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Abstract Dynamic problems of thin linearly elastic Kirchhoff–Love-type circular cylindrical shells hav-
ing geometrical, elastic and inertial properties densely and periodically varying in circumferential direction
(uniperiodic shells) are studied. In order to take into account the effect of a cell size on the global dynamic
behaviour of such shells (the length-scale effect), a new mathematical averaged non-asymptotic model is for-
mulated. This so-called the general tolerance model is derived by applying a certain extended version of the
well-known tolerance modelling technique. Governing equations of this averaged model have constant coef-
ficients depending also on a microstructure size, contrary to the starting exact shell equations with periodic,
non-continuous and highly oscillating coefficients (the well-known governing equations of linear Kirchhoff–
Love theory of thin elastic cylindrical shells). The effect of a cell size on the transversal free vibrations of an
uniperiodic shell strip is studied. It will be shown that within this general tolerance model not only funda-
mental cell-independent, but also the new additional cell-dependent free vibration frequencies can be derived
and analysed. The obtained results will be compared with the corresponding results derived from the known
non-asymptotic standard tolerance model and from the asymptotic one.
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1 Introduction

Thin linearly elastic Kirchhoff–Love-type circular cylindrical shells with a periodically micro-inhomogeneous
structure in circumferential direction are objects of consideration. Shells of this kind are termed uniperiodic.
At the same time, the shells have constant structure in axial direction. By periodic inhomogeneity, we shall
mean periodically varying thickness and/or periodically varying inertial and elastic properties of the shell
material. We restrict our consideration to those uniperiodic cylindrical shells, which are composed of a large
number of identical elements. Moreover, every such element, called a periodicity cell, can be treated as a thin
shell. Typical examples of such shells are presented in Fig. 1 (a shell composed of two kinds of periodically
distributed materials) and Fig. 2 (stiffened shell).

Mechanical problems of periodic structures (shells, plates, beams) are described by partial differential
equations with periodic, highly oscillating and discontinuous coefficients. Thus, these equations are too com-
plicated to constitute the basis for investigations of the engineering problems. To obtain averaged equations
with constant coefficients, many different approximate modelling methods for structures of this kind have been
formulated. Periodic cylindrical shells (plates) are usually described using homogenized models derived by
applying asymptotic methods. These asymptotic models represent certain equivalent structures with constant
or slowly varying rigidities and averaged mass densities. Unfortunately, the asymptotic procedures are usually
restricted to the first approximation, which leads to homogenized models neglecting the effect of a periodicity
cell size (called the length-scale effect) on the overall shell behaviour. The mathematical foundations of this
modelling technique can be found in Bensoussan et al. [1], Jikov et al. [2]. Applications of the asymptotic
homogenization procedure to modelling of stationary and non-stationary phenomena for microheterogeneous
shells (plates) are presented in a large number of contributions. From the extensive list on this subject, we can
mention paper by Lutoborski [3] and monographs by Lewiński and Telega [4], Andrianov et al. [5].

The length-scale effect can be taken into account using the non-asymptotic tolerance averaging technique.
This technique is based on the concept of the tolerance relations related to the accuracy of the performed
measurements and calculations. The mathematical foundations of this modelling technique can be found in
Woźniak and Wierzbicki [6], Woźniak et al. [7,8], Ostrowski [9]. For periodic structures, governing equations
of the tolerance models have constant coefficients dependent also on a cell size. Some applications of this
averaging method to the modelling of mechanical and thermomechanical problems for various periodic struc-
tures are shown in many works. We can mention here monograph by Tomczyk [10] and papers by Tomczyk
et al. [11,12], where the length-scale effect in mechanics of periodic cylindrical shells is investigated; papers
by Baron [13], where dynamic problems of medium thickness periodic plates are studied and by Marczak and
Jędrysiak [14], Marczak [15,16], where dynamics of periodic sandwich plates is analysed; papers by Jędrysiak
[17–19], which deal with stability of thin periodic plates; papers by Łaciński andWoźniak [20], Rychlewska et
al. [21], Ostrowski and Jędrysiak [22], Kubacka andOstrowski [23], where problems of heat conduction in con-
ductors with periodic structure are analysed. Let us also mention papers by Bagdasaryan et al. [24], Tomczyk
and Gołąbczak [25], Tomczyk et al. [26], which deal with coupled thermoelasticity problems, respectively, for
multicomponent, multi-layered periodic composites, for thin cylindrical shells with micro-periodic structure
in circumferential direction (uniperiodic shells) and for thin cylindrical shells with micro-periodic structure in
circumferential and axial directions (biperiodic shells). The extended list of references on this subject can be
found in [6–10].

The tolerance averaging technique was also adopted to formulate mathematical models for analysis of
various mechanical and thermomechanical problems for functionally graded solids, e.g. for heat conduction in
longitudinally graded hollow cylinder byOstrowski andMichalak [27,28], for thermoelasticity of transversally
graded laminates by Pazera and Jędrysiak [29], Pazera et al. [30], for dynamics for functionally graded annular
plates by Wirowski and Rabenda [31], for dynamics or stability of functionally graded thin cylindrical shells
by Tomczyk and Szczerba [32–35].

In the tolerance modelling technique, the crucial role plays the concept of slowly-varying functions, cf. [6–
9]. They are functions, which can be treated as constant on a cell. Moreover, the products of their derivatives
in periodicity directions and characteristic length dimension of the cell are treated as negligibly small. A
certain extended version of the tolerance modelling technique has been proposed by Tomczyk and Woźniak in
[36]. This version is based on a new notion of weakly slowly-varying functions, which is a certain extension
of the classical concept of slowly-varying functions. Note, that following [8,9,36], the notions of weakly
slowly-varying and slowly-varying functions are recalled in Section 3 of this paper.

New mathematical averaged general tolerance and combined asymptotic-tolerance models of dynamic
problems for thin cylindrical shells with two-directional periodic microstructure in directions tangent to the
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shell midsurface (biperiodic shells), derived by means of the concept of weakly slowly-varying functions, have
been proposed by Tomczyk and Litawska [37,38]. New mathematical averaged general tolerance models of
stability problems for thin uniperiodic or biperiodic cylindrical shells, derived by applying the notion ofweakly
slowly-varying functions, have been presented by Tomczyk et al. [39,40]. All the general models mentioned
above are certain generalizations of the corresponding standard tolerance models proposed in [10], which have
been obtained by using the classical concept of slowly-varying functions. Governing equations of the general
and standard models have constant coefficients depending also on a cell size. However, the general models
contain a bigger number of the length-scale terms than the standard models. Moreover, in the framework of
general models describing dynamic behaviour of biperiodic shells, we can investigate certain space-boundary
layer phenomena strictly related to the specific form of boundary conditions imposed on unknown functions
describing fluctuations of displacements. These phenomena cannot be analysed within the standard models of
biperiodic shells.

The general tolerance model of dynamic problems for biperiodic shells does not make it possible to
analyse dynamics of uniperiodic shells. In tolerance approach, uniperiodic shells are not special cases of
biperiodic ones. General tolerance model of uniperiodic shells and that of biperiodic shells have to be led
out independently. It follows from the fact that the modelling physical reliability conditions for uniperiodic
shells are hold only in one periodicity direction, whereas for biperiodic shells these conditions are hold in two
periodicity directions tangent to the shell midsurface.

The main aim of this contribution is to formulate and discuss a new averaged mathematical model consti-
tuting a proper tool for the analysis of selected dynamic problems in the uniperiodic cylindrical shells under
consideration. Contrary to the starting exact equations of the shell dynamics with periodic, highly oscillating
and discontinuous coefficients, governing equations of the proposed averagedmodel have constant coefficients.
Moreover, this model makes it possible to analyse the influence of a cell size on the dynamic shell behaviour
(the length-scale effect). In order to derive this model, we shall apply the general (extended) tolerance mod-
elling procedure [36]. Similarities and differences between the general tolerance model proposed here and the
corresponding known standard tolerance model, formulated by Tomczyk in [10] and derived by applying the
more restrictive concept of slowly-varying function, will be discussed.

As example, a certain special length-scale dynamic problem will be analysed in the framework of the
proposed model. This problem deals with investigation of transversal free vibrations of a shell strip made
of two component materials micro-periodically distributed in circumferential direction. The results obtained
from the general tolerance model will be compared with those derived from the known standard tolerance
model including less number of length-scale terms. Moreover, in order to evaluate the length-scale effect, the
results obtained from both the tolerance non-asymptotic models will be compared with those derived from
the asymptotic one being independent of a cell size. It will be shown that in the framework of the general and
standard tolerance models, not only the fundamental lower cell-independent, but also the new additional
higher-order cell-dependent free vibration frequencies can be derived and analysed. These cell-dependent
frequencies, caused by a periodic structure of the shell, cannot be determined by applying asymptotic models
commonly used for investigations of dynamics of heterogeneous shells.

2 Formulation of the problem: starting equations

We assume that x1 and x2 are coordinates parametrizing the shell midsurface M in circumferential and
axial directions, respectively. We denote x ≡ x1 ∈ � ≡ (0, L1) and ξ ≡ x2 ∈ � ≡ (0, L2),
where L1, L2 are length dimensions of M , cf. Figs. 1 and 2. Let O x̄1 x̄2 x̄3 stand for a Cartesian orthog-
onal coordinate system in the physical space E3 and denote x̄ ≡ (x̄1, x̄2, x̄3). Let us introduce the
orthonormal parametric representation of the underformed cylindrical shell midsurface Mby means of
M ≡ {

x̄ ∈ E3 : x̄ = r̄
(
x1, x2

)
,
(
x1, x2

) ∈ � × �
}
, where r̄(·) is the smooth invertible function such that

∂ r̄/∂x1·∂ r̄/∂x2 = 0, ∂ r̄/∂x1·∂ r̄/∂x1 = 1, ∂ r̄/∂x2·∂ r̄/∂x2 = 1.Note, that derivative ∂ r̄/∂xα ,α = 1, 2, should
be understood as differentiation of each component of r̄ ∈ E3, i.e. ∂ r̄/∂xα = [∂ r̄1/∂xα, ∂ r̄2/∂xα, ∂ r̄3/∂xα].

