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Abstract The present study aims to formulate a new multiscale constitutive model of human trabecular
bone. The trabecular bone was modelled as a nonlinear viscoelastic material. The viscoelastic effects of
single trabeculae were considered by means of a hereditary integral in which stress depends on time and
strain, while the elastic response was described by the hyperelastic Mooney–Rivlin model. The cuboid bone
sample was extracted from the femoral head during the hip replacement surgery. The material constants in the
constitutive equation were identified based on the stress relaxation test performed on the cuboid sample and
the microindentation tests performed on trabeculae using the curve-fitting procedure. The microindentation
tests were performed using a spherical tip instead of Vickers or Berkovich tip to minimize plastic effects
during trabecular deformation. In order to validate formulated constitutive model, results from a FE simulation
of stress relaxation test and uniaxial compression test were compared to the results of the corresponding
experiments conducted on a macroscopic bone sample. Good agreement was observed between numerical and
experimental results. The viscoelastic behaviour predicted by the proposed constitutive equation corresponds
well to the response of human trabecular bone under various types of load conditions. This demonstrates the
high ability of our constitutive model to simulate the behaviour of trabecular bone on amicro- andmacroscopic
scale. Thus, we conclude that the model, which was formulated for a single trabecula, can be successfully
applied to simulate mechanical behaviour of the tissue in a macroscale.

Keywords Constitutive model · Nonlinear viscoelasticity · Trabecular bone · Indentation · Finite element
method

1 Introduction

The investigation of bone tissue behaviour from an engineering point of viewhas been one of themost important
tasks in biomechanics. The statement pertains to both cortical and trabecular tissue of both animal and human
origin. Such investigation might be conducted in two ways, i.e. by performing experimental strength tests
or numerical simulations. The former requires proper tools and sophisticated environmental conditions, the
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latter needs a mathematical model of bone tissue. Usually, formulation of the mathematical models cannot
be completed without experimental studies, such as uniaxial compression/tensile tests, biaxial tests, bending
or torsion. By “mathematical model”, we mean here an equation relating stress with strain, i.e. a constitutive
equation.

Most of the constitutive models of bone have been formulated on a macroscale with farfetched assump-
tions. In the macroscale approach, some very important features of bone and phenomena can be neglected or
considered in a simplified manner. Investigation of the tissue on a microscale, i.e. studies on the basic units
of bone which are osteons (cortical bone) and trabeculae (cancellous bone), gives us an opportunity to model
more accurately specific properties of bone. For instance, we can adopt or formulate any constitutive equation
to describe the mechanical behaviour of a trabecula and consider interstitial fluid flow, which altogether makes
bone tissue on macroscale a viscoelastic material. In addition, the anisotropic properties of bone resulting from
its microscopic and mesoscopic architecture can be taken into account.

One of the first attempts to formulate a multi-scale model of bone is presented in [1]. The author proposed
a model to predict the influence of mineral volume fraction and particle aspect ratio on the elastic modulus
of bone. The bone was considered as mineralised polymer composite with high aspect ratio filler particles.
The model was based on tensile tests conducted on macroscopic samples. Although it was formulated for
cortical tissue, the author claims that the model can be extended to include the effect of porosity in trabecular
bone. In 2009 Ghanbari and Naghdabadi proposed a hierarchical multi-scale model for cortical bone [2].
They presented a model which predicts mechanical properties of the tissue, such as the Young modulus, shear
modulus and Poisson’s ratio. They used a homogenisation scheme to calculate macroscopic stress from stress
distribution on the microscale and transfer it back to the macroscale. The authors concluded that their method
could be used to determine themechanical properties of cortical bone. Jaziri et al. developed amodel for bovine
trabecular bone describing the elastoplastic behaviour of the tissue under compression loading [3]. They used a
homogenisation method to define the elastic properties of the bone and proposed a constitutive plastic-damage
model to describe its response. The material parameters in the model, i.e. the Young modulus and the yield
stress, were calibrated based on tensile tests conducted on macroscopic samples. A homogenisation approach
is also presented in [4] to evaluate the influence of resorption cavities on the mechanical properties of cortical
bone and by Atthapreyangkul et al., who performed multi-scale finite element analysis to determine the effect
of geometrical changes at multiple structural scales on themechanical properties of cortical bone [5]. Rahmoun
et al. proposed amicromechanical formula tomodel the elastic response of the human humerus [6]. The authors
coupled a two-phase micromechanical approach by using a homogenisation scheme for cylindrical voids in
the bone and nanoindentation measurements to determine the elastic modulus of the bone matrix phase.

