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Abstract A non-local and non-linear thermodynamical model of heat transfer at nanoscale beyond the well-
known Maxwell–Cattaneo theory is derived. The compatibility of the proposed model with second law of
thermodynamics is proved. The model is subsequently used to investigate the propagation of a heat pulse in
one-dimensional nanosystems in the linear case. The predicted results are compared with those arising from
the Maxwell–Cattaneo theory in order to point out the possible influence both of the non-local effects, and of
the relaxation effects of the higher-order fluxes. Some problems related to initial data and boundary conditions
are also discussed.

Keywords Hyperbolic heat transfer · Pulse propagation · Second sound · Wave front · Memory effects ·
Non-local effects · Non-linear effects · Laplace transform

1 Introduction

In the general context of continuum mechanics, a very important role is played by the so-called balance laws.
From the theoretical point of view, a balance law is just the statement of the causes of the contents time-changes
of a certain extensive physical quantity over a given domain. Those causes can be only of the following two
different types:

(i) Flux. The physical quantity varies owing to possible exchangeswith the surroundings through the boundary
of the domain.

(ii) Production. The physical quantity varies since some (thermodynamic) processmay occur inside the domain.

From the practical point of view, each balance law is expressed in terms of a partial differential equation
(i.e., the so-called balance equation) which is usually written in a local form in such a way that it has to be valid
in any point of a given domain. Among the different balance equations, in non-equilibrium thermodynamics
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a great importance deserves the (local) balance equation of the specific entropy s (per unit volume), namely,

∂t s = −J (s)
i,i

+ σ (s) (1)

with J (s)
i being the specific-entropy flux, and σ (s) the specific-entropy production (per unit volume). In Eq. (1)

the term J (s)
i,i

(which accounts for the rate of local-entropy exchanged with the surroundings) may be zero,

positive, or negative; according to the second law of thermodynamics, instead, in Eq. (1) the quantity σ (s)

(deriving from processes occurring inside the system) has to be always non-negative (namely, it is zero at
equilibrium, or for reversible transformations, whereas it is larger than zero for irreversible transformations)
in any point and at any time, whatever the thermodynamic process is [1,2]. Since σ (s) points out the sources
of irreversibility occurring in any thermodynamic process, it should be (directly, or indirectly) related to all
quantities which characterize the irreversible process at hand. In non-equilibrium thermodynamic theories, in
fact, the physical constraint

σ (s) ≥ 0 (2)

plays a very important role: since all solutions of the balance equations have to comply with the condition
in Eq. (2), in those theories that unilateral constraint is mainly used to determine the forms either of the
constitutive relations [3], or of the evolution equations of the state-space variables [2]. In pursuing these goals,
as it will be briefly shown below in the case of two very well-known theories of heat transfer in a rigid body
(just for the sake of simplicity), besides the correct choice of the state-space variables, a crucial point is also
the right setting of the relation between the specific-entropy flux J (s)

i and the local heat flux qi [4–6].

1.1 The Fourier theory

In the case of the Fourier (F-) theory of the heat transfer in a rigid body, the specific internal energy (per unit
volume) u is the only state-space variable: in the F-theory, therefore, only the evolution equation of u is needed.
The time variations of u, indeed, are stated by the balance law of energy, the local formulation of which reads

∂t u = −qi,i . (3)

According to the point of view of the balance law, as a consequence, fromEq. (3) onemay straightforwardly
note that qi is just the flux of u: the heat flux, therefore, is the only cause of time variations of the internal
energy, in the absence of a source term (here and in what follows neglected just for the sake of simplicity).
Since in this theory s = s (u), moreover, the use of Eq. (3) yields

∂t s ≡
(
d s

d u

)
∂t u = −qi,i

θ
(4)

once the usual relation
d s

d u
= 1

θ
(5)

is employed,1 with θ being the non-equilibrium temperature [2,7,8]. If we recall that the classical constitutive
assumption for the entropy flux states that the specific-entropy flux only depends on the heat flux and the
non-equilibrium temperature [1], i.e.,

J (s)
i = qi

θ
(6)

then Eq. (4) can be also rewritten as

∂t s = −J (s)
i,i

−
( qi
θ2

)
θ,i . (7)

A direct comparison between Eqs. (1) and (7) finally allows to recognize that

σ (s) = −
( qi
θ2

)
θ,i . (8)

1 Whenever the internal energy is no longer the only one state-space variable (as it will be through this paper), Eq. (5) properly
reads ∂s

∂u = 1
θ
.
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In order to avoid any possible violation of the unilateral constraint (2), in the F-theory it is therefore
sufficient to assume

qi = −λθ,i (9)

as the constitutive equation for the heat flux (which is worldwide known as the F-law), if it is tacitly understood
that the positive-valued constant λ means the thermal conductivity. The coupling of Eqs. (8) and (9), in fact,
lets that the form of the specific-entropy production reads

σ (s) =
(

λ

θ2

)
θ,i θ,i (10)

from which it is easy matter to see that σ (s) = σ (s) (u) is always a positive-definite function.

1.2 The Maxwell–Cattaneo theory

The Maxwell–Cattaneo (MC-) theory has been the first attempt to go beyond the validity’s limits of the F-
theory. Those limits are particularly evident when the heat transfer is a very fast and/or steep phenomenon (e.g.,
in the case of ultrasound propagation, the light scattering in gases, shock waves, etc.) [2,9,10], or whenever the
relaxation time (i.e., the temporal lagging between the application of a temperature gradient and the appearance
of a heat flux) becomes large enough to require a description of the transient regime [11].

According to the point of view of Extended Irreversible Thermodynamics (EIT) [2,7], in the MC-theory
of heat transfer in a rigid body the state space is spanned by u and qi ; from the physical point of view, this
is tantamount to suppose that both the independent variations of u and qi can, in principle, influence the
consequent variations of the other thermodynamic fields, as for example the specific entropy.