Throughout the paper, indices α, β, . . . run over 1, 2 and are related to midsurface parameters x1, x2;
summation convention holds. Partial differentiation related to xα is represented by ∂α , ∂α = ∂/∂xα . Moreover,
it is denoted ∂α...δ ≡ ∂α . . . ∂δ . Differentiation with respect to time coordinate t ∈ I = [t0, t1] is represented
by the overdot. Let aαβ and aαβ stand for the covariant and contravariant midsurface first metric tensors,
respectively. Under orthonormal parametrization introduced on M , aαβ = aαβ are unit tensors. Denote by
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Fig. 1 Fragment of the shell composed of two materials periodically and densely distributed in circumferential direction

Fig. 2 Fragment of the shell reinforced by two families of uniperiodically spaced ribs

bαβ the covariant midsurface second metric tensor. Under orthonormal parametrization introduced on M ,
components of tensor bαβ are: b22 = b12 = b21 = 0, b11 = −r−1, where r is the midsurface curvature radius.

Let d(x) stand for the shell thickness.
The basic cell 	 and an arbitrary cell 	(x) with the centre at point x ∈ �	 are defined by means of:

	 ≡ [−λ/2, λ/2], 	(x) ≡ x + 	 , �	 ≡ {x ∈ � : 	(x) ⊂ �}, where λ ≡ λ1 is a cell length dimension in
x ≡ x1-direction, cf. Figs. 1 and 2. Period λ, called the microstructure length parameter, satisfies conditions:
λ/ sup d(x) >> 1 for every x ∈ �, λ/r << 1 and λ/L1 << 1.

It is assumed that the cell 	 has a symmetry axis for z = 0, where z ≡ z1 ∈ [−λ/2, λ/2]. It is also
assumed that inside the cell the geometrical, elastic and inertial properties of the shell are described by even
functions of argument z.

Denote by uα = uα(x, ξ, t), w = w(x, ξ, t), (x, ξ, t) ∈ � × � × I, the shell displacements in directions
tangent and normal to M , respectively. The shell stiffness tensors describing elastic properties of the shell are
defined by Dαβγ δ(x), Bαβγ δ(x), x ∈ �. Let μ(x), x ∈ �, stand for a shell mass density per midsurface unit
area. Let f α(x, ξ, t), f (x, ξ, t), (x, ξ, t) ∈ �×�×I, be external forces per midsurface unit area, respectively,
tangent and normal to M .

The considerations will be based on the well-known linear Kirchhoff–Love theory of thin elastic shells,
cf. Kaliski [41], governed by the following dynamic equilibrium equations

∂β(Dαβγ δ∂δuγ ) + r−1∂β(Dαβ11w) − μaαβ üβ + f α = 0,
r−1Dαβ11∂βuα + ∂αβ(Bαβγ δ∂γ δw) + r−2D1111w + μẅ − f = 0.

(1)
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In the above equations, displacements uα(x, ξ, t), w(x, ξ, t), (x, ξ, t) ∈ � × � × I, are the basic unknowns.
For uniperiodic shells, Dαβγ δ(x), Bαβγ δ(x), μ(x), x ∈ �, are highly oscillating, discontinuous and periodic
functionswith respect to argument x . That is why, in themost cases it is impossible to obtain the exact analytical
solutions to initial/boundary value problems for Eq. (1) and also numerical problems for these equations are
often ill conditioned. Applying the extended tolerance modelling technique proposed in [36] to Eq. (1), we
will derive the averaged general tolerance model for the analysis of dynamic problems for the uniperiodic
shells considered here. Governing equations of this model have constant coefficients depending also on a
microstructure size.

To make this paper self-consisted, in the subsequent section we shall outline the main concepts and the
fundamental assumptions of the extended tolerance modelling procedure, which in the general form are
given in [8,9,36].

3 Concepts and assumptions of the extended tolerance modelling technique

3.1 Main concepts

The fundamental concepts of the tolerance modelling procedure under consideration are those of two tolerance
relations between points and real numbers determined by tolerance parameters, weakly slowly-varying func-
tions, tolerance-periodic functions, fluctuation shape functions and the averaging operation. Note, that in the
classical approach we deal with not weakly slowly-varying but with more restrictive slowly-varying functions.

Below, the mentioned above concepts and assumptions will be specified with respect to one-dimensional
region � = (0, L1) defined in this paper.

3.1.1 Tolerance between points

Letλ be a positive real number. Points x, y belonging to� = (0, L1) ⊂ E are said to be in tolerance determined
by λ, if and only if the distance between points x, y does not exceed λ, i.e. ‖x − y‖E ≤ λ, where ‖·‖ is the
Euclidean norm in E .

3.1.2 Tolerance between real numbers

Let δ̃ be a positive real number. Real numbers μ, ν are said to be in tolerance determined by δ̃, if and only if
|μ − ν| ≤ δ̃.

The above relations are denoted by:
λ

x ≈ y,
δ̃

μ ≈ ν. Positive parameters λ, δ̃ are called tolerance parameters.

3.1.3 Weakly slowly-varying functions

Let F be a function defined in �̄ = [0, L1] ⊂ E , which is continuous, bounded and differentiable in �̄ together
with its derivatives up to the R-th order. Note, that function Fcan also depend on ξ ∈ �̄ = [0, L2] and
time coordinate t as parameters. It can be observed that function F is said to be differentiable in closed set
�̄; however, we do not specify how derivatives are defined on its fringe ∂�, because differentiation may look
differently for any particular problem. Non-negative integer R is assumed to be specified in every problem
under consideration. Denote by ∂k1 F(·), k = 1, . . . , R, the k-th derivative in �̄. Let δ ≡ (λ, δ0, δ1, . . . , δR)

be the set of tolerance parameters. The first of them represents the distances between points in �̄. The second
one is related to the absolute differences in appropriate space between the values of function F(·) in the points
x, y belonging to �̄ such that |x − y| ≤ λ. Each tolerance parameter δk , k = 1, . . . , R, refers to the absolute
differences in appropriate space between the values of derivative ∂k1 F(·) in the points x, y belonging to �̄ such
that |x − y| ≤ λ. A function F(·) is said to be weakly slowly-varying of the R-th kind with respect to cell 	
and tolerance parameters δ, F ∈ WSV R

δ (�, 	), if and only if the following condition is fulfilled

(∀(x, y) ∈ �2
) [(

λ
x ≈ y

)
⇒ |F(x) − F(y)| ≤ δ0 and

∣∣∂k1 F(x) − ∂k1 F(y)
∣∣ ≤ δk ,

k = 1, 2, . . . , R] .
(2)
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Let us recall that the known slowly-varying function F , F ∈ SVR
δ (�, 	) ⊂ WSVR

δ (�, 	), occurring in the
classical tolerance modelling, satisfies not only condition (2) but also the extra restriction

(∀x ∈ �)[λ
∣∣∣∂k1 F(x)

∣∣∣
δk≈ 0, k = 1, 2, . . . , R ]. (3)

Roughly speaking, from condition (2) it follows that both the weakly slowly-varying and the slowly-varying
functions can be treated (together with their derivatives up to theR-th order) as constant on a cell. From condi-
tion (3), it follows that themain difference between the weakly slowly-varying and the slowly-varying functions
is that the products of the absolute values of derivatives of slowly-varying functions and microstructure length
parameter λ are treated as negligibly small.

It is worth to know that in every problem under consideration, tolerance parameter λ is known a priori as a
characteristic cell length dimension, whereas values of tolerance parameters δ0, δ1, . . . , δR can be determined
only a posteriori, i.e. after obtaining unique solution to the considered initial-boundary value problem.

3.1.4 Tolerance-periodic functions

An essentially bounded and weakly differentiable function ϑ defined in �̄ = [0, L1] ⊂ E , which can also
dependon ξ ∈ �̄ and time coordinate t as parameters, is called tolerance-periodic of theR-th kind in reference to
cell	 and tolerance parameters δ ≡ (λ, δ0),if for every x ∈ �	 there exist	-periodic function ϑ̃(·) defined
in E such that ϑ

∣∣
�x ∩ Domϑ and ϑ̃

∣∣∣�x ∩ Dom ϑ̃ are indiscernible in tolerance determined by δ ≡ (λ, δ0),

where�x ≡ �∩∪z∈	(x) 	(z), x ∈ �̄, is a cluster of 2 cells having common sides. Function ϑ̃ is a	-periodic
approximation of ϑ in 	(x). For function ϑ(·) being tolerance-periodic together with its derivatives up to the
R-th order, we shall write ϑ ∈ TPR

δ (�, 	), δ ≡ (λ, δ0, δ1, . . . , δR).

3.1.5 Fluctuation shape functions

Let h be a continuous, highly oscillating, λ-periodic function defined in �̄ = [0, L1], which has continuous
derivatives ∂k1h, k = 1, . . . , R − 1, and either continuous or piecewise continuous bounded derivative ∂ R

1 h.
Function h will be called the fluctuation shape function of the R-th kind, h ∈ FSR(�, 	), if it satisfies
conditions

h ∈ O(λR), ∂k1h ∈ O(λR−k), k = 1, 2, . . . , R,∫

	(x)
μ(z) h(z)dz = 0, ∀x ∈ �	, (4)

where μ(·) is a certain positive valued λ-periodic function defined in �̄. Nonnegative integer R is specified in
every discussed problem.

3.1.6 Averaging operation

Let f be a function defined in �̄ ≡ [0, L1] ⊂ E , which is integrable and bounded in every cell 	(x), x ∈ �	.
The averaging operation of f (·) is defined by

< f>(x) ≡ 1

|	|
∫

	(x)

f (z)dz, x ∈ �	, (5)

where |	| = λ. It can be observed that if f (·) is 	-periodic, then < f > is constant.

3.2 Basic assumptions

The tolerance modelling under consideration is based on three assumptions. The first of them is termed the
tolerance averaging approximation. The second one is called the micro–macro decomposition. The third one
is termed the residual orthogonality assumption.
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3.2.1 Tolerance averaging approximation

For an integrable periodic function f defined in �̄ = [0, L1] ⊂ E and for F ∈ WSV R
δ (�, 	), the following

tolerance relations, called the tolerance averaging approximation, hold for every x ∈ �	

< f ∂k1 F>(x) = < f >∂k1 F(x) + O(δk),

k = 0, 1, . . . , R, ∂01 F ≡ F, x ∈ �	. (6)

The known slowly-varying functions F ∈ SVR
δ (�, 	) ⊂ WSVR

δ (�, 	) satisfy not only approximations (6),
but also the extra approximate relations

< f ∂k1ϑ>(x) = < f ∂k1 (hF)>(x) = < f ∂k1h>F(x) + O(δk),

k = 1, . . . , R, x ∈ �	, (7)

where ϑ(·) ≡ h(·)F(·) ∈ T PR
δ (�, 	), h ∈ FSR(�, 	), F ∈ SV R

δ (�, 	). Note that approximations (7) are
also valid for k = 0, but then they reduce to proposition expressed with (6), i.e. < f ∂01ϑ>(x) ≡ < f ϑ> =
< f hF>(x) = < f h>F(x) + O(δk), x ∈ �	.