In the present paper, a different approach is presented. The constitutive model is formulated at a microscale,
i.e. for trabeculae of human cancellous bone. Themodel takes into account the nonlinear viscoelastic properties
of bone as the time-dependent properties of bone seem to play a significant role in the tissue behaviour under
various loads [7–9]. A material indicates nonlinear viscoelastic behaviour when the stress distribution depends
onboth time and strain, as it is in the case of bone tissue. Such description allows us to capture a hysteresis loop in
the loading-unloading mechanical tests, as it will be proved below. The material constants in our constitutive
law were identified based on microindentation tests conducted on trabeculae and stress relaxation tests in
compression performed on a macroscopic trabecular bone sample. The constitutive model was implemented
in a commercial finite element method (FEM) software—ANSYS. The purely elastic response of the bone was
modelled by means of Mooney–Rivlin two-parameter hyperelastic material model. The viscoelastic behaviour
of the tissue was captured by Prony Shear Relaxation option. Our model was then validated by comparing
the experimental results of compression tests conducted on macroscopic samples and the results of the FEM
simulations of the tests. The original aspect of this study lies in nonlinear viscoelastic model formulation for
a trabecula and application of the constitutive law in macroscopic simulations of trabecular bone structure.
In addition, as the material constants were calibrated for a range of indentation force rates, our model covers
a relatively broad span of bone deformation rate, which is also a novel aspect in multi-scale modelling of
trabecular bone.

An alternative approach in modelling of cancellous bone might be the application of a homogenisation
method, as it was already presented above. Some comments on this topic are provided in Discussion section.
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2 Materials and methods

2.1 Preparation of trabecular bone sample and µCT imaging

The human trabecular bone specimen was extracted from the femoral head of one patient during a hip replace-
ment surgery after approval of the Bioethics Committee of Military Medicine Institute. The patient was 63
years old male who suffered from arthritis. From the specimen, a cuboid bone sample with dimensions of 9.6
x 9.6 x 9.8 mm was cut out with a saw blade such that two cutting surfaces were perpendicular and the other
four surfaces were parallel to the main direction of the trabeculae. The following parameters of the cutting
process were applied: (i) saw blade shaft speed n = 3300 rpm, (ii) saw blade feed f = 0.17 mm/s, (iii) blade
appropriate to cut materials of hardness 50–400 HV. The first parameter indicates how fast a saw blade rotates,
the second is how fast a blade moves forward, and the third is the range of hardness on the Vickers scale. After
cutting, the marrow was removed. The cuboid sample was stored in 95% ethanol at a temperature of 4 ºC.

Subsequently, a high-resolution micro-computed tomography (µCT) scan was taken of the cuboid sample
using a Skyscan 1172 µCT scanner. The following scan parameters were used: (i) voxel resolution 16.86 µm,
(ii) source voltage 100kV, (iii) current 100 µA [10]. The imageswere converted into the 3Dmodel usingMimics
software. To decrease the number of triangles in the 3D model, triangle reduction with the preservation of the
original shape of the trabeculae structure was used. The 3D model also allowed to investigate the porosity,
which was 75% and was typical for trabecular bone from the femoral head [11,12].

2.2 Microindentation tests

The measurements were carried out on the CSM Microhardness Tester with the diamond spherical indenter
tip of a diameter of 200 µm. The tests were conducted with three values of maximum load Pmax = 300 mN,
500 mN and 700 mN and with two loading/unloading rates V = 500 mN/min and 1000 mN/min, which gave
six pairs of test parameters. Tests included both loading and unloading phases with no hold at peak force. The
measured force P as a function of microindentation depth h enabled us to obtain hysteresis loops. Young’s
modulus was determined directly from indentation curves by the Oliver-Pharr method [13]. The value of the
trabecular bone Poisson ratio ν was assumed to be 0.3 [14,15].

Before the tests, the bone sample was drained from ethanol in a controlled environment (temperature of
20º ± 5º and humidity 32% ± 5%) for an hour. Three measurements on the same trabecula were performed
within each pair of test parameters, giving a total number of 18 microindentations. The region of interest for
indentations was selected arbitrarily.

