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Abstract The literature in the field of higher-order homogenization is mainly focused on 2-Dmodels aimed at
composite materials, while it lacks a comprehensive model targeting 3-D lattice materials (with void being the
inclusion) with complex cell topologies. For that, a computational homogenization scheme based on Mindlin
(type II) strain gradient elasticity theory is developed here. The model is based on variational formulation with
periodic boundary conditions, implemented in the open-source software FreeFEM to fully characterize the
effective classical elastic, coupling, and gradient elastic matrices in lattice materials. Rigorous mathematical
derivations based on equilibrium equations and Hill–Mandel lemma are provided, resulting in the introduction
of macroscopic body forces and modifications in gradient elasticity tensors which eliminate the spurious gra-
dient effects in the homogeneous material. The obtained homogenized classical and strain gradient elasticity
matrices are positive definite, leading to a positive macroscopic strain energy density value—an important
criterion that sometimes is overlooked. The model is employed to study the size effects in 2-D square and 3-D
cubic lattice materials. For the case of 3-D cubic material, the model is verified using full-field simulations,
isogeometric analysis, and experimental three-point bending tests. The results of computational homogeniza-
tion scheme implemented through isogeometric simulations show a good agreement with full-field simulations
and mechanical tests. The developed model is generic and can be used to derive the effective second-grade
continuum for any 3-D architecturedmaterial with arbitrary geometry. However, the identification of the proper
type of generalized continua for the mechanical analysis of different cell architectures is yet an open question.

Keywords Second-order homogenization · Gradient elasticity · Lattice materials · Experimental validation ·
Size effect

1 Introduction

Lattice materials are a class of multiscale materials with periodic architecture at the microscale. The structural
arrangement at themicroscale determines themacroscopic characteristics of thematerial. The advancements in
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additive manufacturing have made it possible to fabricate complex micro-architectures resulting in engineered
materials with effective properties that are not found in nature, e.g. auxetic behavior [1] tailored anisotropy
[2] and mechanical coupling [3]. These are interesting features for engineering applications but when it comes
to integration of these materials into products, the question arises whether the length ratio of macroscopic
component and its micro-architecture affect the overall performance or not Various studies provided evidence
that such length ratio influences the mechanics of samples composed of microstructure, e.g. [4–10]. This is
referred to as size effects.

Full-field simulations of lattice materials with detailed microstructure are computationally expensive.
Instead, considering the phenomenon to be captured (e.g. mechanics, thermomechanics, or in general multi-
physics), the heterogenous media can be replaced by a homogenous continuum with equivalent properties
using proper homogenization techniques. In mechanics, classical homogenization theories based on Cauchy
continuum are valid under the assumption of scales separation, they fail when the size of micro- and macro-
structure are comparable giving rise to e.g. size effects. For this, the generalization of the classical continuum
towards either higher-order or higher-grade continua is required. Higher-order theory includes local rotations
as additional degrees of freedom, e.g. Cosserat [11], while higher-grade theory extends the definition of strain
energy to the higher gradients of kinematic or internal variables, e.g. strain gradient continuum in [12,13].
While higher-order theories have been employed for homogenization of architecturedmaterials in the literature
e.g. [8,14–18], strain gradient model offers some advantages over higher-order continua [19]. For instance,
strain gradient elasticity can describe the length-scale effect without including large number of parameters as
in micromorphic elasticity. Moreover, the anisotropic features of strain gradient elasticity are well understood
[20]. Thus, in this paper, we focus on strain gradient elastic continuum model as described by Mindlin [12].

In the context of homogenization based on strain gradient theory, two general approaches exist: quadratic
boundary conditions (QBC) and asymptotic analysis. The approach based on asymptotic analysis uses a series
expansion—including higher-order terms in case of weak scale separation—to approximate the solution and
solves a set of elasticity problems, e.g. see [21]. This is a promising approach for homogenization towards
strain gradient continua, as demonstrated in [22–24] to name a few. Previous models based on asymptotic
analysis suffer from persistence of strain gradient parameters when the material is fully homogeneous. This
shortcomings is resolved using correction terms suggested in [25], and has been numerically implemented using
fast Fourier transform (FFT) [26] and finite element method [27]. Following that, an alternative approach for
the derivation of the correction terms was proposed in [28]. The proposed model was later implemented and
verified in [29] for a range 3-D architectured materials. More recently, a boundary layer correction model
was presented in [30] to include local effects at the vicinity of the boundaries in higher-order asymptotic
homogenization.

The method based on quadratic boundary condition (QBC) is an extension of classical kinematic boundary
conditions, in which displacements resulting from a uniform strain field are applied to the boundary of a
representative volume element (RVE). This method is simpler as compared to asymptotic analysis which
requires a set of auxiliary variables for the derivation of effective properties, e.g. see [28] for details. Indeed,
in QBC method the effective strain gradient parameters are directly obtained from displacement field with no
need for additional variables. The simplicity of QBC has made it a popular model for homogenization towards
strain-gradient continua, e.g. [31–33]. But there has been a major flaw in this model (as noted by [24,34]), that
is the persistence of spurious gradient parameters when the material is homogenous. To resolve this, corrective
body forces were introduced in the microscale equilibrium equations in [35]. Later, the proposed method was
employed in [19] to numerically analyze anisotropic composite materials. Despite its success in the elimination
of spurious gradient effects, it turned out that the model in [19] and [35] cannot evaluate composites with soft
inclusions or lattices materials (with inclusion being a void—extreme case of soft inclusion). More recently,
[36] and [37] extended QBC method to periodic boundary condition (PBC) and combined it with variational
formulation for homogenization towards strain gradient continua. But the authors in [36] and [37] did not
include the corrective body forces and neither discussed whether the gradient terms vanish in the case of
homogenous material or not. In another work [38], the authors employed second-gradient approach based on
PBC to investigate the deformation behavior of 2-D voided materials.

