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Abstract In this study, a comprehensive analysis of visco-hyper-elastic thick soft arches under an external time-
independent as well as time-dependent loads is presented from bending and internal resonance phenomenon
perspectives. Axial, transverse and rotation motions are considered for modelling the thick and soft arch in
the framework of the Mooney–Rivlin and Kelvin–Voigt visco-hyper-elastic schemes and third-order shear
deformable models. The arch is assumed to be incompressible and is modelled using von Kármán geometric
nonlinearity in the strain–displacement relationship. Using a virtual work method, the bending equations
are derived. For the vibration analysis, three, coupled, highly nonlinear equations of motions are obtained
using force-moment balance method. The Newton–Raphson method together with the dynamic equilibrium
technique is used for the bending and vibration analyses. A detailed study on the influence of having visco-
hyper-elasticity and arch curvature in the frequency response of the system is given in detail, and the bending
deformation due to the applied static load is presented. The influence of having thick, soft arches with different
slenderness ratios is shown, and the forced vibration response is discussed. Moreover, internal resonance in the
system is studied showing that the curvature term in the structure can lead to three-to-one internal resonances,
showing a rich nonlinear frequency response. The results of this study are a step forward in studying the
visco-hyper-elastic behaviour of biological structures and soft tissues.

Keywords Internal resonance · Visco-elastic · Visco-hyper-elastic · Arch · Mooney–Rivlin · Kelvin–Voigt ·
Bending · Nonlinear vibration

1 Introduction

Arches are one of the main curved structures used in different engineering applications including civil and
mechanical engineering. In civil engineering, arches have been employed for different construction purposes
such as bridges and subway stations [1,2] as it can carry greater loads compared to straight structures. As an
application in the field of mechanical engineering, arch structures have been used in designing different types
of energy harvesters to optimise the efficiency of the system [3–6]. For instance, in a study presented by Yang
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et al. [7], it was shown that by using arch structures, the total harvested power was 200% times more power
compared to straight structures. As another example, shallow arches have also been used and examined for
microelectromechanical systems (MEMS) [8].

During the last few years, researchers have studied the mechanical behaviour of both flat structures (includ-
ing beams and plates) [9–15] and curved structures (including shells and arches) [16–23] to be able to use
them efficiently for specific purposes. Focusing on arch structures, their behaviour in different engineering
conditions has been examined lately. To name a few, Yang et al. [24] reinforced elastic arch structures using
graphene nanoplatelets and studied the linear vibration behaviour of graphene-reinforced arches. Different
fibre distribution was modelled using Halpin–Tsai micromechanics model and Hamilton’s principle showing
that out-of-plane and in-plane linear frequencies of the elastic arch are highly affected by the fibre distribution
and percentage. For dynamic instability analysis, Zhao et al. [25] studied the influence of having porosity in
modelling graphene-reinforced elastic arches; it was shown that the best dynamic instability resistance can
be seen in the symmetric porosity distribution model. The nonlinear mechanics of elastic shallow arches with
nonuniform cross section made of functionally graded materials (FGMs) have been investigated by Ghayesh
and Farokhi [26]. Coupled axial-transverse equations ofmotionwere obtained usingEuler-Bernoulli theory and
Hamilton’s principle; it was shown that as the arch curvature increases, the maximum amplitude of transverse
vibration decreases. For MEMS structures, Farokhi et al. [27] studied the pull-in phenomena in micro-scale
arch structures. Using a high-dimensional reduced-order Galerkinmodel and generalised Hamilton’s principle,
it was shown that by increasing the curvature of the arch, the DC voltage for pull-in phenomena increases.

The previous studies were mainly focused on linear-elastic structures under small strains. However, soft
materials undergo large strains, which makes the classic linear modelling of the behaviour inaccurate for many
hyper-elastic structures. There has been a significant attention on hyper-elastic structures in the past few years
focusing on the statics [28–31] and dynamics [32–35]. In some recent studies, the anti-clastic bending of
hyper-elastic beams in finite elasticity has been investigated by Lanzoni and Tarantino [36–38]. Khaniki et al.
[39,40] have examined the nonlinear vibration and mechanics of axially moving hyper-elastic structures and
layered hyper-elastic beams. In another study, Khaniki et al. [41] investigated the effect of having porosity
in hyper-elastic structures providing a porous-hyper-elastic strain energy model and modelling the vibration
behaviour of porous soft beams.Adetailed reviewon the nonlinear dynamic behaviour of different hyper-elastic
structures can be found in Ref. [42].

However, since some soft structures show a combination of viscoelasticity and hyper-elasticity, researchers
have developed different models for such structures [43–47]. In a recent study presented by Li et al. [48], a
wide range of visco-hyper-elastic constitutive models were developed. The viscoelasticity was modelled via
Maxwell and Kelvin–Voigt models, and the hyper-elasticity was modelled via neo-Hookean, Mooney–Rivlin,
and Ogden models. It was shown that the proposed models are capable of modelling both hyper-elasticity
and viscoelasticity of the biological structure. Since visco-hyper-elastic structures are widely applicable for
modelling human body organs, soft robots and prosthesis, the visco-hyper-elastic constitutivemodels are useful
for studying and manufacturing accurate mechanical and biomechanical structures in different environments.

Besides, since most of the hyper-elastic structures are significantly softer than linear-elastic structures, it is
very likely to have them bent (like arches and shells) in real-life applications. Accordingly, in this study, visco-
hyper-elastic thick soft shallow arches are examined in the framework of nonlinear bending and vibrations (with
and without internal resonances). Since the soft arch is assumed to be thick, a third-order shear deformable
theory is used and the visco-hyper-elasticity is modelled following Ref. [48] by using Mooney–Rivlin and
Kelvin–Voigt models. The bending behaviour of the soft arch is formulated using the virtual work method and
solved using the Newton–Raphson method. For the vibration analysis, the equations of motion are obtained
using the force-moment balancemethod and solvedusing a dynamic equilibrium technique.The effect of having
curvature in the structure is analysed, and the internal resonance phenomena caused by having this nonlinearity
in the system are discussed. A detailed discussion of the influence of curvature term, the slenderness ratio and
three-to-one internal resonance is given.