Whereas u is still ruled by the balance law in Eq. (3), in this theory qi can be no longer given by a constitutive
relation (as it has been done in the case of the F-theory), but an evolution equation is needed for it. In order to
theoretically derive it, we may observe that in the MC-theory s = s (u, qi ) in such a way that in the framework
of EIT the generalized Gibbs equation read [2,7]

ds =
(
1

θ

)
du −

(τRqi
λθ2

)
dqi (11)

with the (positive) material function τR being the relaxation time of qi , namely, the response time for the onset
of the heat flow after a temperature gradient is suddenly imposed. That quantity is substantially the reciprocal
of the frequency of resistive phonon collisions, i.e., themechanisms of phonon scattering inwhich the phonons’
energy is conserved, but not their momentum.2 From Eq. (11) we have that the time derivative of s reads

∂t s = −qi,i
θ

−
(τRqi

λθ2

)
∂t qi (12)

if Eq. (3) is employed. The use of the constitutive assumption in Eq. (6) allows then to rewrite Eq. (12) as

∂t s = −J (s)
i,i

− qi
λθ2

(
λθ,i + τR∂t qi

)
. (13)

A direct comparison of Eqs. (1) and (13) yields

σ (s) = − qi
λθ2

(
λθ,i + τR∂t qi

)
(14)

as the constitutive equation for the specific-entropy production. In order to guarantee the (thermodynamic)
compatibility of the MC-theory with the unilateral constraint (2), it is still sufficient that σ (s) = σ (s) (u, qi ) is
a positive-definite function. For this reason in Eq. (14) we may set

qi = − (
λθ,i + τR∂t qi

)
(15)

2 To be more precise we note that in EIT, when the generalized Gibbs equation is introduced, the function ∂s
∂qi

is firstly written
in a very general form and then, by sequential comparisons, it is completely identified in terms of quantities which have their own
clear physical meanings. For the rigorous derivation of Eq. (11) interested readers are therefore referred to Ref. [2] (see therein
Part I—Subsec. 2.1.2). Therein comments about the degree of approximation of Eq. (11) can be also found.
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which is also the required evolution equation of qi and it is worldwide known as the MC-equation [12]. When
Eq. (15) is introduced into Eq. (14), in fact, the following local form of the specific-entropy production for the
heat transfer in a rigid body is recovered

σ (s) = λ

θ2

(
θ,i + τR

λ
∂t qi

) (
θ,i + τR

λ
∂t qi

)
(16)

in the case of the MC-theory. It seems worth noticing that Eqs. (15) and (16) reduce, respectively, to Eqs. (9)
and (10) whenever τR → 0. From the above considerations, it arises that the MC-theory is compatible with
the classical constitutive equation for J (s)

i [1], too.

1.3 Aims and scopes

The increasing interest in nanoscale heat-transport sciences led modern non-equilibrium thermodynamic the-
ories to depart both from the F-theory, and from the MC-theory. Dealing with the heat transfer at nanoscale is
not properly an easy task; from the theoretical point of view, to tackle with it several interesting approaches can
be found in the literature, as it can be seen, for example, in the outstanding review by Guo and Wang [13]. All
those approaches lie either on macroscopic, or mesoscopic, or microscopic methods. Among those methods,
one spreading over a large span of time is the phonon hydrodynamics model, the usual starting point of which
is the so-called Guyer–Krumhansl equation [2,14], i.e.,

τR∂t qi + qi = −λθ,i + �2
(
2q j, j i + qi, j j

)
(17)

wherein � is the mean-free path of phonons (i.e., quanta of the vibrational mechanical energy arising from
oscillating atoms within a lattice) representing the heat carriers in dielectric solids. Equation (17) represents
an interesting step beyond Eq. (15) (the latter recovered from the former whenever � → 0, for example) since
it is able to capture non-local effects in the heat transport, a topic of much interest at nanoscale wherein even
small temperature differences may lead to high temperature gradients.

In nanosystems, indeed, also non-linear effects may strongly influence the electronic and optical properties:
it could be, therefore, important to deeply examine them by introducing generalized nonlinear and non-local
heat-transport equations [15]. Whereas the possibility of dealing with a non-local and non-linear model is
clearly an important step toward a detailed and more refined description of the heat transfer at nanoscale, it has
to be however noted that the introduction of non-linear termsmay especially yield additional difficulties among
which here we underline the correct setting-up of initial data (ID) and boundary conditions (BCs), which is
of itself already a difficult task in the linear case (i.e., when only non-local effects are taken into account). In
any model, in fact, both ID, and BCs should be always assigned in such a way that they have to be physically
meaningful, besides correctly depicting the experimental reality, and the consequent initial-boundary value
problem (IBVP) is mathematically consistent.

Along with the aforementioned observations, in the present paper:

• In Sect. 2, we derive a non-linear and non-local model of heat transfer in rigid nanosystems onmacroscopic
grounds and in agreement with the second law of thermodynamics. That model encompasses Eq. (17) as
a special case. The aim of this section is to show how non-local and non-linear effects may naturally arise
from Eq. (1).

• In Sect. 3, the above model, in its linear formulation, is employed to analytically solve an IBVP which
sketches the propagation of second sound in one-dimensional (1D) nanosystems perturbed by a thermal
shock. Therein a comparison with the analytical results arising from the MC-theory is also made. The aim
of this section is twofold:
1. to point out the possible influence of the relaxation times of higher-order fluxes, as well as the role

played by non-local effects on second-sound propagation;
2. to point out a plausiblemathematical way of assigning ID andBCswhich are both physically consistent,

and depict the exact experimental situation under consideration.
• In Sect. 4 final comments and future perspectives are given.
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2 Non-local and non-linear heat conduction in rigid solids

Whereas in a theoretical model (dealing with the heat-transfer phenomenon at nanoscale) the non-local effects
may be introduced by the spatial derivatives of the state-space variables, the non-linear effects may be instead
substantially understood in the following two different ways:

(i) by letting the several material functions depend on the state-space variables [16,17];
(ii) by letting products between some state-space variables (or their spatial derivatives) directly enter the model

equations [8,18].

Here we especially aim at analyzing the consequence of the second type of nonlinear effects; thus, through-
out this paper we assume constant values for all material functions.

Besides the specific internal energy u and the heat flux qi , in our approach we also assume as independent
(state-space) variable the flux of the heat flux Qi j . Referring interested readers to Refs. [2,7,13,19,20] for
exhaustive theoretical considerations about the physical interpretation of the second-order tensor Qi j , here we
only observe that within the kinetic theory of diluted gases one has

Qi j =
∫
R3

m

2
f (r,C, t) ‖C‖2CiC jdc

wherein f (r,C, t) is the distribution function (r being the position of the generic particle andm its mass), and
C is the relative speed of the particles with respect to the barycentric velocity, with ‖C‖ being its modulus.3

Since Qi j is a symmetric tensor we may split it into its deviatoric (traceless) part
o
Qi j and its bulk part Qδi j ,

namely, in the present theory we postulate that the state space is

	 =
{
u, qi ,

o
Qi j , Q

}
. (18)

The basic idea underlying the above selection is that those fluxes, which are genuinely non-equilibrium
quantities, constitute a rather natural way of accessing to a system through its boundary.

