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Abstract The objects of consideration are thin linearly thermoelastic Kirchhoff–Love-type circular cylindrical
shells having a periodically microheterogeneous structure in circumferential direction (uniperiodic shells).
The aim of this contribution is to formulate and discuss a new averaged mathematical model for the analysis
of selected dynamic thermoelasticity problems for the shells under consideration. This so-called combined
asymptotic-tolerancemodel is derived by applying the combinedmodelling including the consistent asymptotic
and the tolerance non-asymptotic modelling techniques, which are conjugated with themselves into a new
procedure. The starting equations are the well-known governing equations of linear Kirchhoff–Love theory
of thin elastic cylindrical shells combined with Duhamel–Neumann thermoelastic constitutive relations and
coupled with the known linearized Fourier heat conduction equation. For the periodic shells, the starting
equations have highly oscillating, non-continuous and periodic coefficients, whereas equations of the proposed
model have constant coefficients dependent also on a cell size.

Keywords Thermoelasticity problems · Uniperiodic cylindrical shells · Combined asymptotic-tolerance
modelling

1 Introduction

Thin linearly thermoelastic Kirchhoff–Love-type circular cylindrical shells with a periodically micro-
inhomogeneous structure in the circumferential direction are objects of consideration. Shells of this kind
are termed biperiodic. At the same time, the shells have constant structure in axial direction. By periodic
inhomogeneity we shall mean periodically varying thickness and/or periodically varying inertial, elastic and
thermal properties of the shell material. We restrict our considerations to those uniperiodic cylindrical shells,
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Fig. 1 Fragment of the shell reinforced by two families of uniperiodically spaced ribs

which are composed of a large number of identical elements. Moreover, every such element, called a periodic-
ity cell, can be treated as a thin shell. Typical examples of such shells are presented in Figs. 1 (stiffened shell)
and 2 (a shell composed of two kinds of periodically distributed materials).

Thermoelastic problems of periodic structures (shells, plates, beams) are described by partial differential
equations with periodic, highly oscillating and discontinuous coefficients. Thus, these equations are too com-
plicated to constitute the basis for investigations of the engineering problems. To obtain averaged equations
with constant coefficients, many different approximate modelling methods for structures of this kind have been
formulated. Periodic cylindrical shells (plates) are usually described using homogenized models derived by
applying asymptotic methods. These asymptotic models represent certain equivalent structures with constant
or slowly varying rigidities and averaged mass densities. Unfortunately, the asymptotic models neglecting
the effect of a periodicity cell size on the overall shell behaviour (the length-scale effect). The mathematical
foundations of this modelling technique can be found in Bensoussan et al. [1], Jikov et al. [2]. Applications
of the asymptotic homogenization procedure to modelling of stationary and non-stationary phenomena for
microheterogeneous shells (plates) are presented in a large number of contributions. From the extensive list on
this subject we can mention paper by Lutoborski [3] and monographs by Lewiński and Telega [4], Andrianov
et al. [5].

The length-scale effect can be taken into account using the non-asymptotic tolerance averaging technique.
This technique is based on the concept of the tolerance relations related to the accuracy of the performed
measurements and calculations. The mathematical foundations of this modelling technique can be found in
Woźniak and Wierzbicki [6], Woźniak et al. [7,8] Ostrowski [9]. A certain extended version of the tolerance
modelling technique has been proposed by Tomczyk and Woźniak in [10]. For periodic structures, governing
equations of the tolerance models have constant coefficients dependent also on a cell size. Some applications
of this averaging method to the modelling of mechanical and thermomechanical problems for various periodic
structures are shown in many works. We can mention here monograph by Tomczyk [11] and papers by
Tomczyk and Litawska [12–14], Tomczyk et al. [15–18], where the length-scale effect inmechanics of periodic
cylindrical shells is investigated; papers by Baron [19], where dynamic problems of medium thickness periodic
plates are studied and byMarczak and Jędrysiak [20], Marczak [21,22], where dynamics of periodic sandwich
plates is analysed; papers by Jędrysiak [23–25], which deal with stability of thin periodic plates; papers by
Łaciński and Woźniak [26], Rychlewska et al. [27], Ostrowski and Jędrysiak [28], Kubacka and Ostrowski
[29], where problems of heat conduction in conductorswith periodic structure are analysed. Let us alsomention
papers by Tomczyk and Gołąbczak [30], Tomczyk et al. [31,32], which deal with coupled thermoelasticity
problems respectively for thin cylindrical shells with micro-periodic structure in circumferential direction
(uniperiodic shells) and for thin cylindrical shells with micro-periodic structure in circumferential and axial
directions (biperiodic shells). The extended list of references on this subject can be found in [6–9,11].

The tolerance averaging technique was also adopted to formulate mathematical models for analysis of
various mechanical and thermomechanical problems for functionally graded solids, e.g. for heat conduction in
longitudinally graded hollow cylinder byOstrowski andMichalak [33,34], for thermoelasticity of transversally
graded laminates by Pazera and Jędrysiak [35], Pazera et al. [36], for dynamics for functionally graded annular
plates by Wirowski and Rabenda [37], for dynamics or stability of functionally graded thin cylindrical shells
by Tomczyk and Szczerba [38–41].
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Fig. 2 Fragment of the shell composed of two materials periodically and densely distributed in circumferential direction

Let us note, that the comprehensive review of the literature on the existing theories dealing with modelling
and analysis of functionally graded structures is presented by Sofiyev [42]. In this article, analytical solutions
to various dynamic and stability problems for such structures, e.g. for functionally graded sandwich or layered
conical shells, are discussed in detail.

The aim of this contribution is to formulate and discuss a new averagedmathematical model for the analysis
of selected dynamic thermoelasticity problems for the shells under consideration. This so-called combined
asymptotic-tolerance model is derived by applying the combined modelling [8,9] including the consistent
asymptotic and the tolerance non-asymptotic modelling techniques, which are conjugated with themselves
into a new procedure.

The starting equations are the well known governing equations of linear Kirchhoff–Love theory of thin
elastic cylindrical shells combined with Duhamel–Neumann thermoelastic constitutive relations and coupled
with the known linearized Fourier heat conduction equation, in which the heat sources are neglected. For the
micro-periodic shells under consideration, the starting equationsmentioned above have highly oscillating, non-
continuous and periodic coefficients. Contrary to the starting equations, governing equations of the averaged
model proposed here have constant coefficients. Moreover, some of them depend also on a characteristic
cell length dimension. Hence, this model makes it possible to study the effect of a microstructure size on the
thermoelastic shell behaviour (the length-scale effect). This effect plays an important role in many special
dynamic thermoelasticity problems in micro-periodic structures.

The combined modelling will be realized in two steps. The variational approach to the asymptotic and
tolerance modelling of microheterogeneous media will be applied, cf. [8,9]. The first step is based on the
consistent asymptotic averaging of integral functional describing thermoelastic behaviour of the shells and
then on using the extended stationary action principle [8,9]. Asymptotic (macroscopic) model obtained in this
step has constant coefficients, but independent of the period length. The second step is based on the tolerance
averaging of integral functional describing thermoelastic behaviour of the shells and then on using the extended
stationary action principle. It is worth mentioning that the asymptotic or tolerance model equations cannot
be derived from the principle of stationary action in its classical form, because heat conduction equation
contains the odd derivatives of unknown functions with respect to time argument. The tolerance microscopic
model obtained in the second step of the combined modelling has constant coefficients. Moreover, some of
these coefficients depend on a cell size. Asymptotic and tolerance models are coupled with each other under
assumption that in the framework of the macroscopic model the solutions to the problem under consideration
are known.

Note that a new mathematical asymptotic-tolerance model of selected dynamic thermoelasticity problems
for thin cylindrical shells with two-directional periodic microstructure in directions tangent to the shell mid-
surface (biperiodic shells) has been proposed by Tomczyk et al. [32]. However, this model does not make it
possible to analyse thermoelasticity problems of uniperiodic shells being objects of considerations here. In the
tolerance approach applied in the combined asymptotic-tolerance modelling, uniperiodic shells are not special
cases of biperiodic ones. The tolerance (microscopic) model for uniperiodic shells obtained in the second step
of the combined modelling and that of biperiodic shells have to be led out independently. It follows from the
fact that the modelling physical reliability conditions for uniperiodic shells are hold only in one periodicity
direction, whereas for biperiodic shells these conditions are hold in two periodicity directions tangent to the
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shell midsurface. It means that the modelling physical reliability conditions for uniperiodic shells are less
restrictive than pertinent conditions for biperiodic shells. Similarities and differences between the combined
model for uniperiodic shells proposed here and the corresponding combined model for biperiodic shells pre-
sented in [32] will be discussed. It will be shown that tolerance part of the combined model for uniperiodic
shells is more complicated than tolerance part of the combinedmodel for biperiodic shells. It will be shown that
microscopic equations for uniperiodic shells contain a lot of length-scale terms, which do not have counterparts
in the microscopic equations for biperiodic shells.

As examples, two special length-scale problems will be analysed. The first of them refers to the derivation
of formula for the frequency of the cell-dependent transversal free micro-vibrations. The second one deals with
investigations of the effect of a cell size on the shape of initial distributions of temperature micro-fluctuations
caused by a micro-periodic structure of the shells under consideration.

Note, that the combined asymptotic-tolerance model can also be derived by applying the orthogonaliza-
tion approach to the asymptotic and tolerance modelling of microheterogeneous media. The orthogonalization
method is based on the asymptotic/tolerance averaging of the partial differential equations describing thermoe-
lasticity behaviour of themicro-periodic shells under consideration and then on using the residual orthogonality
conditions [6,9,10].

The periodic shells being objects of consideration in this contribution arewidely applied in civil engineering,
most often as roof or bridge girders. They are also widely used as housings of reactors and tanks. Periodic
shells having small length dimensions are elements of air-planes, ships and machines.

2 Formulation of the problem: starting equations

We assume that x1 and x2 are coordinates parametrizing the shell midsurface M in circumferential and
axial directions, respectively. We denote x ≡ x1 ∈ � ≡ (0, L1) and ξ ≡ x2 ∈ � ≡ (0, L2),
where L1, L2 are length dimensions of M, cf. Figs. 1 and 2. Let O x̄1 x̄2 x̄3 stand for a Cartesian orthog-
onal coordinate system in the physical space E3 and denote x̄ ≡ (x̄1, x̄2, x̄3). Let us introduce the
orthonormal parametric representation of the underformed cylindrical shell midsurface M by means of
M ≡ {

x̄ ∈ E3 : x̄ = r̄
(
x1, x2

)
,
(
x1, x2

) ∈ � × �
}
, where r̄(·) is the smooth invertible function such that

∂ r̄/∂x1·∂ r̄/∂x2 = 0, ∂ r̄/∂x1·∂ r̄/∂x1 = 1, ∂ r̄/∂x2·∂ r̄/∂x2 = 1.Note, that derivative ∂ r̄/∂xα ,α = 1, 2, should
be understood as differentiation of each component of r̄ ∈ E3, i.e. ∂ r̄/∂xα = [∂ r̄1/∂xα, ∂ r̄2/∂xα, ∂ r̄3/∂xα].

Let d(x), r stand for the shell thickness and the midsurface curvature radius, respectively.
Throughout the paper, indices α, β,…run over 1, 2 and are related to midsurface parameters x1, x2,

summation convention holds. Partial differentiation related to xα is represented by ∂α , where ∂α = ∂/∂xα .
Moreover, it is denoted ∂α...δ ≡ ∂α . . . ∂δ . Differentiation with respect to time coordinate t ∈ I = [t0, t1] is
represented by the overdot.

Let aαβ and aαβ stand for the covariant and contravariant midsurface first metric tensors, respectively.
Under orthonormal parametrization introduced on M , aαβ and aαβare unit tensors. Denote by bαβ the covariant
midsurface second metric tensor. Under orthonormal parametrization introduced on M , components of tensor
bαβ are: b22 = b12 = b21 = 0, b11 = −r−1.

The basic cell 	 and an arbitrary cell 	(x) with the centre at point x ∈ �	 are defined by means of:
	 ≡ [−λ/2, λ/2], 	(x) ≡ x + 	 , �	 ≡ {x ∈ � : 	(x) ⊂ �}, where λ ≡ λ1 is a cell length dimension in
x ≡ x1-direction, cf. Figs. 1 and 2. Period λ, called the microstructure length parameter, satisfies conditions:
λ/ sup

x∈�

d(x) � 1, λ/r � 1 and λ/L1 << 1.

It is assumed that the cell 	 has a symmetry axis for z = 0, where z ≡ z1 ∈ [−λ/2, λ/2]. It is also
assumed that inside the cell the geometrical, elastic, inertial and thermal properties of the shell are described
by even functions of argument z.