2 Bending of hyper-elastic thick arch formulation

For a thick, soft, shallow arch, using a higher-order shear deformation theory, by considering plane motion,
von Kármán’s geometric nonlinearity, and curvature in the thickness direction, the nonlinear static strain terms
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are obtained as
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where u1 and u3 are the displacements of the arch in the x1 and x3 directions (shown in Fig. 1a), u30 is
the curvature of the shallow arch, ε11 and ε33 are the axial strains in the x1 and x3 directions and ε13 is the
shear strain. By considering plane motion and incompressible material, the right Cauchy-Green strain tensor
is written as [49]

C =
⎡
⎣ (1 + ε11)

2 + ε213 0 ε11ε13 + 2ε13 + ε33ε13
0 1 0

ε11ε13 + 2ε13 + ε33ε13 0 (1 + ε33)
2 + ε213

⎤
⎦ , (5)

which contains nonlinear higher-order strain terms since hyper-elastic structures undergo large strains and
cannot be modelled by considering the linear part alone, as is undertaken for elastic structures.

The principle of virtual work is not only for linear elastic structures and can be applied for hyper-elastic
structures [50]. To this end, by using the Mooney–Rivlin hyper-elastic strain energy density [51,52] and the
principle of virtual work, the variation of the energy term, due to the static applied forces, can be written in
three variation terms for axial (PE1), transverse (PE2) and rotation (PE3) variations as

L∫
0

[Fs1δu1 + Fs3δu3 + Fs2δφ] dx1 =
L∫

0

[(PE1) δu1 + (PE2) δu3 + (PE3) δφ] dx1, (6)

where PE1, PE2, PE3 are given in Appendix A for the sake of brevity, with the moment of area coefficients
defined as
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(a)

(b)

Fig. 1 Schematic figure of a visco-hyper-elastic thick shallow arch with simply supported boundary conditions

I1717 =
∫
A

u3 (u3 + �1) �2
2dA, I1818 =

∫
A

�3
2dA, I1919 =

∫
A

(u3 + �1)
(�2

2 − 1
)
dA. (7)

Using Eqs. (1–7), three equilibrium equations for the bending analysis are obtained by having homogeneity
in the arch as
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It can be seen that the equilibrium equations are highly nonlinear in hyper-elasticity terms, with a high coupling
between the axial, rotation and transverse motions. The equilibrium equations can be validated by comparing
them to those presented in Ref. [40] by neglecting the curvature terms from these equations and unsymmetrical
and time-dependant terms in the equations of motion of Ref. [40]. By employing the solution procedure given
in Sect. 4, the bending behaviour of soft thick shallow arches will be obtained.

3 Dynamics of visco-hyper-elastic thick arch formulation via force-moment balance method

For the time-dependent analysis and modelling of soft thick shallow arches, using the same assumptions given
in Sect. 2, the nonlinear strain terms are written as
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+ 1

2

(
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)2
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Hyper-elas�city

Viscosity

σvisco-hyper-elas�city

σviscosity

σhyper-elas�city

Fig. 2 Constitutive model of Kelvin–Voigt visco-hyper-elasticity
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For visco-hyper-elastic structures, Li et al. [48] have shown that the visco-hyper Kelvin–Voigt model has
a good accuracy in modelling visco-hyper-elastic structures while using Mooney–Rivlin, neo-Hookean and
Ogden strain energy density models. The visco-hyper-elastic model (Fig. 2) is presented as [48]

σvisco-hyper = σhyperelastic + ξk ε̇, (14)

(Talk about the feasible applicability of the approach) For an element of the thick visco-hyper-elastic arch,
shown in Fig. 2b, Newton’s law is applied for the rotational motion, as well as translational ones by having
[53]

∂N (x1, x3, t)

∂x1
= −ρ I00u1t t − ρ I22u3xtt − ρ I33φt t , (15)
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∂M (x1, x3, t)
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− Q (x1, x3, t) = −ρ I33u1t t − ρ I66u3xtt − ρ I99φt t , (17)

where the stress resultants are defined as [54]
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∫
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∫
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x3σvisco-hyper,x1x1dA, (19)

Q =
∫
A
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and the applied external periodic load with the magnitude of F is given as

Fexternal = F cos (ωt) . (21)

For isotropic visco-hyper-elastic shallow arches, by using force-moment balance method, one can reach
the coupled equations of motions which are shown in Appendix B for the sake of brevity. By neglecting the
viscoelasticity and the arch-related terms, the equations of motion can be validated through Ref. [40]. It can be
seen that all three equations of motion are highly nonlinear in visco-elasticity and hyper-elasticity terms, with
a high coupling between the axial, rotation and transverse motions. By using the solution procedure given in
Sect. 5, the vibration behaviour of soft thick shallow arches will be obtained.
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4 Solution procedure for hyper-elastic bending analysis

By assuming only transverse external load on the system (Fs1 = FS2 = 0 and FS3 = F) and defining
nondimensional terms as
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the nondimensional equilibrium equations are written as
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where * is neglected from the parameters for the sake of brevity. By employing a series expansion, the degrees
of freedom are written as
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K L
21� + K L

22ℵ + K L
22κ + K NL

21 �2 + K NL
22 �ℵ + K NL

23 �κ + K NL
24 ℵ2 + K NL

25 ℵκ + K NL
26 κ2 + K NL

27 �2ℵ
+K NL

28 �ℵ2 + K NL
29 ℵ3 + K NL

210ℵ2κ + K NL
211ℵκ2 + K NL

212 rℵ3 + K NL
213ℵ4 + K NL

214ℵ5 = F, (31)

K L
32ℵ + K L

33κ + K NL
31 �ℵ + K NL

32 �κ + K NL
33 ℵ2 + K NL

34 ℵκ + K NL
35 ℵ3 + K NL

36 ℵ2κ = 0. (32)