In agreement with both EIT [2,7], and the Non-Equilibrium with Internal Variables [21], each of the above
state-space variables has to be characterized by its own evolution equation. Recalling that the time rate of u
is given by Eq. (3), in this section we therefore derive the evolution equations for the above (state-space) flux
variables. To do this, we start to observe that the very general form of the constitutive equation of the specific
entropy is

s = s

(
u, qi ,

o
Qi j , Q

)

owing to Eq. (18). For this reason, in agreement with EIT (see Part III—Subsec. 9.3.2 in Ref. [2]), in our
approach we generalize the Gibbs equation (11) as

ds =
(
1

θ

)
du −

(τRqi
λθ2

)
dqi −

⎡
⎣
⎛
⎝τR

o
Qi j

2λθ2

⎞
⎠ ∂

∂θ

(
θτ1

η1

)⎤⎦ d
o
Qi j −

[(
τRQ

λθ2

)
∂

∂θ

(
θτ0

η0

)]
dQ (19)

wherein the two (positive-valued) material functions τ1 and τ0 mean the relaxation times of
o
Qi j and Q,

respectively, and account for the relaxation effects of the higher-order fluxes [2,7]. In some situations, as for
example in diluted gases, the relaxation times of higher-order fluxes are of the same order as that of the heat
flux itself, in such a way that when qi is taken as an independent variable, all higher-order fluxes should also
be taken into account. Further considerations about τ1 and τ0 are postponed to Sect. 2.2.

At the present stage, we leave undetermined the other two quantities η0 and η1 entering Eq. (19). They
however will be clearly identified in Sect. 2.1. For our scope it is enough to claim that they are positive
quantities.

3 It seems worth noticing that in the present paper we assume that Qi j has the unit of Wm−1 s−1 along with Ref. [19] (see
therein Sec. 2) and Ref. [2] (see therein Part III—Subsec. 9.3.1), for example. In Ref. [7], instead, Qi j has the unit of Wm−1 (see
therein Subsec. 7.1.3).
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The properties of
o
Qi j and Q allow to suppose that the ratios τ1

η1
and τ0

η0
remain constant [2], as it will

be shown in Sect. 2.2. As a consequence of this from Eq. (19) we may formally obtain the following time
derivative of s:

∂t s = −qi,i
θ

− qi
( τR

λθ2

)
∂t qi−

o
Qi j

(
τRτ1

2η1λθ2

)
∂t

o
Qi j −Q

(
τRτ0

η0λθ2

)
∂t Q. (20)

If we go beyond the classical constitutive assumption in Eq. (6) and therefore further suppose

J (s)
i = q j

θ

⎡
⎣
(
1 − τRQ

λθ

)
δi j − τR

o
Qi j

λθ

⎤
⎦ (21)

according to EIT [2], by direct calculations Eq. (20) can be also rewritten as

∂t s = −J (s)
i,i

− qi
λθ2

⎧⎨
⎩λ

⎡
⎣
(
1 − 2τRQ

λθ

)
δi j − 2τR

o
Qi j

λθ

⎤
⎦ θ, j + τR

(
∂t qi + Q,i+

o
Qi j, j

)⎫⎬
⎭

− o
Qi j

(
τR

2η1λθ2

)[
τ1∂t

o
Qi j +2η1

o(
qsymi, j

)]
− Q

(
τR

η0λθ2

) (
τ0∂t Q + η0qi, j δi j

)
. (22)

By comparing Eqs. (1) and (22) we may then point out the following constitutive equation for the specific-
entropy production:

σ (s) = − qi
λθ2

⎧⎨
⎩λ

⎡
⎣
(
1 − 2τRQ

λθ

)
δi j − 2τR

o
Qi j

λθ

⎤
⎦ θ, j + τR

(
∂t qi + Q,i+

o
Qi j, j

)⎫⎬
⎭

− o
Qi j

(
τR

2η1λθ2

)[
τ1∂t

o
Qi j +2η1

o(
qsymi, j

)]
− Q

(
τR

η0λθ2

) (
τ0∂t Q + η0qi, j δi j

)
. (23)

Note that Eq. (23) encompasses Eq. (14) as a special case: in fact, the latter form of σ (s) is obtained by the

former form of σ (s) whenever
o
Qi j→ 0 and Q → 0.

In order to guarantee that the unilateral constraint (2) is always fulfilled, it is sufficient to make assumptions
letting the function σ (s) be positive definite. Since Eq. (23) substantially displays the bilinear form

σ (s) = Aqi Xi + B
o
Qi j Xi j + CQX (24)

wherein A, B and C are strictly negative coefficients, whereas the following quantities

Xi = λ

⎡
⎣
(
1 − 2τRQ

λθ

)
δi j − 2τR

o
Qi j

λθ

⎤
⎦ θ, j + τR

(
∂t qi + Q,i+

o
Qi j, j

)
(25a)

Xi j = τ1∂t
o
Qi j +2η1

o(
qsymi, j

)
(25b)

X = τ0∂t Q + η0qi, j δi j (25c)

are the so-called thermodynamic forces [1,2], a possible way of fulfilling Eq. (2) in any situation is to assume

Xi = −qi (26a)

Xi j = − o
Qi j (26b)

X = −Q (26c)
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for example. The assumptions in Eqs. (26) straightforwardly lead to

∂t qi = − qi
τR

− λ

τR

⎡
⎣
(
1 − 2τRQ

λθ

)
δi j − 2τR

o
Qi j

λθ

⎤
⎦ θ, j−

o
Qi j, j −Q,i (27a)

∂t
o
Qi j = −

o
Qi j

τ1
−

(
2η1
τ1

) o(
qsymi, j

)
(27b)

∂t Q = −Q

τ0
−

(
η0

τ0

)
qi, j δi j . (27c)