In the course of modelling, terms O(δk) in (6) and (7) are neglected. Approximations (6) follow directly
from conditions (2) satisfied by the weakly slowly-varying and slowly-varying functions. Approximations (7)
follow directly from conditions (2) and (3), which hold for the slowly-varying functions.

3.2.2 Micro–macro decomposition assumption

The second fundamental assumption, called the micro–macro decomposition, states that the displacement
fields occurring in the starting equations under consideration can be decomposed intomacroscopic and micro-
scopic parts. The macroscopic part is represented by unknown averaged displacements being weakly slowly-
varying functions in periodicity direction. The microscopic part is described by the known highly oscillating
periodic fluctuation shape functions multiplied by unknown fluctuation amplitudes weakly slowly-varying with
respect to x . Note, that in the classical tolerance approach, the weakly slowly-varying functions are replaced
by the slowly-varying functions.

Micro–macro decomposition introduced in the dynamic problem discussed in this paper is presented in
Sect. 4.1.

3.2.3 Residual orthogonality assumption

It states that for micro–macro decomposition mentioned above, the governing equations of the exact shell
theory under consideration do not hold, i.e. there exist residual fields which have to satisfy certain orthogonality
conditions.

4 Model equations

4.1 General tolerance model equations

In the problem discussed here, the micro–macro decomposition of displacements uα(x, ξ, t), uα(·, ξ, t) ∈
TP1δ(�, 	), w(x, ξ, t), w(·, ξ, t) ∈ TP2δ (�, 	), (x, ξ, t) ∈ �×�× I , being unknowns of Eq. (1), is assumed
in the form

uα(x, ξ, t) = u0α(x, ξ, t) + h(x)Uα(x, ξ, t),

w(x, ξ, t) = w0(x, ξ, t) + g(x)W (x, ξ, t),
(8)

where u0α, Uα, w0, W are weakly slowly-varying functions with respect to argument x ∈ �, i.e.

u0α(·, ξ, t), Uα(·, ξ, t) ∈ WSV 1
δ (�, 	), δ ≡ (λ, δ0, δ1),

w0(·, ξ, t), W (·, ξ, t) ∈ WSV 2
δ (�, 	), δ ≡ (λ, δ0, δ1, δ2),

(9)

for every (ξ, t) ∈ � × I.
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Macrodisplacements u0α, w0 as well as displacement fluctuation amplitudes Uα,W are the new unknowns.
Fluctuation shape functions h(·) ∈ FS1(�, 	), g(·) ∈ FS2(�, 	) are the known,λ-periodic, continuous

and highly oscillating functions representing oscillations inside a cell. Agree with (4), they have to satisfy
conditions: h ∈ O(λ), λ∂1h ∈ O(λ), g ∈ O(λ2), λ∂1g ∈ O(λ2), λ2∂11g ∈ O(λ2),<μ h> = <μ g>0, where
μ(·) is a shell mass density. In the special case μ = const , the fluctuations shape functions satisfy conditions
< h> = < g>0. Taking into account that inside the cell the geometrical, elastic and inertial properties of the
periodic shell under consideration are described by symmetric (i.e. even) functions of argument z ≡ z1 ∈ 	(x),
we assume that h(·) is either even or odd function of z. This same restriction is imposed on function g(·).
Let φ = φ(z), z ∈ 	(x), be an even function with respect to z. Under aforementioned restriction, averages
<φ h ∂1h>, <φ g ∂1g>, <φ ∂1g ∂11g>, which appear in the course of modelling are equal to zero.

We substitute the right-hand sides of (8) into (1). For decomposition (8), the governing Eq. (1) do not hold,
i.e. there exist residual fields defined by

p
α ≡ ∂β

(
Dαβγ δ∂δ

(
u0γ + hUγ

))
+ r−1∂β

(
Dαβ11

(
w0 + gW

))

−μaαβ
(
ü0β + hÜβ

)
+ f α,

p̄ ≡ r−1Dαβ11∂β

(
u0α + hUα

) + ∂αβ

(
Bαβγ δ∂γ δ

(
w0 + gW

))

+r−2D1111
(
w0 + gW

) + μ
(
ẅ0 + gẄ

) − f.

(10)

Following [9,36], we introduce the residual orthogonality assumption, which states that residual fields (10)
have to satisfy the following orthogonality conditions

<pα> = 0, <pαh> = 0, < p̄> = 0, < p̄g> = 0, (11)

for almost every x ∈ � and every (ξ, t) ∈ � × I. Averaging operation < · > on cell 	 is defined by (5).
Conditions (11), on the basis of the tolerance averaging approximation (6), lead to the system of averaged

equations for unknowns u0α, w0,Uα,W being weakly slowly-varying functions in periodicity direction. Under
extra approximation 1 + λ/r ≈ 1, this system can be written in the form of:

• the constitutive equations

Nαβ = <Dαβγ δ>∂δu
0
γ + r−1<Dαβ11>w0

+<Dαβγ 1∂1h>Uγ + <Dαβγ δh> ∂δUγ , (12)

Mαβ = <Bαβγ δ>∂γ δw
0 + <Bαβ11∂11g>W

+2<Bαβγ 1∂1g> ∂γ W + <Bαβγ δg> ∂γδW,

Hβ = <∂1h Dβ1γ δ>∂δu
0
γ − <h Dαβγ δ> ∂αδu

0
γ

+<Dβ11γ (∂1h)2>Uγ − <Dαβγ δ(h)2> ∂αδUγ

+r−1<∂1hD
β111>w0,

G = <∂11g B11αβ> ∂αβw0 − 2<∂1g Bαβγ 1> ∂αβγ w0 (13)

+<g Bαβγ δ> ∂αβγ δw
0 + <(∂11g)

2B1111>W

+(2<∂11g B11βδg> − 4<(∂1g)
2B1β1δ>) ∂βδW

+<(g)2Bαβγ δ > ∂αβγ δW,

• the dynamic equilibrium equations

∂βN
αβ − <μ>aαβ ü0β + < f α> = 0,

∂αβM
αβ + r−1N 11 + <μ>ẅ0 − < f > = 0, (14)

<μ (h)2>aαβ Üα + Hβ − < f βh> = 0,

<μ (g)2 > Ẅ + G − < f g> = 0.
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The singly and doubly underlined terms in (12)–(14) depend on a cell size λ.
Equations (12)–(14) together with micro–macro decomposition (8) and physical reliability conditions (9)

constitute the general tolerance model of selected dynamic problems for the thin uniperiodically microhetero-
geneous shells under consideration.

The characteristic features of the derived general tolerance model are:

• In contrast to starting Eq. (1) with discontinuous, highly oscillating and periodic coefficients, the general
tolerance model Eqs. (12)–(14) proposed here have constant coefficients. Moreover, some of these coeffi-
cients depend on microstructure length parameter λ (underlined terms). Hence, the tolerance model makes
it possible to describe the effect of length scale on the global shell behaviour. Moreover, we can analyse
the length-scale effect not only in dynamic but also in stationary problems for the uniperiodic shells under
consideration.

• Unknown macrodisplacements u0α,w0 are governed by the system of three partial differential equations
(14)1,2. The number and form of boundary conditions for averaged variables u0α, w0 are the same as in
the classical shell theory governed by Eq. (1). Fluctuation amplitudes Uα,W are governed by the system
of three partial differential equations (14)3,4. For an open cylindrical shell, the boundary conditions for
Uα,W should be defined on all boundaries, i.e. for x = 0, x = L1, ξ = 0, ξ = L2, cf. Figs. 1 and 2.

• The resulting equations involve terms with time and spatial derivatives of fluctuation amplitudes Uα,W .
Hence, these equations describe certain time-boundary layer and space-boundary layer phenomena strictly
related to the specific form of initial and boundary conditions imposed on the fluctuation amplitudes.

• Decomposition (8) and hence, also resulting tolerance model Eqs. (12)–(14) are uniquely determined by
the postulated a priori λ-periodic fluctuation shape functions, h(·) ∈ FS1(�, 	), h ∈ O(λ) and g(·) ∈
FS2(�, 	), g ∈ O(λ2), which represent oscillations inside a cell. These functions can be obtained as exact
or approximate solutions to certain periodic eigenvalue problems describing free periodic vibrations of the
cell, cf., e.g. Tomczyk [10], Jędrysiak [19]. It means that they represent either the principal modes of free
periodic vibrations of the cell or physically reasonable approximations of these modes. These functions
can also be regarded as the shape functions resulting from the periodic discretization of the cell using for
example the finite element method. The choice of these functions may also be based on the experience or
intuition of the researcher.

• It has to be emphasized that solutions to selected initial-boundary value problems formulated in the frame-
work of the tolerance model have a physical sense only if conditions (9) hold for the pertinent tolerance
parameters δ, i.e. if unknown macrodisplacements u0α, w0 and fluctuation amplitudes Uα,W of the gen-
eral tolerance model equations are weakly slowly-varying functions in the periodicity direction. These
conditions can also be used for the a posteriori evaluation of tolerance parameters δ and hence, for the
verification of the physical reliability of the obtained solutions.

• For a homogeneous shell with a constant thickness, Dαβγ δ(x), Bαβγ δ(x), μ(x), x ∈ �, are constant
and because <μh> = <μg> = 0, we obtain <h> = <g> = 0, and hence, <∂1h> = <∂1g> =
<∂11g> = 0. In this case, Eq. (14)1,2 reduce to the well-known shell equations of motion for averaged
displacements u0α(x, ξ, t), w0(x, ξ, t), (x, ξ, t) ∈ �×�× I , and independently for fluctuation amplitudes
Uα(x, ξ, t), W (x, ξ, t), (x, ξ, t) ∈ �×�× I , we arrive at the system of equations, which under condition
< f βh> = < f g> = 0 and under homogeneous initial conditions for Uα and W , has only trivial solution
Uα = W = 0. Hence, from decomposition (8) it follows that uα = u0α, w = w0. It means that Eqs. (12)–
(14) reduce to the starting Eq. (1).