The literature in the field of strain gradient homogenization hasmainly focused on composite materials, and
there has been far less attention towards architectured materials. Studies on lattice materials are mainly limited
to 2-D topologies, and very few studies considered 3-D geometries, e.g. [29] and [37] (the case studies are
mainly dedicated to composites). The authors in [29] employed asymptotic homogenization and investigated
the behavior of various composite materials and a 3-D foam with cuboid voids followed by a numerical
validation. Also, the case of 3-D lattice is investigated in a limited context in [37], where the authors briefly
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discussed the elastic gradient parameters for a thin-walled lattice but no further validation nor a discussion
on the influence of cell length is provided. Finally, literature lacks a comprehensive validation study because
the majority of the works in the field either provided only qualitative validations or solely relied on numerical
validation with no further experiments.

There is a need for a 3-Dhomogenizationmodel based onPBC-approach (as an extension toQBC-approach)
addressing voidedmaterials with complex geometries, followed by a thorough verification study.We contribute
to the field by tackling this problem and developing a 3-D numerical scheme based on strain gradient theory.
The developed model uses periodic boundary conditions (PBC) along with variational formulation and is
more practical compared to previous ones in a sense that no material should be assigned to the voided region
and this makes the analysis of complex 3-D lattice materials possible. Additionally, rigorous mathematical
derivation based on Hill–Mandel lemma is provided which guarantees vanishing strain gradient parameters
when the material is homogenous or when strict scale separation is valid Finally, a comprehensive validation
study based on full-field analysis, isogeometric (IGA) simulations and experimental tests is carried out.

The paper is structured as follows. First in the following section, the strain gradient homogenization theory
is elaborated atmicro-scale andmacro-scale, and the scales are bridged usingHill–Mandel lemma.Next, Sect. 3
presents the practical numerical implementation and algorithm behind the homogenization scheme. Following
this, the model is used to study the behavior of a range of 2-D square and 3-D cubic lattice materials in
Sect. 4. Then, in Sect. 5, the homogenized results for the case of 3-D cubic lattices are validated using full-field
simulations, isogeometric analysis, and experimental three-point bending tests. Finally, concluding remarks
on the applicability of homogenization model based of strain gradient theory for different cell architectures
and/or load conditions are provided.

2 Strain gradient homogenization

We deal with a multi-scale problem which is homogenized at the global (macro-) scale and heterogenous at the
local (micro-) scale. At the microscale, the material follows classical Cauchy elasticity, while the homogenized
macroscopic material acts as strain gradient continuum. The proposed scheme employs two length-scales: (1)
a global coordinate, x, describing global (slow changing) variables, and (2) a local coordinate, y, describing
local (fast changing) variables. The length-scales are related using a scaling factor ε = x/y, which allows for
arbitrary selection of local coordinates of an RVE. To introduce the continuum formulation of macroscale and
microscale, the superscripts “M” and “m” denote macroscopic and microscopic variables, respectively.

(i) Macroscale
Aiming for a second-order homogenization, we use a truncated Taylor expansion to approximate the

macroscopic strain field at a material point coinciding with the geometric center of an RVE, i.e. point xc. This
reads

εM(x) = ε(xc) + ∇ε(xc).(x − xc) (1)

where ε(xc) and ∇ε(xc) are, respectively, the applied uniform macroscopic strain and uniform macroscopic
gradient of strain. Over the selected RVE we write ε(xc) = ε̄ and ∇ε(xc) = K̄. By conveniently locating the
coordinate system at the center of the RVE, the macroscopic strain field and its gradient simplify as

εM(x) = ε̄ + K̄.x ; ∇εM(x) = K̄ (2)

where ∇() is the gradient operator.
The macroscopic material is assumed to be a second-order strain gradient continua with the following

equilibrium equation

∇.(σM
(x) − ∇.(SM(x)) + f = 0 (3)

where f is the body force ∇.() is the divergence operator, σM
(x) is the second-order macroscopic stress tensor,

and SM(x) is the third-order hyperstress tensor. The stress and hyperstress tensors are defined as

σM
(x) = CM : εM(x) + BM...∇εM(x) (4)
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SM(x) = (BM)
T : εM(x) + DM...∇εM(x) (5)

where “:” is a double contraction operator, CM is the macroscopic fourth-order elastic tensor, BM is the
macroscopic fifth-order coupling tensor, andDM is themacroscopic sixth-order strain-gradient elasticity tensor.
Inserting Eqs. (4, 5) into (3) leads to

∇.

(
CM : εM(x) + BM...∇εM(x) − ∇.