2.1 The model equations

Provided the physical meanings of η0 and η1 are given, Eqs. (27) are proper the evolution equations of the
(state-space) flux variables we’re searching for. In order to make those identifications, indeed, we may start

to observe that whenever both ∂t
o
Qi j→ 0, and ∂t Q → 0, the insertion of Eqs. (27b) and (27c) into Eq. (27a)

turns out

τR∂t qi + qi = −�eff
i j θ, j + 2η1

o(
qsymi, j

)
, j

+η0q j, j i (28)

wherein the second-order tensor

�eff
i j = λ

⎡
⎣
(
1 − 2τRQ

λθ

)
δi j − 2τR

o
Qi j

λθ

⎤
⎦ (29)

can be substantially meant as an effective thermal conductivity (which could be related to the compelling
problem of flux limiters [22–24]). Whenever the non-equilibrium-temperature approximation [2,16] holds,
namely, if one has

ds =
(
1

θ

)
du −

(
τRqi
λθ2eq

)
dqi −

⎡
⎣
⎛
⎝τR

o
Qi j

2λθ2eq

⎞
⎠ ∂

∂θ

(
θτ1

η1

)⎤⎦ d
o
Qi j −

[(
τRQ

λθ2eq

)
∂

∂θ

(
θτ0

η0

)]
dQ

and

J (s)
i = q j

θ

⎡
⎣
(
1 − τRQ

λθeq

)
δi j − τR

o
Qi j

λθeq

⎤
⎦

with θeq being the (constant value of the) local-equilibrium temperature, instead of Eqs. (19) and (21), respec-

tively, the non-linear terms proportional to
o
Qi j θ, j and Qθ,i vanish and the effective thermal conductivity above

reduces to the bulk thermal conductivity. In that case, moreover, it is easy matter to observe that Eqs. (17)
and (28) coincide provided the following identifications hold:

η1 = �2

τR
(30a)

η0 = 5�2

3τR
. (30b)
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Equations (30) turn out the expressions of η1 and η0 in terms of clear physical quantities. If the assumptions
in Eqs. (30) are made, from the local balance of energy (3) and Eqs. (27) we finally have

∂t u = −qi,i (31a)

∂t qi = − qi
τR

− λ

τR

⎡
⎣
(
1 − 2τRQ

λθ

)
δi j − 2τR

o
Qi j

λθ

⎤
⎦ θ, j−

o
Qi j, j −Q,i (31b)

∂t
o
Qi j = −

o
Qi j

τ1
−

(
2�2

τRτ1

) o(
qsymi, j

)
(31c)

∂t Q = −Q

τ0
−

(
5�2δi j
3τ0τR

)
qi, j (31d)

which are our model equations.

2.2 Comparison with the 9-moment theory

When the non-equilibrium-temperature approximation holds Eqs. (31) become

∂t u = −qi,i (32a)

∂t qi = − qi
τR

− λ

τRcv

u,i−
o
Qi j, j −Q,i (32b)

∂t
o
Qi j = −

o
Qi j

τ1
−

(
2�2

τRτ1

) o(
qsymi, j

)
(32c)

∂t Q = −Q

τ0
−

(
5�2δi j
3τ0τR

)
qi, j (32d)

once the classical thermodynamic relation

cv = ∂u

∂θ
(33)

is used, with cv being the specific heat at constant volume per unit volume (always larger than zero, as
experimental evidences point out).

We may indeed recognize that the model in Eqs. (32) is closely related to the model which characterizes
the 9-moment theory [25], i.e., to the model based upon

∂t u = −‖c‖2 pi,i (34a)

∂t pi = − pi
τR

− 1

3
u,i−

o
Ni j, j (34b)

∂t
o
Ni j = −

o
Ni j

τ�

− 2

5
‖c‖2

o(
psymi, j

)
(34c)

wherein ‖c‖ means the modulus of the phonons’ Debye speed (defined as some mean value of longitudinal
and transversal speed of sound), and

pi = h̄
∫
R3

ki f (x, t,k) dk (35a)

o
Ni j= h̄‖c‖

∫
R3

1

‖k‖ki k j f (x, t, k) dk − u

3
δi j (35b)

with h̄ being the Plank’s constant, k being the wave vector (the modulus of which is ‖k‖), the function
f (x, t,k) means the phase density. The relaxation time τ� appearing in Eqs. (34) is such that

1

τ�

= 1

τR
+ 1

τN
(36)
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where τN means the reciprocal of the frequency of normal phonon collisions, i.e., the mechanisms of phonon
scattering in which both the phonons’ energy, and their momentum is conserved. By comparing Eqs. (32)
and (34), indeed, it is possible to set the following parallelisms

qi ←→ pi (37a)

Qi j ←→ Ni j (37b)

between the field variables involved in those models, the only difference being the form of the isotropic part of
the two symmetric second-order tensors Qi j and Ni j , which in the latter case is only related to u, as it follows
from Eq. (35b). The parallelism between Eqs. (32) and (34), besides giving a common root (very well defined
in the kinetic theory) to our model and the 9-moment theory, allows us to give a deeper physical insight into
the relaxation times τ1 and τ0: both of them, in fact, should be related to the relaxation time τ� defined by
Eq. (36) which is tantamount to claim that the relaxation times of higher-order fluxes in our model are related
both to the resistive scatterings, and to the normal scatterings.

The above considerations justify the assumption of constant values for the ratios τ1
η1

and τ0
η0

that we have
made in Sect. 2. If Eqs. (30) hold, in fact, the above parallelism allows us to state that both τ1

η1
, and τ0

η0
are

proportional to ‖c‖2, which can be surely supposed to be constant.