4.2 Standard tolerance model equations

Let us compare the general tolerance model proposed here with the corresponding known standard tolerance
model presented and discussed in [10], which was derived under assumption that the unknown functions
u0α(x, ξ, t), w0(x, ξ, t), Uα(x, ξ, t), W (x, ξ, t), (x, ξ, t) ∈ � × � × I , in micro–macro decomposition (8)
are slowly-varying.We recall that family of slowly-varying functions being a subset of theweakly slowly-varying
functions’ set is defined by means of (2) and (3). For the slowly-varying functions approximate relations (6),
(7) hold.

Following [10], the standard tolerance model consists of:

• Micro–macro decomposition (8) with physical reliability conditions (9), in which weakly slowly-varying
functions u0α(·, ξ, t), Uα(·, ξ, t) ∈ WSV 1

δ (�, 	),w0(·, ξ, t), W (·, ξ, t) ∈ WSV 2
δ (�, 	), (ξ, t) ∈ �× I ,
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are replaced by slowly-varying functions u0α(·, ξ, t), Uα(·, ξ, t) ∈ SV 1
δ (�, 	), w0(·, ξ, t), W (·, ξ, t) ∈

SV 2
δ (�, 	), (ξ, t) ∈ � × I ,

• Constitutive equations

Nαβ = <Dαβγ δ>∂δu
0
γ + r−1<Dαβ11>w0

+<Dαβγ 1∂1h>Uγ + <Dαβγ 2h> ∂2Uγ , (15)

Mαβ = <Bαβγ δ>∂γ δw
0 + <Bαβ11∂11g>W

+2<Bαβγ 1∂1g> ∂γ W + <Bαβ22g> ∂22W,

Hβ = <∂1h Dβ1γ δ>∂δu
0
γ − <h Dαβγ δ> ∂αδu

0
γ

+<Dβ11γ (∂1h)2>Uγ − <D2βγ 2(h)2> ∂22Uγ

+r−1<∂1hD
β111>w0,

G = +<∂11g B11αβ> ∂αβw0 − 2<∂1g Bαβγ 1> ∂αβγ w0 (16)

+<g Bαβγ δ> ∂αβγ δw
0 + <(∂11g)

2B1111>W

+(2<∂11g B1122g> − 4<(∂1g)
2B1212>) ∂22W

+<(g)2B2222 > ∂2222W,

where the singly and doubly underlined terms depend on the period length λ, and where the doubly
underlined terms are different from the corresponding terms in constitutive Eqs. (12), (13) of the general
tolerance model,

• The dynamic equilibrium equations

∂βNαβ − <μ>aαβ ü0β + < f α> = 0,
∂αβMαβ + r−1N 11 + <μ>ẅ0 − < f > = 0,
<μ (h)2>aαβ Üα + Hβ − < f βh> = 0,
<μ (g)2 > Ẅ + G − < f g> = 0.

(17)

The main similarities and differences between the general and standard tolerance models are:

• Both the general and standard tolerance models have constant coefficients. Moreover, some of them depend
on a period length λ (underlined terms). Hence, the tolerance models allow us to investigate the length-
scale effect in dynamical and stationary problems. From comparison of the doubly underlined terms in
constitutive relations (12), (13) of the general tolerance model with the corresponding doubly underlined
terms in constitutive relations (15), (16) of the standard model, it follows that general constitutive relations
(12), (13) contain a bigger number of terms depending on the microstructure size than the standard con-
stitutive relations (15), (16). Thus, from the analytical results it follows that the general model proposed
here makes it possible to investigate the length-scale effect in more detail.

• Unknown macrodisplacements u0α, w0 and fluctuation amplitudes Uα,W of the general tolerance model
equationsmust beweakly slowly-varying functions in periodicity direction, i.e. they have to satisfy condition
(2). Unknowns u0α, w0,Uα,W of the standard tolerance model equations must be slowly-varying functions
in x , i.e. they have to satisfy conditions (2) and (3).

• Contrary to constitutive relations (12), (13) of the general tolerance model, constitutive Eqs. (15), (16) of
the standard tolerance model do not involve derivatives of fluctuation amplitudes Uα,W with respect to
argument x . It arises from tolerance relations (7), which hold for the slowly-varying functions. Hence, in the
framework of the standard tolerance model, the boundary conditions for unknown fluctuation amplitudes
Uα,W should be defined only on boundaries ξ = 0, ξ = L2, whereas in the framework of the general
tolerance model the boundary conditions for Uα,W should be defined on all boundaries of the shell. It
means that for an open cylindrical shell, applying the general model Eqs. (12)–(14) we can investigate
the space-boundary layer phenomena near all boundaries of the shell, whereas within the standard model
Eqs. (15)–(17) we can analyse these phenomena only near boundaries ξ = 0, ξ = L2. We recall that the
space-boundary layer phenomena are strictly related to the specific form of boundary conditions imposed
on unknown fluctuation amplitudes.
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• The governing equations of both the general and standard models include terms with time derivatives of
the fluctuation amplitudes. Hence, the governing equations of both models describe certain time-boundary
layer phenomena strictly related to the specific form of initial conditions imposed on unknown fluctuation
amplitudes.

4.3 Asymptotic model equations

The asymptotic model equations can be obtained directly from either the general tolerance model Eqs. (12)–
(14) or the standard model Eqs. (15)–(17) by the formal limit passage λ → 0, i.e. after neglecting terms
depending on a cell size λ. Asymptotic model consists of partial differential equations for macrodisplacements
u0α, w0 coupled with linear algebraic equations for kinematic fluctuation amplitudesUα, W . After eliminating
fluctuation amplitudes from the governing equations by means of

Uγ = −G−1
γ η [<∂1hD1ημϑ> ∂ϑu0μ + r−1<∂1hD1η11>w0],

W = −E−1<∂11gB11γ δ>∂γ δw
0,

(18)

where Gαγ = <Dα1γ 1(∂1h)2>, E = <B1111(∂11g)2>, Gαγ G−1
γ η = δαη (δαη is an unit tensor) we arrive

finally at the asymptotic model equations expressed only in macrodisplacements u0α, w0

Dαβγ δ

h ∂βδu0γ + r−1Dαβ11
h ∂βw0 − <μ>aαβ ü0β + < f α> = 0,

Bαβγ δ
g ∂αβγ δw

0 + r−1D11γ δ

h ∂δu0γ + r−2D1111
h w0

+<μ>ẅ0 − < f > = 0,

(19)

where

Dαβγ δ

h ≡ <Dαβγ δ> − <Dαβη1 ∂1h>G−1
ηξ <∂1hD1ξγ δ>,

Bαβγ δ
g ≡ <Bαβγ δ> − <Bαβ11∂11g>E−1 <∂11gB11γ δ>.

(20)

Tensors Dαβγ δ

h , Bαβγ δ
g are tensors of effective elastic moduli for uniperiodic shells considered here.

Asymptotic model Eq. (19) have constant coefficients but independent of a period length. It means that this
model is not able to describe the influence of a cell size on the global shell dynamics. Within the asymptotic
model, we formulate boundary conditions only for the macrodisplacements u0α, w0. The number and form of
these conditions are the same as in the classical shell theory governed by starting Eq. (1).

Application of the new non-asymptotic general tolerance model Eqs. (12)–(14) proposed here to a certain
special dynamic problem for the micro-periodic shells under consideration will be shown in the next section.
The results obtained from this model will be compared with those derived from the known non-asymptotic
more simple standard tolerance model governed by Eqs. (15)–(17) and from the asymptotic one given by
Eq. (19).

5 Example of application

5.1 Description of the problem

In this subsection, transversal free vibrations of a thin simply supported shell strip with span L ≡ L1 along
the circumferential x ≡ x1-coordinate and with r , d as its midsurface curvature radius and constant thickness,
respectively, are discussed. The shell strip is made of two homogeneous elastic isotropic materials, which are
perfectly bonded on interfaces and periodically densely distributed along x-coordinate. The elastic and inertial
properties of the shell strip are constant in axial direction. A fragment of such a shell strip is shown in Fig.1,
where in the problemunder consideration length dimension L2 of the shellmidsurface along ξ ≡ x2-coordinate
is assumed to be infinite.

The basic cell 	 is defined by: 	 ≡ [−λ/2, λ/2], where λ is a cell length dimension in x ≡ x1-
direction, cf. Figs. 1 and 3. We recall that the microstructure length parameter λ has to satisfy conditions:
λ/d >> 1, λ/r << 1 and λ/L1 << 1. Setting z ≡ z1 ∈ [−λ/2, λ/2], we assume that the cell has a
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Fig. 3 Basic cell 	 ≡ [−λ/2, λ/2] of the uniperiodic shell

symmetry axis for z = 0. Inside the cell, the geometrical and elastic properties of the shell are described by
symmetric (i.e. even) functions of argument z.

Properties of the component materials are described by: Young’s moduli E1, E2, Poisson’s ratios ν1, ν2 and
mass densities ρ1, ρ2, cf. Fig. 3. It is assumed that elastic E(x) and inertial ρ(x) properties of the composite
shell are periodic functions in x , x ≡ x1 ∈ �, but Poisson’s ratio ν ≡ ν1 = ν2 is constant. Inside the cell,
functions E(z), ρ(z), z ∈ 	, take the form

E(z), ρ(z) =
{
E1, ρ1 f or z ∈ (−η λ/2, η λ/2 ),
E2, ρ2 f or z ∈ [−λ/2, −η λ/2] ∪ [η λ/2, λ/2], (21)

where η ∈ [0, 1] is a parameter describing distribution of material properties in the cell, cf. Fig. 3.
The shell’s stiffnesses Dαβγ δ(x), Bαβγ δ(x), x ∈ �, are λ-periodic functions in argument x . Inside the cell,

the rigidities Dαβγ δ(z), Bαβγ δ(z), z ∈ 	, of the shell are described by: Dαβγ δ(z) = Hαβγ δ E(z)d/(1 − ν2),
Bαβγ δ(z) = Hαβγ δ E(z)d3/(12(1−ν2)), where E(z) , z ∈ 	, is given by (21) and the nonzero components of
tensor Hαβγ δ are: H1111 = H2222 = 1, H1122 = H2211 = ν, H1212 = H1221 = H2121 = H2112 = (1−ν)/2.

The shell’s mass densityμ(x), x ∈ �, per midsurface unit area is λ-periodic function in argument x . Inside
the cell, the shell mass density μ(z) per midsurface unit area is given by μ(z) = ρ(z) d , where ρ(z) , z ∈ 	,
is given by (21).