The linear stiffness coefficients (K L
i j ) of the bending equilibrium equations are defined as

K L
11 = −8

1

η2
I00

1∫
0

Up (x1)U
′′
i (x1) dx1, (33)

K L
12 = −8

1

η
I00

1∫
0

Up (x1)
d

dx1

(
W ′

i (x1)W
′
0 (x1)

)
dx1, (34)

K L
21 = −8I00

1

η

1∫
0

Wl (x1)
d

dx1

(
U ′
i (x1)W

′
0 (x1)

)
dx1, (35)

K L
22 = −8I00

1∫
0

Wl (x1)
d

dx1

(
W ′

i (x1)W
′2
0 (x1)

)
dx1 + 8

1∫
0

Wl (x1)W
(4)
i (x1) dx1

−8I55
1

η2

1∫
0

Wl (x1)W
′′
i (x1) dx1, (36)

K L
23 = +8I66

1

η

1∫
0

Wl (x1)ψ
′′′
i (x1) dx1 − 8I55

1

η3

1∫
0

Wl (x1)ψ
′
i (x1) dx1, (37)

K L
32 = −8I66η

1∫
0

ψl (x1)W
′′′
i (x1) dx1 + 8I55

1

η

1∫
0

ψl (x1)W
′
i (x1) dx1, (38)

K L
33 = +8I55

1

η2

1∫
0

ψl (x1)ψi (x1) dx1 − 8I99

1∫
0

ψl (x1)ψ
′′
i (x1) dx1, (39)
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and the nonlinear stiffness coefficients (K NL
i j ) are defined as

K NL
11 = +12

1

η
I00

1∫
0

Up (x1)
d

dx1

(
U ′
i (x1)U

′
j (x1)

)
dx1, (40)

K NL
12 = +24I00

1∫
0

Up (x1)
d

dx1

(
U ′
i (x1)W

′
j (x1)W

′
0 (x1)

)
dx1, (41)

K NL
13 = −4

1

η
I77

1∫
0

Up (x1)
d

dx1

(
W ′

i (x1)W
′
j (x1)

)
dx1

+12ηI00

1∫
0

Up (x1)
d

dx1

(
W ′

i (x1)W
′
j (x1)W

′2
0 (x1)

)
dx1

+12η

1∫
0

Up (x1)
d

dx1

(
W ′′

i (x1)W
′′
j (x1)

)
dx1, (42)

K NL
14 = +24I66

1∫
0

Up (x1)
d

dx1

(
W ′′

i (x1) ψ ′
j (x1)

)
dx1 + 8

1

η2
I55

1∫
0

Up (x1)
d

dx1

(
W ′

i (x) ψ j (x1)
)
dx1,

(43)

K NL
15 = +12

1

η
I99

1∫
0

Up (x1)
d

dx1

(
ψ ′
i (x1) ψ ′

j (x1)
)
dx1 + 4

1

η3
I55

1∫
0

Up (x1)
d

dx1

(
ψi (x1) ψ j (x1)

)
dx1,

(44)

K NL
16 = +12I00

1∫
0

Up (x1)
d

dx1

(
U ′
i (x1)W

′
j (x1)W

′
k (x1)

)
dx1, (45)

K NL
17 = +12ηI00

1∫
0

Up (x1)
d

dx1

(
W ′

i (x1)W
′
j (x1)W

′
k (x1)W

′
0 (x1)

)
dx1, (46)

K NL
18 = +3ηI00

1∫
0

Up (x1)
d

dx1

(
W ′

i (x1)W
′
j (x1)W

′
k (x1)W

′
m (x1)

)
dx1, (47)

K NL
21 = +12I00

1∫
0

Wl (x1)
d

dx1

(
U ′
i (x1)U

′
j (x1)W

′
0 (x1)

)
dx1, (48)

K NL
22 = −8I77

1

η

1∫
0

Wl (x1)
d

dx1

(
U ′
i (x1)W

′
j (x1)

)
dx1 − 24η

1∫
0

Wl (x1)
d2

dx21

(
U ′
i (x1)W

′′
j (x1)

)
dx1

+24I00η

1∫
0

Wl (x1)
d

dx1

(
U ′
i (x1)W

′
j (x1)W

′2
0 (x1)

)
dx1, (49)

K NL
23 = −24I66

1∫
0

Wl (x1)
d2

dx21

(
U ′
i (x1) ψ ′

j (x1)
)
dx1+8I55

1

η2

1∫
0

Wl (x1)
d

dx1

(
U ′
i (x1) ψ j (x1)

)
dx1, (50)
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K NL
24 = −12I77

1∫
0

Wl (x1)
d

dx1

(
W ′

i (x1)W
′
j (x1)W

′
0 (x1)

)
dx1

+12I00η
2

1∫
0

Wl (x1)
d

dx1

(
W ′

i (x1)W
′
j (x1)W

′3
0 (x1)

)
dx1

+12η2
1∫

0

Wl (x1)
d

dx1

(
W ′′

i (x1)W
′′
j (x1)W

′
0 (x1)

)
dx1

−24η2
1∫

0

Wl (x1)
d2

dx21

(
W ′

i (x1)W
′′
j (x1)W

′
0 (x1)

)
dx1, (51)

K NL
25 = +24I66η

1∫
0

Wl (x1)
d

dx1

(
W ′′

i (x1) ψ ′
j (x1)W

′
0 (x1)

)
dx1

+16I55
1

η

1∫
0

Wl (x1)
d

dx1

(
W ′

i (x1) ψ j (x1)W
′
0 (x1)

)
dx1

−24I66η

1∫
0

Wl (x1)
d2

dx21

(
W ′

i (x1) ψ ′
j (x1)W

′
0 (x1)

)
dx1, (52)

K NL
26 = +12I99

1∫
0

Wl (x1)
d

dx1

(
ψ ′
i (x1) ψ ′

j (x1)W
′
0 (x1)

)
dx1

+4I55
1

η2

1∫
0

Wl (x1)
d

dx1

(
ψi (x1) ψ j (x1)W

′
0 (x1)