2.3 Compression tests

Compression tests consisted of two phases: stress relaxation test and uniaxial compression test. Both stages
were carried out on the same bone sample on MTS Bionix Systems. The bone was drained for an hour at room
temperature before every test. During the stress relaxation test, the sample was compressed to the strain value
0.01 within 160 s. The process of stress relaxation was registered for 500 s. After this test bone sample was
stored in 95% ethanol at a temperature of 4 ºC for two days. The uniaxial compression test was conducted
with the same strain value as the relaxation test. Both the loading and unloading phases lasted 100 s.

2.4 Formulation of the constitutive model

The constitutive equation that was used in this study was developed in our previous study [16]. Trabecular
bone was assumed as a nonlinear viscoelastic material. In nonlinear viscoelasticity, the constitutive model can
be formulated as a convolution of strain-dependent function Ss (λ) and a time-dependent function g (t):

S (λ, t) = Ss (λ) ∗ g (t) (1)

where: S – second Piola–Kirchhoff stress tensor, Ss – elastic second Piola–Kirchhoff stress tensor, λ is stretch
ratio along the loading direction, t represents time. The time-dependent function may be defined by means of
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Prony series:

g (t) = g∞ +
n∑

i=1

gi · e− t
τi , (2)

where: τi – relaxation times, gi – viscoelastic constants,

g∞ = 1 −
∑n

i=1
gi (3)

Relaxation times and viscoelastic constants are identified based on the experimental data.
Equation (1) can also be written as:

S (λ, t) =
t∫

0

g(t − s)
∂Ss(λ)

∂s
ds. (4)

Equation (4) can be split into elastic and viscoelastic terms:

S (λ, t) = g∞Ss(λ)︸ ︷︷ ︸
elastic term

+
n∑

i=1

t∫

0

gi · e− t−s
τi

∂Ss(λ)

∂s
ds,

︸ ︷︷ ︸
viscoelastic term

(5)

where: s – represents the historical time variable. To calculate S (t) the strain history must be known. Note that
strain is represented here by stretch ratio λ. The elastic part of the second Piola–Kirchhoff stress is calculated
by means of Eq. (6):

Ssi j = 2∂Ψ/∂Ci j , (6)

where: Ci j , (i, j = 1, 2, 3) are components of the right Cauchy deformation tensor C.
The strain energy function Ψ can be written in general form [17]:

Ψ = Ψiso + Ψv, (7)

where: Ψiso represents the isochoric part of strain energy function and Ψv represent volumetric part. In this
constitutive equation Ψiso takes the form of the hyperelastic Mooney–Rivlin model [18]:

Ψiso = c10
(
Ī1 − 3

) + c01
(
Ī2 − 3

)
, (8)

where: Ī1 and Ī2 are the first and second invariants of tensor C̄=J−2/3C, J is the determinant of the deformation
gradient tensor, c10 and c01 are hyperelastic constants which are identified on the basis of experimental data.

The volumetric strain energy function Ψv takes the form [17]:

Ψv = 1

D
(J − 1)2 . (9)

The constant D is the compressibility parameter, which for incompressible materials has to be very small. In
this study, D assumed to be 1 · 10−5 MPa−1.

The hereditary integral in (4) was determined using an algorithm based on finite increments of time [19].
By means of this algorithm, the stress in (4) can be computed using the formula:

S (t + 1) = g∞Ss (t+1)+
n∑

i=1

⎛

⎝e
−Δt
τi ·Qi(t)+gi

1−e
−Δt
τi

Δt
τi

(
Ss (t+1)−Ss (t)

)
⎞

⎠ . (10)

In Eq. (10), Δt is the time increment, Qi(t) represents the stress at the previous time step, n is a number of
relaxation times τi and viscoelastic constants gi (i = 1, . . . , n). As the initial stress and strain in the material
are known, the stress at time t > 0 can be calculated.



Multi-scale constitutive... 1551

Fig. 1 Meshed models of indenter and trabecula

2.5 The constants calibration

The number n and values of relaxation times were determined using data from the stress relaxation test
performed on the cuboid sample taking advantage of the algorithm described in detail in [20]. The algorithm
is based on iterative calibration. The relaxation times τi (i = 1, . . . , n) were calibrated by fitting the curve
described by Eq. 10 to the relaxation part of the curve obtained from the experiment. The process of the
calibration was conducted in MATLAB.