The considerations will be based on general (extended) tolerance model Eqs. (12)–(14), standard tolerance
model Eqs. (15)–(17) and asymptotic model Eq. (19).

In order to investigate free vibrations, we assume that external forces f α, f in the averagedmodel equations
mentioned above are equal to zero.

Moreover, the forces of inertia in directions tangential to the shell midsurface are neglected.
We also neglect fluctuating parts hUα of displacements uα .
Bearing in mind that the fluctuation shape function g ∈ FS2(�, 	), g ∈ O(λ2) should approximate the

expected principal modes of shell free vibrations on the cell and based on the knowledge of these principal
modes in thin heterogeneous shells and plates, cf., e.g. Ostrowski [9], Tomczyk [10], Jędrysiak [19], we shall
postulate the fluctuation shape function as: g(z) = λ2[cos (2π z/λ) + c], z ∈ 	, where constant c, calculated
from condition <μg> = 0, is equal to: c = −(ρ1 − ρ2) sin(ηπ)[π(ηρ1 + (1 − η)ρ2)]−1. We recall that
η ∈ [0, 1] is a parameter describing distribution of material properties in the cell, cf. Fig. 3.

This dynamic problem is treated to be independent of the ξ -coordinate. Hence, u02 = 0 and the remaining
unknowns u01, w0, W of the tolerance and asymptotic models are only functions of x-midsurface parameter
and t-coordinate.

Bearing in mind assumptions given above, the effect of a cell size on the transversal free vibrations’
frequencies of the considered shell strip will be evaluate by comparison of results obtained from the three
averaged models under consideration, i.e. from:

(a) the new general tolerance model represented by equations of motion (14) with constitutive relations (12),
(13),
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(b) the known standard tolerance model governed by Eqs. (15)–(17) including less number of length-scale
terms than the extended one,

(c) the asymptotic model given by Eq. (19) being independent of a cell size.

Moreover, the effects of the differences between the elastic properties and also between the inertial prop-
erties of the component materials in the cell on these frequencies will be studied.

5.2 Analysis in the framework of the general tolerance model

Under assumptions given in Sect. 5.1, the system of extended tolerance model Eq. (14) reduces to the following
system of three equations for u01(x, t), w

0(x, t), W (x, t), (x, t) ∈ � × I ,

<D1111>(∂11u01 + r−1∂1w
0) = 0,

r−1<D1111>(∂1u01 + r−1w0) + <B1111>∂1111w
0

+<B1111∂11g>∂11W + λ2<B1111ḡ>∂1111W + <μ>ẅ0 = 0,
+<∂11g B1111>∂11w

0 + λ2<B1111ḡ>∂1111w
0

+<(∂11g)2B1111>W + (
2λ2 < ∂11g B1111ḡ> − 4λ2<(∂1g̃)2B1111>

)
∂11W

+λ4<(ḡ)2B1111>∂1111W + λ4<μ(ḡ)2>Ẅ = 0,

(22)

where ḡ(·) = λ−2g(·), g̃(·) = λ−1g(·). We recall that derivative ∂11g(x), x ∈ �, of fluctuation shape function
g(x) is independent of λ as parameter. Some terms in (22) depend explicitly onmicrostructure length parameter
λ. All coefficients in (22) are constant.

Solutions to Eq. (22) satisfying the boundary conditions for the shell strip simply supported on edges x = 0,
x = L can be assumed in the form, cf. Kaliski [41],

u01(x, t) = A cos(αx) cos(ωt),
w0(x, t) = B sin(αx) cos(ωt),
W (x, t) = C sin(αx) cos(ωt),

(23)

where A, B,C are arbitrary constants different from zero,α = π/L is a wave number,ω is a smallest frequency
of transverse free vibrations. Functions cos(αx), sin(αx) relate to the lowest free vibration modes.

Substituting the right-hand sides of (23) into Eq. (22), we obtain the system of three linear homogeneous
algebraic equations for A, B,C . For a non-trivial solution, the determinant of this system must be equal to
zero. In this manner, we arrive at the characteristic equation for frequency (ωgtm)uni ≡ ω of the transverse free
vibrations of the shell strip under consideration.

Denoting

ε ≡ λ/L , B̄ ≡ B1111,
�
μ ≡ <μ>, μ̄ ≡ <μ(ḡ)2>,

b̄ ≡ <(∂11g)2 B̄> + 2(πε)2[2<(∂1g̃)2 B̄> − <ḡ ∂11g B̄>] + (πε)4<(ḡ)2 B̄>,

c̄ ≡ <∂11g B̄>2 + 2(πε)2<ḡ B̄><∂11g B̄> + (πε)4<ḡ B̄>2,

(24)

and recalling that ḡ = λ−2g, g̃ = λ−1g, from the characteristic equation mentioned above we derive the
following formulae for the fundamental lower free vibration frequency (ω

gtm
− )uni and for the new additional

higher free vibration frequency (ω
gtm
+ )uni, caused by a periodic structure of the shell strip

(ω
gtm
− )2uni = 1

2

(
b̄

(Lε)4μ̄
+ α4<B̄>

�
μ

)

− b̄
2(Lε)4μ̄

√

1 + 2μ̄
�
μ(b̄)2

(
2c̄ − <B̄>b̄

)
(πε)4 +

(
μ̄<B̄>

�
μ

⇀
b

)2

(πε)8,

(25)

(ω
gtm
+ )2uni = 1

2

(
b̄

(Lε)4μ̄
+ α4<B̄>

�
μ

)

+ b̄
2(Lε)4μ̄

√

1 + 2μ̄
�
μ(b̄)2

(
2c̄ − <B̄>b̄

)
(πε)4 +

(
μ̄<B̄>

�
μ

⇀
b

)2

(πε)8.

(26)
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Results (25), (26) depend on dimensionless microstructure length parameter ε ≡ λ/L .
It can be observed that there are not terms involving rigidity D1111 in formulae (25), (26); these terms

dropped out when deriving the characteristic frequency equation. It means that in the framework of the gen-
eral tolerance model, the effect of stiffness D1111 on the transversal free vibrations of the shell strip under
consideration is omitted.

5.3 Analysis in the framework of standard tolerance model

Let us investigate the above dynamic problem in the framework of the standard tolerance model containing
fewer terms depending on a period length λ than the general tolerance model.

Under assumptions given in Sect. 5.1, the system of standard tolerance model Eq. (17) reduces to the
following system of three equations for u01(x, t), w

0(x, t), W (x, t), (x, t) ∈ � × I ,

<D1111>(∂11u01 + r−1∂1w
0) = 0,

r−1<D1111>(∂1u01 + r−1w0) + <B1111>∂1111w
0

+<B1111∂11g>∂11W + <μ>ẅ0 = 0,
+<∂11g B1111>∂11w

0 + <(∂11g)2B1111>W + λ4<μ(ḡ)2>Ẅ = 0,

(27)

where ḡ(·) = λ−2g(·), Some terms in (27) depend explicitly on microstructure length parameter λ. All
coefficients in (27) are constant.

Solutions to Eq. (27) satisfying the boundary conditions for the shell strip simply supported on edges x = 0,
x = L are assumed in the form of (23). Substituting the right-hand sides of (23) into Eq. (27), we obtain the
system of three linear homogeneous algebraic equations for A, B,C , which has a non-trivial solution provided
that its determinant is equal to zero. In this manner, we arrive at the characteristic equation for frequency
(ωstm)uni ≡ ω of the transverse free vibrations of the shell strip under consideration.

Using denotations (24)1−4 as well as denoting

b̃ ≡ <(∂11g)
2 B̄>, c̃ ≡ <∂11g B̄>2, (28)

from the characteristic equation mentioned above we derive the following formulae for the fundamental lower
free vibration frequency (ωstm− )uni and for the new additional higher free vibration frequency (ωstm+ )uni, caused
by a periodic structure of the shell strip

(
ωstm−

)2
uni = 1

2

(
b̃

(Lε)4μ̄
+ α4<B̄>

�
μ

)

− b̃
2(Lε)4μ̄

√

1 + 2μ̄
�
μ(b̃)2

(
2c̃ − <B̄>b̃

)
(πε)4 +

(
μ̄<B̄>

�
μ b̃

)2

(πε)8,

(29)

(
ωstm+

)2
uni = 1

2

(
b̃

(Lε)4μ̄
+ α4<B̄>

�
μ

)

+ b̃
2(Lε)4μ̄

√

1 + 2μ̄
�
μ(b̃)2

(
2c̃ − <B̄>b̃

)
(πε)4 +

(
μ̄<B̄>

�
μ b̃

)2

(πε)8,

(30)

Results (29), (30) depend on dimensionless microstructure length parameter ε ≡ λ/L .
There are not terms involving rigidity D1111 in formulae (29), (30); these terms dropped out when deriving

the characteristic frequency equation. It means that in the framework of the standard tolerance model, the
effect of stiffness D1111 on the transversal free vibrations of the shell strip under consideration is omitted.
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5.4 Analysis in the framework of asymptotic model

In order to evaluate results obtained in the framework of general and standard models, which take into account
the length-scale effect, let us consider the modelling problem within the asymptotic model (19) being inde-
pendent of a cell size.

Now, asymptotic model Eq. (19) reduce to the following form

<D1111>(∂11u01 + r−1∂1w
0) = 0,

r−1<D1111>
(
∂1u01 + r−1w0

)

+<B1111>∂1111w
0 + <B1111∂11g>∂11W + <μ>ẅ0 = 0,

<∂11g B1111>∂11w
0 + <(∂11g)2B1111>W = 0,

(31)

All coefficients in (31) are constant.
Note, that (31) can also be directly derived from governing Eqs. (22) or (27) by neglecting terms depending

explicitly on microstructure length parameter λ.
Solutions to Eq. (31) satisfying the boundary conditions for the shell strip simply supported on edges

x = 0, x = L are assumed in the form of (23). Substituting the right-hand sides of (23) into Eq. (31), we
obtain the system of three linear homogeneous algebraic equations for A, B,C and then from the comparison
of determinant of this system to zero, we derive the characteristic equation for frequency (ωam)uni ≡ ω, from
which we obtain the following formula for transversal free vibration frequency (ωam)uni

(ωam)2uni = α4

<μ>

[
<B1111> − <∂11g B1111>2

< B1111 (∂11g)2 >

]
. (32)

This frequency is independent of a cell size. There are not terms involving rigidity D1111 in formula (32); these
terms dropped out when deriving the frequency equation. It means that in the framework of the asymptotic
model, the effect of stiffness D1111 on the transversal free vibrations of the shell strip under consideration is
omitted.