(
(BM)

T : εM(x) + DM...∇εM(x)

))
+ f = 0 (6)

Inserting the macroscopic strain εM(x) and macroscopic strain gradient ∇εM(x) fields defined in Eq. (2) into the
above expression and following the mathematical operations yields

∇.(CM : (ε̄ + K̄.x)) + f = 0 (7)

This equation motivates the presence of body forces in a strain-gradient continuum. The body forces are scale-
independent and identical at both micro- and macroscale. In the limit case of a homogeneous RVE (governed
by classical elasticity, i.e.BM = 0 andDM = 0), the above relation simplifies to Cauchy equilibrium equation,
in which the body forces disappear, and continuum body is self-equilibrated

∇.
(
CM : ε̄

) = 0 (8)

(ii) Microscale
We assume the microscopic strain is the superposition of macroscopic strain, εM(x), and microscale fluctu-

ations, ε∗
(x, y) (accounting for the heterogeneities). That is

εm(x, y) = εM(x) + ε∗
(x, y) = ε̄ + K̄.x + ε∗

(x, y) (9)

Following the classical Cauchy elasticity at the micro-scale, the equilibrium equation at micro-scale reads

∇.
(
σm

(x, y)

)
+ f = 0 (10)

Having above introduced the governing continuum formulation of macroscale and microscale, to prepare
for numerical retreatment, we now derive the elasticity weakform formulation of the following two cases:

Problem 1 (ε̄ �= 0 and K̄= 0)

This is the classical Cauchy elastic problem, in which the weak form appears as

∫
�

σm
(x, y) : δεm(x, y)� = 0 (11)

where δε(x,y) is the virtual strain, and is chosen to only vary at the microscale, i.e. δεm(x, y) = δε∗
(x, y). Using

the Hooke’s law along with Eq. (9) the above weak form reads

∫
�

δε∗
(x, y) : Cm

(x) : (ε̄ + ε∗
(x, y))d� = 0 (12)

where Cm
(x)is the elasticity tensor of the material at the local (micro) scale.
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Problem 2 (ε̄= 0 and K̄�= 0)

In this case, considering Eq. (7), the body forces also appear in the formulation (see Appendix A). Employing
Eq. (9), the weak form reads∫

�

δε∗
(x, y) : Cm

(x)
:
(
K̄.x + ε∗

(x, y)

)
d� −

∫
�

δε∗
(x, y) : CM : (

K̄.x
)
d� = 0 (13)

We use Eqs. (12) and (13) along with periodic boundary conditions to solve the elastic and gradient elastic
problems. The solution to these equations yields the strain fluctuations, ε∗

(x, y), from which we can build the

local strain fields, i.e. ε1(x, y)
m and ε2(x, y)

m using Eq. (9). Since the problem is linear, we form the local strain
field using the superposition principle as

εm(x, y) = ε1(x, y)
m+ = ε2(x, y)

m = A
1
(x, y):ε̄ + A

2
(x, y)

...K̄ (14)

where A1 and A
2 are, respectively, the fourth- and fifth- order localization tensors (strain solutions) obtained

by solving Eqs. (12) and (13).

2.1 Effective properties

To bridge between scales, we work with the strain energy densities at both scales. In one hand, taking the
volume average of the microscopic strain energy over the RVE yields

< Wm >= 1

2
< σm : εm >= 1

2
< (εm)

T : Cm : εm > (15)

where <> is the volume average operator defined as < � >= 1
VΩ

∫
Ω

�d� over domain Ω of the RVE.

Replacing total strain field, Eq. (14), into the above equation results

< Wm >= 1

2
<

(
A
1 : ε̄ + A2...K̄

)T

: Cm :
(
A
1 : ε̄ + A

2...K̄

)
> (16)

Following the mathematical operations, this becomes

< Wm > = 1

2

{
ε̄T : < (A1)

T : Cm : A1 >: ε̄
}

+
{
ε̄T :< (A1)

T : Cm : A2 >
...K̄

}

+1

2
K̄

T ... < (A2)
T : Cm : A2 >

...K̄ (17)

On the other hand at the macroscale, the Mindlin II [13] formulation of the energy for a homogenized strain-
gradient material reads

WM = 1

2

((
εM

)T : CM : εM
)

+ εM : BM...∇εM + 1

2

((∇εM
)T ...DM...∇εM

)
(18)

Inserting Eq. (2) into the above energy expression results in

WM = 1

2
{(ε̄ + K̄.x

)T : CM : (
ε̄ + K̄.x

)} + (
ε̄ + K̄.x

) : BM...K̄ + 1

2
(K̄

T ...DM...K̄) (19)

Following mathematical operations this leads to

WM = 1

2
{ε̄T : CM : ε̄} + ε̄ : (BM + CM ⊗ x)

...K̄ + 1

2
{K̄T ...(DM + CM ⊗ xx)

...K̄} (20)

Employing the principle of energy equivalency at micro-scale (Eq. 17) and macro-scale (Eq. 20), i.e. Hill–
Mandel lemma WM = < Wm >, we obtain the effective elasticity tensors of a homogenized second-order
continua as

CM = < (A1)T : Cm : A1 > (21)
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BM + CM ⊗ x = < (A1)
T : Cm : A2 > (22)

DM + CM ⊗ xx = <
(
A
2
)T : Cm : A2 > (23)

Substituting expression for CM, Eq. (21), into Eqs. (22–23) yields

BM + < (A1)
T : Cm : A1 ⊗ x > = < A

1 : Cm : A2 > (24)

DM + <
(
A
1 ⊗ x

)T : Cm : A1 ⊗ x > = <
(
A
2
)T : Cm : A2 > (25)

Thus, the homogenized coupling and strain gradient tensors read as

BM = < (A1)T : Cm : (A2 − A
1 ⊗ x) > (26)

DM = < (A2 − A
1 ⊗ x)T : Cm : (A2 − A

1 ⊗ x) > (27)

Similar expressions for BM and DM are provided in the work of [19], where the authors modified the second

localization tensor ( Ã2 = A
2 − A

1⊗x) to eliminate spurious gradient terms. Their conclusionwas based on the
analysis of a special case of homogenousmaterial, but herewe provided a generic approach andmathematically
derived this based on the equivalency of energies.