)
dx1, (53)

K NL
27 = +12I00

1∫
0

Wl (x1)
d

dx1

(
U ′
i (x1)U

′
j (x1)W

′
k (x1)

)
dx1, (54)

K NL
28 = +36I00η

1∫
0

Wl (x1)
d

dx1

(
U ′
i (x1)W

′
j (x1)W

′
k (x1)W

′
0 (x1)

)
dx1, (55)

K NL
29 = −4I88

1∫
0

Wl (x1)
d

dx1

(
W ′

i (x1)W
′
j (x1)W

′
k (x1)

)
dx1

+24I00

1∫
0

Wl (x1)
d

dx1

(
W ′

i (x1)W
′
j (x1)W

′
k (x1)W

′2
0 (x1)

)
dx1

+12η2
1∫

0

Wl (x1)
d

dx1

(
W ′

i (x1)W
′′
j (x1)W

′′
k (x1)

)
dx1

−12η2
1∫

0

Wl (x1)
d2

dx21

(
W ′

i (x1)W
′
j (x1)W

′′
k (x1)

)
dx1, (56)
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K NL
210 = +24I66η

1∫
0

Wl (x1)
d

dx1

(
W ′

i (x1)W
′′
j (x1) ψ ′

k (x1)
)
dx1

+12I55
1

η

1∫
0

Wl (x1)
d

dx1

(
W ′

i (x1)W
′
j (x1) ψ j (x1)

)
dx1

−12I66η

1∫
0

Wl (x1)
d2

dx21

(
W ′

i (x1)W
′
j (x1) ψ ′

k (x1)
)
dx1, (57)

K NL
211 = +12I99

1∫
0

Wl (x1)
d

dx1

(
W ′

i (x1) ψ ′
j (x1) ψ ′

k (x1)
)
dx1

+4I55
1

η2

1∫
0

Wl (x1)
d

dx1

(
W ′

i (x1) ψ j (x1) ψk (x1)
)
dx1, (58)

K NL
212 = +12I00η

1∫
0

Wl (x1)
d

dx1

(
U ′
i (x1)W

′
j (x1)W

′
k (x1)W

′
m (x1)

)
dx1, (59)

K NL
213 = +15I00η

2

1∫
0

Wl (x1)
d

dx1

(
W ′

i (x1)W
′
j (x1)W

′
k (x1)W

′
m (x1)W

′
0 (x1)

)
dx1, (60)

K NL
214 = +3I00η

2

1∫
0

Wl (x1)
d

dx1

(
W ′

i (x1)W
′
j (x1)W

′
k (x1)W

′
m (x1)W

′
n (x1)

)
dx1, (61)

K NL
31 = −8I55

1∫
0

ψl (x1)U
′
i (x1)W

′
j (x1) dx1 + 24I66η

2

1∫
0

ψl (x1)
d

dx1

(
U ′

j (x1)W
′′
j (x1)

)
dx1, (62)

K NL
32 = +24I99η

1∫
0

ψl (x1)
d

dx1

(
U ′
i (x1) ψ ′

j (x1)
)
dx1 − 8I55

1

η

1∫
0

ψl (x1)U
′
i (x1) ψ j (x1) dx1, (63)

K NL
33 = +24I66η

3

1∫
0

ψl (x1)
d

dx1

(
W ′

i (x1)W
′′
j (x1)W

′
0 (x1)

)
dx1

−8I55η

1∫
0

ψl (x1)W
′
i (x1)W

′
j (x1)W

′
0 (x1) dx1, (64)

K NL
34 = +24I99η

2

1∫
0

ψl (x1)
d

dx1

(
W ′

i (x1) ψ ′
i (x1)W

′
0 (x1)

)
dx1

−8I55

1∫
0

ψl (x1)W
′
i (x1) ψi (x1)W

′
0 (x1) dx1, (65)
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K NL
35 = +12I66η

3

1∫
0

ψl (x1)
d

dx1

(
W ′

i (x1)W
′
j (x1)W

′′
k (x1)

)
dx1

−4I55η

1∫
0

ψl (x1)W
′
i (x1)W

′
j (x1)W

′
k (x1) dx1, (66)

K NL
36 = +12I99η

2

1∫
0

ψl (x1)
d

dx1

(
W ′

i (x1)W
′
j (x1) ψ ′

k (x1)
)
dx1

−4I55

1∫
0

ψl (x1)W
′
i (x1)W

′
j (x1) ψk (x1) dx1. (67)

which by solving the nonlinear polynomial equations of motion using the Newton–Raphson method, the static
bending due to the external static force can be obtained.

5 Solution procedure for visco-hyper-elastic vibrations

Using the given nondimensional terms in Sect. 4 and additional nondimensional terms as

 = ω

√
ρ I00L4

CT I44
, t∗ = t

√
CT I44
ρAL4 , ξk = ξk

CT
∗

√
CT I44
ρAL4 , (68)

the nondimensional equations of motion are written as

u1t t − ξk I00
1

η2
u1x1x1t − ξk I00

1

η

∂

∂x1

(
u30x1u3x1t

) + 2ξk I00
1

η

∂

∂x1

(
u1x1u1x1t

) + 2ξk I00
∂

∂x1

(
u3x1u30x1u1x1t

)

+2ξk I00
∂

∂x1

(
u1x1u30x1u3x1t

) − ξk I77
1

η

∂

∂x1

(
u3x1u3x1t

)

+2ξk I00η
∂

∂x1

(
u3x1u

2
30x1u3x1t

) + 2ξkη
∂

∂x1

(
u3x1x1u3x1x1t

)

+2ξk I66
∂

∂x1

(
φx1u3x1x1t

) + ξk I55
1

η2

∂

∂x1

(
φu3x1t

) + 2ξk I66
∂

∂x1

(
u3x1x1φx1t

) + ξk I55
1

η2

∂

∂x1

(
u3x1φt

)