3 Second-sound propagation

In the present section we investigate the second-sound propagation predicted by the theoretical model in
Eqs. (31). To this end, for computational needs, we introduce the following dimensionless variables:

xi = xi
L

t = t

τR

T = θ − T0
T0

hi = L

λT0
qi

o
Hi j = τ1

λT0

o
Qi j H = τ0

λT0
Q

(38)

with L being the characteristic length of our system, and T0 a suitable reference temperature (e.g., the initial
temperature of the system). For our goal, we also make use of Eq. (33) such that Eqs. (32a) can be rewritten
in terms of the time variation of non-equilibrium temperature θ . In this way Eq. (31) become

∂tT + Kn2

3
hk,k = 0 (39a)

∂thi + hi +
⎧⎨
⎩
[
1 − 2H

α (1 + T)

]
δi j − 2

o
Hi j

β (1 + T)

⎫⎬
⎭T,j +

o
Hi j,j

β
+ H,i

α
= 0 (39b)

∂t
o
Hi j +

o
Hi j

β
+ Kn2

(
hi,j + h j,i −

2δi j
3

hk,k

)
= 0 (39c)

∂tH + H
α

+ 5Kn2

3
hk,k = 0 (39d)

wherein we set τ0 = ατR , τ1 = βτR , and Kn = �
L stands for the Knudsen number.4 According to what

previously said, therefore, in the present analysis the non-dimensional coefficients α and β account for the
relaxation effects of the higher-order fluxes (related both to the resistive scatterings, and to the normal ones),
whereas Kn introduces non-local effects.

In closing this part, we note that in deriving Eqs. (39) we estimated the resistive relaxation time of phonons
as

τR = �

V0
(40)

4 We note that in the case of nanoscale heat transfer one usually has Kn ∼ O (1) (i.e., � ≥ L), whereas the case Kn → 0+
(i.e., � � L) corresponds to the case of macroscale heat transfer.
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with V0 standing for the average phonon speed (measured at the reference temperature-value T0), and we used
the well-known Ziman limit [26] for the thermal conductivity, i.e.,

λ = cvτRV2
0

3
(41)

as it is usually assumed in the hydrodynamic theory of second-sound propagation in insulators. Although the
assumptions in Eqs. (40) and (41) may lead to a quantitative inaccuracy, it is clear that the results obtained
below are not critically dependent upon those assumptions.

3.1 The mathematical formulation

Here we put ourself in the 1D case for the sake of simplicity. From the physical point of view this means that
we are only interested in the thermal transport within 1D (indefinitely long) nanostructures (e.g., nanowires,
nanofibers, nanotubes, and nanorods) which represent one of the best-defined and controlled classes of
nanoscale building blocks. We refer to Refs. [27,28] and the references cited therein for some comprehensive
reviews about the use of these material systems.

Dealing with Eqs. (39) is not properly an easy task, at least if one is searching for analytical solutions which
can depict the experimental evidences. One of the main problems in dealing with Eqs. (39) lies, for example,
on the question regarding ID and BCs and the way they have to be correctly assigned, as it has been previously
observed in Sect. 1. For this reason, as a first attempt to a more general analysis, to reduce our computations
to a simpler level, here we put ourself in the non-equilibrium-temperature approximation and therefore we

neglect the terms proportional to
o
Hi jT,j and HT,j in Eq. (39b). By indicating with x the sole (non-dimensional)

Cartesian coordinate, as a consequence of the assumptions above, Eqs. (39) reduce to

∂tT + Kn2

3
∂xhx = 0 (42a)

∂thx + hx + ∂xT + ∂x
o
Hxx

β
+ ∂xH

α
= 0 (42b)

∂t
o
Hxx +

o
Hxx

β
+ 4Kn2

3
∂xhx = 0 (42c)

∂tH + H
α

+ 5Kn2

3
∂xhx = 0. (42d)

The above system of coupled PDEs will be solved by prescribing the following ID

T (x, 0) = 0 ∀ x ∈ [0,+∞)

hx (x, 0) = 0 ∀ x ∈ [0,+∞)

o
Hxx (x, 0) = 0 ∀ x ∈ [0,+∞)

H (x, 0) = 0 ∀ x ∈ [0,+∞)

(43)

which, from the physical point of view, mean that our rigid conductor is initially at equilibrium and at the
reference temperature T0. Moreover, we also assign the following BCs

T (0, t) = T•H (t) T (+∞, t) = 0 ∀ t ∈ (0,+∞) (44)

wherein H is the Heaviside unit step function. This is tantamount to mathematically depicting the practical
situation in which at the time t = 0+ the domain boundary at x = 0 is only affected by a step-jump in
temperature. The neglect of non-linear terms has allowed us to not assign any BCs for the other unknown

functions hx (x, t),
o
Hxx (x, t) and H (x, t): we let, in this way, the model furnish the values of those functions

also at the boundary. Otherwise, we would have had to assign those BCs, thus incurring the problem of the



Thermal pulse propagation beyond the Maxwell–Cattaneo theory 1465

physical meaning of the prescribed values for the unknown functions at the boundary, a problem which is still
open.5

The IBVP in Eqs. (42)–(44), therefore, is able to describe the behavior of an infinite 1D nanosystem which
is perturbed from its initial equilibrium state by a thermal pulse (i.e., a thermal shock) applied in its left-hand
side end. From the practical point of view, in Eq. (44) T• ∈ R

+ stands for a dimensionless constant which
captures the energy amount of the thermal shock perturbing the system at hand. Further comments about the
ID in Eqs. (43) and the BCs in Eq. (44) will be made in Sect. 3.3.

3.2 The form of the basic fields

The approximate analytical solution of the IBVP in Eqs. (42)–(44) is the following:

T (x, t) =
[
T•e− ζε

Kn x
]
H

(
t − ζ

Kn
x
)

(45a)

h (x, t) = 3T•e− ζε
Kn x

ζ Kn

[
1 − ε

(
t − ζ

Kn
x
)]

H
(
t − ζ

Kn
x
)

(45b)

o
Hxx (x, t) = 4T•e− ζε

Kn x
[
e
− 1

β

(
t− ζ

Kn x
)]

H
(
t − ζ

Kn
x
)

(45c)

H (x, t) = 5T•e− ζε
Kn x

[
e
− 1

α

(
t− ζ

Kn x
)]

H
(
t − ζ

Kn
x
)

(45d)

wherein we have set

ζ =
√

3αβ

αβ + 4α + 5β
(46a)

ε = 1

2

(
1 + 1

αβ
· 4α2 + 5β2

αβ + 4α + 5β

)
(46b)

just for the sake of a compact notation. Interested readers can refer to “Appendix” at the end of this paper for
a sketch of the solution method used to obtain the form of the basic fields in Eqs. (45); therein considerations
about the degree of approximation of Eqs. (45) are also made. Here, instead, we aim at drawing the attention
on some consequences arising from Eqs. (45).