3 Numerical implementation

We use the finite element method along with periodic boundary condition to numerically solve Eqs. (12) and
(13). For this following the Voight notation, Eqs. (12–13) are rewritten as∫

�

[
δε∗] [

Cm]
([ε̄] + [ε∗])d� = 0 (28)

∫
�

[
δε∗]T [

Cm]
([g] + [ε∗])d� −

∫
�

[
δε∗]T [

Cm] [g]� = 0 (29)

where [ε∗] and [ε̄] are, respectively, strain fluctuation and macroscopic strain in vector form, while
[
Cm

]
and[

CM
]
are, respectively, matrix representation of micro andmacro elasticity tensors. In Voigt notation, the vector

[G] reads

[G] =
⎡
⎣ K̄111x1 + K̄112x2

K̄221x1 + K̄222x2
1
2 (K̄121+K̄211)x1 + 1

2 (K̄122+K̄212)x2

⎤
⎦ in 2-D

[G] =

⎡
⎢⎢⎢⎢⎢⎢⎣

K̄111x1 + K̄112x2 + K̄113x3
K̄221x1 + K̄222x2 + K̄223x3
K̄331x1 + K332x2 + K̄333x3

1
2 (K̄231+K̄321)x1 + 1

2 (K̄232+K̄322)x2 + 1
2 (K̄233+K323)x3

1
2 (K̄131+K̄311)x1 + 1

2 (K̄132+K̄312)x2 + 1
2 (K̄133+K̄313)x3

1
2 (K̄121+K̄211)x1 + 1

2 (K̄122+K̄212)x2 + 1
2 (K̄123+K̄213)x3

⎤
⎥⎥⎥⎥⎥⎥⎦

in 3 − D (30)

Note that the strain gradient components have minor symmetry with respect to the first two indices, e.g.
K̄123 = K̄213

To compute all the effective elastic and strain gradient parameters, one should solve Eqs. (28) and (29) for
all the possible macroscopic strain and strain gradient loads. That is

ε̄(i j) = 1

2
(
(
ei ⊗ e j

) + (e j ⊗ ei )) (31)

K̄
(klm) = 1

2
((ek ⊗ el) + (el ⊗ ek)) ⊗ em (32)

where ei, j,k,l,m are unit basis vectors in 2- or 3-D spaceWe write the above tensors as column vectors in Voight
notation—following Tables1, 2, 3 and 4 and build [ε̄] and

[
K̄

]
for each load case. Once these are formed, we

follow the algorithm described in Fig. 1.



Second-order homogenization of 3-D lattice materials towards strain gradient media 2261

Table 1 Voigt notation used for 2-D classic strain vector

Case # 1 2 3

ij 11 22 12

Table 2 Voigt notation used for 3-D classic strain vector

Case # 1 2 3 4 5 6

ij 11 22 33 23 13 12

Table 3 Voigt notation used for 2-D strain gradient vector

Case # 1 2 3 4 5 6

klm 111 221 122 222 112 121

Table 4 Voigt notation used for 3-D strain gradient vector

Case # 1 2 3 4 5 6 7 8 9

klm 111 221 122 331 133 222 112 121 332

Case # 10 11 12 13 14 15 16 17 18

klm 233 333 113 131 223 232 231 132 123

4 Numerical studies

In the following, we employ the developed scheme and derive the classical and strain gradient elastic material
parameters for various 2- and 3-D lattice materials. For 2-D plane-strain case, the whole process of model
generation, meshing and analysis is done in the open-source software FreeFEM++ [39]. But due to the
complexity of models in 3-D, we use dedicated software for each stage. That is, CAD modelling is carried out
in PTC Creo, mesh generation is performed in SALOME, and finite element computations are conducted in
FreeFEM++. A projection algorithm (in SALOME) is used to assure that the mesh nodes on opposite faces
of the RVE boundary are identical to facilitate the implementation of periodic boundary conditions.

4.1 Two-dimensional lattices

We consider a 2-D square lattice as in Fig. 2, with the cell length of L and wall thickness of t . The lattice is
made of a classical elastic material with Young’s modulus of 100 MPa and Poisson’s ratio of 0.3.

The geometry of the square lattice is centro-symmetric meaning that the effective coupling matrix, BM,
vanishes. Additionally, this geometry implies a specific symmetry class with the followingmatrices of material
properties.

CM =
⎡
⎣C1111 C1122 0
C2211 C1111 0
0 0 C1212

⎤
⎦ (33)

DM =

⎡
⎢⎢⎢⎢⎢⎣

D111111 D111221 D111122 0 0 0
D221111 D221221 D221122 0 0 0
D122111 D122221 D122122 0 0 0

0 0 0 D111111 D111221 D111122
0 0 0 D112222 D221221 D221122
0 0 0 D122111 D122221 D122122

⎤
⎥⎥⎥⎥⎥⎦

(34)

Considering the symmetry of CM and DM matrices, this material is characterized with only 3 classical and 6
strain gradient elastic parameters.