+2ξk I99
1

η

∂

∂x1

(
φx1φx1t

) + ξk I55
1

η3

∂

∂x1
(φφt ) + ξk I00

∂

∂x1

(
u23x1u1x1t

) + 2ξk I00
∂

∂x1

(
u1x1u3x1u3x1t

)

+3ξk I00η
∂

∂x1

(
u23x1u30x1u3x1t

) + ξk I00η
∂

∂x1

(
u33x1u3x1t

) − 8I00
1

η2
u1x1x1 − 8I00

1

η

∂

∂x1

(
u3x1u30x1

)

+12I00
1

η

∂

∂x1

(
u21x1

) + 24I00
∂

∂x1

(
u1x1u3x1u30x1

) − 4I77
1

η

∂

∂x1

(
u23x1

) + 12I00η
∂

∂x1

(
u23x1u

2
30x1

)

+12η
∂

∂x1

(
u23x1x1

) + 24I66
∂

∂x1

(
u3x1x1φx1

) + 8I55
1

η2

∂

∂x1

(
u3x1φ

)

+12I99
1

η

∂

∂x1

(
φ2
x1

) + 4I55
1

η3

∂

∂x1

(
φ2)

+12I00
∂

∂x1

(
u1x1u

2
3x1

) + 12I00η
∂

∂x1

(
u30x1u

3
3x1

) + 3I00η
∂

∂x1

(
u43x1

) = 0, (69)

I66
I00

η3u3x1t t + I99
I00

η2φt t − ξkηI66u3x1x1x1t + 1

2
ξk I55

1

η
u3x1t − ξk I99φx1x1t

+1

2
ξk I55

1

η2
φt + 2ξk I66η

2 ∂

∂x1

(
u3x1x1u1x1t

)
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−ξk I55u3x1u1x1t + 2ξk I99η
∂

∂x1

(
φx1u1x1t

) − ξk I55
1

η
φu1x1t + 2ξk I66η

2 ∂

∂x1

(
u1x1u3x1x1t

)

+2ξk I66η
3 ∂

∂x1

(
u3x1x1u30x1u3x1t

) − ξk I55ηu3x1u30x1u3x1t

+ξk2I99η
2 ∂

∂x1

(
φx1u30x1u3x1t

) − ξk I55φu30x1u3x1t

+2ξk I99η
∂

∂x1

(
u1x1φx1t

) + 2ξk I99η
2 ∂

∂x1

(
u3x1u30x1φx1t

) + 2ξk I66η
3 ∂

∂x1

(
u3x1u3x1x1u3x1t

)

+ξk I66η
3 ∂

∂x1

(
u23x1u3x1x1t

) + 2ξk I66η
3 ∂

∂x1

(
u3x1u30x1u3x1x1t

)

−ξk I55ηu
2
3x1u3x1t + 2ξk I99η

2 ∂

∂x1

(
u3x1φx1u3x1t

)

−ξk I55u3x1φu3x1t + ξk I99η
2 ∂

∂x1

(
u23x1φx1t

) − 8I66ηu3x1x1x1 + 8I55
1

η
u3x1 − 8I99φx1x1 + 8I55

1

η2
φ

+24I66η
2 ∂

∂x1

(
u1x1u3x1x1

) − 8I55u1x1u3x1 + 24I99η
∂

∂x1

(
u1x1φx1

)

−8I55
1

η
u1x1φ + 24I66η

3 ∂

∂x1

(
u3x1u3x1x1u30x1

)

−8I55ηu
2
3x1u30x1 + 24I99η

2 ∂

∂x1

(
u3x1φx1u30x1

) − 8I55u3x1φu30x1

+12I66η
3 ∂

∂x1

(
u23x1u3x1x1

) − 4I55ηu
3
3x1

+12I99η
2 ∂

∂x1

(
u23x1φx1

) − 4I55u
2
3x1φ = 0. (70)

− 1

I00
η2u3x1x1t t − I66

I00
ηφx1t t + u3t t − ξk I00

1

η

∂

∂x1

(
u30x1u1x1t

)

+ξk u3x1x1x1x1t − ξk I00
∂

∂x1

(
u230x1u3x1t

) − 1

2
ξk I55

1

η2
u3x1x1t

+ξk I66
1

η
φx1x1x1t − 1

2
ξk I55

1

η3
φx1t + 2ξk I00

∂

∂x1

(
u1x1u30x1u1x1t

)

+2ξk I00η
∂

∂x1

(
u3x1u

2
30x1u1x1t

) − ξk I00
1

η

∂

∂x1

(
u3x1u1x1t

)

−2 ξkη
∂2

∂x21

(
u3x1x1u1x1t

) + ξk I55
1

η

∂

∂x1

(
u3x1u1x1t

) − 2ξk I66
∂2

∂x21

(
φx1u1x1t

) + ξk I55
1

η2

∂

∂x1

(
φu1x1t

)

+2ξk I00η
∂

∂x1

(
u1x1u

2
30x1u3x1t

) − 2 ξkη
∂2

∂x21

(
u1x1u3x1x1t

)

−ξk I77
∂

∂x1

(
u3x1u30x1u3x1t

) + 2ξk I00η
2 ∂

∂x1

(
u3x1u

3
30x1u3x1t

)

+2ξkη
2 ∂

∂x1

(
u3x1x1u30x1u3x1x1t

) − ξk I00
∂

∂x1

(
u30x1u3x1u3x1t

)

+ξk I55
∂

∂x1

(
u3x1u30x1u3x1t

) − 2ξkη
2 ∂2

∂x21

(
u3x1x1u30x1u3x1t

)

+2ξk I66η
∂

∂x1

(
φx1u30x1u3x1x1t

) + 2ξk I55
1

η

∂

∂x1

(
φu30x1u3x1t

)

−2ξk I66η
∂2

∂x21

(
φx1u30x1u3x1t

) − 2ξk I66
∂2

∂x21

(
u1x1φx1t

)
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+2ξk I66η
∂

∂x1

(
u3x1x1u30x1φx1t

) + ξk I55
1

η

∂

∂x1

(
u3x1u30x1φt

)