The hyperelastic constants c10 and c01, as well as viscoelastic constants gi (i = 1, . . . , n) were calibrated
using the indirect method based on finite element analyses. These constants were calibrated by fitting the
curves obtained from simulations to the experimental curves. To make the process of calibration possible,
the constitutive equation was implemented into Ansys by means of two model options, i.e. Mooney–Rivlin
hyperelastic model (purely elastic response) and Prony Shear Relaxation series (viscoelastic properties).

The implementation allowed us to simulate tests performed on trabecular bone. In the three-dimensional
analyses of microindentation, the spherical indenter was modelled as an elastic material (the Young modulus
2 · 105 MPa, the Poisson ratio 0.3), and the trabecula was modelled by means of the formulated constitutive
equation. Models of trabecula and indenter were designed in SolidWorks as half of the sphere with a diameter
of 200 µm and a cuboid with dimension 340 × 340 × 120μ m, saved as a STEP file and then imported into
ANSYS. In ANSYS, the model of the indenter was meshed with tetrahedron elements with a dimension of 20
µm., while the model of trabecular bone was meshed with hexahedron elements with two different sizes: 7 µm
near the area of contact and 15 µm (Fig. 1). The mesh study was conducted to find the best mesh density. In
analyses, the whole load and unload cycle was considered with the same test parameters as in the experiment,
i.e. maximum load and load/unload rate. It gave a total number of 18 unique simulations, the same amount as
microindentations.

To validate the constitutive equation simulations of stress relaxation test and uniaxial compression test with
identified material constants were performed.

3 Results

3.1 Identification of relaxation times

The relaxation times determine how quickly the tissue recovers from the applied load. Based on the material
model that resulted from the fit procedure, four relaxation times were needed to properly describe the basic
shape of the stress curve during the stress relaxation test. It means that n in Eq. (4) is equal to 4. The result of the
curve-fitting process is presented in Fig. 2. The curve obtained from the stress relaxation test is shown bymeans
of squares, and the theoretical curve described byEq. 10 is shownby a solid line. The curve-fitting is satisfactory.
The identified values of the relaxation times are as follows: τ1 = 1 s, τ2 = 7 s, τ3 = 59 s, τ4 = 500 s.
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Fig. 2 Model curve fitted to the stress relaxation results

3.2 Identification of hyperelastic and viscoelastic constants

In Fig. 3 graphical representation of the microindentation curve-fitting process is shown. Curves from the
experiments are represented by squares, while curves described by the constitutive model and obtained from
the simulations are shown by a solid line.

In the curve-fitting process, two criteria of fit were established: the error of fitting the areas of hysteresis
loops obtained from experiment Aexp and simulation Asim had to be under 15%, and the error of position of
the curves’ peaks from experiment hexp and simulation hsim had to be under 15%. The area of the hysteresis
loop, which is also an indentation workW , was determined numerically from force-displacement curves using
a trapezoidal integration rule. The areas-fitting error was determined by means of the following formula:

err =
∣∣∣∣
Asim − Aexp

Aexp

∣∣∣∣ · 100%. (11)

The values of the error are presented in Table 1.
In the second criteria, only the maximum depth of microindentation from the experiment and simulation

was taken into account because the maximum load in the experiment and in the corresponding simulation was
the same. The error was determined using the formula:

err =
∣∣∣∣
hsim − hexp

hexp

∣∣∣∣ · 100%. (12)

The values of the error are presented in Table 2.
Using Mooney–Rivlin hyperelastic strain energy function we calculated values of Young Modulus E by

means of the following formula (13):

E = 2G (1 + ν) , (13)

where: G is the Kirchhoff modulus and ν is a Poisson’s ratio. The value of Poisson’s ratio was assumed to be
0.3 while the Kirchhoff modulus was calculated using Eq. (14)

G = 2 (c10 + c01) . (14)

The values of the Young modulus measured during microindentation tests and calculated from Eq. (13) are
shown in Table 3.