2262 D. Molavitabrizi et al.

Fig. 1 Computational homogenization scheme

Fig. 2 Unit cell of 2-D square lattice geometry

To evaluate the validity of themodel against the basic understanding of strain gradient elasticity,we consider
the three following test scenarios:

(i) Relative density
We assess the elastic and strain gradient parameters with respect to the relative density of the lattice by

varying the wall thickness as in Table 5. As expected, the gradient material parameters initially increase with
increasing solid volume fraction, but they start to reduce at ρ̄ = 0.75 and completely vanish when the material
is fully homogenous (see Fig. 3a). This confirms that in the current approach, the spurious strain gradient
parameters disappear when the material is fully solid. The presence of such an extremum for the D matrix
motivates the possibility of extremizing the size effect as a material engineering tool. The classical elastic



Second-order homogenization of 3-D lattice materials towards strain gradient media 2263

Table 5 Variation of the unit-cell relative density (L = 1mm)

t (mm) 0.1 0.2 0.3 0.5 0.7

ρ̄ 0.19 0.36 0.51 0.75 0.91

Fig. 3 Classical and strain gradient elastic material parameters at different relative densities

Table 6 Variation of the unit-cell size ( ¯ρ = 0.19)

t (mm) 0.1 0.05 0.02

L (mm) 1 0.5 0.2

parameters monotonically increase with the relative density and reach the properties of the base material at
ρ̄ = 1.
(ii) Size effect

We now study the variation of elastic properties with respect to the cell size by changing the wall thickness
and cell length (see Table 6), while keeping the relative density constant at ρ̄ = 0.19. We observed that as
expected, the parameters of classical elasticity, i.e. CM, are size-independent and do not change with the cell
size. However, one can see in Fig. 4 that the parameters of gradient elasticity are size-dependent, while all the
parameters of DM approaches zero as the cell size decreases. This is true because as the unit-cell becomes
smaller, the size effects become less dominant, and strain gradient parameters vanish. Moreover, we note that
the strain gradient parameters in DM scale with ε2. For instance, the parameter D111111 in cell with L = 1mm
is, respectively, 4 times and 25 times higher than its counterparts in cells with L = 0.5mm and L = 0.2mm.
This shows that the current model can accurately capture the size effects, e.g. see also [19,21,28].

The above scaling of strain gradient parameters with the cell size can also be mathematically verified. By
writing Eq. (13) in local coordinate, i.e., x = εy, the solution to the problem (Eq. (14)) reads as: ε(x,y) =
A
1
(x,y) : ε̄ + ε Ã2

(x,y)
...K̄. Next, using this form of solution and following the same steps as described in Sect. 2,

the homogenized coupling and strain gradient matrices in local coordinate read as

BM = ε < (A1)
T : Cm : Ã2 > (35)

DM = ε2 < (Ã2)T : Cm : Ã2 > (36)

This further confirms the validity of the model in predicting the size effects.
(iii) Window of analysis
In this test, we check the influence of selection of the analysis window on classical and gradient elastic

parameters. We do so by evaluating these parameters using three different RVEs consisting of one cell, four
cells and nine cells, as shown in Fig. 5. In all cases, the cell length (L) and wall thickness (t) are 1mm and
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Fig. 4 Variation of strain gradient parameters with the cell size (ρ̄ = 0.19)

Fig. 5 Different RVEs made of: a 1 cell, b 4 cells, and c 9 cells

0.1mm (ρ̄ = 0.19), respectively. Here, we refer to “analysis window” as the number of cells included in the
RVE.

The classical elastic parameters are insensitive to the choice of analysis window, while the gradient elastic
parameters change with the number of cells included in the RVE. We see in Fig. 6 that the parameter D111111
linearly varies with the total number of cells (or with N 2 if we consider each RVE contains N × N cells).
Such trend was also observed in previous works, e.g. [35] and [36]. To further investigate this from an energy

perspective, we applied macroscopic strain gradient load corresponding toK̄
(111)

, solved the microscopic

problem and evaluated the energy density contribution of the gradient part, i.e. 1
2V�

∫ ( Ã2)
T : Cm : Ã2�—

since the classical elastic parameters are identical in all cases. The results in Table 7 show that the energy density
of the above-mentioned RVEs differs, and this is the reason behind variation of strain gradient parameters. We
remind that the equivalency of energy between micro- and macro-scale is still valid for each individual case,
i.e. each homogenized RVE and its microstructure. Yet, the value of energy varies in RVEs with different cell
numbers

Such variation between the obtained results for different RVEs has also been reported in [40], where the
authors noticed the value of equivalent von Mises stress is higher for RVEs containing more number of cells.
Thus, we argue that in the proposedmethod, one should choose theRVE as an irreducible cell (1 cell) specifying
accordingly the scale ratio. Otherwise, the effective strain gradient properties should be scaled as in Fig. 6.
Such a simple scaling is valid for linear elastic assumption, and the situation becomes more complicated when
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Fig. 6 Variation of the effective strain gradient parameter with the number of cells in an RVE (Each RVE contains N × N cells)

Table 7 Gradient strain energy density of RVEs with various cell numbers

RVE with 1 cell RVE with 4 cells RVE with 9 cells

0.378 ( mJ
mm3 ) 1.535 ( mJ

mm3 ) 3.453 ( mJ
mm3 )

Fig. 7 3-D cubic lattice materials with various cell sizes

the material is nonlinear, e.g. large deformation or plasticity. Thus, we suggest selecting the analysis window
as a single irreducible cell.

4.2 Three-dimensional lattices

We study a 3-D lattice material known as cubic lattice, see Fig. 7. Four cells with circular strut cross-section
and various cell sizes are designed at the constant relative density of ρ̄ = 0.25, see Table 8 for dimensions We
homogenize the cells towards higher-grade continua using the algorithm described in Sect. 3 and examine the
size effect of microstructure on the effective properties.

The base material used for the fabrication of lattices is polyamide PA-12. To quantify the properties of
the base material, we conducted tensile tests—3mm/min displacement rate—on two additively manufactured
PA-12 dogbone samples that are produced with the same printing parameters used for the fabrication of lattice
structures (see Sect. 5 for more details on 3D-printing). The averaged value of the experimentally measured
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Table 8 Cell dimensions for cubic lattices (ρ̄ = 0.25)

Case 1 Case 2 Case 3 Case 4

Cell size 20mm 10mm 5mm 2.5mm
Strut diameter 7.4mm 3.7mm 1.85mm 0.925mm

parameters turned out to be 1.58 GPa for the elastic modulus and 0.4 for the Poisson’s ratio, see Appendix B
for stress–strain plots.