−2ξk I66η
∂2

∂x21

(
u3x1u30x1φx1t

) + 2ξk I99
∂

∂x1

(
φx1u30x1φx1t

)

+ξk I55
1

η2

∂

∂x1

(
φu30x1φt

) + 2ξk I00
∂

∂x1

(
u1x1u3x1u1x1t

)

+3ξk I00η
∂

∂x1

(
u23x1u30x1u1x1t
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For time-dependant analysis, by employing the Galerkin’s procedure, the degrees of freedom are written
as

u1 (x1, t) =
M∑
j=1

Uj (x1)� j (t) , (72)

u3 (x1, t) =
N∑
i=1

Wi (x1)ℵi (t) , (73)

φ (x1, t) =
N∑
i=1

ψi (x1) κi (t) , (74)

and the equations of motion are discretised as

M11�̈ + CL
11�̇ + CL

12ℵ̇ + CNL
11 ��̇ + CNL

12 ℵ�̇ + CNL
13 �ℵ̇ + CNL

14 ℵℵ̇ + CNL
15 κℵ̇ + CNL

16 ℵκ̇ + CNL
17 κκ̇

+CNL
18 ℵ2�̇ + CNL

19 �ℵℵ̇ + CNL
110ℵ2ℵ̇ + CNL

111ℵ3ℵ̇ + K L
11� + K L

12ℵ + K NL
11 �2 + K NL

12 �ℵ + K NL
13 ℵ2

+K NL
14 ℵκ + K NL

15 κ2 + K NL
16 �ℵ2 + K NL

17 ℵ3 + K NL
18 ℵ4 = 0, (75)

M22ℵ̈ + M23κ̈ + CL
21�̇ + CL

22ℵ̇ + CL
23κ̇ + CNL

21 ��̇ + CNL
22 ℵ�̇ + CNL

23 κ�̇ + CNL
24 �ℵ̇ + CNL

25 ℵℵ̇
+CNL

26 κℵ̇ + CNL
27 �κ̇ + CNL

28 ℵκ̇ + CNL
29 κκ̇ + CNL

210�ℵ�̇ + CNL
211ℵ2�̇ + CNL

212�ℵℵ̇ + CNL
213ℵ2ℵ̇

+CNL
214ℵκℵ̇ + CNL

215ℵ2κ̇ + CNL
216ℵκκ̇ + CNL

217ℵ3�̇ + CNL
218�ℵ2ℵ̇ + CNL

219ℵ3ℵ̇ + CNL
220ℵ4ℵ̇ + K L

21�
+K L

22ℵ + K L
22κ + K NL

21 �2 + K NL
22 �ℵ + K NL

23 �κ + K NL
24 ℵ2

+K NL
25 ℵκ + K NL

26 κ2 + K NL
27 �2ℵ + K NL

28 �ℵ2

+K NL
29 ℵ3 + K NL

210ℵ2κ + K NL
211ℵκ2 + K NL

212 rℵ3 + K NL
213ℵ4 + K NL

214ℵ5 = F cos (t) , (76)

M32ℵ̈ + M33κ̈ + CL
31ℵ̇ + CL
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31 �ℵ + K NL

32 �κ + K NL
33 ℵ2

+K NL
34 ℵκ + K NL

35 ℵ3 + K NL
36 ℵ2κ = 0, (77)

with the mass coefficients (Mi j ) as

M11 =
1∫

0

Up (x1)Ui (x1) dx1, (78)

M22 = +
1∫

0

Wl (x1)Wi (x1) dx1 − 1

I00
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I00
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′
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′
i (x1) dx1, (81)

M33 = + I99
I00

η2

1∫
0

ψl (x1)ψi (x1) dx1, (82)
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and the linear visco-elastic coefficients (CL
i j ) as

CL
11 : −ξk I00

1

η2

1∫
0

Ul (x1)U
′′
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d
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CL
32 : −ξk I99
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ψl (x1)ψ
′′
i (x1) dx1 + 1

2
ξk I55

1

η2

1∫
0

ψl (x1)ψi (x1) dx1. (89)

The nonlinear damping coefficients (CNL
i j ) are shown in Appendix C for the sake of brevity, and the stiffness

terms are defined in the previous sections. By solving the dynamic equilibrium equations [39,41], the nonlinear
vibration response of the system is obtained.

6 Results and discussions for bending and vibration

In this section, the nonlinear bending and vibration responses of thick visco-hyper-elastic shallow arches are
modelled for different cases of curvature, slenderness ratio and internal resonances. The hyper-elastic properties
are taken from Ref [55] for vulcanised rubbers with the Mooney–Rivlin coefficients as C1 = 0.28e6 Pa and
C2 = 0.15e6 Pa and mass density ρ = 950 kg/m3.

6.1 Bending analysis

Study 1: Force-bending analysis
As the first part of the analysis, the nonlinear static deformation of thick hyper-elastic shallow arches is

analysed following the solution procedure given in Sect. 4 and compared to those obtained using finite element
software. The shallow arch is assumed to have the following geometrical properties: L = 0.3 m, h = 0.03 m,
b = 0.03 m, with a simply supported boundary condition and assumed to undergo a static pressure (which is
varied from−1 to 1 kPa). The maximum transverse deformation is obtained and shown in Table 1 for different
curvatures and external loads. By comparing the current results with those obtained from ANSYS [56], it is
shown that the results are in very good agreement. Besides, it can be seen that by increasing the curvature term,
the maximum deformation of the shallow arch decreases significantly especially for higher external loadings.
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Table 1 Comparison of the maximum transverse deformation of the shallow arch for different loads

R0=u30/h Maximum transverse deformation (mm)