In Fig. 1, we plot the theoretical behavior of the non-dimensional temperature T arising from Eq. (45a)
when α = β = 1, T• = 1 and Kn = 1 (just for the sake of computational needs). That figure clearly displays
the propagating temperature wave (so pointing out the hyperbolic behavior of Sys. (39) in the 1D linear case):
in fact, only the region before the front wave is perturbed (i.e., therein T �= 0) whereas the region ahead the
front wave is still in equilibrium (i.e., thereinT = 0). Owing to dissipative effects, from Fig. 1 it is also possible
to see how the energy amount of the thermal wave progressively shrinks for increasing time.

In the case of Eq. (45a), it seems also interesting to observe that the dissipative effects are influenced both

by the relaxation times of Q and
o
Qi j (accounted by α and β, respectively), and by the phonon mean-free path

(accounted by Kn).
In particular, we may infer that the temperature-wave energy amount

• decreases as steeper as α and β reduce. This can be seen, for example, in Fig. 2 wherein the temperature T
behavior, as a function of the distance x from the thermal-shock source, is investigated for different values
of α and β.

• decreases as steeper as Kn reduces. This can be seen, for example, in Fig. 3 wherein the temperature T
behavior, as a function of the distance x from the thermal-shock source, is investigated for different values
of Kn.

5 In Ref. [2] interesting considerations can be found in this regard (see therein Box 9.1 in page 213).
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Fig. 1 T versus x and t: analytical solution arising from Eq. (45a). Data caption: α = β = 1; T• = 1; Kn = 1. The jump
discontinuity therein represents the propagating front of the temperature wave.
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1.0

T

Fig. 2 T versus x as a function of α and β: theoretical behavior arising from Eq. (45a). In more detail, in figure the dashed (red)
curve arises when α = β = 1, and the solid (blue) curve arises when α = β = 0.2. Data caption: t = 0.5; T• = 1; Kn = 1. The
jump discontinuity therein occurs at the front of the moving temperature wave.
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Fig. 3 T versus x as a function of Kn: theoretical behavior arising from Eq. (45a). In more detail, in figure the dashed (red) curve
arises when Kn = 1.25, and the solid (blue) curve arises Kn = 0.75. Data caption: t = 0.5; α = β = 1; T• = 1. The jump
discontinuity therein occurs at the front of the moving temperature wave.

3.3 Results arising from the entropy balance

From the mathematical point of view, it is clear that the form of the basic fields in Eqs. (45) strictly depends on
the model in Eqs. (42), as well as on the ID in Eqs. (43) and on the BCs in Eq. (44). Here we avoid deepening
too much into the mathematical details (Eqs. (45) are however an implicit proof of the existence of the solution
of the IBVP in Eqs. (42)–(44)), and only look at the physical meaning of Eqs. (43) and (44).
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From the practical point of view, we stress that both ID, and BCs should arise from experimental evidences
and have their own physical clear meaning. The determination of the initial conditions is generally of no
concern either in steady-state situations, or in transient problems, since it is usually admitted that the system at
hand is initially in a thermodynamic equilibrium. This is the main reason why ID have been given by Eqs. (43).
The right setting-up of BCs, instead, is in general more delicate and controversial. It has to be also noted that
in the case of Eqs. (42) the above problem becomes still more acute since therein the four unknown fields

T (x, t), hx (x, t),
o
Hxx (x, t) and H (x, t) are coupled.

As a consequence, the following questions may naturally arise: is the IBVP in Eqs. (42)–(44) physically
consistent? Since in Sect. 3.1 only the value of the unknown function T (x, t) at the boundary has been given,
are the BCs in Eq. (44) admissible? Whereas the results contained in Sect. 2 make us sure about the physical
validity of the theoreticalmodel in Eqs. (42), to answer the above questions in the present sectionwe analyze the
consequences of the unilateral constraint (2). In particular, if we introduce the following further dimensionless
quantities

G(s)
i = L

λ
J (s)
i 	(s) = L2

λ
σ (s) (47)

from Eqs. (21) and (23), respectively, we have

G(s)
i = h j

1 + T

⎧⎨
⎩
[
1 − H

α (1 + T)

]
δi j −

o
Hi j

β (1 + T)

⎫⎬
⎭ (48a)

	(s) = − 1

(1 + T)2

⎧⎨
⎩hi

⎡
⎣T,i −

2HT,i

α (1 + T)
− 2

o
Hi jT,j

β (1 + T)
+ ∂thi +

o
Hi j,j

β
+ H,i

α

⎤
⎦

+ o
Hi j

⎡
⎣ ∂t

o
Hi j

2β Kn2
+ 1

2β

(
hi,j + h j,i −

2δi j
3

hk,k

)⎤
⎦ + H

(
3∂tH

5αKn2
+ hk,k

α

)⎫⎬
⎭ . (48b)

By neglecting the non-linear terms proportional to HT,j and
o
Hi jT,j in Eq. (48b), in the 1D case we have

G(s)
x = hx

1 + T

⎡
⎣1 − H

α (1 + T)
−

o
Hxx

β (1 + T)

⎤
⎦ (49a)

	(s) = − 1

(1 + T)2

⎡
⎣hx

⎛
⎝∂xT + ∂thx + ∂x

o
Hxx

β
+ ∂xH

α

⎞
⎠

+ o
Hxx

⎛
⎝ ∂t

o
Hxx

2β Kn2
+ 2∂xhx

3β

⎞
⎠ + H

(
3∂tH

5αKn2
+ ∂xhx

α

)⎤
⎦ . (49b)

In Fig. 4, we plot the theoretical behavior of the non-dimensional specific-entropy production 	(s) arising
from Eq. (49b) when α = β = 1, T• = 1 and Kn = 1 (just for the sake of computational needs). As it was
expected, Fig. 4 shows that only the (out-of-equilibrium) region before the front wave is characterized by 	(s)

values different from zero (but strictly positive, according to second law of thermodynamics). In the region
ahead the front wave, which is instead still at equilibrium, it obviously holds 	(s) = 0. The behavior of 	(s)

is monotonically decreasing: this is logical since in time the temperature wave progressively loses its energy
amount, as observed in Sect. 3.2.

The above considerations are enough to claim the validity of the physical setting of the phenomenon at
hand, i.e., Eqs. (43) and (44).