5.5 Numerical calculations

The numerical analysis is based on results (25), (26) and (29), (30) obtained from the general and standard
tolerance models, respectively, and on result (32) derived from the asymptotic model.

Let us define the following dimensionless free vibration frequencies

(
�

gtm
−

)2
uni ≡ (1 − ν2) ρ1L2

E1
(ω

gtm
− )2uni, (33)

(
�

gtm
+

)2
uni ≡ (1 − ν2) ρ1L2

E1
(ω

gtm
+ )2uni, (34)

(
�stm−

)2
uni ≡ (1 − ν2) ρ1L2

E1
(ωstm− )2uni, (35)

(
�stm+

)2
uni ≡ (1 − ν2) ρ1L2

E1
(ωstm+ )2uni, (36)

(
�am)2

uni ≡ (1 − ν2) ρ1 L2

E1
(ωam)2uni, (37)

where frequencies (ω
gtm
− )uni, (ω

gtm
+ )uni, (ωstm− )uni, (ωstm+ )uni, (ωam)uni are determined by formulae (25), (26),

(29), (30) and (32), respectively.
The calculations are made for L/r = π/2, Poisson’s ratio ν = 0.3, for different values of geometrical

parameter η ∈ [0.1, 0.9] describing distribution of elastic and inertial properties in the cell, for different
values of dimensionless microstructure length parameter ε ≡ λ/L ∈ [0.01, 0.1], (L = const), for various
ratios d/L ∈ [0.001, 0.01] (L = const), E2/E1 ∈ [0.01, 1.0] (ratio describing differences between values
of Young’s moduli of component materials in the cell, E1 = const) and ρ2/ρ1 ∈ [0.01, 1.0] (ratio describing
differences between values ofmass densities of componentmaterials in the cell, ρ1 = const). It can be observed
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that values of ratio d/L imply values of the ratio of shell thickness d to microstructure length parameter λ,
i.e. d/λ = (d/L) ε−1 (the shell thickness dvaries together with parameter ε). We recall that ratio d/λ has to
satisfy condition: d/λ << 1.

In Figs. 4a and b, there are diagrams of dimensionless lower free vibration frequencies given by (33), (35),
(37) versus dimensionless microstructure length parameter λ/L ∈ [0.01, 0.1]. These diagrams are made for
η = {0.1, 0.3, 0.5, 0.7, 0.9}, d/L = 0.001 (hence d/λ ∈ [0.01, 0.1]) and for a) E2/E1 = 0.9, ρ2/ρ1 = 0.1,
b) E2/E1 = 0.1, ρ2/ρ1 = 0.9. From the results shown in Fig. 4, it follows that from the computational point of
view there are no differences between values of the dimensionless lower free vibration frequencies (�

gtm
− )uni,

(�stm− )uni, (�am)uni derived from the general and standard tolerance models and from the asymptotic one.
In Fig. 5a and b, there are diagrams of dimensionless higher free vibration frequencies determined by (34),

(36) versus dimensionless microstructure length parameter λ/L ∈ [0.01, 0.1]. These diagrams are made for
η = {0.1, 0.3, 0.5, 0.7, 0.9}, d/L = 0.001 (hence d/λ ∈ [0.01, 0.1]) and for a) E2/E1 = 0.9, ρ2/ρ1 = 0.1,
b) E2/E1 = 0.1, ρ2/ρ1 = 0.9. From the results shown in Fig. 5, it follows that from the computational point of
view there are no differences between values of the dimensionless higher free vibration frequencies (�

gtm
+ )uni,

(�stm+ )uni derived from the general and standard tolerance models.

Plots of dimensionless lower free vibration frequencies (�
gtm
− )uni (33), (�stm− )uni (35), (�am)uni (37) versus

ratio E2/E1 ∈ [0.01, 1] performed for η = 0.25, ρ2/ρ1 = {0.1, 0.5, 0.9, 1}, λ/L = 0.1, d/L = 0.01
(hence d/λ = 0.1) are presented in Fig. 6.

Plots of dimensionless higher free vibration frequencies (�
gtm
+ )uni (34), (�stm+ )uni (36) versus ratio E2/E1 ∈

[0.01, 1] performed for η = 0.25, ρ2/ρ1 = {0.1, 0.5, 0.9, 0.98} and for a) λ/L = 0.1, d/L = 0.01 (hence
d/λ = 0.1), b) λ/L = 0.01, d/L = 0.001 (hence d/λ = 0.1) are presented in Fig. 7a and b.

In Fig. 8, there are shown diagrams of dimensionless lower free vibration frequencies (�
gtm
− )uni (33),

(�stm− )uni (35), (�am)uni (37) versus ratio ρ2/ρ1 ∈ [0.01, 1], made for η = 0.25, E2/E1 = {0.1, 0.5, 0.9, 1},
λ/L = 0.1, d/L = 0.01.

In Fig. 9a and b, there are shown diagrams of dimensionless higher free vibration frequencies (�
gtm
+ )uni

(34), (�stm+ )uni (36) versus ratio ρ2/ρ1 ∈ [0.01, 1], made for η = 0.25, E2/E1 = {0.1, 0.5, 0.9, 0.98} and
for a) λ/L = 0.1, d/L = 0.01, b) λ/L = 0.01, d/L = 0.001.

Plots of dimensionless lower free vibration frequencies (�
gtm
− )uni (33), (�stm− )uni (35), (�am)uni (37) versus

both ratios E2/E1 ∈ [0.01, 1] and ρ2/ρ1 ∈ [0.01, 1] are presented in Fig. 10. These plots are performed for
η = 0.25, λ/L = 0.1, d/L = 0.01.

Plots of dimensionless higher free vibration frequencies (�
gtm
+ )uni (34), (�stm+ )uni (36) versus both ratios

E2/E1 ∈ [0.01, 1] and ρ2/ρ1 ∈ [0.01, 1] are presented in Fig. 11a and b. These plots are performed for
η = 0.25 and for a) λ/L = 0.1, d/L = 0.01, b) λ/L = 0.01, d/L = 0.001.

In Fig. 12, there are diagrams of dimensionless lower free vibration frequencies (�
gtm
− )uni, (�stm− )uni,

(�am)uni given by (33), (35), (37), respectively, versus ratio d/L ∈ [0.001, 0.01]. These diagrams are made
for η = 0.25, λ/L = 0.1 (hence, d/λ ∈ [0.01, 0.1]) and for three pairs of ratios: (E2/E1 = 0.1, ρ2/ρ1 = 0.9),
(E2/E1 = 0.5, ρ2/ρ1 = 0.5), (E2/E1 = 0.9, ρ2/ρ1 = 0.1)

In Fig. 13, there are diagrams of dimensionless higher free vibration frequencies (�
gtm
+ )uni, (�stm+ )uni given

by (34), (36), respectively, versus ratiod/L ∈ [0.001, 0.01]. These diagrams aremade forη = 0.25,λ/L = 0.1
and for three pairs of ratios: (E2/E1 = 0.1, ρ2/ρ1 = 0.9), (E2/E1 = 0.5, ρ2/ρ1 = 0.5), (E2/E1 = 0.9,
ρ2/ρ1 = 0.1).

5.6 Discussion of analytical and numerical results

On the basis of analytical results (25), (26), (29), (30), (32) and computational results shown in Figs. 4, 5, 6,
7, 8, 9, 10, 11, 12 and 13, the following important conclusions can be formulated:

• In the framework of the general and standard tolerance models, not only the fundamental lower (ω
gtm
− )uni

(25), (ωstm− )uni (29), but also the new additional higher (ω
gtm
+ )uni (26), (ωstm+ )uni (30) free vibration fre-

quencies can be derived and analysed. The higher free vibration frequencies are caused by a periodic
microstructure of the shell strip under consideration, and hence, they depend on a microstructure length
parameter λ. These frequencies cannot be determined using the asymptotic model.

• Free vibration frequencies derived in the framework of general tolerance model contain a bigger number
of terms depending on a cell size than those obtained from the standard model.
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Fig. 4 Diagrams of dimensionless lower free vibration frequencies (�
gtm
− )uni (33), (�stm− )uni (35), (�am)uni (37) versus dimen-

sionless microstructure length parameter λ/L , made for η = {0.1, 0.3, 0.5, 0.7, 0.9}, d/L = 0.001 and for a E2/E1 = 0.9,
ρ2/ρ1 = 0.1, b E2/E1 = 0.1, ρ2/ρ1 = 0.9

• From the results shown in Figs. 4, 6, 8, 10 and 12, it follows that differences between values of the dimen-
sionless lower free vibration frequencies (�

gtm
− )uni (33), (�stm− )uni (35) determined in the framework of

both the general and standard tolerance models are negligibly small. Moreover, differences between val-
ues of these lower free vibration frequencies and free vibration frequency (�am)uni (37) obtained from
the asymptotic model are also negligibly small. Thus, the effect of microstructure length parameter λ on
the shell’s fundamental lower free vibration frequencies can be neglected in the dynamic problem under
consideration. It means that asymptotic model governed by Eq. (31), being more simple than the non-
asymptotic tolerance models, is sufficient to determine and investigate free vibration frequencies of the
uniperiodic shell strip considered here.
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Fig. 5 Diagrams of dimensionless higher free vibration frequencies (�
gtm
+ )uni (34), (�stm+ )uni (36) versus dimensionless

microstructure length parameterλ/L , made for η = {0.1, 0.3, 0.5, 0.7, 0.9}, d/L = 0.001 and for a E2/E1 = 0.9, ρ2/ρ1 = 0.1,
b E2/E1 = 0.1, ρ2/ρ1 = 0.9

• From the results shown in Figs. 5, 7, 9, 11 and 13, it follows that differences between values of the dimen-
sionless higher free vibration frequencies (�

gtm
+ )uni (34), (�stm+ )uni (36) determined in the framework of

both the general and standard tolerance models are negligibly small.Hence, the simpler standard tolerance
model is sufficient to determine and study the cell-dependent higher free vibration frequencies of the shell
strip under consideration.