P0 −1 kPa −500 Pa −200 Pa 200 Pa 500 Pa 1 kPa

0.5 Present 6.1184 3.5272 1.6645 2.0481 5.9868 12.2926
ANSYS 6.4259 3.6742 1.6301 1.9701 6.1897 12.7670

1.0 Present 2.9103 1.5246 0.6643 0.6984 1.7256 3.6963
ANSYS 3.0089 1.5804 0.6533 0.6861 1.7877 3.8807

1.5 Present 1.7133 0.8725 0.3582 0.3607 0.9051 1.8352
ANSYS 1.7517 0.8930 0.3616 0.3678 0.9320 1.9089

Moreover, to understand the static behaviour of the shallow arch under different types of loadings, the
curvature is assumed as following the first mode as W0(x1) = R0W1(x1) where R0 is the nondimensional
curvature term assumed as 0.6. The nondimensional external applied static force (Fbending) is modelled using
a combination of sin functions as

Fbending (x) : f1 sin(πx) + f2 sin(2πx), f1 = 50 (n − 1) , f2 = 25 (n − 1) , (90)

where n is varied from 1 to 70. For the given function, the static force through the length of the arch is shown in
Fig. 3a for different values of n. By solving the nonlinear bending equilibrium equations, the nondimensional
deformations of the hyper-elastic thick arch are shown in Fig. 3b–d. It can be seen that there is a high coupling
between the degrees of freedom; also, the force type and magnitude can change the deformations in the
structure, significantly.

Study 2: Influence of the curvature on the bending behaviour
For the same shallow archwith the given properties in the previous subsection, the influence of the curvature

in resisting deformation in the structure is analysed. To do this, an external static force following Eq. (93) is
given to the structure with f1 and f2 as 1000 and −500, respectively. Figure 4a–c shows the axial, transverse
and rotation deformation of the shallow arch by varying the curvature term as R0 = 0.1, 0.3, 0.5, 0.7, 0.9,
1.0, and 1.5. It can be seen that increasing the shallow arch curvature leads to higher resistance against the
transverse loading. Besides, as shown in Fig. 4a, the coupling between the axial and transverse deformations
increases significantly by increasing the curvature term.

Study 3: Influence of considering the higher-order nonlinear terms
Since incompressible hyper-elastic structures show nonlinearity in their constitutive equation as well as

large deformations, the importance of considering the higher-order nonlinear terms is discussed in this sub-
section. Accordingly, for the same shallow arch in previous sections with the curvature of R0 = 1.5, bending
behaviour is obtained using both linear and nonlinear models when subjected to an external static force fol-
lowing Eq. (93) with f1 and f2 as 10000 and −2500. Figure 5a–c shows the axial, transverse and rotation
deformation of the shallow arch by only considering the linear part of the equilibrium equations as well as
considering the full equations. It can be seen that the linear simplification of the structure leads to underesti-
mated bending deformations for the axial deformation and inaccurate transverse and rotation motions which
indicates the importance of accurately modelling the nonlinear behaviour of the structure.

6.2 Internal resonance and vibration analysis

Study 1: Vibration in the hyper-elasticity framework with internal resonances
Since the curvature of the thick, soft shallow arch can change the linear frequencies of the structure, this

section concentrates on detecting the internal resonance behaviour of the arch due to the curvature. For the
same shallow arch model given in Sect. 6.1, the ratio of the second natural frequency to the fundamental
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(a) (b)

(c) (d)

Fig. 3 Nondimensional static force and nondimensional bending deformation response of the hyper-elastic arch a applied force,
b axial deformation, c transverse deformation and d rotational deformation

natural frequency (ω2/ω1) is shown in Fig. 6 by having different curvature terms. It can be seen that around
R0 = 0.3, the ratio is equal to 3 and the three-to-one internal resonance in the system occurs. Accordingly,
by having R0 = 0.3 (which leads to ω2/ω1 ∼=3), the frequency-amplitude responses of the system are shown
in Figs. 7, 8 and 9 for the dominant vibration coordinates in the axial, transverse and rotational directions. It
can be seen that a high coupling between modes it obtained, and the system shows a rich nonlinear behaviour,
with a combination of hardening, softening and modal interactions.

Study 2: Vibration in the visco-hyper-elasticity framework with internal resonances
Many soft structures show visco-elastic behaviour together with hyper-elasticity (especially biological

tissues). To see the influence of this combination on the nonlinear frequency response of the structure with
an internal resonance, this section analyses the visco-hyper-elasticity behaviour of thick, soft, shallow arches.
Since visco-elasticity is a function ofmany environmental parameters, such as temperature [57], this property of
hyper-elastic structures should be measured for specific working environments. In this study, visco-elasticity is
modelled using the Kelvin–Voigt visco-hyper-elastic model which has been shown that has a good accuracy in
modelling visco-hyper-elastic materials [48]. The influence of the visco-elasticity on the three-to-one internal
resonance of the structure is shown in Figs. 10, 11 and 12 for the axial, transverse and rotational directions by
varying the viscoelastic parameter as ξk = [2e−3, 2e−4, 2e−5]. It can be seen that the visco-hyper-elasticity
has a significant effect in changing the nonlinear frequency response, and increasing this term from 2e−5 to
2e−4 decreases the maximum amplitude. By increasing the viscous term to 2e−3, the complicated nonlinear
internal resonance behaviour will be fully damped.

Study 3: Curvature sensitivity
One of the main concentrations of this paper is on considering the curvature modelling in soft thick

shallow arches. To show the importance and influence of this term on the nonlinear vibration behaviour of the
structure, the shallow arch is assumed to have the following geometrical properties given in Sect. 6.1 with a
simply supported boundary condition and curvature term varied as R0 = [0.0, 0.1, 0.3, 0.5, 0.6, 0.8, 1.0].
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(a)

(b)

(c)

Fig. 4 The nondimensional bending deformation response of the hyper-elastic shallow arch with different curvatures a axial
deformation, b transverse deformation and c rotational deformation

The results for the amplitude-frequency response of the soft arch subjected to an external nondimensional
load of F = 0.5 are shown in Figs. 13, 14 and 15 for the dominant vibration coordinates in the axial, transverse
and rotation directions, respectively. It can be seen that increasing the curvature term from 0 to 1.0 moves
the amplitude responses to higher frequencies. For higher curvature terms, transverse dynamic equilibriums
show a softening effect, while for lower curvature term a combination of hardening and softening behaviour
is obtained. Furthermore, by increasing the curvature term, the maximum amplitude of the first transverse
dynamic equilibrium coordinate decreases significantly.

