ2
(18.2%) and ν2 (18.5%), whereas ρ2 (34.8%) and τ2 (33.7%) are the largest contributors to PC2.

The main influence of μ2 and ν2 shows that the coefficients of the first two invariants I1(E) and I2(E),
defined in Eq. (5), have a greater explanatory weight in the mechanical behavior. On the other hand, the major
influence of ρ2 and τ2 denotes that these coefficients of the invariants I4(E, a) and I5(E, a) that, in the case
of uniaxial stress, due to the particular characteristics of the application of the stress both multiply the axial
deformation, are significant in the mechanical response.

In addition, to estimate the irreversibility of themicrocracking process, a computation of the entropy change
was added and is displayed in Fig. 6a. As soon as the stress–strain curve is slanted downward, the model’s
computed entropy increases dramatically. This appears to confirm the hypothesis that softening due to loss of
stiffness is associated with irreversible changes within the cortical bone, as the amount of softening correlates
clearly with changes in entropy, as shown in the graph.

Figure6b depicts the change in entropy between β and a generic strain measurement ε. An increase in the
quenched-disorder parameter and/or the strain level results in an increment in entropy (the increase in entropy
has been calculated for each specimen as �H = H(E f , β) − H(0, β)).

In order to interpret these results, a regression analysis was performed with the model’s constant values.
For this purpose, the actual work to fracture W was compared to the ideal-elastic work to fracture (without
softening) We = Y E2

xx/2, where Y is the Young modulus. This allows the ratio w = W/We to be defined.
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Fig. 6 a Model fitting for one specimen and entropy increase �H computed from the model [light gray line, convex curve]; a
fast-growing curve for the entropy is seen once the stress–strain curve [black line] loses the linear trend, and microcracking and
disorder begin. b Representation of the variation of entropy with β and a generic deformation ε

In the absence of microcracking, w ≈ 1 is anticipated. This magnitude is significantly correlated with the
number of layers of osteons N (p-value < 0.001), the shape factor of the osteon lattice r (p-value < 0.0001),
the quenched-disorder parameter β (p-value < 0.01) and the entropy increase �H (p-value < 0.0001). In
addition, there is a significant correlation between the increase in entropy �H and the quenched-disorder
parameter β (p-value ≈ 0.01). Other relationships between the constitutive parameters have been identified
and will be discussed in the next section.

4 Discussion

A novel microcracking model of cortical bone, based on Statistical Mechanics, has been presented to predict
how the progression of themicrocracking process affects the stress–strain behavior (softening behavior). Given
the distribution of osteons, the model assumes that the cortical bone as a whole is a statistical ensemble of
osteons that can be modeled as a transversely isotropic material. The model provides an excellent fit to the
empirical stress–strain curves, allowing for the computation of the degree of irreversibility with the progression
of microcracking via entropy increase.

Unlike many other published theoretical models, the proposed model has been applied to a specific exper-
imental data obtained by the authors. A large sample of cortical bone specimens is used in the experimental
testings: nT = 51 were tested under tensile conditions and nB = 15 which were tested under bending condi-
tions. The experimental results confirmed previous findings on the nonlinear behavior of cortical bone under
axial tensile situations and more complex situations [23,38,42,58]. A quasi-linear elastic behavior is found
for small stress, and a loss of stiffness (strain softening) is observed after a certain level of strain. In the model,
this strain-induced loss of stiffness is predicted to be associated with internal microcracking process.

The fitting of the constitutive parameters of the model to experimental data from human rib cortical bone
has been used to examine the suitability of the model. The constitutive parameters obtained for both types of
tests were similar, see Fig. 5b.

On the other hand, since microcracking is a dissipative and irreversible process, it is expected to lead to
an increase in entropy. The fitted values of the parameters were used to calculate the entropy increment, by
means of Eq. (11). In the experimental curves of Fig. 4, it can be seen that when the stress–strain behavior is
approximately linear, the microcracking is practically null, and only when microcracking becomes important
it is observed that the stress–strain curve becomes concave (d2σ/dε2 < 0), and thus the entropy increases.
This confirm that, when the stress–strain curve shows the beginning of a marked loss of stiffness and a loss
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Fig. 7 Scatterplot of the quenched-disorder parameter β, related to preexisting microcracking in cortical bone tissue, against age