• Analysing the results presented in Fig. 4, it can be seen that for every value of geometrical parameter
η = {0.1, 0.3, 0.5, 0.7, 0.9} describing distribution of material properties in the cell and for a fixed ratio
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Fig. 6 Diagrams of dimensionless lower free vibration frequencies (�
gtm
− )uni (33), (�stm− )uni (35), (�am)uni (37) versus ratio

E2/E1, made for η = 0.25, ρ2/ρ1 = {0.1, 0.5, 0.9, 1}, λ/L = 0.1, d/L = 0.01

d/L = 0.001 (but under conditiond/λ << 1), the dimensionless lower free vibration frequencies (�gtm
− )uni

(33), (�stm− )uni (35), (�am)uni (37) are independent of dimensionless microstructure length parameter
ε ≡ λ/L ∈ [0.01, 0.1]. We also observe that for every value of parameter η = {0.1, 0.3, 0.5, 0.7, 0.9},
values of these cell-independent free vibration frequencies are greater for the pair of ratios (E2/E1 =
0.9, ρ2/ρ1 = 0.1), i.e. for a shell strip with very strong inertial heterogeneity and very weak elastic
inhomogeneity, than for the pair of ratios (E2/E1 = 0.1, ρ2/ρ1 = 0.9), i.e. for a shell strip with very
strong elastic heterogeneity and very weak inertial inhomogeneity. For the fixed d/L = 0.001 and pair
of ratios (E2/E1 = 0.9, ρ2/ρ1 = 0.1), the greatest and smallest values of frequencies (�

gtm
− )uni (33),

(�stm− )uni (35), (�am)uni (37) are obtained for η = 0.1 and η = 0.9, respectively, cf. Fig. 4a. For the fixed
d/L = 0.001 and pair of ratios (E2/E1 = 0.1, ρ2/ρ1 = 0.9), the greatest and smallest values of these
frequencies are obtained for η = 0.9 and η = 0.1, respectively, cf. Fig. 4b. We recall that ηλ describes a
length of the cell with component material of bigger values of Young’s modulus and mass density.

• Analysing results presented in Fig. 5, it can be seen that for every value of geometrical parameter
η = {0.1, 0.3, 0.5, 0.7, 0.9} and for the fixed ratio d/L = 0.001 (but under condition d/λ << 1), the
dimensionless higher free vibration frequencies (�

gtm
+ )uni (34), (�stm+ )uni (36) obtained from general and

standard tolerancemodels, respectively, decreasewith the increasing of values of dimensionlessmicrostruc-
ture length parameter ε ≡ λ/L ∈ [0.01, 0.1], i.e. with the decreasing of differences between period length
λ and the length dimension L of the shell midsurface in circumferential direction, L = const. The strongest
decrease in the dimensionless higher free vibration frequencies takes place for ε ≡ λ/L ∈ [0.01, 0.02].
We also observe that for every value of parameter η = {0.1, 0.3, 0.5, 0.7, 0.9}, values of these cell-
dependent free vibration frequencies are greater for the pair of ratios (E2/E1 = 0.9, ρ2/ρ1 = 0.1) than for
the pair of ratio (E2/E1 = 0.1, ρ2/ρ1 = 0.9). For the fixed d/L = 0.001 and pair of ratios (E2/E1 = 0.9,
ρ2/ρ1 = 0.1), the greatest and smallest values of frequencies (�

gtm
+ )uni (34), (�stm+ )uni (36) are obtained

for (λ/L = 0.01, η = 0.1) and (λ/L = 0.1, η = 0.9), respectively, cf. Fig. 5a. For the fixed d/L = 0.001
and pair of ratios (E2/E1 = 0.1, ρ2/ρ1 = 0.9), the greatest and smallest values of these frequencies are
obtained for (λ/L = 0.01, η = 0.9) and (λ/L = 0.1, η = 0.1), respectively, cf. Fig. 5b.

• By studying the results given in Figs. 6, 7, 10 and 11, it can be observed that for fixed η = 0.25 and for
either λ/L = 0.1, d/L = 0.01 (hence d/λ = 0.1), cf. Figs. 6, 7a, 10, 11a, or λ/L = 0.01, d/L = 0.001
(in this case d/λ is also equal to 0.1), cf. Fig. 7b and 11b, values of dimensionless lower (�

gtm
− )uni (33),
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Fig. 7 Diagrams of dimensionless higher free vibration frequencies (�
gtm
+ )uni (34), (�stm+ )uni (36) versus ratio E2/E1, made for

η = 0.25, ρ2/ρ1 = {0.1, 0.5, 0.9, 0.98} and for a λ/L = 0.1, d/L = 0.01, b λ/L = 0.01, d/L = 0.001

(�stm− )uni (35), (�am)uni (37) and higher (�
gtm
+ )uni (34), (�stm+ )uni (36) free vibration frequencies increase

with the increasing of ratio E2/E1 ∈ [0.01, 1], i.e. with the decreasing of differences between elastic
properties of the shell component materials. Because the value of Young’s module E1 for the elastically
stronger material is fixed, then these differences decrease if values of E2 for the elastically weaker material
tend to value of E1. For an arbitrary but fixed ratio E2/E1, values of the lower and higher free vibration
frequencies under consideration increasewith the decreasing of ratio ρ2/ρ1 = {0.1, 0.5, 0.9, 1} (Fig. 6),
ρ2/ρ1 = {0.1, 0.5, 0.9, 0.98} (Fig. 7) or ρ2/ρ1 ∈ [0.01, 1] (Figs. 10 and 11), i.e. with the increasing of
inertial heterogeneity.

• Analysing the results presented in Figs. 8, 9, 10 and 11, it can be observed that for a fixed η = 0.25 and for
either λ/L = 0.1, d/L = 0.01 (hence d/λ = 0.1), cf. Figs. 8, 9a, 10 and 11a, or λ/L = 0.01, d/L = 0.001
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Fig. 8 Diagrams of dimensionless lower free vibration frequencies (�
gtm
− )uni (33), (�stm− )uni (35), (�am)uni (37) versus ratio

ρ2/ρ1, made for η = 0.25, E2/E1 = {0.1, 0.5, 0.9, 1}, λ/L = 0.1, d/L = 0.01

(in this case d/λ is also equal to 0.1), cf. Figs. 9b and 11b, values of dimensionless lower (�
gtm
− )uni (33),

(�stm− )uni (35), (�am)uni (37) and higher (�
gtm
+ )uni (34), (�stm+ )uni (36) free vibration frequencies decrease

with the increasing of ratio ρ2/ρ1 ∈ [0.01, 1], i.e. with the decreasing of differences between inertial
properties of the shell component materials. Because the value of mass density ρ1 for the stronger material
is fixed, then these differences decrease if values of ρ2 for the weaker material tend to value of ρ1. For an
arbitrary but fixed ratioρ2/ρ1, values of the lower and higher free vibration frequencies under consideration
increasewith the increasing of ratio E2/E1 = {0.1, 0.5, 0.9, 1} (Fig. 8), E2/E1 = {0.1, 0.5, 0.9, 0.98}
(Fig. 9) or E2/E1 ∈ [0.01, 1] (Figs. 10 and 11), i.e. with the decreasing of elastic heterogeneity.

• On the basis of computational results shown in Figs. 6, 7, 8, 9, 10 and 11, we conclude that for a fixed
η = 0.25 and for either λ/L = 0.1, d/L = 0.01 (hence d/λ = 0.1), cf. Figs. 6, 7a, 8, 9a, 10 and 11a, or
λ/L = 0.01, d/L = 0.001 (in this case d/λ is also equal to 0.1), cf. Figs. 7b, 9b and 11b, the highest values
of dimensionless lower (�

gtm
− )uni (33), (�stm− )uni (35), (�am)uni (37) and higher (�

gtm
+ )uni (34), (�stm+ )uni

(36) free vibration frequencies are obtained for the pair of ratios (E2/E1 = 1, ρ2/ρ1 = 0.01), i.e.. for a
shell strip with a very strong inertial heterogeneity and with elastic homogeneous structure. The smallest
values of these free vibration frequencies are obtained for the pair of ratios (E2/E1 = 0.01, ρ2/ρ1 = 1.0),
i.e.. for a shell strip with a very strong elastic heterogeneity and with inertial homogeneous structure.

• For a fixed dimensionless microstructure length parameter ε ≡ λ/L = 0.1, fixed η = 0.25 and for every
pair of ratios (E2/E1 = 0.1, ρ2/ρ1 = 0.9), (E2/E1 = 0.5, ρ2/ρ1 = 0.5), (E2/E1 = 0.9, ρ2/ρ1 = 0.1),
values of dimensionless lower (�

gtm
− )uni (33), (�stm− )uni (35), (�am)uni (37) and higher free vibration

frequencies (�
gtm
+ )uni (34), (�stm+ )uni (36) increase with the increasing of ratio d/L ∈ [0.001, 0.01],

L = const, cf. Figs. 12 and 13, i.e. with the increasing of ratio d/λ ∈ [0.01, 0.1], λ = const, i.e. with the
decreasing of differences between the shell thickness dand microstructure length parameter λ. For every
d/L ∈ [0.001, 0.01], the biggest values of these frequencies are obtained for pair of ratios (E2/E1 = 0.9,
ρ2/ρ1 = 0.1).

6 Final remarks and conclusions

The objects of analysis are thin linearly elastic Kirchhoff–Love-type circular cylindrical shells having a peri-
odically microheterogeneous structure in circumferential direction (uniperiodic shells), cf. Figs. 1 and 2.
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Fig. 9 Diagrams of dimensionless higher free vibration frequencies (�
gtm
+ )uni (34), (�stm+ )uni (36) versus ratio ρ2/ρ1, made for

η = 0.25, E2/E1 = {0.1, 0.5, 0.9, 0.98} and for a λ/L = 0.1, d/L = 0.01, b λ/L = 0.01, d/L = 0.001

Considerations are based on the known Kirchhoff–Love theory of thin elastic shells governed by Eq. (1).
For periodic shells, these equations involve periodic, highly oscillating and non-continuous coefficients. That
is why, the direct application of these equations to investigations of special dynamic problems is non-effective
even using computational methods.