Denote by uα = uα(x, ξ, t), w = w(x, ξ, t), (x, ξ) ∈ � × �, t ∈ I, the shell displacements in direc-
tions tangent and normal to M , respectively. Elastic properties of the shell are described by shell stiffness
tensors Dαβγ δ(x), Bαβγ δ(x), x ∈ �. Let μ(x) stand for a shell mass density per midsurface unit area. In the
thermoelasticity problems discussed in this contribution, the external forces tangent and normal to M will be
neglected.

Denote by θ(x, ξ, t), (x, ξ, t) ∈ � × � × I, the temperature field treated as the temperature increment
from a certain constant reference temperature T0 (by reference temperature we shall mean the zero stress
temperature). It is assumed that θ/T0 � 1. Let d̄αβ(x), x ∈ �, stand for the membrane thermal stiffness
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tensor (tensor of thermoelastic moduli: d̄αβ = Dαβγ δαγ δ , where αγ δ are coefficients of thermal expansion).
Denote by K αβ(x) and c(x), x ∈ �, the tensor of heat conductivity and the specific heat, respectively. The
heat sources will be neglected. For biperiodic shells, Dαβγ δ(x), Bαβγ δ(x), μ(x), d̄αβ(x), K αβ(x), c(x) are
periodic, highly oscillating and non-continuous functions with respect to argument x ∈ �.

It is assumed that the temperature along the shell thickness is constant. From this restriction it follows that
only the coupling between temperature field θ and membrane stresses occurs (this coupling is described by
tensor d̄αβ(x)), while the coupling of temperature and bending stresses is absent.

The starting equations are the well-known governing equations of linear Kirchhoff–Love theory of thin
elastic cylindrical shells combined with Duhamel–Neumann thermoelastic constitutive relations and coupled
with the known linearized Fourier heat conduction equation, in which the heat sources are neglected [43–47].
Thus, the starting equations consist of:

(a) the Duhamel–Neumann stress–strain-temperature relations

nαβ(x, ξ, t) = Dαβγ δ(x)εγ δ(x, ξ, t) − d̄αβ(x)θ(x, ξ, t),
mαβ(x, ξ, t) = Bαβγ δ(x)κγ δ(x, ξ, t), (x, ξ, t) ∈ � × � × I,

(1)

where

εαβ = 1

2
(∂βuα + ∂αuβ) − bαβw, καβ = −∂αβw, (2)

b) the dynamic equilibrium equations

∂βn
αβ − μaαβ üβ = 0, ∂αβm

αβ + bαβn
αβ − μẅ = 0, (3)

which after combining with (1) and (2) are expressed in displacement fields uα, w and temperature field θ

∂β(Dαβγ δ∂δuγ ) + r−1∂β(Dαβ11w) − ∂β(d̄αβθ) − μaαβ üβ = 0,
r−1Dαβ11∂βuα + ∂αβ(Bαβγ δ∂γ δw) − r−1d̄11θ + r−2D1111w + μẅ = 0,

(4)

c) the linearized heat conduction equation based on the Fourier law coupled with (4)

∂α(K αβ∂βθ) − cθ̇ = T0(d̄
αβ∂α u̇β + r−1d̄11ẇ). (5)

We recall that bαβ in (2), (3) is the secondmetric tensor of the shell midsurface; under orthonormal parametriza-
tion introduced on M , components of tensor bαβ are: b22 = b12 = b21 = 0, b11 = −r−1.

Equations (4) and (5) describe selected dynamic thermoelasticity problems for the periodically micro-
heterogeneous shells under consideration. For these shells, coefficients of Eqs. (4), (5) are periodic, highly
oscillating and non-continuous functions with respect to argument x , x ∈ �. That is why, in the most cases it
is impossible to obtain the exact analytical solutions to initial/boundary value problems for Eqs. (4), (5).

In order to replace Eqs. (4), (5) by averaged equations with constant coefficients dependent also on the
cell size, a certain modelling technique proposed by Woźniak [8] will be applied. However, this so-called
asymptotic-tolerance modelling techniquewill not be used directly to Eqs. (4), (5), but to the integral functional
determined by Lagrange function describing the thermoelastic behaviour of the shells under consideration.
The appropriate form of this function will be implied by the well-known thermoelasticity equations (4), (5).
The variational formulation of the thermoelasticity problem under consideration is based on the extended
principle of stationary action, cf. [8]. The principle of stationary action in its classical form can not be applied
because heat conduction equation (5) involves the odd derivatives of unknown functions θ = θ(x, ξ, t),
uα = uα(x, ξ, t), w = w(x, ξ, t), (x, ξ, t) ∈ � × � × I, with respect to argument t .

We assume that the thermoelastic problems for the thin shells considered here are described by the following
action functional

A(uα, w) =
L1∫

0

L2∫

0

t1∫

t0

L(x, ξ, t, ∂βuα, u̇α, ∂αβw, w, ẇ, pαβ,
�r)dtdξdx, (6)
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where Lagrangian L is defined by

L = −1

2
(Dαβγ δ∂βuα∂δuγ + 2r−1Dαβ11w∂βuα + r−2D1111ww

+Bαβγ δ∂αβw∂γ δw − K αβ∂αθ∂βθ − μaαβ u̇α u̇β − μẇ2)

+pαβ∂βuα + 1

r
p11w + �rθ, (7)

and where functions pαβ(x, ξ, t), �r(x, ξ, t), (x, ξ, t) ∈ � × � × I, are determined by independent equations

pαβ = d̄αβθ,
�r = cθ̇ + T0(d̄αβ∂α u̇β + r−1d̄11ẇ).

(8)

Equation (8) are called the constitutive equations for functions pαβ(x, ξ, t), �r(x, ξ, t), (x, ξ, t) ∈ � × � × I,
cf. [8]. It has to be emphasized that functions pαβ , �r are not arguments of Lagrangian (7); they play the role
of non-variational parameters. Due to the non-continuous and highly oscillating form of functions describing
elastic, inertial and thermal properties of the microheterogeneous shells under consideration, i.e. due to the
non-continuous and highly oscillating coefficients Dαβγ δ(x), Bαβγ δ(x), μ(x), d̄αβ(x), K αβ(x), c(x), x ∈ �,
occurring in (7), (8), functions L , pαβ , �r are also non-continuous and highly oscillating with respect to x ,
x ∈ �.

Under assumption that ∂L/∂(∂βuα), ∂L/∂(∂αβw) and ∂L/∂(∂βθ) are continuous, from the extended prin-
ciple of stationary action applied to A(uα, w), we obtain the following system of Euler–Lagrange equations

∂β
∂L

∂(∂βuα)
+ ∂

∂t
∂L
∂ u̇α

= 0,

−∂αβ
∂L

∂(∂αβw)
− ∂L

∂w
+ ∂

∂t
∂L
∂ẇ

= 0,

∂β
∂L

∂(∂βθ)
− ∂L

∂θ
= 0.

(9)

Combining (9) with (7) and (8) we arrive finally at the explicit form of the fundamental equations of the
thermoelasticity shell theory under consideration. These equations coincide with the well-known equations
(4), (5).

The passage from action functional (6) to Euler–Lagrange equations (9), in which pαβ , �r are given by
constitutive equations (8) represents the extended principle of stationary action or the principle of stationary
action extended by constitutive equations.

Applying the combined asymptotic-tolerance modelling technique to action functional (6) determined by
lagrangian (7), we will derive an averaged combined asymptotic-tolerance model describing thermoelastic
phenomena in the uniperiodic shells under consideration. Governing equations of this model have constant
coefficients. Moreover, some of these coefficients depend on a cell size. The combined modelwill be formulated
by using the consistent asymptotic modelling procedure coupled with the tolerance non-asymptotic modelling
technique. The combined asymptotic-tolerance modelling technique is proposed by Woźniak et al. [8] and
discussed in detail by Ostrowski in the book [9].

To make this paper self-consisted, in the subsequent section we shall outline the main concepts and the
fundamental assumptions of the tolerance modelling procedure and of the consistent asymptotic approach,
which in the general form are given in monographs [8,9].

3 Concepts and assumptions of the tolerance and asymptotic modelling techniques

Following the monographs by Woźniak et al. [8] and Ostrowski [9], we outline below the basic concepts and
assumptions of the tolerance and consistent asymptotic modelling procedures.

3.1 Main concepts of the tolerance averaging procedure

The fundamental concepts of the tolerance modelling procedure under consideration are those of two tolerance
relations between points and real numbers determined by tolerance parameters, slowly-varying functions,
tolerance-periodic functions, fluctuation shape functions and the averaging operation.

Below, the mentioned above concepts and assumptions will be specified with respect to one-dimensional
region � = (0, L1) (region of midsurface parameters) defined in this paper.
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3.1.1 Tolerance between points

Letλ be a positive real number. Points x, y belonging to� = (0, L1) ⊂ E are said to be in tolerance determined
by λ, if and only if the distance between points x, y does not exceed λ, i.e. ‖x − y‖E ≤ λ, where ‖·‖ is the
Euclidean norm in E .

3.1.2 Tolerance between real numbers

Let δ̃ be a positive real number. Real numbers μ, ν are said to be in tolerance determined by δ̃, if and only if
|μ − ν| ≤ δ̃.

The above relations are denoted by:
λ

x ≈ y,μ
δ̃≈ ν. Positive parameters λ, δ̃ are called tolerance parameters.

3.1.3 Slowly-varying functions

Let F be a function defined in �̄ = [0, L1] ⊂ E , which is differentiable in �̄ together with its derivatives up to
the Rth order. It can be observed that function F is said to be differentiable in closed set �̄; however, we do
not specify how derivatives are defined on its fringe ∂�̄, because differentiation may look differently for any
particular problem. Nonnegative integer R is assumed to be specified in every problem under consideration.
Note, that function F can also depend on arguments ξ ∈ � and t ∈ I as parameters. Denote by ∂k1 F(·),
k = 1, . . . , R, the k-th derivative in �̄. Let δ ≡ (λ, δ0, δ1, . . . , δR) be the set of tolerance parameters. The
first of them represents the distances between points in �̄. The second one is related to the upper limit of the
norm in appropriate space between the values of function F(·) in the points x, y belonging to �̄ such that
‖x − y‖E ≤ λ. Each tolerance parameter δk , k = 1, . . . , R, refers to the upper limit of the norm in appropriate
space between the values of derivative ∂k1 F(·) in the points x, y belonging to �̄ such that ‖x − y‖E ≤ λ. A
function F(·) is said to be slowly-varying of the R-th kind with respect to cell 	 and tolerance parameters δ,
F ∈ SV R

δ (�, 	), if and only if the following conditions are fulfilled

(∀(x, y) ∈ �2)[( λ
x ≈ y) ⇒ |F(x) − F(y)| ≤ δ0 and

∣∣∂k1 F(x) − ∂k1 F(y)
∣∣ ≤ δk,

k = 1, 2, . . . , R], (10)

(∀x ∈ �)

[
λ

∣∣∣∂k1 F(x)
∣∣∣

δk≈ 0, k = 1, 2, . . . , R

]
. (11)

From condition (10) it follows that the slowly-varying function can be treated (together with its derivatives up
to the R-th order) as constant on an arbitrary cell, for sufficiently small tolerance parameter δR . Condition (11)
states that the products of the absolute values of derivatives of slowly-varying functions and microstructure
length parameter λ are negligibly small.

It is worth to known that tolerance parameter λ in every problem under consideration is known a priori as a
characteristic cell length dimension, whereas values of tolerance parameters δ0, δ1, . . . , δR can be determined
only a posteriori, i.e. after obtaining unique solution to the considered initial-boundary value problem.