These experimentally characterized properties are used as inputs for simulations. We discretize the unit-
cells with linear elements and approximate the solution over the elements with second-order (P2) finite element
space. In the literature, the convergence criterion for homogenization is not well-defined. Recently, Yang et al.
[29] used the symmetry class of the material as a basis for convergence analysis. This approach is applicable
only when the material symmetry is already known and is not practical for exploring new advanced materials.
Additionally, assessing the convergence based on a few selected components of the elasticity matrices may
not be representative of the overall behavior of the material. Therefore, we propose the strain energy of the
homogenized cell, WM in Eq. (19), to be used as the convergence criterion.

We note that the convergence for classical elasticity (components of CM) is easily achieved, even when
relatively large mesh sizes are used. But this is not the case for gradient elastic parameters, so we base our
assessment on convergence of DM components (note that BM is zero because the studied unit-cell is centro-

symmetric). We assess the energy of the strain gradient part of WM in Eq. (19), K̄
T ...DM...K̄, by applying an

arbitrary load case to the homogenized material. In this loading, to activate all the components of macroscopic
strain gradient tensor, all the elements of K̄ are set to be 1. This allows for the contribution of all computed
parameters of DM in the energy value. The convergence is reached when the difference between computed
energy values from homogenized DM matrices is less than 1%. This is achieved when the mesh size is 1/10th
of strut diameter, e.g. mesh size of 0.7mm for cubic lattice in case 1.

As an example, the computed homogenized DM matrix for the cubic lattice with 20mm cell size is shown in
Fig. 8. The homogenizedmatrix follows the structure of a cubic symmetric material in strain gradient elasticity.
Here, DM is a block-diagonal matrix composed of three identical 5×5 (blue, green, and yellow in Figure 8) and
one 3× 3 (orange in Fig. 8) block matrices, while other components of the matrix are negligible. Additionally,
some of the components in the highlighted block matrices are equal, resulting in only 11 independent elastic
parameters in this strain gradient matrix. For more details about the structure of a cubic symmetric material in
strain gradient elasticity see [29,41].

The obtained DM matrix is positive definite and it results in a positive strain energy value, see [42] for
more details. Despite its fundamental importance, the positive definiteness of DM as well as positivity of strain
energy is sometimes overlooked in other works related to strain gradient homogenization.

Once the effective gradient elasticity matrix is computed for one cell, we may skip the costly computations
for other cells using the scaling ratio ε (as discussed in Sect. 4-(iii)). Having DM for 20mm cell size, we obtain
the effective gradient elasticity matrix corresponding to 10mm, 5mm, and 2.5mm cell size by, respectively,
scaling the computed DM with ε2=1/4,1/16. and 1/64 The classical elasticity matrix CM is size-independent
and remains constants for all the cells. This is obtained as⎡

⎢⎢⎢⎢⎢⎣

196 28 28 0 0 0
28 196 28 0 0 0
28 28 196 0 0 0
0 0 0 15 0 0
0 0 0 0 15 0
0 0 0 0 0 15

⎤
⎥⎥⎥⎥⎥⎦

(MPa) (37)

Note that the components of CM also follow the structure of a cubic symmetric material in classical
elasticity, see also [2].

5 Validation

To validate the homogenization scheme and quantify the size effect, we consider the application of designed
lattices in beam structures under three-point bending load. This beam structure is then analyzed via (i) full-
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Fig. 8 Homogenized DM matrix (in kN ) for the cubic lattice following the cubic symmetry class in strain gradient elasticity,
consisting of three 5 × 5 (in blue, green, and yellow), and one 3 × 3 (in orange) block matrices (colour figure online)

Fig. 9 Beam structures made of cubic lattice with various cell sizes

field simulation of the beamwith detailedmicrostructure, (i i) isogeometric analysis (IGA) of the homogenized
higher-grade continua, and (i i i) experimental tests on additively manufactured lattice structures.

5.1 Full-field simulations

We simulate three-point bending tests on beamswith detailedmicrostructure, see Fig. 9. The beams are 140mm
long with 20mm× 20mm square cross-section and are made of cells with different sizes as listed in Table 8.

We perform quasi-static displacement-controlled numerical tests in Abaqus CAE. Only quarter of the
beam is modelled using x-symmetry and y-symmetry boundary conditions that are, respectively, applied to
the middle yz-section and middle xz-section of the beam. The beam is constrained by setting uz = 0 over
the bottom edge of the end cross-section. We then displace the beam by coupling degrees of freedom in z-
direction on the top edge of the middle cross-section to a reference point and apply a displacement in the
negative z-direction to this point. This setup is schematically shown in Fig. 10.

For full-field simulations, the beam structures are discretised by C3D10 (a 10-node quadratic tetrahedron)
finite elements. For lattices with different cell size, the ratio of approximate element size to strut diameter is
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Fig. 10 Deformed shape and distribution of z-component of the displacement field for: a quarter of the beam with detailed cubic
microstructure, and b half of the homogeneous beam with effective properties modelled via IGA. Red point shows position of a
reference point (RP) (colour figure online)

kept as≈ 0.1. The base material of the microstructure follows the classical isotropic elasticity with the material
properties stated in Sect. 4.2.