of linearity, entropy simultaneously increases rapidly. This fact suggests that the loss of stiffness is caused by
microcracking (asmeasured by the increase in entropy�H ); therefore, themodel predicts a clear correlation of
both phenomena. The prediction of this correlation suggests that the approach based on Statistical Mechanics
formulation is promising: it allowed to calculate numerically the entropy, while predicting accurately the
stress–strain behavior and showing the interrelation between the two phenomena. In the previous section,
it was mentioned that a significant correlation (p-value < 0.0001) was found between the ratio of work to
fracture with and without softening 0 < w < 1 which directly accounts for the existence of softening, and the
value of entropy changes �H . This correlation is what allows us to state that the model adequately represents
the softening due to microcracking and in a manner consistent with the thermodynamical framework. In
addition, an adequate good fitting between all the experimental curves and the modeled curves is observed,
thus accomplishing one of the main objectives of this research: to propose a nonphenomenological model,
which can explain macroscopic stress–strain curves from a reasonable account of the microstructure modeling.
Unlike other previous microcracking models, the proposed model accounts for finite strain, tissue anisotropy
and thermodynamic irreversibility.

A clear trend in the variation of the quenched-disorder parameter β is observed, showing a significant
increase of its value with age, see Fig. 7. This suggests that the initial quenched-disorder parameter for elderly
people is associated with a greater contribution of more initial states than in young people, which could explain
the lower yield stress and work to fracture values (strain energy density) observed in some studies [58]. This
implies that the �, which is the term in parentheses in Eq. (10), is decreasing in β, i.e.,

∂�

∂β
= ∂

∂β

(
1

1 − re−βψ0
− NrNe−βψ0N

1 − r N e−βψ0N

)
< 0 (16)

so an increase in β entails a lower stress level, given a strain level and other constants being equal. This
prediction is reflected in the experimental data that show the expected trend for elderly people. This increase
in the initial microcracking or disorder parameter agrees with the direct micrographical observations of other
authors that showed that an increase in microcracking is responsible for lower mechanical properties, even in
weaker bones the crack path is less deflected [43,63]. Note that the term � in Eq. (10) matches the expected
value of the TML = k�0. To see this, use the probability distribution pk given by (1) for the cracking number
k, then we have:

TML = E(k�0) =
N∑

k=1

k pk =
N∑

k=1

k
gke−βkψ0

Z
= − 1

ψ0

∂ ln Z

∂β
= � (17)

That is, Eq. (16) is nothing more than the statement that a higher initial quenched-disorder parameter β will
make the total microcracked length (TML) and grow faster the higher the β. And therefore, we have that in
elderly people the microcracking will grow faster than in young people and that would explain loss of bone
resistance with age, which is precisely what is observed in microphotographs by [63].
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Moreover, the sharp decrease in thework to fracture observed in elderly people [58,59], could be interpreted
as the existence of much more extensive initial microcracking in elderly people (higher β); in fact, a significant
correlation (p-value < 0.01) was found between β and the factor estimating softening by microcracking w.
In addition, the higher is β, the higher is the final increase in entropy �H (p-value ≈ 0.01). All these facts
are consistent with the initial assumptions of the model.

The proposed model was taking into account the prediction of the possible configurations of a microcrack
by means of the function g(Ek) = rk , being r the lattice parameter and 1 ≤ k ≤ N the possible energy levels
Ek directly associated with the length of the microcrack (here assumed to be computed from the number of
osteon limits crossed). Themean value of r was 1.31±0.22, within the range 1 < r ≤ 3 expected from the three
idealized nets presented. This value is lower than those of the hexagonal lattice, which is the most tortuous
net of those proposed, suggesting that the propagation of a microcrack through cortical bone is still more
difficult than this idealized lattice. This could be related to the irregularity of the cortical bone microstructure,
the variation of osteon diameters and the lower energy needed to propagate through certain paths that would
be preferably crossed by the microcrack. Moreover, N represents the number of propagation stages that the
crack follows during its progress, related to the number of osteons that have place in the net, and due to the
finite thickness of cortical bone, the number of osteons crossed by the microcrack was expected to be low. The
mean value of N (3.08±0.61) is consistent with the previous discussion, as the cross section of the cortical
bone coupons was approximately 0.5 mm thick and 2mm width, and the mean diameter of an osteon is 0.20
mm.