3.1.4 Tolerance-periodic functions

An essentially bounded and weakly differentiable function ϕ defined in �̄ = [0, L1] ⊂ E , which can also
depend on ξ ∈ �̄ and time coordinate t as parameters, is called tolerance-periodic of the R-th kind in reference
to cell 	 and tolerance parameters δ ≡ (λ, δ0), if for every x ∈ �	 there exist 	-periodic function ϕ̃(·)
defined in E such that ϕ

∣∣
�x∩Dom ϕx and ϕ̃

∣∣
�x are indiscernible in tolerance determined by δ ≡ (λ, δ0),

where�x ≡ �∩∪z∈	(x) 	(z), x ∈ �̄, is a cluster of 2 cells having common sides. Function ϕ̃ is a	-periodic
approximation of ϕ in 	(x). For function ϕ(·) being tolerance-periodic together with its derivatives up to
the R-th order, we shall write ϕ ∈ T PR

δ (�, 	), δ ≡ (λ, δ0, δ1, . . . , δR). It should be noted that for periodic
structures being objects of considerations in this paper, function ϕ̃ has the same analytical form in every cell
	(x) with a centre at x ∈ �	. Hence, ϕ̃ = ϕ̃(z), z ∈ 	(x), x ∈ �	, is independent of x . In the general
case, i.e. for tolerance-periodic structures (i.e. structures, which in small neighbourhoods of 	(x) can be
approximately regarded as periodic), ϕ̃ depends on x and hence we have ϕ̃ = ϕ̃(x, z), z ∈ 	(x), x ∈ �	.
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3.1.5 Fluctuation shape functions

Let h be a continuous, λ-periodic function defined in �̄ = [0, L1], which has continuous derivatives ∂k1h, k =
1, . . . , R−1, and either continuous or piecewise continuous bounded derivative ∂ R

1 h. Function h will be called
the fluctuation shape function of the R-th kind, h ∈ FSR(�, 	), if it satisfies conditions: h ∈ O(λR), ∂k1h ∈
O(λR−k), k = 1, 2, . . . , R,

∫

	(x)
μ(z) h(z)dz = 0, ∀x ∈ �	,where μ(·) is a certain positive-valued λ-

periodic function defined in �̄.
Note, that in the tolerance and asymptotic modelling procedures applied here, these λ-dependent fluctu-

ation shape functions describe the expected forms of kinematic or thermal fluctuations caused by the highly
oscillating character of the shell micro-structure. They are assumed to be known in every special problem.
Due to the micro-periodic structure of the cylindrical shells under consideration, these functions are strongly
oscillating in x ∈ �.

3.1.6 Averaging operation

Let f be a function defined in �̄ = [0, L1], which is integrable and bounded in every cell 	(x), x ∈ �	. The
averaging operation of f (·) is defined by

< f > (x) ≡ 1

|	|
∫

	(x)

f (z)dz, x ∈ �	. (12)

where |	| = λ. It can be observed that if f is 	-periodic, then < f > is constant.

3.2 Modelling assumptions of the tolerance averaging procedure

The tolerance modelling under consideration is based on two assumptions. The first of them is termed the
tolerance averaging approximation. The second one is called the micro–macro decomposition.

3.2.1 Tolerance averaging approximation

For an integrable periodic function f defined in �̄ ≡ [0, L1] and for slowly-varying function F ∈ SV R
δ (�, 	)

and fluctuation shape function h ∈ FSR(�, 	), the following tolerance relations, called the tolerance aver-
aging approximation, hold for every x ∈ �	

< f ∂k1 F >=< f > ∂k1 F + O(δk),

< f ∂k1 (hF) >=< f ∂k1h > F + O(δk),

k = 0, 1 . . . , R, ∂01 F ≡ F, ∂01 (hF) ≡ hF, ∂01h ≡ h.

(13)

In the course of modelling, terms O(δk) in (13), i.e. terms that are much smaller than the tolerance parameter
δk , are neglected.

Approximations (13) follow directly from conditions (10), (11) satisfied by the slowly-varying functions
and from conditions: h ∈ O(λR), ∂kh ∈ O(λR−k), k = 1, 2, . . . , R, which hold for the fluctuation shape
functions.

In the problem discussed in this contribution, R is equal either 1 or 2.
Let us observe that the slowly-varying functions can be regarded as invariant under averaging.

3.2.2 Micro–macro decomposition assumption

The second fundamental assumption, called the micro–macro decomposition, states that the displacement and
temperature fields occurring in the starting lagrangian under consideration can be decomposed intomacroscopic
andmicroscopic parts.Themacroscopic part is represented by unknown averaged displacements and averaged
temperature being slowly-varying functions in periodicity direction. The microscopic part is described by the
known strongly oscillating periodic thermal fluctuation shape functions multiplied by unknown temperature
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fluctuation amplitudes, and by the known strongly oscillating periodic kinematic fluctuation shape functions
multiplied by unknown displacement fluctuation amplitudes. Fluctuation amplitudes for temperature and for
displacements are slowly-varying functions in x .

Micro–macro decomposition introduced in the thermoelastic problems discussed in this contribution is
presented in Sect. 4.2.

3.3 Basic concepts and assumptions of the consistent asymptotic modelling procedure

3.3.1 Basic concepts

The basic concepts of the consistent asymptotic procedure [8,9] are those of the fluctuation shape function
and the averaging operation. These notions have been explained in Sect. 3.1. In the consistent asymptotic
modelling there are no concepts of the tolerance-periodic and slowly-varying functions. Also, for periodic
structures, the tolerance parameters play here no role anymore.

3.3.2 The consistent asymptotic decomposition assumption

The consistent asymptotic decomposition is the basic assumption imposed on the starting Lagrangian under
consideration. It states that the displacement fields and temperature field occurring in the Lagrangian must be
replaced by families of fields depending on parameter ε ∈ (0, 1] and defined in an arbitrary cell. These families
of displacements and temperature are decomposed into averaged part independent of ε and highly oscillating
part depending on ε.

Consistent asymptotic decomposition introduced in the thermoelastic problems discussed in this contribu-
tion is presented in Sect. 4.1.

4 Combined asymptotic-tolerance modelling

The combined modelling includes both the consistent asymptotic and the tolerance non-asymptotic modelling
techniques, which are merged into a single new procedure. The variational approach to the asymptotic and
tolerance modelling of microheterogeneous media will be applied. This variational approach is proposed by
Woźniak et al. [8] and discussed in detail by Ostrowski in the book [9]. The combined modelling is realized
in two steps. In the first step, applying the consistent asymptotic averaging technique to starting lagrangin (7)
describing thermoelastic behaviour of the shells under consideration and independently to invariable param-
eters (8), and then using the extended stationary action principle [8,9], we obtain the consistent asymptotic
model equations. Coefficients of the asymptotic model equations are constant, but independent of a character-
istic cell length dimension. Hence the model obtained in the first step of the combined modelling is referred
to as the macroscopic model. Assuming that in the framework of the macroscopic model the solutions to the
considered problem are known, we can pass to the second step. The second step of the combined modelling
is realized by means of the tolerance (non-asymptotic) modelling procedure. This step is based on the toler-
ance averaging of starting lagrangian (7) and independently on the tolerance averaging of non-variational
parameters (8). Then, applying the extended stationary action principle to the averaged action functional
determined by averaged Lagrange function, we arrive to the tolerance model equations superimposed on the
solutions obtained in the first step of the combined modelling. Coefficients of the tolerance model equations
are constant. Moreover, some of these coefficients depend on a cell size. For this reason, this model is referred
to as the superimposed microscopic model. Asymptotic (macroscopic) and tolerance (microscopic) models are
conjugated with themselves under assumption that in the framework of the macroscopic model the solutions to
the problem under consideration are known. It will be shown that the combined model proposed here makes it
possible to separate the macroscopic description of certain thermoelasticity problems from their microscopic
description. This is an important advantage of the combined model proposed here. We recall that the asymp-
totic or tolerance model equations cannot be derived from the principle of stationary action in its classical
form, because heat conduction Eq. (5) involves the odd derivatives of unknown functions θ = θ(x, ξ, t),
uα = uα(x, ξ, t), w = w(x, ξ, t), (x, ξ, t) ∈ � × � × I, with respect to argument t .
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4.1 Step 1. Consistent asymptotic modelling

Let us start with the consistent asymptotic averaging of lagrangian (7) and independently with the con-
sistent asymptotic averaging of constitutive equations (8) for functions pαβ(x, ξ, t), �r(x, ξ, t) being the
non-variational parameters of Lagrange function (7).

In order to do it, we shall restrict considerations to displacement fields uα = uα(z, ξ, t), w = w(z,ξ, t)
and temperature field θ(z, ξ, t) defined in 	(x) × � × I, z ∈ 	(x), x ∈ �	, (ξ, t) ∈ � × I . Then,
we replace uα(z, ξ, t), w(z, ξ, t) and θ(z, ξ, t) by families of displacements uεα(z, ξ, t) ≡ uα(z/ε, ξ, t),
wε(z, ξ, t) ≡ w(z/ε, ξ, t) and family of temperature field θε(z, ξ, t) ≡ θ(z/ε, ξ, t), respectively, where
0 < ε ≤ 1, z ∈ 	ε(x),, 	ε ≡ (−ελ1/2, ελ1/2) (scaled cell), 	ε(x) ≡ x + 	ε, x ∈ �	ε (scaled cell with a
centre at x ∈ �	ε).

We introduce the consistent asymptotic decomposition of displacement and temperature families
uεα(z, ξ, t), wε(z, ξ, t), θε(z, ξ, t), (z, ξ, t) ∈ 	ε × � × I, in the area of every ε-scaled cell

uεα(z, ξ, t) ≡ uα(z/ε, ξ t) = u0α(z, ξ, t) + εhε(z)Uα(z, ξ, t),
wε(z, ξ, t) ≡ w(z/ε, t) = w0(z, ξ, t) + ε2gε(z)W (z, ξ, t),
θε(z, ξ, t) ≡ θ(z/ε, t) = θ0(z, ξ, t) + εqε(z)�(z, ξ, t).

(14)

Functions u0α, w0andUα,W are termedmacrodisplacements and displacement fluctuation amplitudes, respec-
tively. Functions θ0, � are called macrotemperature and temperature fluctuation amplitude, respectively.
Unknowns u0α,Uα, θ0, � are assumed to be continuous and bounded in �̄ together with their first derivatives.
Unknowns w0,W are assumed to be continuous and bounded in �̄ together with their derivatives up to the
second order. Moreover, all unknowns mentioned above are independent of ε. We recall that they are not
referred to as the slowly-varying functions introduced in the tolerance averaging.

Fluctuation shape functions for displacements hε(z) ≡ h(z/ε), hε ∈ FS1(�, 	ε), gε(z) ≡ g(z/ε), gε ∈
FS2(�, 	ε), and fluctuation shape function for temperature qε(z) ≡ q(z/ε), qε ∈ FS1(�, 	ε), in (14) are
highly oscillating and	ε-periodic. They have to be known in every problem under consideration. They depend
on ελ as a parameter and have to satisfy conditions: hε ∈ O(ελ), ελ∂1hε ∈ O(ελ), gε ∈ O((ελ)2), ελ∂1gε ∈
O((ελ)2), (ελ)2∂11gε ∈ O((ελ)2), qε ∈ O(ελ), ελ∂1qε ∈ O(ελ), < μ hε >=< μ gε >=< cqε >= 0.
It has to be emphasized that ∂1hε(z) ≡ 1

ε
∂̄1h(z/ε), ∂1gε(z) ≡ 1

ε
∂̄1g(z/ε), ∂11gε(z) ≡ 1

ε2
∂̄11g(z/ε),

∂1qε(z) ≡ 1
ε
∂̄1q(z/ε), where differential operator ∂̄1 means differentiation over z/ε.