The calibrated hyperelastic and viscoelastic constants are shown in Table 4. The constants c10 and c01
determined elastic behaviour of trabecular bone while g1, g2, g3, g4 determined the width of the hysteresis
loop.
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Fig. 3 Curves from simulations fitted to the microindentation results for: a P = 300 mN and V = 500 mN/min, b P = 300 mN
and V = 1000 mN/min, c P = 500 mN and V = 500 N/min, d P = 500 mN and V = 1000 mN/min, e P = 700 mN and V = 500
mN/min, f P = 700 mN and V = 1000 mN/min
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Table 1 Values of areas-fitting error

Fm (mN) V (mN/min) Areas-fitting error (%)
belowruleskip Simulation 1 Simulation 2 Simulation 3

Fm = 300 V = 500 14.56 9.34 5.68
Fm = 300 V = 1000 22.70 9.25 14.22
Fm = 500 V = 500 10.87 10.92 0.61
Fm = 500 V = 1000 2.94 6.64 1.81
Fm = 700 V = 500 2.14 6.71 9.74
Fm = 700 V = 1000 9.49 6.82 11.27

Table 2 Values of error of position of the curves’ peaks

Fm (mN) V (mN/min) Error of position of the curves’ peaks (%)
belowruleskip Simulation 1 Simulation 2 Simulation 3

Fm = 300 V = 500 0.11 0.63 1.25
Fm = 300 V = 1000 1.22 1.48 1.49
Fm = 500 V = 500 0.38 0.19 0.07
Fm = 500 V = 1000 0.55 0.35 0.68
Fm = 700 V = 500 0.11 0.50 1.11
Fm = 700 V = 1000 0.47 0.05 0.33

Table 3 Values of elastic modulus measured in the experiments and predicted by the constitutive model

Fm (mN) V (mN/min) Young modulus (GPa)
belowruleskip Experiments Model prediction Mean error (%)

Fm = 300 V = 500 6.56 ± 2.26 7.55 ± 2.05 15.23
Fm = 300 V = 1000 6.20 ± 0.65 6.54 ± 0.68 5.45
Fm = 500 V = 500 5.02 ± 0.59 5.30 ± 0.46 5.66
Fm = 500 V = 1000 3.68 ± 0.32 4.42 ± 0.39 19.99
Fm = 700 V = 500 5.20 ± 1.02 6.39 ± 1.35 22.98
Fm = 700 V = 1000 2.11 ± 0.15 2.47 ± 0.15 17.35

Table 4 Values of the identified material constants

Fm (mN) Fm = 300 Fm = 300 Fm = 500 Fm = 500 Fm = 700 Fm = 700
V (mN/min) V = 500 V = 1000 V = 500 V = 1000 V = 500 V = 1000

c10 (MPa) 3703±179 3483±28 3386±144 2997±116 3643±230 1556±11
c01 (MPa) −2250±218 −2140±52 −2366±57 −2146±81 −2406±100 −1080±17
g1 (-) 0.18±0.02 0.3±0 0.14±0.01 0.17±0.02 0.17±0.02 0.14±0.03
g2 (-) 0.23±0.01 0.25±0 0.22±0 0.21±0.03 0.22±0.02 0.15±0.02
g3 (-) 0.32±0,01 0.38±0.03 0.31±0 0.27±0.03 0.32±0,01 0.29±0.01
g4 (-) 0.05±0.006 0.04±0.006 0.04±0.006 0.06±0.02 0.04±0.01 0.02±0.006

From all 18 sets of material constants, averaged values were calculated: c10 = 2720, c01 = −1834, g1 =
0.17, g2 = 0.20, g3 = 0.31, g4 = 0.04. To check if these parameters properly describe the investigated
trabecular bone simulations with the same six pairs of test parameters as before were performed.

Results from these simulations compared with experimental results are shown in Fig. 4. Curves from the
experiments are represented by squares, while curves obtained from the simulations calculated with averaged
constants are shown by a solid black line.

The comparison shows that averagedmaterial constants could be treated as representative for this trabecular
bone. In four cases, curves from simulations are very well fitted to experimental results. In two cases, the curves
obtained from the simulations with averaged constants differ from those obtained from the experiments. This
is, however, acceptable since even measurements performed on the same trabecula can differ from each other
(Fig. 4a and e). This is due to the fact that trabecular bone is not homogeneous.
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Fig. 4 Curves from simulations with averaged constants compared with the microindentation results for: a P = 300 mN and V =
500 mN/min, b P = 300 mN and V = 1000 mN/min, c P = 500 mN and V = 500 N/min, d P = 500 mN and V = 1000 mN/min,
e P = 700 mN and V = 500 mN/min, f P = 700 mN and V = 1000 mN/min,
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Fig. 5 The 3D model of trabecular bone sample

Fig. 6 The comparison of results from: a stress relaxation test simulation and from experiment, b uniaxial compression test
simulation and from experiment

3.3 The model validation

Simulations of the stress relaxation test and uniaxial compression test were performedwith averaged constants.
Relaxation times were taken from identification based on the stress relaxation test. The 3Dmodel of the cuboid
trabecular bone sample made from µCT images used in these simulations is shown in Fig. 5. Simulations were
performed in Ansys.