5.2 Isogeometric analysis

We model the bending behaviour in the framework of strain gradient elasticity theory by representing the
lattice beams as homogeneous continuum with effective elastic moduli given in CM and DM, see Fig. 10.
For the homogeneous 140mm × 20mm × 20mm beams, only half of the domain is modelled using the
x-symmetry boundary condition on the middle cross-section, which along with zero normal displacement
(ux = 0) implies also zero normal derivative of tangent displacements ( ∂uy

∂x = ∂uz
∂x = 0) [43]. The other end

of beam is constrained by setting uz = 0 over the bottom edge of the end cross-section. We then displace the
beam by coupling degrees of freedom in z-direction on the top edge of the middle cross-section (the cross-
section where symmetry is implied, see Fig. 10) to a reference point and apply a displacement in the negative
z-direction to this point.

We utilize Isogeometric analysis [44] for numerically solving the higher-grade continua problems [43,45]
and discretise the domain by 32 × 8 × 8 three-dimensional elements (knot spans) with B-splines of degree
p = q = r = 3 and C2 global continuity. The conforming isogeometric Galerkin method is implemented
using a 3-D UEL subroutine within a commercial software Abaqus, see [46–48].

5.3 Experiments

We 3D-print the lattice structures with HP MFJ 580 machine using multi jet fusion technology with
monochrome cosmetic setting and HP PA-12 powder as the base material. To minimize the influence of
build direction, all samples (including dogbone) are printed vertically with respect to the build plate, see also
[49]. Moreover, the samples were auto-cooled to minimize the warpage resulting from temperature gradient.
The printed lattice structures are shown in Fig. 11.

We carry out two sets of three-point bending tests by applying a constant 3mm/min displacement (identical
to what was applied in tensile test for characterization of the base material) on the middle of a simply supported
beam structure with 20mm × 20mm square cross-section. The beams are 170mm long, but they rest on two
supports located at the distance of 140mm. To exclude machine compliance, we use a video extensometer
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Fig. 11 Additively manufactured dogbone specimen and lattice beam structures made of PA-12

Fig. 12 Three-point bending test setup for a cubic lattice beam-like structure

for displacement measurements. That is, we track the relative displacement between the two markers that
are attached to a stationary cylinder (as a reference for measurements) and the loading nose, see Fig. 12. We
continue the tests until the samples break but only use the data at early loading stage where the material
behavior is assumed to be linear elastic. The tests are repeated twice.

Although the experiments were conducted on lattice beamswith different cell sizes, only the data for 20mm
cell size (case 1) is used for comparison with numerical simulations. This is because the input material data
in simulations are based on tensile tests conducted on 3mm-thick dogbone specimens, but the strut radius in
designed lattice structures spans between 3.7 to 0.46mm. The change in mechanical properties of additively
manufactured materials with print length-scale challenges the experimental quantification of size effects. The
variation of material properties with the print thickness has been extensively investigated for some materials
like Ti-64, e.g. see [5,50,51], but very few studies addressed the issue for PA-12, e.g. see [52]. Thus, we
excluded the beam-like lattice structures with cell size less than 20mm from the experimental analysis in
Sect. 5.4. However, for the reader’s reference, the force-displacement plots of all the tested specimens along
with their averaged experimental values and standard deviations are reported in Appendix C.

5.4 Results and discussion

Table 9 summarizes the simulations and experimental results for three-point bending tests. The most dominant
size effect is observed in case 1, where the size of micro-structure is 1/7th of the size of macro-structure (beam
length). Here, classical elasticity underestimates the bending rigidity by 21%, while the IGA simulations based
on homogenized stiffness matrices (CM and DM) improve the predictions and show a 14% difference with
the full-field simulations. In case 2, we further refine the micro-structure size by half so the micro- to macro-
length ratio reads as 1/14. Even in this case, the classical solution fails to accurately predict the mechanical
behavior—with 13% underestimation of bending rigidity compared to full-field data—, while IGA simulations
show a good agreement with only 2% difference. The results for cases 3 and 4 confirm that as we further reduce
the size ofmicro-structure, both full-field and IGA simulations converge towards classical elastic solution. This
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Table 9 Reaction forces (N) resulting from 1mm displacement in three-point bending

Case studies Numerical simulations Experiment (averaged)

Full-field IGA Classical elastic

1 Cube (20mm cell) 39.80 45.45 31.30 36.90 (SD 2.8)
2 Cube (10mm cell) 36.15 37.10 31.30 N.A.
3 Cube (5mm cell) 33.00 34.05 31.30 N.A.
4 Cube (2.5mm cell) 32.00 32.80 31.30 N.A.

is because at the small unit-cell sizes (e.g. case 4 with micro- to macro-length ratio of 1/56, the assumption of
strict scale separation is valid and strain gradient parameters in DM vanish

The difference between IGA and full-field results could be primarily due to boundary effects, which are
not included in the current homogenization scheme, see also [30]. In fact, the application of periodic boundary
conditions in the homogenization assumes infinite repetition of a unit-cell in 3-dimensional space, while we
have a beam-like structurewhich is only tessellated in 1-directionwith few unit-cells and is restricted to traction
and/or displacement boundary conditions fromall sides. This could lead to some discrepancies, especiallywhen
the unit-cell size is close to the size of macro-structure (case 1: with only 7 cells along the beam length) as the
structural arrangement differs from the infinite tessellation assumption.

Moreover, the value of experimental three-point bending tests agrees with the obtained reaction force from
full-field simulations with only 7% difference. Such a difference could be due to issues such as the influence of
print direction on mechanical properties or pre-curvature arising from temperature gradient during fabrication
process.