Because of Lagrangian L defined by (7) is highly oscillating with respect to x and essentially bounded in
its domain, then there exists Lagrangian L̃(z, ξ, t, ∂βuα, u̇α, ∂αβw, w, ẇ, pαβ,

�r) being the periodic approxi-
mation of Lagrangian L in 	(x), z ∈ 	(x), x ∈ �	. Let L̃ ε be a family of functions given by

L̃ ε = L̃(z/ε, ξ, t, ∂βuεα, u̇εα, ∂αβwε, wε, ẇε, ∂βθε, θε, p
αβ
ε ,

�rε)

= −1

2
[Dαβγ δ∂βuεα∂δuεγ + 2r−1Dαβ11wε∂βuεα

+ r−2D1111wεwε + Bαβγ δ∂αβwε∂γ δwε

− K αβ∂αθε∂βθε − μaαβ u̇εα u̇εβ − μ(ẇε)
2]

+ pαβ
ε ∂βu

α
ε + r−1 p11ε wε + �rεθε, (15)

where pαβ
ε ,

�rε play the role of invariational parameters and are given by independent equations

pαβ
ε = d̄αβθε,

�rε = cθ̇ε + T0(d̄αβ∂α u̇εβ + r−1d̄11ẇε).
(16)

We substitute the right-hand sides of (14) into (15) and independently into (16). Then, we take into account
that under limit passage ε → 0, terms depending on ε can be neglected and every continuous and bounded
function of argument z ∈ 	ε(x), tends to function of argument x ∈ �̄. Moreover, if ε → 0 then, by means
of a property of the mean value, cf. Jikov et al. [2], the obtained result tends weakly to function L0 being the
averaged form of starting Lagrangian (7) under consistent asymptotic decomposition (14). Introducing the
extra approximation 1+ λ/r ≈ 1 and assuming that the fluctuation shape functions for displacements and for
temperature are either even or odd functions with respect to argument z ∈ 	, this result has the form
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L0(∂βu
0
α,Uα, u̇0α, ∂αβw0, w0,W, ẇ0, ∂βθ0, θ0, �, < pαβ >,< pα1∂1h >, <

�r >)

= −1

2
[< Dαβγ δ > ∂βu

0
α∂δu

0
γ + 2 < Dαβγ 1∂1h > ∂βu

0
αUγ

+ < ∂1h Dα1γ 1∂1h > Uγ Uα + 2r−1(< Dαβ11 > ∂βu
0
αw0

+ < Dα111∂1h > w0Uα) + r−2 < D1111 > (w0)2

+ < Bαβγ δ > ∂αβw0∂γ δw
0 + 2 < Bαβ11∂11g > ∂αβw0W

+ < ∂11g B1111∂11g > (W )2

− < K αβ > ∂αθ0∂βθ0 − 2 < K 1β∂1q > ∂βθ0�

− < ∂1q K 11∂1q > (�)2− < μ > aαβ u̇0α u̇
0
β− < μ > (ẇ0)2]

+ < pαβ > ∂βu
0
α+ < pα1∂1h > Uα + r−1 < p11 > w0+ <

�r > θ0, (17)

where averaged constitutive equations for functions < pαβ >, < �r > are given by

< pαβ >=< d̄αβ > θ0, < pα1∂1h >=< d̄α1∂1h > θ0,

<
�r >=< c > θ̇0 + T0[< d̄αβ > ∂α u̇0β+ < d̄α1∂1h > U̇β + r−1 < d̄11 > ẇ0]. (18)

In the framework of consistent asymptotic procedure we introduce the consistent asymptotic action functional

A0
hgq(u

0
α,Uα, w0,W, θ0, �) =

L1∫

0

L2∫

0

t1∫

t0

L0dtdξdx, (19)

where L0 is given by (17).
Under assumption that ∂L0/∂(∂βu0α), ∂L0/∂(∂αβw0), ∂L0/∂(∂βθ0) are continuous and recalling that

expressions (18) are treated as non-variational parameters, from the extended principle of stationary action
applied to (19) we obtain the following system of Euler–Lagrange equations for u0α, w0,Uα,W, θ0, � as the
basic unknowns

∂β

∂L0

∂(∂βu0α)
+ ∂

∂t

∂L0

∂ u̇0α
= 0,

−∂αβ

∂L0

∂(∂αβw0)
− ∂L0

∂w0 + ∂

∂t

∂L0

∂ẇ0 = 0,

∂L0

∂Uα

= 0,
∂L0

∂W
= 0,

∂β

∂L0

∂(∂βθ0)
− ∂L0

∂θ0
= 0,

∂L0

∂�
= 0. (20)

Combining (20) with (17) and (18) we arrive at the explicit form of the consistent asymptotic model equations
for macrodisplacements u0α(x, ξ, t), w0(x, ξ, t), displacement fluctuation amplitudes Uα(x, ξ, t), W (x, ξ, t),
macrotemperature θ0(x, ξ, t) and temperature fluctuation amplitude �(x, ξ, t), (x, ξ, t) ∈ � × � × I

< Dαβγ δ > ∂βδu0γ + r−1 < Dαβ11 > ∂βw0+ < Dαβγ 1∂1h > ∂βUγ

− < d̄αβ > ∂βθ0− < μ > aαβ ü0β = 0,
< Bαβγ δ > ∂αβγ δw

0+ < Dαβ11∂11g > ∂αβW + r−1 < D11γ δ > ∂δu0γ
+r−2 < D1111 > w0 + r−1 < D111δ∂1h > Uδ− < d̄11 > θ0)+ < μ > ẅ0 = 0,

< ∂1h D1βγ 1∂1h > Uγ = − < ∂1h D1βγ δ > ∂δu0γ − r−1 < ∂1hD1β11 > w0

+ < ∂1h d̄1β > θ0,

< ∂11g B1111∂11g > W = − < ∂11gB11γ δ > ∂γ δw
0,

< K αβ > ∂αβθ0+ < K 1β∂1q > ∂β�− < c > θ̇0

= T0[< d̄αβ > ∂α u̇0β+ < d̄1β∂1h > U̇β + r−1 < d̄11 > ẇ0],
< ∂1q K 11∂1q > � = − < K 1β∂1q > ∂βθ0.

(21)

Averages < · > occurring in (21) are constant and calculated by means of (12).
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Equation (21) consist of partial differential equations for macrodisplacements u0α, w0 and macrotemper-
ature θ0 coupled with linear algebraic equations for kinematic fluctuation amplitudes Uα, W and thermal
fluctuation amplitude �. After eliminating fluctuation amplitudes from the governing equations by means of

Uγ = −G−1
γ η [< ∂1hD1ημϑ > ∂ϑu0μ + r−1 < ∂1hD1η11 > w0− < ∂1h d̄1η > θ0],

W = −E−1 < ∂11gB11γ δ > ∂γ δw
0,

� = −C−1 < K 1β∂1q > ∂βθ0,

(22)

where Gαγ =< ∂1h Dα1γ 1∂1h >, E =< ∂11g B1111∂11g >, C =< ∂1q K 11∂1q >, Gαγ G−1
γ η = δαη (δαη

is an unit tensor), we arrive finally at the asymptotic model equations expressed only in macrodisplacements
u0α, w0 and macrotemperature θ0

Dαβγ δ

h ∂βδu0γ + r−1Dαβ11
h ∂βw0 − D̄αβ

b ∂βθ0− < μ > aαβ ü0β = 0,

Bαβγ δ
g ∂αβγ δw

0 + r−1D11γ δ

h ∂δu0γ + r−2D1111
h w0 − r−1 D̄11

h θ0+ < μ > ẅ0 = 0,

K̄ αβ
q ∂αβθ0 − [< c > +T0 < d̄1β∂1h > G−1

βη < ∂1h d̄1η >]θ̇0
= T0[D̄αβ

h ∂α u̇0β + r−1 D̄11
h ẇ0],

(23)

where

Dαβγ δ

h ≡< Dαβγ δ > − < Dαβη1 ∂1h > G−1
ηξ < ∂1hD1ξγ δ >,

Bαβγ δ
g ≡< Bαβγ δ > − < Bαβ11∂11g > E−1 < ∂11gB11γ δ >,

D̄αβ
h ≡< d̄αβ > − < Dαβγ 1∂1h > G−1

γ η < ∂1h d̄1η >,

K̄ αβ
q ≡< K αβ > − < K α1∂1q > C−1 < K β1∂1q > .

(24)

Tensors Dαβγ δ

h , Bαβγ δ
g are tensors of effective elastic moduli for uniperiodic shells considered here.

Tensor D̄αβ
h is a tensor of effective elastic-thermal moduli.

Tensor K̄ αβ
q is a tensor of effective thermal moduli.

Since functions uα(x, ξ, t), w(x, ξ, t), θ(x, ξ, t) have to be uniquely defined in � × � × I, we conclude
that uα , w, θ must take the form

uα(x, ξ, t) = u0α(x, ξ, t) + h(x)Uα(x, ξ, t),
w(x, ξ, t) = w0(x, ξ, t) + g(x)W (x, ξ, t),
θ(x, ξ, t) = θ0(x, ξ, t) + q(x)�(x, ξ, t),

(25)

with Uα,W, � given by (22). We recall that unknowns u0α, w0,Uα,W, θ0, � in (25) are not slowly-varying
functions in the sense given by (10), (11). In the asymptotic approach, they are assumed to be bounded and
continuous in �̄ together with their appropriate derivatives.

Equation (23) for macrodisplacements u0α(x, ξ, t), w0(x, ξ, t) and macrotemperature θ0(x, ξ, t) together
with expressions (22) for kinematic Uα(x, ξ, t), W (x, ξ, t) and thermal �(x, ξ, t) fluctuation amplitudes,
(x, ξ, t) ∈ � × � × I , and with expressions (24) for the effective moduli as well as with decomposition (25)
represent the consistent asymptoticmodel of selected dynamic thermoelasicity problems for the thin uniperiodic
cylindrical shells under consideration.

In the first step of combinedmodelling it is assumed that within the asymptoticmodel, solutions u0α(x, ξ, t),
w0(x, ξ, t), θ0(x, ξ, t), (x, ξ, t) ∈ �×�× I , to the thermoelasticity problem under consideration are known.
Hence, there are also known functions

u0α(x, ξ, t) = u0α(x, ξ, t)) + h(x)Uα(x, ξ, t),

w0(x, ξ, t) = w0(x, ξ, t) + g(x)W (x, ξ, t),

θ0(x, ξ, t) = θ0(x, ξ, t) + q(x)�(x, ξ, t),

(26)

where Uα,W, � are given by means of (22).
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4.1.1 Discussion of results

The important features of the derived consistent asymptotic model are listed below.

• Contrary to starting equations (4), (5) with periodic, highly oscillating and discontinuous coefficients, the
asymptotic model equations (23) formulated here have constant coefficients, but independent of period
length. It means that this model is not able to describe the influence of a cell size on the global shell
thermoelasticity.

• Unknown functions u0α, Uα ,w0, W and θ0, � of the asymptotic model are demanded to be bounded and
continuous in �̄ together with their appropriate derivatives. These unknowns are assumed to be independent
of parameter ε ∈ (0, 1]. This is the main difference between the asymptotic approach under consideration
and approach, which is used in the known classical homogenization theory, cf. Bensoussan et al. [1], Jikov
et al. [2].

• Within the asymptotic model we formulate boundary conditions only for the macrodisplacements u0α, w0

and macrotemperature θ0. The number and form of these conditions are the same as in the classical shell
theory governed by starting equations (4), (5).

• The extra unknown functions Uα,W, � called fluctuation amplitudes are governed by a system of linear
algebraic equations (21)3,4,6 and can be always eliminated from the governing equations by means of (22).
Hence, the unknowns of final asymptotic model equations (23) are only macrodisplacements u0α, w0 and
macrotemperature θ0.

• The resulting asymptotic model equations (23) are uniquely determined by the postulated a priori periodic
displacement fluctuation shape functions h ∈ FS1(�, 	), h ∈ O(λ), g ∈ FS2(�, 	), g ∈ O(λ2),
and temperature fluctuation shape function q ∈ FS1(�, 	), q ∈ O(λ), representing oscillations of
displacement and temperature fields inside a cell. These functions can be obtained as exact or approximate
solutions to periodic eigenvalue cell problems, cf. [11,23–25]. They can also be regarded as the shape
functions resulting from the periodic discretization of the cell using, for example, the finite elementmethod.
The choice of these functions can also be based on the experience or intuition of the researcher. If the
fluctuation shape functions are not derived as solutions to certain periodic eigenvalue problems then the
effective moduli (24) of the shell are obtained without specification of the periodic cell problems. It is a
very important advantage of the asymptotic model proposed here, because in most cases obtaining the
solutions to the cell problems is not easy and can not be realised in the analytical form. This situation is
different from that occurring in the known asymptotic homogenisation approach, cf. e.g. Bensoussan et al.
[1], where only solutions to the periodic cell problems make it possible to define the effective moduli of the
structure under consideration.

• Taking into account that for a homogeneous shell with a constant thickness, Dαβγ δ(x), Bαβγ δ(x), μ(x),
d̄αβ(x), K αβ(x), c(x), x ∈ �, are constant and bearing in mind that < ∂1h >=< ∂1g >=< ∂11g >=<

∂1b >= 0 we obtained from (22) that Uα = W = � = 0 and from (24) that Dαβγ δ

h ≡ Dαβγ δ , Bαβγ δ
g ≡

Bαβγ δ , D̄αβ
h = d̄αβ , K̄ αβ

q = K αβ . Hence, from decomposition (25) it follows that uα = u0α, w = w0,
θ = θ0. It means that Eq. (23), generated by asymptotically averaged Lagrange function (17) together with
asymptotically averaged constitutive equations (18), reduce to the starting equations (4), (5) generated by
Lagrange function (7) together with constitutive equations (8) for invariational parameters occurring in (7).

4.2 Step 2. Tolerance modelling

The second step of the combined modelling is based on the tolerance modelling technique [8,9].
Let us start with the tolerance averaging of lagrangian (7) and independently with the tolerance averaging

of constitutive equations (8) for functions pαβ(x, ξ, t), �r(x, ξ, t) being the non-variational parameters of
Lagrange function (7).