3.4 Comparison with the MC-theory

The limits of F-theory, which are well known since decades, have led to several interesting generalizations of
it. Those generalizations are obviously not unique: they generally differ in the underlying physical principles
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Fig. 4 	(s) versus x and t: analytical solution arising from Eq. (49b). Data caption: α = β = 1; T• = 1; Kn = 1. The jump
discontinuity therein occurs at the front of the moving temperature wave

and in modeling capabilities. In Ref. [21], for example, two theoretical models are discussed and compared:
one based upon Rational Extended Thermodynamics, and the other one based upon Non-Equilibrium Ther-
modynamics with Internal Variables. In Ref. [29], instead, the Grad-13 equations [30] have been embedded
into the framework of GENERIC [31]. Since the comparison between different theories is surely one of the
major stimuli both to enhance previous models, and to find new others, by means of the second-sound propa-
gation in this part we compare the results of Sect. 3 with those arising from the MC-theory. The MC-theory is
considered here only for the fact that it can be recovered (as special case) from any theory beyond the F-law.
We postpone to future works a more complete and refined comparison between the different models proposed
in the literature.

Since in the MC-theory the two basic fields
o
Hxx (x, t) and H (x, t) are not taken into account (according to

what previously said in Sect. 1.2), then in that theory the IBVP given by Eqs. (42)–(44) reduces to

∂tT + Kn2

3
∂xhx = 0 (50a)

∂thx + hx + ∂xT = 0 (50b)

T (x, 0) = 0 ∀ x ∈ [0, +∞)

hx (x, 0) = 0 ∀ x ∈ [0, +∞)
(50c)

T (0, t) = T•H (t) T (+∞, t) = 0 ∀ t ∈ (0,+∞) (50d)

in such a way that one would have the following analytical solutions

T (x, t) =
[
T•e−

√
3

2Kn x
]
H

(
t −

√
3

Kn
x

)
(51a)

h (x, t) =
√
3T•e−

√
3

2Kn x

Kn

[
1 − 1

2

(
t −

√
3

Kn
x

)]
H

(
t −

√
3

Kn
x

)
(51b)

instead of Eqs. (45a) and (45b). A sketch of the solution method used to obtain the form of the basic fields in
Eqs. (51) can be found in “Appendix,” too.

In Fig. 5, we compare the behaviors of the analytical solutions in Eqs. (45a) and (51a) when t = 0.5,
α = β = 1, T• = 1, and Kn = 1 just for the sake of computation. It clearly points out that the temperature
wave predicted by Eq. (45a) (i.e., the dashed red curve therein) is faster than the temperature wave predicted
by Eq. (51a) (i.e., the solid blue curve therein): in the former case, in fact, the front wave (characterized by the
jump discontinuity) is placed at a distance larger than that at which the front wave in the latter case occurs. This
result was indeed expected since the second-sound speed predicted by Eqs. (31) is larger than that predicted
by the MC-theory [2,32], whatever the values of the parameter α, β and Kn are.
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Fig. 5 T versus x: analytical solutions arising from Eqs. (45a) and (51a) in comparison. In more detail, in figure the dashed (red)
curve arises from Eq. (45a), and the solid (blue) curve arises from Eq. (51a). Data caption: t = 0.5; α = β = 1; T• = 1; Kn = 1.
The jump discontinuity therein occurs at the front of the moving temperature wave.

Fig. 6 	(s) versus x: analytical solutions arising from Eqs. (49b) and (52b) in comparison. In more detail, in figure the dashed
(red) curve arises from Eq. (49b), and the solid (blue) curve arises from Eq. (52b). Data caption: t = 0.8; α = β = 1; T• = 1;
Kn = 1. The jump discontinuity therein occurs at the front of the moving temperature wave.

In the MC-theory the dimensionless 1D specific-entropy flux and production, respectively, read

G(s)
x = hx

1 + T
(52a)

	(s) = − hx
(1 + T)2

(∂xT + ∂thx) (52b)

In Figs. 6 and 7, we compare, instead, the behaviors of the analytical solutions by Eqs. (49b) and (52b)
when t = 0.8, α = β = 1, T• = 1, and Kn = 1 just for the sake of computation. From that figures, it follows
that both the predicted specific-entropy productions tend to a plateau limit which is attained before the front
of the moving temperature wave.

4 Final comments and future perspectives

The raise of nanotechnology has required (and, indeed, is still requiring) several efforts to better understand the
thermal-transport properties of nanodevices, the performance and reliability ofwhich could bemuch influenced
by relaxation (i.e., memory), non-local and non-linear effects [2,7,33–35]. For this reason, in Eqs. (31) of this
paper we proposed a non-linear and non-local thermodynamical model of heat transfer at nanoscale in a rigid
body beyond the usual classical theories. That theoretical model, which encompasses both the F-theory, and
the MC-theory as special cases, has been derived in framework of EIT [2,7] in Sect. 2 and essentially lies on
the concept of flux of the heat flux Qi j (which has been indeed decoupled into its deviatoric and bulk parts),
the physical root of which arises from the kinetic theory [2].
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Fig. 7 	(s) versus x in the MC-case: detail of the qualitative behavior described in Fig. 6, i.e., analytical solution arising from
Eq. (52b). Data caption: t = 0.8; T• = 1; Kn = 1. The jump discontinuity occurs at the front of the moving temperature wave.

Since in the present paper we derived Eqs. (31) only by means of macroscopic theoretical considerations,
further comments about those equations are therefore needed. Besides to the form of the specific-entropy flux in
Eq. (21), the theoretical model in Eqs. (31) is indeed also strictly related to Eq. (23) which substantially displays
the bilinear form (24) in fluxes and forces. Although experimental observations confirm that thermodynamic
forces and fluxes are interwoven [1,2], the exact relations among them are indeed not known a priori. In our
approach we considered linear force-flux relations and, therefore, we finally set Eqs. (25). Non-linear flux-
force relations could have been also considered in principle [36–39], indeed, in such a way that a different
non-linear and non-local model of heat transfer was obtained. In the present paper, however, we did not purse
the approach of non-linear flux-force relations since it is generally related to theoretical questions concerning
the interpretation of the second law (see Part I—Sec. 2.4 in Ref. [2], for example) which are surely conceptually
interesting, but not properly in the focus of this paper.