6 Conclusion

In thiswork, a computational homogenization scheme based on second-order strain gradient theory is proposed.
While the literature in the field is mainly devoted to 2-D models with focus on composite materials, the
current study targets 3-D lattice materials with void as their inclusion. This study, as the first one of its
kind, provides in-depth validation using experiments, IGA, and full-field simulations of complex 3-D lattice
materials. Additionally, the modifications suggested in [19] for the removal of spurious gradient effects, are
mathematically derived based on theHill–Mandel lemma. Finally, a new criterion based onmacroscopic energy
is proposed for the convergence analysis of homogenized strain gradient matrix.

The proposed methodology is generic and can be applied to any micro-architectured material. However,
the identification of the form of the generalized continua (such as strain gradient, Cosserat, etc.) for the
mechanical behavior of a specific micro-architectured material is yet an open question, see [53–55]. We
validated the proposed second-order homogenization scheme by homogenizing cubic lattice material toward
gradient elasticity, and the result seems promising, but thismay not be necessarily the case for other latticeswith
different unit-cell architecture as their deformation behavior may be best quantified by a different generalized
continuum theory. In other words, one homogenization theory might be suitable in describing the mechanics
of a specific micro-architecture or even a specific load case, but it may not be able to accurately address all the
deformation behaviors for a range of cell topologies. The identification of the most suitable continuum theory
(and deriving a corresponding homogenization technique) based on the topology of an architectured material
and the applied loading conditions is a subject that needs to be investigated in the future studies. Additionally,
despite the advances in additive manufacturing for the production of complex micro-architectures, the lack of
an optimized process resulting in stable properties across different print length-scales limits the possibility for
experimental characterization of lattice materials. Nevertheless, the fast progress of additive manufacturing is
believed to provide such controlled printability in the near future.

Acknowledgements The authors D.M. and S.M.M. acknowledge the financial support by the Starting Grant (2018-03636) from
the Swedish Research Council (Vetenskapsrådet). The access to U-PRINT 3D-printing facilities at Uppsala University is also
acknowledged.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit



Second-order homogenization of 3-D lattice materials towards strain gradient media 2271

line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To
view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Funding Open access funding provided by Uppsala University.

Appendix A

We can rewrite the body force in the weak form using the following mathematical property as

− ∇. (Q) u = −∇.
(
QTu

)
+ Q : ∇u (A-1)

where Q is a second order tensor and u is vector. Here, we consider Eq. (7) with Q = CM : (ε̄ + K̄.x) and
vector u as δu∗ being the virtual microscopic displacement chosen to only vary at the microscale, i.e. δuM(x) = 0
and thus δum(x, y) = δu∗

(x, y) Similar to the expression for virtual strain in Sect. 2 (case ii), we have

f δu∗ = −∇. (Q) δu∗ = −∇.
((
CM : (

ε̄ + K̄.x
))

δu∗) + (CM : (ε̄ + K̄.x)) : ∇(δu∗) (A-2)

For actuation with only ε̄ (i.e. with K̄ = 0) the above equation, after integration, reduces to∫
�

f .δu∗d� =
∫
�

−∇.
(
CM : ε̄

)
.δu∗� = 0 (A-3)

while for actuation with only K̄ (i.e. with ε̄ = 0) it reduces to∫
�

f .δu∗d� =
∫
�

{−∇.
((
CM : (

K̄.x
))

.δu∗) + (CM : (
K̄.x

)
) : ∇(δu∗)

}
d� (A-4)

Eliminating the higher-order derivatives (1st term on the right-hand side of the equation), we have∫
�

f .δu∗d� =
∫
�

(CM : (
K̄.x

)
) : ∇(δu∗)d� (A-5)

Considering the symmetry of CM and K̄, i.e. CM
i jkl = CM

j ikl and K̄i jk = K̄ j ik , we realize the above tensor
operation is identical to the operation on the symmetric part of the gradient of virtual displacement, i.e.
∇sym (δu∗) = δε∗. This is because the use of δu∗

i, j or δu∗
j,i does not affect the outcome Therefore∫

�

f .δu∗d� =
∫
�

(CM : (
K̄.x

)
) : ∇sym (

δu∗)� =
∫
�

(
CM : (

K̄.x
)) : δε∗d� (A-6)

Appendix B

The stress–strain curves of the tensile tests conducted on additively manufactured dogbone samples made of
PA-12 are shown in Fig. 13.

Appendix C

Two sets of three-point bending tests are conducted on additively manufactured beam-like lattice samples. As
discussed in Sect. 5.3, due to the variation of material properties with the print thickness the experimental data
were excluded from the analysis. But for readers’ reference, the recorded force-displacement curves (up to
3mm applied displacement) for all the tested samples are provided in Fig. 14.

To avoid nonlinearity, we limit the data to 1mm of applied displacement and summarize the averaged
reaction force obtained from the three-point bending tests in Table 10.

http://creativecommons.org/licenses/by/4.0/
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Fig. 13 Experimental stress–strain curves obtained from tensile tests on additivelymanufactured dogbone samplesmade of PA-12

Fig. 14 Force-displacement curves obtained from three-point bending tests on beam-like lattice samples with various cell sizes

Table 10 Averaged reaction forces (N) resulting from 1mm displacement in three-point bending test

Case studies Avg. experiment

1 Cube (20mm cell) 36.90 (SD 2.82)
2 Cube (10mm cell) 24.71 (SD 2.83)
3 Cube (5mm cell) 18.16 (SD 0.71)
4 Cube (2.5mm cell) 10.715 (SD 0.50)
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