In order to validate the formulated constitutive equation for human trabecular bone, results from simulations
of the stress relaxation test and uniaxial compression test with experimental results were graphically compared
(Fig. 6). The curves obtained from the experiments are shown by means of squares, while the FE analysis
curves are shown as solid lines.

In the relaxation part curves are very similar. The relaxation in the simulation happened to occur quicker
than that in the experiment, and through the rest of the simulation stress was on the same level. During the
experiment, relaxation lasted till the end of the test. The maximum stress in the simulation, which resulted
from the given initial strain, was −7.32 MPa and was 0.3 MPa higher than that in the experiment.

The curve from the simulation of the uniaxial compression test is well fitted to the experimental result. The
maximum depth of the compression is almost the same, i.e. 0.068 in simulation and 0.066 in the experiment.
The depth after unloading was 0.017 and 0.023, respectively.
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4 Discussion

In the paper, a new multi-scale constitutive model for human trabecular bone tissue is presented. Its formula-
tion is based on nanoindentation tests conducted on trabeculae. The constitutive law considers the nonlinear
viscoelastic behaviour of bone at a microscopic scale, which is manifested by the hysteresis loop in the force-
displacement line graphs, and the sensitivity of the tissue response to various deformation rates. In addition,
the model also describes very well the stress relaxation phenomenon. Our constitutive equation proved to be
useful in macroscale as it reflects relatively well trabecular bone behaviour under compression.

As it was stated before, the material constants calibration was based on nanoindentation tests performed
on trabeculae. Instrumented nanoindentation proved to be a very effective tool to determine the mechanical
properties of bone [21–23]. We conducted the tests on non-extracted trabeculae, i.e. the indented trabeculae
were not resected from the bone samples. This allowed us to minimise the effect of trabecula bending during
indentation. The experiments were conducted to three levels of indentation force, i.e. 300mN, 500mN and 700
mN (three indentations for each force level) with two rates, i.e. 500 mN/min and 1000 mN/min (altogether 18
measurements). The results presented in Fig. 3 show that the response of the bone, i.e. the indentation depth,
was different for the three cases, which seems to be reasonable. However, we also observed that the depth was
also different within one set of particular measurement parameters, i.e. the assumed force level and rate. The
observation proves that a single trabecula is not homogeneous. In addition, the various values of penetration
permitted us to formulate a constitutive model that describes the tissue behaviour at multiple length scales. It
has been shown that indenting bone to various depths allows one to determine its mechanical properties in a
wide span of structural features [24–26].

The indentation tests were performed with a spherical tip. We chose that tip shape to minimise plastic
effects during trabecula deformation. The studies reported in [27], where a spherical tip was also utilised,
showed that plasticity begins to be predominating in bone deformation at depths of 20 μm and below. In our
experimental test, the tip indented maximally 7μm in trabeculae. This justifies the assumption of the nonlinear
viscoelastic response of bone in the studied range of deformation. Even though there is the residual deformation
in every curve in Fig. 3, it does not mean plastic deformation in the bone. After some time after unloading, bone
undergoes a relaxation process and returns to the original shape. The phenomenon is related to the viscoelastic
properties of the trabecular bone. On the other hand, some researchers take into consideration plastic effects in
their mathematical modelling of bone for the cases of low indentation depths [28,29]. However, the modelling
was based on the results from nanoindentation tests conducted with a Berkovich (three-sided pyramid) tip.
In our research, we decided to study nonlinear viscoelastic effects in trabecular tissue in indentation tests
conducted at various loading rates. We did not consider a load hold phase, which is usually done to minimise
the viscous effects during deformation. In addition, we determined relaxation times and purely viscoelastic
constants that characterised the tissue response to stress relaxation tests.