On the other hand, in its current form, this study does not provide an explanation for the observed variance
in the parameters (μi , νi , ρi , τi , ςi ) of equation (6). The relationship between these parameters andmeasurable
densimetric magnitudes is a desirable goal for future research [64]. Due to the limited experimental design and
lack of specific data, this study leaves unanswered a substantial number of potentially intriguing questions.
Adding densimetric measurements to the mechanical data could have certainly clarified the reason for the
observed variations in the model’s parameters.

A limitation of this study is that it focuses exclusively on understanding the effect of microcracking, so
other important factors such as local bone mineral density [65–67], density distribution [68] and its effect on
mechanical properties are left out. These are important factors, which should be taken into account in a more
detailed model of the cortical bone [69–71]. Similarly, it would be desirable to use a generalization of this
model in cases of nonmonotonic load and where the degree of microcracking could be determined by direct
observation using micrographs [43,72,73] or other alternative techniques such as acoustic emission [40].

Finally, despite the fact that other studies have demonstrated that the ultimate stress of rupture of biological
tissues is notoriously influenced by strain rate [74–77], our model provides no insight into the strain rate and its
effect on the ease with which microcracking forms. In fact, in rib bone the traumatic fracture usually happens
with much faster loading rates (as a nonweight bearing site, rib bone fracture mechanism and nanostructure
might essentially be different from the clinically relevant site such as femoral neck). For these reasons, a
viscoelastic generalization of the model, following the approach of other authors who have extensively studied
such aspects [18,78,79], may clarify the effect of strain rate in these situations.
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5 Appendix

5.1 Stress–strain constitutive relationships

This section presents the computational details for stress–strain relationship (10) and the entropy equation.
The former is obtained by deriving the SEDF �(β, E) with respect to the strain tensor E as stated in Eq. (9).
Taking into account the form of � given by expression (2), where the partition function Z is given by (8), the
explicit calculation of the derivative of SEDF with respect to the strain tensor is:

S = − 1

βZ

∂Z

∂E
= − 1

βZ

∑

k

gk(−βk)
∂ψ0(E)

∂E
e−βψ0(E)k = 1

Z

∂ψ0

∂E

∑

k

kgke
−βψ0k (18)

where ∂ψ0/∂E = S̄ is the mechanical stress without microcracking. However, for computational purposes, it
is more interesting to calculate the summation as a closed-form expression. For this purpose, we derive ln Z
with respect to β instead of E:

∂ ln Z

∂β
= 1

Z

∂Z

∂β
= 1

Z

∑

k

gk(−kψ0)e
−βψ0k = − 1

Z
ψ0

∑

k

kgke
−βψ0k (19)

Note that this last relationship (19) differs from (18) in a factor −S̄/ψ0, such that:

S = − 1

β

∂ ln Z

∂E
= − 1

ψ0

∂ ln Z

∂β
S̄ (20)

obtaining then the same result of (18) by deriving with respect to β instead of E. This allows us to write the
explicit form of S in closed form using Z in the closed form of (8), such that:

S = − S̄

ψ0

∂

∂β

[
ln

(
re−βψ0

1 − (re−βψ0)N

1 − re−βψ0

)]
= S̄

(
1

1 − re−βψ0
− NrNe−βψ0N

1 − r N e−βψ0N

)
(21)

which is the stress–strain relationship sought, which has the general form S = S̄�(β, E), N , r), with � being
the function that corrects the “uncracked stress” to include the effect of crack propagation on the mechanical
behavior.

The components of the “uncracked stress” can be obtained deriving the functionψ0, namely S̄ = ∂ψ0/∂E.
The explicit derivations are:

S̄xx = (
(2α1 + γ1)I1 + 3α2 I

2
1 + γ2(I

2
1 + I2)

) − (γ1 + γ2 I1)Exx + νEzz Eyy + . . .

· · · + (
2κ1 I4 + 3κ2 I

2
4 + ς2 I5

)
a2x + 2 (ς1 + ς2 I4) (Exxax + Exyay)ax (22a)

S̄yy = (
(2α1 + γ1)I1 + 3α2 I

2
1 + γ2(I

2
1 + I2)

) − (γ1 + γ2 I1)Eyy + νEzz Exx + . . .