In order to do it, we introduce the extra micro–macro decomposition of displacement fields uα(x, ξ, t),
uα(·, ξ, t) ∈ T P1

δ (�, 	), w(x, ξ, t), w(·, ξ, t) ∈ T P2
δ (�, 	) and temperature field θ(x, ξ, t), θ(·, ξ, t) ∈

T P1
δ (�, 	), (x, ξ, t) ∈ �×�×I, superimposed on the known solutions u0α(x, ξ, t), w0(x, ξ, t), θ0(x, ξ, t),

cf. (26), obtained within the asymptotic (macroscopic) model. Setting u�

hα
≡ uα , w�g ≡ w, θ�q ≡ θ , the super-
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imposed decomposition has the form

u�

hα
(x, ξ, t) = u0α(x, ξ, t) + �

h(x)Qα(x, ξ, t),
w�g(x, ξ, t) = w0(x, ξ, t) + �g(x)V (x, ξ, t),
θ�q(x, ξ, t) = θ0(x, ξ, t) + �q(x)�(x, ξ, t),

(27)

where

Qα(·, ξ, t), �(·, ξ, t) ∈ SV 1
δ (�, 	), δ ≡ (λ, δ0, δ1),

V (·, ξ, t) ∈ SV 2
δ (�, 	), δ ≡ (λ, δ0, δ1, δ2)

(28)

for every ξ ∈ � and t ∈ I .
Displacement fluctuation amplitudes Qα, V and temperature fluctuation amplitude � are the new

unknowns, which must satisfy conditions (28), i.e. they have to be slowly-varying functions with respect
to argument x ≡ x1.

Fluctuation shape functions for displacements
�

h ∈ FS1(�, 	),�g ∈ FS2(�, 	) and fluctuation shape
function for temperature �q ∈ FS1(�, 	) are the new, λ-periodic, continuous and strongly oscillating func-
tions, which are assumed to be known in every problem under consideration. They have to satisfy condi-
tions:

�

h ∈ O(λ), λ∂1
�

h ∈ O(λ), �g ∈ O(λ2), λ∂1
�g ∈ O(λ2), λ2∂11

�g ∈ O(λ2), �q ∈ O(λ), λ∂1
�q ∈ O(λ),

< μ
�

h >=< μ �g >=< c�q > 0. It is assumed that the fluctuation shape functions for displacements and for
temperature are either even or odd functions with respect to argument z ∈ 	. As in the asymptotic approach,
functions

�

h, �g, �q from the qualitative point of view describe the expected character of micro-oscillations of
displacements or temperature. Thesemicro-oscillations are caused by a periodically heterogeneous structure of
the shell. It means that the choice of the fluctuation shape functions depends on the shape ofmicro-disturbances,
which can be expected during every process under consideration. These functions can be obtained as exact or
approximate solutions to periodic eigenvalue cell problems, cf. e.g. [11,23–25]. For example, in dynamic pro-
cesses the fluctuation shape functions are exact or approximate solutions to the periodic eigenvalue problems
describing free vibrations of the cell. In this case, they represent either the principal modes of free periodic
cell vibrations or physically reasonable approximation of these modes. They can also be derived from the
periodic finite element method discretization of the cell. The choice of these functions can also be based on
the experience or intuition of the researcher.

Setting u�

hα
≡ uα , w�g ≡ w, θ�q ≡ θ , we obtain from (7) lagrangian L�

h�g�q having the following form

L�

h�g�q = − 1

2
(Dαβγ δ∂βu�

hα
∂δu�gγ + 2r−1Dαβ11w�g ∂βu�

hα
+ r−2D1111w�gw�g

+Bαβγ δ∂αβw�g ∂γ δw�g − K αβ∂αθ�q ∂βθ�q − μaαβ u̇�

hα
u̇�

hβ − μ(ẇ�g)
2)

+pαβ∂βu�

hα
+ 1

r
p11w�g + �rθ�q , (29)

where now non-variational parameters pαβ(x, ξ, t), �r(x, ξ, t) are determined by the following independent
equations

pαβ = d̄αβθ�q ,

�r = cθ̇�q + T0(d̄
αβ∂α u̇�

hβ + r−1d̄11ẇ�g). (30)

Action functional A(u�

hα
,w�g, θ�q) determined by L�

h�g�q is defined by

A�

h�g�q(u
�

hα
, w�g, θ�q) =

L1∫

0

L2∫

0

t1∫

t0

L�

h�g�qdtdξdx . (31)

We substitute the right-hand sides of (27) into Lagrangian (29) and the constitutive equations (30) for functions
pαβ(x, ξ, t), �r (x, ξ, t). Then,we average the results over the cell applying formula (12) and tolerance averaging
approximation (13). As a result we obtain function< L�

h�g�q > called the tolerance averaging of lagrangian (29)
in 	(x) under superimposed decomposition (27). Recalling that u0α , w0, θ0 in (27) are known and under the



A new combined asymptotic-tolerance model of thermoelasticity problems 15

additional approximation 1 + λ/r ≈ 1 (i.e. after neglecting terms of an order of λ/r), the final result has the
form

< L�

h�g�q >= − 1

2
[< Dαβγ δ∂βu0α∂δu0γ > +2 < Dαβγ 1∂1

�

h∂βu0α > Qγ

+ < Dα11γ (∂1
�

h)2 > Qγ Qα + < Dα22δ(
�

h)2 > ∂2Qγ ∂2Qα

+2r−1(< Dαβ11∂βu0αw0 > + < Dα111∂1
�

h w0 > Qα)

+r−2 < D1111w0 w0 > + < Bαβγ δ∂αβw0 ∂γ δw0 >

+2(< Bαβ11∂11
�g ∂αβw0 > V + < Bαβ22�g ∂αβw0 > ∂22V

+< B1122�g ∂11
�g >∂22V V ) + 4 < B1212(∂1

�g)2 > (∂2V )2

+ < B1111(∂11
�g)2 > V 2 + < B2222(�g)2 > (∂22V )2

− < K αβ∂αθ0 ∂βθ0 > −2 < K 1β∂1
�q ∂βθ0 > �

−2< K 2β �q ∂βθ0 > ∂2�− < K 11(∂1
�q)2 > �2 + < K 22(�q)2 > (∂2�)2

− < μaαβ u̇0α u̇0β > − < μ(ẇ0)
2 > −< μ(

�

h)2 > aαβ Q̇α Q̇β − < μ(�g)2 > (V̇ )2]
+ < pαβ∂βu0α > + < pα1∂1

�

h > Qα + < pα2�

h >∂2Qα

+r−1 < p11w0 > + <
�rθ0 > +<

�r�q >�, (32)

with averaged non-variational parameters given by

< pαβ∂βu0α >=< d̄αβθ0∂βu0α > +< d̄αβ �q ∂βu0α >�,

< pα1∂1
�

h >=< d̄α1∂1
�

h θ0 > +< d̄α1�q ∂1
�

h > �,

< pα2�

h >=< d̄α2�

h θ0 > +< d̄α2�q
�

h >�,

< p11w0 >=< d̄11w0θ0 >,

<
�rθ0 >=< cθ0θ̇0 > +T0[< d̄αβθ0 ∂α u̇0β > + < d̄1β∂1

�

h θ0 > Q̇β

+< d̄2β
�

hθ0 > ∂2 Q̇β + r−1 < d̄11θ0 ẇ0 >],
<

�r�q >= < c �q2 > �̇ + T0[< �q d̄αβ∂α u̇0β > + < �q d̄1β∂1
�

h > Q̇β

+ < �q d̄2β
�

h > ∂2 Q̇β ]. (33)

The underlined terms in (32), (33) depend on a period length λ.
Action functional

A�

h�g�q(Qα, V, �) =
L1∫

0

L2∫

0

t1∫

t0

< L�

h�g�q >dtdξdx, (34)

with < L�

h�g�q > given by (32) and with expressions (33) for averaged invariable parameters occurring in (32),
is called the tolerance averaging of action functional (31) under superimposed decomposition (27).

The extended principle of stationary action applied to (34) leads to the following system of Euler–Lagrange
equations for Qα(x, ξ, t), V (x, ξ, t), �(x, ξ, t), (x, ξ, t) ∈ � × � × I ,

∂
∂t

∂<L�

h
�
g

�
q
>

∂ Q̇α
− ∂<L�

h
�
g

�
q
>

∂Qα
+ ∂2

∂<L�

h
�
g

�
q
>

∂(∂2Qα)
= 0,

∂
∂t

∂<L�

h
�
g

�
q
>

∂ V̇
− ∂<L�

h
�
g

�
q
>

∂V + ∂2
∂<L�

h
�
g

�
q
>

∂(∂2V )
− ∂22

∂<L�

h
�
g

�
q
>

∂(∂22V )
= 0,

− ∂<L�

h
�
g

�
q
>

∂�
+ ∂2

∂<L�

h
�
g

�
q
>

∂(∂2�)
= 0.

(35)

Combining (35) with (32) and (33) we obtain finally the explicit form of the superimposed tolerance micro-
scopic model equations

− < Dβ11γ (∂1
�

h)2 > Qγ + < Dβ22γ (
�

h)2 > ∂22Qγ + < d̄β1∂1
�

h �q > �

−< μ(
�

h)2 > aαβ Q̈α = r−1 < ∂1
�

h Dβ111w0 > − < ∂1
�

h d̄β1θ0 > + < ∂1
�

hDβ1γ δ∂δu0γ >,
(36)
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< (∂11
�g)2B1111 > V + (2 < ∂11

�gB1122�g > − 4< (∂1
�g)2B1212 >) ∂22V

+< (�g)2B2222 > ∂2222V + < μ(�g)2 > V̈ = − < ∂11
�gB11αβ∂αβw0 >,

(37)

< K 11(∂1
�q)2 > � − < K 22(�q)2 > ∂22� + < c(�q)2 > �̇

+T0[< d̄1β �q ∂1
�

h > Q̇β + < d̄2β �q
�

h > ∂2 Q̇]
= −T0[< �q d̄αβ∂α u̇0β >]− < K 1β∂1

�q∂βθ0 > .

(38)

Let us observe that after application of the extended principle of stationary action, terms occurring in lagrangian
(32), which do not contain fluctuation amplitudes and terms < K 2β �q ∂βθ0 > ∂2�, < pα2�

h > ∂2Qα dropped
out from the modelling.

Equations (36)–(38) together with the superimposed micro–macro decomposition (27) and physical reli-
ability conditions (28) constitute the superimposed tolerance model (i.e. microscopic model imposed on the
macroscopic one obtained in the first step of combinedmodelling) for the analysis of selected dynamic thermoe-
lasticity problems for the thin uniperiodic cylindrical shells under consideration. Averages < · > occurring
in (36)–(38) are constant and some of them involve microstructure length parameter λ (singly and doubly
underlined terms).

Let us observe that we have obtained system of two equations (36) for displacement fluctuation amplitudes
Qα(x, ξ, t) coupled with Eq. (38) for temperature fluctuation amplitude �(x, ξ, t), and independent equation
(37) for displacement fluctuation amplitude V (x, ξ, t), (x, ξ, t) ∈ � × � × I.

4.2.1 Discussion of results

The important features of the derived tolerance microscopic model are listed below.

• Themicroscopicmodel equations (36)–(38) have constant coefficients.Moreover, some of these coefficients
depend on a cell size λ (underlined coefficients). Hence, the above model is able to describe the effect of a
microstructure size on the thermoelastic shell behaviour. Moreover, we can analyse the length-scale effect
not only in non-stationary but also in stationary problems for the uniperiodic shells considered here.

• The right-hand sides of (36)–(38) are known under assumption that u0α, w0, θ0 were determined in the
first step of the combined modelling.

• Governing equations (36)–(38) contain spatial derivatives of Qα, V, � with respect to argument ξ ∈ �
only. Hence, the boundary conditions for these unknown fluctuation amplitudes should be defined only on
boudaries ξ = 0, ξ = L2.

• Decomposition (27) and hence also the resulting Eqs. (36)–(38) are uniquely determined by the postulated
a priori, λ-periodic, continuous and highly oscillating fluctuation shape functions for displacements
�

h ∈ FS1(�, 	),
�

h ∈ O(λ), �g ∈ FS2(�, 	), �g ∈ O(λ2), and for temperature �q ∈ FS1(�, 	), �q ∈ O(λ),
which represent oscillations of displacement and temperature fields inside a cell. These functions can be
derived as solutions to periodic eigenvalue cell problems. In the most cases, approximate forms of these
solutions are taken into account, cf. e.g. [11,23–25]. The choice of these functions can be also based on
the experience or intuition of the researcher.