Study 4: Slenderness ratio sensitivity

Since a third-order shear deformable model has been used, different length-to-thickness models can be
analysed. In this subsection, by assuming the same properties given in Sect. 6.1, the length of the arch is varied
to L = SLh where SL is the slenderness ratio, which is varied as SL = [10, 20, 30, 40, 50]. The results for
varying the length-to-thickness ratio are shown in Figs. 16, 17 and 18 for the axial, transverse and rotation
dynamic equilibrium directions. It can be seen that increasing the slenderness ratio increases the stiffness
hardening behaviour in the transverse coordinates. The first axial and rotation coordinates’ amplitude decreases
by increasing the slenderness ratio rate, which means the coupling between the axial and the transverse motion
decreases and the rotation motion loses its importance.
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(a)

(b)

(c)

Fig. 5 Comparison of the linear and nonlinear models for bending analysis of the hyper-elastic shallow arch with R0 = 1.5 a
axial deformation, b transverse deformation, and c rotational deformation

Fig. 6 The frequency ratio of a soft, thick shallow arch with respect to the curvature term
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(a)

(b)

(c)

Fig. 7 First three axial nonlinear frequency responses of hyper-elastic thick, soft arches at the internal resonance a R11, b R21
and c R12
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(c)

(b)

(a)

Fig. 8 First three transverse nonlinear frequency responses of hyper-elastic thick, soft arches at the internal resonance a ℵ11, bℵ12 and c ℵ21
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(c)

(b)

(a)

Fig. 9 First three rotation nonlinear frequency responses of hyper-elastic thick, soft arches at the internal resonance a k11, b κ21
and c κ12
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(c)

(b)

(a)

Fig. 10 First three axial nonlinear frequency responses of visco-hyper-elastic thick, soft arches at the internal resonance a R11,
b R21 and c R12
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(c)

(b)

(a)

Fig. 11 First three transverse nonlinear frequency responses of visco-hyper-elastic thick, soft arches at the internal resonance a
ℵ11, b ℵ12 and c ℵ21
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(c)

(b)

(a)

Fig. 12 First three rotation nonlinear frequency responses of visco-hyper-elastic thick, soft arches at the internal resonance a
k11, b κ21 and c κ12
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(c)

(b)

(a)

Fig. 13 Influence of the curvature term on the first three axial nonlinear frequency responses of thick, soft arches a R11, b R21
and c R12
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(c)

(b)

(a)

Fig. 14 Influence of the curvature term on the first three transverse nonlinear frequency responses of thick, soft arches a ℵ11, bℵ12 and (c) ℵ21
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(c)

(b)

(a)

Fig. 15 Influence of the curvature term on the first three rotation nonlinear frequency responses of thick, soft arches a k11, b κ21
and c κ12
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(c)

(b)

(a)

Fig. 16 Influence of the slenderness ratio on the first three axial nonlinear frequency responses of thick, soft arches a R11, b
R21 and c R12
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(c)

(b)

(a)

Fig. 17 Influence of the slenderness ratio on the first three transverse nonlinear frequency responses of thick, soft arches a ℵ11,
b ℵ12 and c ℵ21
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(a)

(b)

(c)

Fig. 18 Influence of the slenderness ratio on the first three transverse nonlinear frequency responses of thick, soft arches a κ11,
b κ12 and c κ21
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7 Summary and conclusions

The nonlinear bending and vibration behaviours of simply supported, thick, soft, visco-hyper-elastic shallow
arches are examined in this study. The visco-hyper-elasticity was modelled using an incompressible Mooney–
Rivlin’s hyper-elastic strain energy densitymodel, together withKelvin–Voigt visco-hyper-elasticity. A higher-
order shear deformable model was used to model the axial, transverse and rotation motions. The curvature
term was added to the model using von Kármán geometric nonlinearity, and the incompressibility condition
was satisfied in the strain–displacement definition. The coupled nonlinear equations of motion were obtained
and solved using force-moment balance method and the virtual work method for the vibration and bending
analyses, respectively, showing that:

(i) Increasing the shallow arch curvature leads to higher resistance against the transverse loading in all axial,
transverse and rotation motions of the structure and changed the bending behaviour significantly.

(ii) The linear simplification of the structure leads to underestimated bending deformations for all the axial,
transverse and rotation motions which indicates the importance of accurately modelling the nonlinear
behaviour of the structure.

(iii) The coupling between the axial and transverse bending increases significantly by increasing the curvature
term

(iv) The curvature term can cause internal resonance in the system, leading to high coupling between modes,
for which the system shows a rich nonlinear behaviour with a combination of hardening, softening and
modal interactions.

(v) The visco-hyper-elasticity has a significant effect in changing the nonlinear frequency response with
a three-to-one internal resonance. By increasing the visco-hyper-elastic term to higher numbers, the
complicated nonlinear internal resonance behaviour will be fully damped.

(vi) For higher curvature terms, transverse dynamic equilibriums show a softening behaviour, while for lower
curvature terms, a combination of hardening and softening behaviour is obtained.

(vii) By increasing the curvature term, the maximum amplitude of the first transverse dynamic equilibrium
coordinate decreases significantly.

(viii) Increasing the slenderness ratio increases the stiffness hardening behaviour in the transverse coordinates.
(ix) The dominant axial and rotation coordinates’ amplitude decreases by increasing the slenderness ratio

rate, which means the coupling between the axial and the transverse motion decreases and the rotation
motion loses its importance.
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Appendix A

Variations of potential energy terms
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Appendix B

For homogeneous visco-hyper-elastic shallow arches, due to the homogeneity of the visco-hyper-elastic arch,
some of the inertia terms are equal to zero, simplifying the equations of motion to
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