The identification of the purely elastic and viscoelastic constantswas conducted bymeans of the indentation
force-depth curve fitting method. Analysis of Fig. 3 proves that the model is able to mimic the bone response
very well. However, it has to be critically stated that the constants were calibrated with some errors, which are
presented in Tables 1 and 2. The accuracy of the values of the constants was estimated by comparing the areas
within the hysteresis loops defined by our model and that obtained from the indentation tests. As that factor
would not be sufficient to assess the calibration accuracy, another criterium was proposed, namely the error of
the loop peaks convergence. Generally, the values of the errors are low, especially those related to the position
of the peaks. The areas-fitting error seems to be high in the case of some measurements. A close analysis of
the curves in Fig. 3 allows one to observe that the highest curve-fitting error related to the hysteresis loop
areas was calculated for the measurements where in the initial phase of indentation there was a slight increase
in force with progressing indentation depth. Such an effect is obtained when the indenter is immersed into
the non-demineralised layer of trabecula, or the force and depth registration begin too quickly. In most of the
measurements, we managed to eliminate that effect and our model seems to describe the trabecula response
accurately. Nevertheless, in our opinion, the curve-fitting error was rather low given the fact that our model
was fitted to experiments conducted on biological tissue. Also, a comparison of results from simulations with
averaged hyperelastic and viscoelastic parameters to experimental curves, which can be seen in Fig. 4, proves
that our approach was correct.

Figure 6 shows that our model, which was formulated on a microscopic scale, can be applied to model
trabecular bone response on a macroscale. The figures present a comparison of the stress relaxation test (Fig.
6a) and compression test (Fig. 6b) conducted on a trabecular bone sample to the numerical bone response
obtained by means of our model. We can observe good agreement between the numerical and experimental
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results. This proves the high ability of our constitutive model to simulate trabecular bone behaviour also on
a macroscopic scale where the tissue indicates anisotropic behaviour. The anisotropy of trabecular bone on a
macroscale depends, however, on the architecture of the trabecular structure [23]. Therefore, our multi-scale
constitutive equation can be also utilised to model trabecular bone in a macroscale.

An alternative method of bone behaviour modelling in multi-scale is the application of a homogenisation
technique. Those methods are related to the idea of representative volume element (RVE) definition. On the
scale of an RVE, bone is considered as homogeneous material and on the lower scales—it is treated as a
heterogeneous tissue. The homogenisation procedure can be successfully utilised in modelling poroelastic
media, see e.g. [30–32], to which bone tissue might be classified. The homogenisation method consists of the
application of averaging techniques to determine stress in the RVE. The technique has been applied in cortical
bone modelling [33,34]. One limitation is that gradient elasticity effects are not taken into account [35,36] and
another limitation of this technique is its strong dependency on boundary conditions. Moreover, the method
idealises the trabecular bone structure by assuming its periodic strut network. In spite of this, one can address
some research where the homogenisation technique is applied to a trabecular bone to model its basic properties
[37–40].

Our model has some limitations. Firstly, calibration of the purely viscoelastic constants was based on stress
relaxation tests conducted on macroscopic bone samples. This introduced some inaccuracy as the constants
correspond to a porous structure with biological fluid inside the pores and not to a single trabecula. Secondly,
plastic deformation seems to play an important role. Thus, it seems quite fundamental to consider plasticity in
the constitutive formulation [41–43]. Thirdly, the rest of the constants were identified based on nanoindentation
tests. In our opinion, including the results of uniaxial tension/compression tests or torsion tests conducted on a
single trabecula would highly improve the constitutive model. However, some problems related to the accuracy
of curve-fitting might arise.

5 Conclusions

Our study showed that the adopted method of multi-scale modelling to formulate a constitutive equation for
human trabecular bone is correct. The model was formulated on a microscale as the parameters in the proposed
mathematical model were identified based on nanoindentation experiments. Our further investigations showed
that the constitutive equation could be successfully applied inmodelling themechanical behaviour of trabecular
bone on a macroscale, e.g. bone adaptation to new loads [44–47], bone ingrowth in special implants utilised
in bone healing process [48] or trabecular bone repair with use of granular medium [41,49]. Numerical
simulations with an application of our model can be very useful in the prediction of bone behaviour after a
surgical intervention, e.g. implantation of a prosthesis or scaffold.
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