• The basic unknowns Qα(x, ξ, t), V (x, ξ, t), �(x, ξ, t), (x, ξ, t) ∈ � × � × I, of the microscopic
model equations must be the slowly-varying functions in periodicity direction, i.e. Qα(·, ξ, t), �(·, ξ, t) ∈
SV 1

δ (�, 	), V (·, ξ, t) ∈ SV 2
δ (�, 	) for every (ξ, t) ∈ � × I . This requirement can be verified only a

posteriori and it determines the range of the physical applicability of the model.

Now, let us discuss an important modification of Eqs. (36)–(38). Let us replace fluctuation shape functions
�

h, �g, �q in (36)–(38) by fluctuation shape functions h, g, q , respectively. We recall that h, g, q are fluctuation
shape functions occurring in the asymptoticmodel equations derived in the first step of the combinedmodelling.
On the basis of results shown in the most of the known publications dealing with the thermoelasticity problems
for microheterogeneous structures, cf. e.g. [36], terms with zero stress temperature T0 in heat conduction
equation (38) can be treated as negligibly small. These terms are responsible for the connection between
the displacements in directions tangent to the shell midsurface and the temperature. Omission of these terms
means that the displacements are dependent on the temperature, but the temperature is not dependent on
the displacements. That also means that the temperature in the shell can be calculated independently of
displacements and can therefore be treated as a thermal load of the elastic shell. Thus, assuming that the impact
of the displacement fields on the temperature in the dynamic thermoelasticity problem under consideration
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doesn’t exist or is negligibly small, we will neglect the terms with zero stress temperature T0 in (38). Note, that
for each problem investigated, the introduction of this assumption should be preceded by a numerical analysis
dealing with comparison of the solutions to Eqs. (36), (38), obtained using the terms with T0, with solutions
which do not take into account these terms.

Under assumptions given above, Eqs. (36)–(38) reduce to the following form

− < Dβ11γ (∂1h)2 > Qγ + < Dβ22γ (h)2 > ∂22Qγ + < d̄β1∂1h q > �

−< μ(h)2 > aαβ Q̈α = r−1 < ∂1h Dβ111w0 > − < ∂1h d̄
β1θ0 > + < ∂1hD

β1γ δ∂δu0γ >, (39)

< (∂11g)
2B1111 > V + (2 < ∂11gB

1122�g > − 4< (∂1g)
2B1212 >) ∂22V

+< (g)2B2222 > ∂2222V + < μ(g)2 > V̈ = − < ∂11gB
11γ δ∂γ δw0 >, (40)

< K 11(∂1q)2 > � − < K 22(q)2 >∂22� + < c(q)2 > �̇ = − < K 1β∂1q∂βθ0 > . (41)

By means of the consistent asymptotic modelling used to the right-hand sides of (39)–(41), we obtain

r−1 < Dα111∂1h w0 > + < Dα1γ δ∂1h ∂δu0γ > − < ∂1h d̄α1θ0 >

= r−1 < Dα111∂1h > w0+ < Dα1γ δ∂1h > ∂δu0γ + < ∂1h Dα1γ 1 ∂1h > Uγ

− < ∂1h d̄1β > θ0,

(42)

< ∂11g B11γ δ ∂γ δw0 >=< ∂11g B11γ δ > ∂γ δw
0+ < ∂11g B1111∂11g > W, (43)

< K 1β∂1q∂βθ0 >=< K 1β∂1q > ∂βθ0+ < ∂1q K 11 ∂1q > �. (44)

We recall that in the consistent asymptotic modelling procedure, unknowns u0α,Uα, θ0, � are assumed to be
continuous and bounded in �̄ together with their first derivatives and unknowns w0,W are assumed to be
continuous and bounded in �̄ together with their derivatives up to the second order, cf. Sect. 4.1. We also
recall that under limit passage ε → 0, every continuous and bounded function of argument z ∈ 	ε(x), tends
to function of argument x ∈ �̄, cf. Sect. 4.1 herein or monograph [8]. Hence, during the modelling procedure,
the above-mentioned unknown functions are moved outside the averaging operator.

From comparison of the right-hand sides of (42), (43), (44) with asymptotic model equations (21)3, (21)4,
(21)6, respectively, it follows that the right-hand sides of (42)–(44) are equal to zero. Accordingly, the left-
hand sides of (42)–(44), which coincide with the right-hand sides of (39)–(41), are also equal to zero, and we
arrive finally to the following equations for unknown slowly-varying fluctuation amplitudes for displacements
Qα(x, ξ, t), V (x, ξ, t) and temperature �(x, ξ, t), (x, ξ, t) ∈ � × � × I ,

− < Dβ11γ (∂1h)2 > Qγ + < Dβ22γ (h)2 > ∂22Qγ + < d̄β1∂1h q > �

−< μ(h)2 > aαβ Q̈α = 0,
(45)

< (∂11g)2B1111 > V + (2 < ∂11gB1122�g > − 4< (∂1g)2B1212 >) ∂22V

+< (g)2B2222 > ∂2222V + < μ(g)2 > V̈ = 0,
(46)

< K 11(∂1q)2 > � − < K 22(q)2 >∂22� + < c(q)2 > �̇ = 0. (47)

Equations (45)–(47) are independent of solutions u0α, w0, θ0 obtained in the first step of combinedmodelling,
i.e. in the framework of the macroscopic (asymptotic)model and hence make it possible to separate the micro-
scopic description of some special dynamic or thermal or coupled dynamic thermoelasticity problems from
macroscopic description of these problems. Let us observe that Eq. (45), which are conjugated with Eq. (47),
allow us to investigate some thermoelasticity problems dealing with the coupling of the cell-dependent circum-
ferential and axial displacement micro-fluctuations with the cell-dependent temperature micro-fluctuations.
Equation (46) makes it possible to analyse micro-dynamic problems, e.g. the cell-dependent transversal free
vibrations. Using Eq. (47) we can study some thermal problems related to cell-dependent fluctuations of the
temperature field. We recall that the underlined terms in (45)–(47) depend on the microstructure size.

4.3 Combined asymptotic-tolerance model

Summarizing results obtained in Step 1 and Step 2we conclude that the combined asymptotic-tolerance model
of selected dynamic thermoelasticity problems for the thin uniperiodically microheterogeneous cylindrical
shells under consideration derived here is represented by:
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• Macroscopicmodel defined by Eq. (23) formacrodisplacements u0α(x, ξ, t), w0(x, ξ, t) andmacrotemper-
ature θ0(x, ξ, t) togetherwith expressions (22) for kinematicUα(x, ξ, t), W (x, ξ, t) and thermal�(x, ξ, t)
fluctuation amplitudes and with expressions (24) for the effective moduli, (x, ξ, t) ∈ �×�×I. This model
is obtained by means of the consistent asymptotic modelling and is independent of the microstructure size.

• Superimposed microscopic model equations (36)–(38) for new kinematic Qα(x, ξ, t), V (x, ξ, t) and ther-
mal�(x, ξ, t)fluctuation amplitudes, (x, ξ, t) ∈ �×�×I, togetherwithmicro–macro decomposition (27)
and physical reliability conditions (28). This model is derived by means of the tolerance (non-asymptotic)
modelling. Some coefficients of tolerancemodel equations (underlined terms) depend on themicrostructure
length parameter λ. Microscopic and macroscopic models are conjugated with themselves under assump-
tion that in the framework of the macroscopic model the solutions (26) to the problem under consideration
are known.

• Total decomposition having the following form

uα(x, ξ, t) = u0α(x, ξ, t) + h(x)Uα(x, ξ, t) + �

h(x)Qα(x, ξ, t),
w(x, ξ, t) = w0(x, ξ, t) + g(x)W (x, ξ, t) + �g(x)V (x, ξ, t),
θ(x, ξ, t) = θ0(x, ξ, t) + q(x)�(x, ξ, t) + �q(x)�(x, ξ, t),
(x, ξ, t) ∈ � × � × I.

(48)

The characteristic features of the derived combined asymptotic-tolerance model are:
• In contrast to starting equations (4), (5) with discontinuous, highly oscillating and periodic coefficients,
the combined model equations proposed here have constant coefficients. Moreover, some coefficients of
the superimposed microscopic model equations depend on a cell size λ. Thus, the combined model can be
applied to the analysis of many phenomena caused by the length-scale effect.

• The solutions to initial-boundary value problems formulated in the framework of the combined asymptotic-
tolerance model have a physical sense only if unknownmacrodisplacements u0α, w0 and macrotemperature
θ0 aswell as kinematicUα,W and thermal�fluctuation amplitudes of the asymptoticmodel are continuous
and bounded in �̄ together with their pertinent derivatives, and if unknown kinematic Qα,W and thermal
� fluctuation amplitudes of the superimposed microscopic tolerance modelare slowly-varyingwith respect
to periodicity cell and pertinent tolerance parameters.

• The resulting combined model equations are uniquely determined by the strongly oscillating periodic
fluctuation shape functions for displacements and temperature, which have to be known in every problem
under consideration. In general case, the fluctuation shape functions of both the macroscopic and the
microscopic models are different. Under assumption that the fluctuation shape functions of both the models
coincide as well as under assumption that the termswith zero stress temperature T0 in conductivity equation
(38) can be treated as negligibly small, we have derived superimposed microscopic model equations (45)–
(47), which are independent of the solutions obtained in the framework of the macroscopic model. Taking
into account this result we can conclude that an important advantage of the combined model is that it
makes it possible to separate the macroscopic description of some special problems from their microscopic
description.

• Microscopic model equations (45)–(47) can be applied to the analysis of certain initial-boundary layer and
space-boundary layer phenomena strictly related to the specific form of initial and boundary conditions
imposed on the kinematic and thermal micro-fluctuation amplitudes. That is why, these equations are
referred to as the boundary layer equations, where the term “boundary” is related both to time and space.
A certain space-boundary layer problem is shown in Sect. 5.

• Applying the tolerance modelling directly to the total decomposition (48) we also obtain the system of
equations for u0α,w0, θ0,Uα, Qα,W, V, �, �. However, this system is much more complicated than the
system obtained in the framework of the combined modelling.

4.4 Comparison of asymptotic-tolerance models for uniperiodic and biperiodic shells

We recall that the asymptotic-tolerance model for the thin uniperiodic cylindrical shells formulated here is
represented by asymptotic (macroscopic)model equations (23) formacrodisplacementsu0α, w0 andmacrotem-
perature θ0 with expressions (22) for kinematicUα, W and thermal� fluctuation amplitudes and by tolerance
(microscopic) model equations (36)–(38) for kinematic Qα, V and thermal � fluctuation amplitudes as well
as by total decomposition (48). Asymptotic and tolerance models are combined together under assumption that
in the framework of the asymptotic model the solutions (26) to the problem under consideration are known.
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Fig. 3 Fragment of the shell reinforced by two families of biperiodically spaced ribs

Let us compare the asymptotic-tolerance model for the thin uniperiodic cylindrical shells derived here
with the corresponding asymptotic-tolerance model for the thin cylindrical shells with a periodic structure in
circumferential and axial directions (biperiodic shells) proposed and discussed by Tomczyk et al. [32]. An
example of such a shell is presented in Fig. 3.

For the biperiodic shells, the region � is defined by: � ≡ (0, L1) × (0, L2). The basic cell 	 and an
arbitrary cell	(x)with the centre at point x ≡ (x1, x2) ∈ �	 are defined bymeans of:	 ≡ [−λ1/2, λ1/2]×
[−λ2/2, λ2/2], 	(x) ≡ x + 	 , �	 ≡ {x ∈ � : 	(x) ⊂ �}, where λ1and λ2 are the period lengths of the
shell structure respectively in x1- and x2-directions, cf. Fig. 3. The diameter λ ≡ √

(λ1)2 + (λ2)2 of 	, called
the microstructure length parameter, is assumed to satisfy conditions: λ/ supx∈� d(x) � 1, λ/r << 1
and λ/min(L1, L2) << 1.

For the biperiodic shells under consideration, elastic stiffness tensors Dαβγ δ , Bαβγ δ , the shell mass density
μ, membrane thermal stiffness tensor d̄αβ , tensor of heat conductivity K αβ and specific heat c are periodic,
highly oscillating and non-continuous functions not only with respect to argument x ≡ x1 ∈ (0, L1), but also
with respect to argument ξ ≡ x2 ∈ (0, L2).

Following [32], the asymptotic-tolerance model for the analysis of dynamic thermoelasticity problems for
the biperiodic shells under consideration consists of:

• Macroscopic model equations (23), expressions (22), (24) and solutions (26), in which unknowns u0α, Uα ,
w0, W , θ0, � are assumed to be bounded and continuous in �̄ ≡ [0, L1] × [0, L2] together with their
appropriate derivatives and where fluctuation shape functions h, g, q are periodic not only with respect
to midsurface parameter x ≡ x1 ∈ (0, L1) but also with respect to ξ ≡ x2 ∈ (0, L2).