· · · + (
2κ1 I4 + 3κ2 I

2
4 + ς2 I5

)
a2y + 2 (ς1 + ς2 I4) (Exyax + Eyyay)ay = 0 (22b)

S̄zz = (
(2α1 + γ1)I1 + 3α2 I

2
1 + γ2(I

2
1 + I2)

) − . . .

· · · − (γ1 + γ2 I1)Ezz + ν(Exx Eyy − E2
xy) = 0 (22c)

S̄xy = −(γ1 + γ2 I1)Exy − νEzz Exy + (
2κ1 I4 + 3κ2 I

2
4 + ς2 I5

)
axay + . . .

· · · + (ς1 + ς2 I4) (Exy + (Exx + Eyy)axay) (22d)

These expressions are used for equations (14) and (28).
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Fig. 8 Curvilinear Frenet-Serret coordinates for the points of a rib in the bending plane

5.2 Explicit forms of strain and stress tensor for tensile and bending tests

In both types of tests, the specimen is subjected to a plane stress loading case. For the tensile tests, the
Green–Lagrangian strain tensor and the second Piola–Kirchhoff stress tensor take the forms:

E(t) =

⎡

⎢⎢⎣

εt 0 0

0 −ν̄(εt )εt 0

0 0 −ν̄(εt )εt

⎤

⎥⎥⎦ S(t) =

⎡

⎢⎢⎣

σt 0 0

0 0 0

0 0 0

⎤

⎥⎥⎦ (23)

where ν̄(·) is a function that accounts for the Poisson’s effect (for a nonlinear material the Poisson’s ratio is no
longer constant). For the uniaxial tensile test we have that the longitudinal stress is σt = Ft/(λt A0), where Ft
is the tensile force, λt the longitudinal stretch, and A0 the initial cross-sectional area. For the bending test and
using curvilinear Frenet-Serret coordinates (ξ, η, ζ ) [60], see Fig. 8, then strain and tensors take the forms:

E(t) =

⎡

⎢⎢⎣

εt γt 0

γt −ν̄(εt )εt 0

0 0 −ν̄(εt )εt

⎤

⎥⎥⎦ S(t) =

⎡

⎢⎢⎣

σt τt 0

τt 0 0

0 0 0

⎤

⎥⎥⎦ (24)

Because both εt and γt are proportional to the applied load, it turns out that we have γt ∝ εt . For long bones as
the human ribs, the tangential stress τt is much lower than the normal stress σt (indeed, τt < 0.07σt [60]), so
they play a minor role in microcracking and fracture. In addition, we have that the longitudinal strain is given
by:

εt = 1

2

[
1 − (1 − ηχ0)

2

(1 − �tηχt )2

]
(25)

For small strain, we obtain that εt ∝ (χt − χ0), so for bending tests the strain is initially proportional to
the change of curvature. In the above formula, �t is a factor taking into account the cross-section distortion
occurred during the deformation process that can be computed as [60]:

�t = 1 − χη

1 − χ0η

[
1 + (1 + ν̄)

(
(1 − χη)2

(1 − χ0η)2
− 1

)]−1/2

(26)
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Fig. 9 Calculation diagram for the bending moment, indicating the relevant reactions and distances: at right horizontal distance,
bt left horizontal distance

5.3 Computation of the bending moments

In this section we explain the computation for the numerical value of the bending moment M̄ (t)
b and for the

bending moment as a function of the model’s parameters Mb(χt ; θ , β, r, N ), both appearing in Eq. (15).
The value of the bending moment is given by M̄ (t)

b = RLat = Ftatbt/(at +bt ) as can be seen in Fig. 9. On
the other hand, the bending moment as a function of the parameter requires the computation of the following
integral over the cross-section �:

Mb(χt , θ , β, r, N ) =
∫∫

�

σ̂ (χt , θ , β, r, N ; η)η dηdζ (27)

where the function σ̂ is defined as:

σ̂ (χt , θ , β, r, N ; η) =
(

1

1 − re−βψ0
− NrNe−βψ0N

1 − r N e−βψ0N

)
· S̄xx (εt (χt , η), θ) (28)

being S̄xx the first function in Eq. (22), and εt (χt , η) the strain given by Eq. (25).