The main aim of this paper was to formulate and discuss a new mathematical non-asymptotic averaged
model for the analysis of dynamic problems for the uniperiodic shells under consideration. This, so-called,
general tolerance model was derived by applying the extended tolerance modelling technique proposed by
Tomczyk and Woźniak [36]. The mentioned above extended version of the well-known tolerance modelling
[6,9] is based on a new notion of weakly slowly-varying function, which is a certain extension of the well-
known concept of slowly-varying function occurring in the classical tolerance modelling procedure. Both
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Fig. 10 Diagrams of dimensionless lower free vibration frequencies (�
gtm
− )uni (33), (�stm− )uni (35), (�am)uni (37) versus ratios

E2/E1 and ρ2/ρ1, made for η = 0.25, λ/L = 0.1, d/L = 0.01

the weakly slowly-varying and the slowly-varying functions can be treated as constant on a periodicity cell.
The main difference between the weakly slowly-varying and the classical slowly-varying functions is that the
products of derivatives of weakly slowly-varying functions in periodicity directions and microstructure length
parameter (i.e. characteristic length dimension of the cell) are not assumed to be negligibly small. It means
that the concept of a weakly slowly-varying function is less restrictive than the concept of a slowly-varying
function. It also means that the averaged general model equations obtained by using the extended (general)
tolerance modelling procedure contain a bigger number of terms dependent on the microstructure size than
the averaged standard model equations derived by applying the classical tolerance modelling technique based
on the notion of a slowly-varying function. Definition of weakly slowly-varying functions is given by (2).
The classical slowly-varying functions are defined by (2) and (3). The other basic concepts of the extended
tolerance modelling technique as tolerance parameters, averaging operation, tolerance-periodic functions,
fluctuation shape functions are the same as in the classical tolerance modelling procedure, cf. Sect. 3.1. As the
standard tolerance modelling, the general tolerance modelling is based on three assumptions: the tolerance
averaging approximation, the micro–macro decomposition and the residual orthogonality assumption, cf.
Sect. 3.2. Obviously, in the assumptions mentioned above, the unknown slowly-varying functions occurring in
the classical tolerance modelling are replaced by the weakly slowly-varying functions.

The general tolerance model for the analysis of dynamic problems for the uniperiodic shells under con-
sideration derived here is represented by constitutive relations (12), (13) and dynamic equilibrium Eq. (14)
with constant coefficients depending also on a cell size. Hence, this model takes into account the effect of a
microstructure size on the global shell dynamics (the length-scale effect).

The governing model equations are uniquely determined by continuous, periodic and highly oscillating
fluctuation shape functions representing disturbances of displacement fields inside a cell. These functions are
assumed to be known in every problem under consideration. They can be obtained as exact or approximate
solutions to certain periodic eigenvalue problems describing free periodic vibrations of the cell. These functions
can also be regarded as the shape functions resulting from the periodic discretization of the cell using for
example the finite element method. The choice of these functions may also be based on the experience or
intuition of the researcher.

Solutions to the initial-boundary value problems formulated in the framework of the general tolerance
model have a physical sense only if the basic unknowns of this model are weakly slowly-varying functions
with respect to the periodicity cell and pertinent tolerance parameters. This requirement can be verified only
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Fig. 11 Diagrams of dimensionless higher free vibration frequencies (�
gtm
+ )uni (34), (�stm+ )uni (36) versus ratios E2/E1 and

ρ2/ρ1, made for η = 0.25 and for a λ/L = 0.1, d/L = 0.01, b λ/L = 0.01, d/L = 0.001
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Fig. 12 Diagrams of dimensionless lower free vibration frequencies (�
gtm
− )uni (33), (�stm− )uni (35), (�am)uni (37) versus ratio

d/L , made for η = 0.25, λ/L = 0.1 and for three pairs of ratios: (E2/E1 = 0.1, ρ2/ρ1 = 0.9), (E2/E1 = 0.5, ρ2/ρ1 = 0.5),
(E2/E1 = 0.9, ρ2/ρ1 = 0.1)

Fig. 13 Diagrams of dimensionless higher free vibration frequencies (�
gtm
+ )uni (34), (�stm+ )uni (36) versus ratio d/L , made for

η = 0.25, λ/L = 0.1 and for three pairs of ratios: (E2/E1 = 0.1, ρ2/ρ1 = 0.9), (E2/E1 = 0.5, ρ2/ρ1 = 0.5), (E2/E1 = 0.9,
ρ2/ρ1 = 0.1)
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a posteriori, and it imposes certain restrictions on the class of problems described by the general tolerance
model proposed here.

The general model formulated here includes a bigger number of terms depending on a microstructure size
than the known standard one derived by Tomczyk in [10] and recalling here by means of (15)–(17). Thus, from
the theoretical results it follows that the general model makes it possible to analyse dispersion phenomena in
more detail.

As illustrative example, a special length-scale dynamic problemwas discussed in the framework of general
tolerance model (12)–(14). This problem dealt with investigations of transversal free vibrations of a simply
supported shell strip made of two component materials periodically and densely distributed in circumferential
direction. The results were compared with the corresponding results obtained from standard tolerance model
(15)–(17) and from asymptotic one (19), which neglects the length-scale effect. It was shown that in the
framework of the general and standard tolerance models, not only the fundamental cell-independent lower
(25), (29), but also the new additional cell-dependent higher (26), (30) free vibration frequencies can be
determined and analysed. The higher free vibration frequencies, caused by a periodic structure of the shell
strip, cannot be determined using the asymptotic model. Formulae for free vibration frequencies derived in
the framework of the general tolerance model contain a bigger number of terms depending on a cell size than
those obtained from the standard tolerance model. However, from the computational results it follows that
the differences between values of fundamental lower free vibration frequency (29) derived from the standard
tolerance model and values of fundamental lower free vibration frequency (25) obtained from the general
tolerance one are negligibly small. Moreover, from the computational results it follows that the differences
between values of fundamental lower free vibration frequencies (25), (29) derived from the general and standard
tolerancemodels, respectively, and values of free vibration frequency (32) obtained from the asymptotic one are
also negligibly small. It means that from the computational point of view, the lower free vibration frequencies
(25), (29) are independent of a microstructure size. It also means, the effect of the periodicity cell size on the
fundamental lower free vibration frequencies of the shell strip under consideration can be neglected. Hence, the
asymptotic model (19) being more simple than the tolerance non-asymptotic ones is sufficient from the point
of view of calculations made for the dynamic problem under consideration. From the computational results, it
also follows that the differences between values of higher cell-dependent free vibration frequency (26) derived
from the general tolerance model and values of higher cell-dependent free vibration frequency (30) obtained
from the standard tolerance one are negligibly small. Thus, in order to determine and investigate these cell-
dependent frequencies, the standard tolerance model (15)–(17), being more simple than the general tolerance
one (12)–(14), can be applied. Values of the lower and higher free vibration frequencies derived from the
general or standard tolerance models or from the asymptotic ones increase with the decreasing of differences
between elastic properties of the shell component materials and decrease with decreasing differences between
inertial properties of the shell component materials. The highest values of lower and higher free vibration
frequencies are obtained for a shell strip with a very strong inertial heterogeneity andwith elastic homogeneous
structure. The smallest values of these free vibration frequencies are obtained for a shell strip with a very strong
elastic heterogeneity and with inertial homogeneous structure. Values of the lower and higher free vibration
frequencies increase with the decreasing of differences between the shell thickness and microstructure length
parameter λ; the biggest values of these frequencies are obtained for a shell strip with a very strong inertial
heterogeneity and with very weak elastic inhomogeneity. The higher free vibration frequencies obtained from
the general or standard tolerancemodels decrease with the increasing of values of dimensionlessmicrostructure
length parameter ε ≡ λ/L1 ∈ [0.01, 0.1], i.e. with the decreasing of differences between period length λ and
the length dimension L1 of the shell midsurface in circumferential direction. The strongest decrease in the
values of the higher free vibration frequencies takes place for ε ≡ λ/L1 ∈ [0.01, 0.02].

Some other applications of the general tolerance model proposed here to the analysis of dynamic problems
for cylindrical shells with one-directional micro-periodic structure will be shown in the forthcoming papers.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit
line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted



Extended tolerance modelling of dynamic problems 209

by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To
view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

References

1. Bensoussan, A., Lions, J.L., Papanicolau, G.: Asymptotic Analysis for Periodic Structures. North-Holland, Amsterdam
(1978)

2. Jikov, V.V., Kozlov, C.M., Olejnik, O.A.: Homogenization ofDifferential Operators and Integral Functionals. Springer, Berlin
(1994)

3. Lutoborski, A.: Homogenization of linear elastic shells. J. Elast. 15, 69–87 (1985)
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6. Woźniak, C., Wierzbicki, E.: Averaging techniques in thermomechanics of composite solids. Tolerance averaging versus
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24. Bagdasaryan,V.,Wągrowska,M., Szlachetka,O.:Displacements causedby the temperature inmulticomponent,multi-layered

periodic material structures. Mech. Mech. Eng. 22(3), 809–819 (2018)
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30. Pazera, E., Ostrowski, P., Jędrysiak, J.: On thermoelasticity in FGL—tolerance averaging technique. Mech. Mech. Eng.

22(3), 703–717 (2018)

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s00161-019-00832-9
https://doi.org/10.1007/s00161-019-00832-9
https://doi.org/10.1016/j.compstruct.2021.114495
https://doi.org/10.1016/j.compstruct.2021.114495
https://doi.org/10.1016/j.compstruct.2020.113054
https://doi.org/10.1016/j.compstruct.2020.113171
https://doi.org/10.1016/j.compstruct.2020.113310
https://doi.org/10.1007/s11012-020-01184-4
https://doi.org/10.1007/s00161-021-001060-w


210 B. Tomczyk et al.

31. Wirowski, A., Rabenda, M.: A forced damped vibrations of the annular plate made of functionally graded material. Acta
Sci. Pol. Archit. 13, 57–68 (2014)

32. Tomczyk, B., Szczerba, P.: Tolerance and asymptotic modelling of dynamic problems for thin microstructured transversally
graded shells. Compos. Struct. 162, 365–372 (2017). https://doi.org/10.1016/j.compstruct.2016.11.083

33. Tomczyk, B., Szczerba, P.: Combined asymptotic-tolerance modelling of dynamic problems for functionally graded shells.
Compos. Struct. 183, 176–184 (2018). https://doi.org/10.1016/j.compstruct.2017.02.021

34. Tomczyk, B., Szczerba, P.: A new asymptotic-tolerance model of dynamic and stability problems for longitudinally graded
cylindrical shells. Compos. Struct. 202, 473–481 (2018). https://doi.org/10.1016/j.compstruct.2018.02.073

35. Tomczyk, B., Szczerba, P.: Micro-dynamics of thin tolerance-periodic cylindrical shells. Proc. Math. Stat. 248, 363–377
(2018)
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