• Superimposed microscopic model equations for new kinematic Qα(x1, x2, t), V (x1, x2, t) and thermal
�(x1, x2, t) fluctuation amplitudes, (x1, x2, t) ∈ (0, L1)× (0, L2)× I , derived by means of the tolerance
(non-asymptotic) modelling

− < ∂β
�

h Dαβγ δ∂γ
�

h > Qδ + < �g d̄αβ∂β
�

h >� − < μ(
�

h)2 > aαβ Q̈β

= r−1 < Dαβ11∂β
�

h w0 > + < Dαβγ δ∂δ
�

h ∂βu0γ > − < ∂β
�

h d̄αβθ0 >,
(49)

< ∂αβ
�g Bαβγ δ∂γ δ

�g > V+ < μ(�g)2 > V̈ = − < Bαβγ δ∂γ δ
�g ∂αβw0 >, (50)

< K αβ∂α
�q ∂β

�q > � + < c(�q)2 >�̇ + T0< d̄αβ �q ∂α
�

h >Q̇β

= − < K αβ∂α
�q ∂βθ0 > −T0< �q d̄αβ∂α u̇0β >,

(51)

where unknown fluctuation amplitudes Qα, V, � are slowly-varying functions in x1 ∈ (0, L1) and
x2 ∈ (0, L2), i.e. Qα, � ∈ SV 1

δ (�, 	), V ∈ SV 2
δ (�, 	), and where fluctuation shape functions

�

h, �g, �q are periodic with respect to x1 and x2, i.e.
�

h ∈ FS1(�, 	),
�

h ∈ O(λ), �g ∈ FS2(�, 	), �g ∈ O(λ2),
�q ∈ FS1(�, 	), � ≡ (0, L1) × (0, L2), 	 ≡ [−λ1/2, λ1/2] × [−λ2/2, λ2/2], λ ≡ √

(λ1)2 + (λ2)2.
Underlined terms depend on a cell size.
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• Under assumption that the fluctuation shape functions h, g, q introduced in the first step of combined
modelling coincide with those introduced in the second step as well as under assumption that the terms with
zero stress temperature T0 in conductivity equation (51) can be treated as negligibly small, the superimposed
microscopic model equations, which are independent of the solutions obtained in the framework of the
macroscopic model, were derived in [32]:

− < ∂βh Dαβγ δ∂γ h > Qδ + < �q d̄αβ∂βh >� − < μ(h)2 > aαβ Q̈β = 0, (52)

< ∂αβg Bαβγ δ∂γ δg > V+ < μ(g)2 > V̈ = 0, (53)

< K αβ∂αq ∂βq > � + < c(q)2 >�̇ = 0. (54)

Equations (52)–(54) make it possible to separate the microscopic description of some special dynamic or
thermal or coupled dynamic thermoelasticity problems from macroscopic description of these problems.

• Total decomposition having form of (48). Obviously, the functions in (48) which are bounded and continu-
ous in �̄ ≡ [0, L1], slowly-varying or periodic in x1 must be replaced by corresponding functions bounded
and continuous in �̄ ≡ [0, L1] × [0, L2], slowly-varying or periodic in x1 ∈ (0, L1) and x2 ∈ (0, L2).

The main differences and similarities between both models are:

• In contrast to starting equations (4), (5) with discontinuous, highly oscillating and periodic coefficients,
equations of both the combined models have constant coefficients. Moreover, some coefficients of the
tolerance models’ equations derived in the second step of combined modelling depend on a cell sizeλ.
Thus, both the combined models can be applied to the analysis of many phenomena caused by the length-
scale effect.

• Microscopic model equations (36)–(38) for uniperiodic shells are more complicated than microscopic
model equations (49)–(51) for biperiodic shells and contain a lot of length-scale terms (doubly underlined
terms), which do not have counterparts in the equations for biperiodic shells. The occurrence of these
terms is strictly related to the fact that physical reliability conditions (28), imposed on unknown micro-
fluctuation amplitudes Qα , V , � in the framework of the combined model for uniperiodic shells, are less
restrictive than pertinent conditions imposed on Qα , V ,� within the combinedmodel for biperiodic shells.
In combined model for uniperiodic shells the micro-fluctuation amplitudes are slowly-varying in only one
direction (i.e. with respect to argument x ≡ x1 x1 ∈ (0, L1)), whereas in model for biperiodic shells
these functions are slowly-varying in two directions (i.e. with respect to arguments x1, x2, x1 ∈ (0, L1),
x2 ∈ (0, L2)).

• In the framework of the uniperiodic shell combined model, unknown kinematic micro-fluctuation ampli-
tudes Qα, V and thermal micro-fluctuation amplitude � are governed by partial differential equations
(36)–(38), whereas within the biperiodic shell combined model these unknowns are governed by ordinary
differential equations (49)–(51) involving only time derivatives of Qα, V, �. Hence, there are no extra
boundary conditions for unknowns Qα, V, � of the biperiodic shell model and that is why they play the
role of kinematic or thermal internal variables. On the other hand, the boundary conditions for unknown
Qα, V, � of the uniperiodic shell model should be defined only on boundaries x2 = 0, x2 = L2.

• Both the models are uniquely determined by the postulated a priori
λ−periodicfluctuations shape functions for displacements h ∈ O(λ), g ∈ O(λ2),

�

h ∈ O(λ), �g ∈ O(λ2)and
for temperature q ∈ O(λ), �q ∈ O(λ). In the combinedmodel for uniperiodic shells we deal with fluctuation
shape functions, which are periodic in one direction only (i.e. with respect to argument x1 ∈ (0, L1)),
whereas in the other one these functions are periodic in two directions (i.e. with respect to arguments
x1 ∈ (0, L1), x2 ∈ (0, L2).

• Under assumption that the fluctuation shape functions introduced in the first step of combined modelling,
which is based on the consistent asymptotic procedure, coincide with those introduced in the second step
based on the tolerance approach as well as under assumption that the terms with zero stress temperature T0
in conductivity equations (38) (uniperiodic shells) and (51) (biperiodic shells) can be treated as negligibly
small, we derive superimposedmicroscopicmodel equations (45)–(47) for uniperiodic shells and (52)–(54)
for biperiodic shells, which are independent of the solutions obtained in the framework of the macroscopic
models. Taking into account this result we can conclude that an important advantage of the combined
models is that they make it possible to separate the macroscopic description of some special problems
from their microscopic description.Moreover, under special initial and boundary conditions, microscopic
model equations (45)–(47) for uniperiodic shells can be applied to the analysis of space-boundary layer
and time-boundary layer phenomena. Microscopic model equations (52)–(54) for biperiodic shells, under
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special initial conditions are also referred to as the boundary layer equations, but the term “boundary” is
related only to time.

• The solutions to selected initial-boundary value problems formulated within both the combined models
have a physical sense only if the basic unknowns are slowly-varying functions either in argument x1

(uniperiodic shells) or in arguments x1, x2 (biperiodic shells).

5 Examples of applications

5.1 Description of the problems

The biggest advantage of the asymptotic-tolerance model derived in this paper is that it makes it possible to
separate the macroscopic description of some special dynamic or thermal or coupled dynamic thermoelasticity
problems from microscopic description of these problems, cf. Eqs. (45)–(47). For that reason, in this section,
we shall study two special length-scale problems applying micro-dynamic equation (46) and micro-thermal
equation (47). The first of them refers to the derivation of formula for the frequency of the cell-dependent
transversal free micro-vibrations. The second one deals with study of the effect of a microstructure size on the
shape of initial distributions of temperature micro-fluctuations.

The object of consideration is a thin circular closed cylindrical shell with r, L1 = 2πr, L2, d as its
midsurface curvature radius, circumferential length, axial length and constant thickness, respectively. The shell
is composed of two kinds of homogeneous, elastic, isotropic materials periodically and densely distributed in
the circumferential direction and perfectly bonded on interfaces. Such a shell is shown in Fig. 2, where in the
problem analysed here length dimension L1 = 2πr .

In agreement with considerations in Sect. 2, we define λ as the period length of the shell structure in x ≡ x1-
direction, cf. Fig. 2. The microstructure length parameter λhas to satisfy conditions: λ/d � 1, λ/r � 1 and
λ/L1 � 1. The periodicity cell is defined by: 	 ≡ [−λ/2, λ/2]. Setting z ≡ z1 ∈ [−λ/2, λ/2], we assume
that the cell has a symmetry axis for z ≡ z1 = 0. It is also assumed that inside the cell, the geometrical, elastic,
inertial and thermal properties of the shell are described by symmetric (i.e. even) functions in argument z.

For the considered shell made of elastic, isotropic constituents, the bending rigidities B1111 = B2222,
B1122, B1212 and the shell mass density μ(·) per midsurface unit area occurring in (46) as well as the tensor
of heat conductivity K 11 = K 22 and the specific heat c existing in (47) take constant values in each shell
component material.

We assume that fluctuation shape function for displacements g ∈ FS2(�, 	) in Eq. (46) and fluctuation
shape function for temperature q ∈ FS1(�, 	) in Eq. (47) are either even or odd functions with respect to
argument z ∈ [−λ/2, λ/2].

Let the investigated problems be rotationally symmetricwith a period λ/r . Hence, unknown slowly-varying
micro-fluctuation amplitudesV (x, ξ, t),�(x, ξ, t), (x, ξ, t) ∈ �×�×I, of Eqs. (46) and (47), respectively, are
independent of argument x . Obviously, fluctuation shape functions g and q areλ-periodic functions in argument
x . Hence, the micro-fluctuations of displacements and of temperature given by g(x)V (ξ, t) and q(x)�(ξ, t),
respectively, are functions not only of arguments ξ, t , but also of argument x , (x, ξ, t) ∈ � × � × I.

The subsequent analysis will be based on equations (46) and (47), in which micro-fluctuation amplitudes
V (x, ξ, t), �(x, ξ, t), (x, ξ, t) ∈ � × � × I, are replaced by V (ξ, t) and �(ξ, t), (ξ, t) ∈ � × I, respectively,
i.e. on the following equations

< (∂11g)
2B1111 > V (ξ, t) + (2 < ∂11gB

1122g > − 4< (∂1g)
2B1212 >) ∂22V (ξ, t)

+< (g)2B2222 > ∂2222V (ξ, t) + < μ(g)2 > V̈ (ξ, t) = 0, (55)

< K 11(∂1q)2 > �(ξ, t) − < K 22(q)2 >∂22�(ξ, t) + < c(q)2 >�̇(ξ, t) = 0. (56)

5.2 Example 1: The cell-dependent transversal free micro-vibrations

In this subsection, the cell-dependent frequency of the transversal free micro-vibrations of the uniperiodically
shell under consideration will be derived. This micro-dynamic problem will be based on Eq. (55).

It is assumed that the edges ξ = 0, ξ = L2 of the shell are simply supported, i.e. they are hinged with the
support free, cf. Kaliski [43]. Solution to Eq. (55) satisfying these boundary conditions can be assumed in the
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form

V (ξ, t) = A sin(k ξ) cos(ω∗t), (57)

where A is an arbitrary constant different from zero, k = π/L2 is a wave number and ω∗ is a frequency of the
transversal free micro-vibrations.

Substituting the right-hand side of (57) into Eq. (55), under extra denotations

ā ≡ π4(L2)
−4 < B2222(ḡ)2 >,

b̄ ≡ 2π2(L2)
−2(< B1122 ḡ ∂11g > −2 < B1212(∂1g̃)2 >),

c̄ ≡< B1111(∂11g)2 >, μ̄ ≡< μ(ḡ)2 >,

(58)

where ḡ = λ−2g, g̃ = λ−1g, we arrive at the following formula for frequency ω∗ of the transversal free
micro-vibrations

ω2∗ = ā

μ̄
− b̄

λ2 μ̄
+ c̄

λ4 μ̄
. (59)

The free micro-vibration frequency derived above depends on a cell size λ. It has to be emphasized that under
assumptions given in Sect. 5.1, values of all averages < · > occurring in (58) are greater than zero. We recall
that these values are calculated by means of (12). It has to be emphasized that this special micro-dynamic
problem can be studied neither in the framework of the asymptotic models for the uniperiodic shells under
consideration nor within the known commercial numerical models based on the finite element method or the
finite difference method.

It should be noted that the cell-dependent free micro-vibrations occurring in periodic structures are very
significant in some special problems of dynamics or dynamical stability, cf. e.g. [11,19,25]. Let us also
mention paper [39], where the effect of micro-vibrations on the space-boundary layer phenomena, observed in
elastodynamics of microheterogeneous cylindrical shells, is analysed. Note, that by the space-boundary layer
phenomena we mean phenomena dealing with strongly exponentially disappearing displacement fluctuations
near one of the boundaries of the shell.