5.4 Values for the parameters of the model for tensile and bending tests

In this section, the mean and deviation values for the different parameters, both for tensile and bending tests,
are shown, divided in age groups. Note that in both Tables 2 and 3, the value γ3(= ρ3 + τ3) appears, as it is not
possible to distinguish the effects of the terms ρ3 I 34 and τ3 I 24 I5 of equation (6) in tensile and bending tests. To
differentiate between the two parameters, shear or torsion tests would have been necessary, which was beyond
the scope of this study.

In general, in Tables 2 and 3, both the sign and order of magnitude of the parameters are consistent, with
slightly larger errors for bending tests. In particular, the parameters associated with second-order terms in the
strain (μ2, ν2, ρ2, τ2) as well as the crack parameters (β, N , r) obtained for tensile test are very similar to
those obtained for bending tests for all age groups. On the other hand, it is also observed that the third-order
parameters (�3) have larger error estimates, and it is precisely in two of these parameters, γ3 and ν3, where
sign differences are observed for certain age groups. We believe that these discrepancies are the result of a
greater estimation error in the cubic terms of strain Eq. (6).
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Table 2 Parameter values for the coupon specimens under uniaxial tensile tests fitted using the model proposed, in age groups

Age μ2 −μ3 −ν2 −ν3 β

[<30] 4492 ± 201 326806 ± 54464 4668 ± 210 30771 ± 12640 0.55 ± 0.21
[31-40] 4960 ± 738 272012 ± 41659 5160 ± 757 92286 ± 16285 1.56 ± 0.26
[41-60] 4688 ± 215 305135 ± 49514 4872 ± 216 198814 ± 69460 1.94 ± 0.18
[61-70] 3775 ± 284 170507 ± 30125 3942 ± 268 144837 ± 37166 2.37 ± 0.35
[71-80] 4230 ± 464 395906 ± 94217 4436 ± 495 170809 ± 80324 2.24 ± 0.59
[81-91] 4551 ± 407 251769 ± 51059 4756 ± 430 171374 ± 42211 3.02 ± 0.47

Age −ς3 ρ2 −τ2 γ3 N r

[<30] 328133 ± 66486 7203 ± 1016 5895 ± 977 25845 ± 5262 2.82 ± 0.1 1.32 ± 0.03
[31-40] 212831 ± 60012 6437 ± 695 5523 ± 787 23238 ± 11972 3.02 ± 0.3 1.44 ± 0.09
[41-60] 139743 ± 46559 6161 ± 670 5313 ± 801 28958 ± 9143 2.84 ± 0.2 1.25 ± 0.04
[61-70] 52113 ± 22006 7255 ± 445 6512 ± 429 16193 ± 6577 3.38 ± 0.1 1.31 ± 0.05
[71-80] 294313 ± 152776 7856 ± 1709 7246 ± 1531 32415 ± 14889 3.37 ± 0.1 1.25 ± 0.04
[81-91] 133613 ± 61536 5254 ± 786 4854 ± 828 30600 ± 10389 2.97 ± 0.2 1.27 ± 0.05

Table 3 Parameter values for the bending specimens fitted using the model proposed, in age groups

Age μ2 −μ3 −ν2 −ν3 β

[<30] 3973 ± 683 75343 ± 121095 5562 ± 898 −187294 ± 754607 0.53 ± 0.12
[31-50] 4656 ± 254 81328 ± 20913 6688 ± 140 101389 ± 236745 1.54 ± 0.33
[51-60] 4481 ± 467 72332 ± 41074 6266 ± 665 51826 ± 292806 1.76 ± 0.16
[>60] 3136 ± 644 16253 ± 114060 4580 ± 1037 −25591 ± 674284 1.75 ± 0.26

Age −ς3 ρ2 −τ2 γ3 N r

[<30] 372662 ± 499532 7689 ± 887 7494 ± 1048 −37949 ± 226160 2.82 ± 0.10 1.15 ± 0.01
[31-50] 421694 ± 113268 5875 ± 515 5829 ± 375 −8576 ± 77322 3.35 ± 0.45 1.15 ± 0.01
[51-60] 401107 ± 180102 3996 ± 1450 3853 ± 1496 27859 ± 86411 2.65 ± 0.18 1.45 ± 0.16
[>60] 278603 ± 311921 4217 ± 1511 4471 ± 1143 −25465 ± 180857.7 3.27 ± 0.79 1.44 ± 0.29
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