5.3 Example 2: Special length-scale thermal boundary value problem

In this subsection, the effect of a cell size λ on the initial distributions of temperature micro-fluctuations in
the uniperiodic shells under consideration will be analysed. This micro-thermal problem will be based on Eq.
(56).

We shall investigate the problem of time decaying of the temperature fluctuation amplitude�(ξ, t), (ξ, t) ∈
� × I , setting

�(ξ, t) = �∗(ξ) exp(−γ t), t ≥ 0,

with γ > 0 as a time decaying coefficient. Unit of coefficient γ is [s−1]. Function �∗(ξ) represents an initial
distribution of temperature micro-fluctuations, i.e. �(ξ, t = 0) = �∗(ξ).

Hence, under denotations

k̃2 ≡ < K 11(∂1q)2 >

λ2 < K 22(q̄)2 >
, γ∗ ≡ < K 11(∂1q)2 >

λ2 < c (q̄)2 >
,

where q̄(·) = λ−1q(·), Eq. (56) yields
∂22�

∗(ξ) − k̃2[1 − (γ /γ∗)]�∗(ξ) = 0, (60)

where γ∗ is a certain new time decaying coefficient depending on microstructure length parameter λ. Unit of
coefficient γ∗ is [s−1]. Because averages < K 11(∂1q)2 >, < K 22(q̄)2 >, < c(q̄)2 > are greater than zero
then k̃2 > 0 and γ∗ > 0. The boundary conditions for �∗(ξ) are assumed in the form

�∗(ξ = 0) = �∗
0 , �∗(ξ = L2) = 0,

where �∗
0 is the known constant.



A new combined asymptotic-tolerance model of thermoelasticity problems 23

The solution to Eq. (60) depends on relations between time decaying coefficients γ and γ∗. The following
special cases can be taken into account:

10) If 0 < γ < γ∗ and setting k̃2γ ≡ k̃2[1 − (γ /γ∗)] then
�∗(ξ) = �∗

0 [exp(−k̃γ ξ)(1 − exp(−2k̃γ L2))
−1 + exp(k̃γ ξ)(1 − exp(2k̃γ L2))

−1];
the initial temperature micro-fluctuations decay exponentially.

If 0 < γ << γ∗ then the following approximate solution to Eq. (60) can be taken into account

�∗(ξ) = �∗
0 exp(−k̃γ ξ);

in this case the initial temperature micro-fluctuations are strongly exponentially decaying near the boundary
ξ = 0. It means that the micro-fluctuations can be treated as equal to zero outside a certain narrow layer near
boundary ξ = 0. Thus, Eq. (56) being a starting point in the thermal problem under consideration makes it
possible to investigate the space-boundary layer phenomena.

20) If γ = γ∗ then

�∗(ξ) = �∗
0 (1 − ξ/L2);

we deal with a linear decaying of initial temperature micro-fluctuation amplitude.
30) If γ > γ∗ and setting κ2 ≡ k̃2[(γ /γ∗) − 1] �= (nπ)2(L2)

−2 then

�∗(ξ) = �∗
0 sin(κ(L2 − ξ))(sin(κL2))

−1;
the temperature micro-fluctuations oscillate.

40) If γ > γ∗ and κ2 ≡ k̃2[(γ /γ∗) − 1] = (nπ)2(L2)
−2 then the solution doesn’t exist.

The above effects cannot be analysed in the framework of the asymptotic models commonly used
for investigations of thermoelastic problems for micro-periodically shells under consideration. It can be
observed that within the asymptotic models neglecting the length-scale terms, Eq. (56) reduces to equation
< K 11(∂1q)2 > � = 0, which has only trivial solution � = 0.

Notice, that in the problem under consideration, for an arbitrary but fixed time argument t the form of
temperaturemicro-fluctuation amplitude�(ξ, t) is the same as the formof initial temperaturemicro-fluctuation
amplitude �∗(ξ).

6 Final remarks and conclusions

The following remarks and conclusions can be formulated:

• The objects of analysis are thin linearly thermoelastic Kirchhoff–Love-type circular cylindrical shells
having a periodically micro-heterogeneous structure in the circumferential direction (uniperiodic shells),
cf. Figs. 1 and 2. By periodic inhomogeneity we shall mean periodically variable shell thickness and/or
periodically variable inertial, elastic and thermal properties of the shell material. At the same time, the
shells have constant structures in the axial direction.

• The starting equations are the well-known governing equations of linear Kirchhoff–Love theory of thin
elastic cylindrical shells combined with Duhamel–Neumann thermoelastic constitutive relations and cou-
pled with the known linearized Fourier heat conduction equation, in which the heat sources are neglected,
cf. [43–47]. These starting equations are given by (4) and (5). For uniperiodic shells, they have highly
oscillating, non-continuous and periodic coefficients. That is why, the direct application of these equations
to investigations of specific thermoelasticity problems is non-effective even using computational methods.

• The aim of this contribution was to formulate and discuss a new mathematical averaged model for the
analysis of selected dynamic thermoelasticity problems for the uniperiodic cylindrical shells under con-
sideration. This so-called combined asymptotic-tolerance model was formulated by applying a combined
modelling including the consistent asymptotic and the tolerance non-asymptotic modelling techniques,
which are combined together into a single new procedure, cf. [8,9]. However, the combined modelling
was not used directly to Eqs. (4), (5), but to the integral functional determined byLagrange function describ-
ing the thermoelastic behaviour of the shells under consideration. The appropriate form of this function
was implied by the thermoelasticity equations (4), (5). The variational formulation of the thermoelasticity
problem under consideration was based on the extended principle of stationary action, cf. [8,9]. Note, that
the classical stationary action principle could not be applied, because the heat conduction is described with
the odd order partial differential equation with respect to the time coordinate, cf. Eq. (5).
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• The combined modelling technique is realized in two steps. In the first step, we apply the consistent
asymptotic averaging technique to starting lagrangian (7) describing thermoelastic behaviour of the shells
under consideration and independently to constitutive equations (8) for non-variational parameters. The
asymptotic modelling is determined by asymptotic decomposition (14). The resulting asymptotically aver-
aged lagrangian is given by (17) with asymptotically averaged non-variational parameters (18). Then
using the extended stationary action principle, we obtain the asymptotically averaged Euler–Lagrange
equations (20), which explicit form is given by (21). Equation (21) consist of partial differential equa-
tions for macrodisplacements u0α, w0 and macrotemperature θ0 coupled with linear algebraic equations
for displacement fluctuation amplitudes Uα, W and temperature fluctuation amplitude �. After elimi-
nating fluctuation amplitudes from the governing equations by means of (22), we arrive finally at the
asymptotic model equations (23) expressed only in macrodisplacements u0α, w0 and macrotemperature
θ0. Unknowns of this model must be continuous and bounded functions in periodicity directions. Coeffi-
cients of asymptotic model equations (23) are constant, but independent of a cell size. Hence, the model
obtained in the first step of the combined modelling is referred to as the macroscopic model. Assuming
that in the framework of macroscopic model the solutions (26) to the problem under consideration are
known, we can pass to the second step. This step is based on the tolerance averaging of lagrangian (7) and
independently on the tolerance averaging of non-variational parameters (8). The tolerance modelling is
determined by the extra micro–macro decomposition (27) imposed on the known solutions (26) obtained
within the macroscopic model. The resulting tolerantly averaged lagrangian is given by (32) with toler-
antly averaged non-variational parameters (33). Then, applying the extended stationary action principle,
we obtain the averaged Euler–Lagrange equations (35) for kinematic Qα, V and thermal � fluctuation
amplitudes being the new unknowns. These unknowns must satisfy conditions (28), i.e. they have to be
slowly-varying functions with respect the cell and tolerance parameters. Explicit form of Euler–Lagrange
equations (35) is given by (36)–(38). Coefficients of the resulting equations are constant. Moreover, some
of them depend on the microstructure size (underlined terms). Hence, the model obtained in the second
step of the combined modelling is referred to as the microscopic model. Summing up, the new combined
asymptotic-tolerance model proposed here is represented by macroscopic (asymptotic) cell-independent
model equations (23) for macrodisplacements u0α(x, ξ, t), w0(x, ξ, t) and macrotemperature θ0(x, ξ, t)
together with expressions (22) for kinematic Uα(x, ξ, t),W (x, ξ, t) and thermal �(x, ξ, t) fluctuation
amplitudes, (x, ξ, t) ∈ �×�×I, aswell as by superimposedmicroscopic (tolerance) cell-dependentmodel
equations (36)–(38) for unknown microscopic kinematic Qα(x, ξ, t), V (x, ξ, t) and thermal �(x, ξ, t)
fluctuation amplitudes, (x, ξ, t) ∈ � × � × I , and by total decomposition (48). Macro- and microscopic
model equations are coupled to each other under assumption that in the framework of the macroscopic
model, the solutions (26) to the problem under consideration are known.

• The resulting combined model equations are uniquely determined by the highly oscillating periodic fluc-
tuation shape functions describing oscillations of displacement and temperature fields inside the cell.
These functions have to be known in every problem under consideration. They can be obtained as exact
or approximate solutions to periodic eigenvalue cell problems, cf. [11,23–25]. They can also be regarded
as the shape functions resulting from the periodic discretization of the cell using, for example, the finite
element method. The choice of these functions can also be based on the experience or intuition of the
researcher. In general case, the fluctuation shape functions of both the macroscopic and the microscopic
models are different. Assuming that the fluctuation shape functions of both the models coincide and that the
impact of the displacement fields on the temperature in the dynamic thermoelasticity problem under con-
sideration doesn’t exist or is negligibly small, we have derived superimposed microscopic model equations
(45)–(47), which are independent of the solutions obtained in the framework of the macroscopic model.
Hence, an important advantage of the averaged combined model proposed here is that it makes it possible
to separate the macroscopic description of some special thermoelasticity problems from their microscopic
description.

• As illustrative examples, certain two special length-scale problems were discussed on the basis of the
micro-dynamic equation (46) and micro-thermal equation (47) derived in the second step of the combined
modelling. These equations are independent of solutions obtained in the first step of combined modelling,
i.e. in the framework of asymptotic model. Hence, it makes it possible to investigate the shell’s microscopic
behaviour independently of the shell’smacroscopic behaviour. The object of consideration of both problems
was a thin circular closed cylindrical shell made of two kinds of homogeneous elastic isotropic materials
periodically and densely distributed in the circumferential direction. Fragment of such a shell is shown in
Fig. 2. The first of these problems dealt with the cell-dependent transversal free micro-vibrations caused
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by a microheterogeneous structure of the uniperiodic cylindrical shell under consideration. The resulting
free micro-vibration frequency (59) depends on a cell size λ. The second length-scale problem dealt with
the effect of a microstructure size λ on the character of the initial distributions of temperature micro-
fluctuations. It was shown that in the uniperiodic shells under consideration, the form of initial temperature
micro-fluctuations depends on relations between the given time decaying coefficient γ > 0 and a certain
time decaying coefficient γ∗ depending on microstructure length parameter λ. The initial temperature
micro-fluctuations decay exponentially for 0 < γ < γ∗. They decay linearly for γ = γ∗. If γ > γ∗
then the temperature micro-fluctuations oscillate. Moreover, if 0 < γ << γ∗ then the micro-fluctuation
amplitude is strongly decaying near the boundary ξ = 0. It means that the temperature micro-fluctuations
can be treated as equal to zero outside a certain narrow layer near boundary ξ = 0. Thus, we have shown
that the tolerance model formulated in the second step of the combined modelling, which is independent
of solutions obtained in the first step of the combined modelling (i.e. within asymptotic model), makes
it possible to analyse the space-boundary layer phenomena. The length-scale problems discussed in this
distribution can be studied neither in the framework of the asymptotic models for the uniperiodic shells
under consideration norwithin the known commercial numerical models based on the finite elementmethod
or the finite difference method.

Some applications of the new asymptotic-tolerance tolerance model to the analysis of various dynamical
or thermal or coupled dynamical thermoelasticity problems for the thin uniperiodic cylindrical shells under
consideration are reserved for the forthcoming papers.
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4. Lewiński, T., Telega, J.J.: Plates, Laminates and Shells. Asymptotic Analysis and Homogenization. World Scientific Pub-

lishing Company, Singapore (2000)
5. Andrianov, I.V., Awrejcewicz, J., Manevitch, L.: AsymptoticalMechanics of Thin-Walled Structures. Springer, Berlin (2004)
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23. Jędrysiak, J.: On stability of thin periodic plates. Eur. J. Mech. A/Solids 19, 487–502 (2000)
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