Bymeans of the so-called non-equilibrium-temperature approximation (i.e., whenever the difference θ−1−
θ−1
eq → 0), in Sect. 3 the non-linear terms inEqs. (31) have been neglected and the propagation of thermal pulses
in 1Dnanosystemshas been consequently analyzed. That analysis, although simplified, could be however useful
in practical applications. For example, in current days the very high circuit densities yield modern chips run
so hot that heat is becoming one of the major problems in the design of integrated circuits. As a consequence,
one of the aspects which is much being studied at nanoscale is the isolation of very small areas which could
be heated by an external source (either static as a hot spot due to a very miniaturized working device, or
dynamic as a fast laser pulse): a continuous control of the temperature’s rise, in fact, could be a crucial point
for the correct operation of modern devices. In Sect. 3 we have tried to exactly tackle with that problem in
1D nanosystems. The analysis performed therein points out that one should pay attention to the role played
by relaxation and non-local effects: as it follows from Fig. 2 (for the relaxation effects) and Fig. 3 (for the
non-local effects) they may strongly influence the dissipative effects (i.e., one of the main—natural—tool for
heat isolation of different components on a chip), thus not ensuring the right setting-up of modern devices
which currently remains a very compelling challenge. That challenge could be also complicated by non-linear
effects which may either enhance, or reduce, the influence of memory and non-local effects [15].

Another step toward a more detailed investigation will be surely the analysis of a pulse propagation once
in Eqs. (31) no terms are neglected, or when non-linear flux-force relations are considered. We note that if
Eqs. (31) are considered in their complete version, the interesting problem of flux limiters [22–24] also comes
out: in that case, in fact, the form of the unknown fields will have to however guarantee that the effective
thermal conductivity in Eq. (29) is positive defined.

The analysis performed in Sect. 3 could be, indeed, also used to indirectly compute a first rough estimation
of the relaxation times of the high-order fluxes: whereas different models have been developed in order to
estimate τR , very scant information about τ1 and τ0 (i.e., information on τN according with the observations
in Sect. 2.2) can be found in the literature. Since the wave front depends on the ratios between those relaxation
times and τR , as Fig. 2 clearly shows, by checking the wave front in practical applications one could also
estimate whether τ1 and τ0 are larger (or smaller) than τR , in principle, for example.

At the very end, it seems worth noticing that, in general, it is not so simple to claim which is the best (or,
alternatively said, the right) proposal among the different theories beyond the F-law. To this end, practical
applications in which different theories clearly predict different results could be suitable benchmarks. This is,
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for example, just the case of the heat-wave propagation we analyzed in the present paper: in fact, the results
contained in Sect. 3 can be used to check, between the MC-theory and the model given by Eqs. (31), which
one better fits with experimental evidences.
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Appendix

At the end of this paper, just for the sake of completeness, we give some details about the technique used to
solve the above IBVPs, the corresponding results of which are contained in Sect. 3.2.

Analytical solution
By applying the (temporal) Laplace transform L [·] and recalling the usual relation

L [∂tF (x, t)] (ν) = νL [F (x, t)] (ν) − F0 (x) ,

being ν the (complex) Laplace transform parameter and with F0 (x) = lim
t→0+ F (x, t), from Eqs. (42) we have

the following system of ODEs

3νL [
T
] + Kn2 dxL

[
hx

] = 0 (53a)

αβ (1 + ν)L [
hx

] + αβdxL
[
T
] + αdxL

[
o
Hxx

]
+ βdxL

[
H
] = 0 (53b)

3 (1 + βν)L
[
o
Hxx

]
+ 4β Kn2 dxL

[
hx

] = 0 (53c)

3 (1 + αν)L [
H
] + 5αKn2 dxL

[
hx

] = 0 (53d)

once the ID arising from the Laplace transform of Eqs. (43) have been employed in such a way they are
embedded in the procedure. In the Laplace domain, moreover, the following BCs, arising from Eq. (44), have
to be appended to Eqs. (53)

L [
T
]
(0, ν) = T•

ν
L [

T
]
(+∞, ν) = 0 (54)

Since Eqs. (53) substantially constitute a system of linear equations, by coupling Eq. (53a) with the spatial
derivatives of Eqs. (53b)–(53d), we may obtain the following second-order ODE (in the unknown Laplace
transform L [

T
]
)

d2xL
[
T
] − �2

Kn2
L [

T
] = 0 (55)

wherein we set

�2 = 3ν (1 + ν) (1 + αν) (1 + βν)

(αβ + 4α + 5β) (ν − ξ1) (ν − ξ2)
(56)

with

ξ1,2 = −α + β + 9 ∓
√

(α − β + 1)2 + 80

2 (αβ + 4α + 5β)
(57)

http://creativecommons.org/licenses/by/4.0/
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just for the sake of a compact notation. Since the characteristic equation of ODE (55) is

�2 = �2

Kn2
(58)

by means of BCs in Eq. (54) we are led to

L [
T
] =

(
T•

ν

)
e− �

Kn x (59)

which reduces to

L [
T
] =

(
T•

ν

)
e− ζ

Kn (ν+ε)x (60)

once infinitesimals of order lower than ν−1 have been neglected in computing � (i.e., when the square root of
Eqs. (56) is evaluated), and Eq. (46) hold. Considerations about the degree of the above approximation can be
found in the second section of this appendix.

From Eqs. (53) we may straightforwardly have

L [
hx

] =
(

3T•

ζ Kn ν

)(
1 − ε

ν

)
e− ζ

Kn (ν+ε)x (61a)

L
[
o
Hxx

]
=

(
4βT•

1 + βν

)
e− ζ

Kn (ν+ε)x (61b)

L [
H
] =

(
5αT•

1 + αν

)
e− ζ

Kn (ν+ε)x. (61c)

The inverse (temporal) Laplace transforms of Eqs. (60) and (61) furnish Eqs. (45).
In the MC-theory Eqs. (50) holds; therefore in the Laplace domain one has

3νL [
T
] + Kn2 dxL

[
hx

] = 0 (62a)

(1 + ν)L [
hx

] + dxL
[
T
] = 0 (62b)

which leads to

L [
T
] =

(
T•

ν

)
e
−

√
3

Kn

(
ν+ 1

2

)
x

(63a)

L [
hx

] =
(√

3T•

Kn ν

)(
1 − 1

2ν

)
e
−

√
3

Kn

(
ν+ 1

2

)
x

(63b)

once the BCs in Eqs. (54) is employed. The inverse (temporal) Laplace transforms of Eqs. (63) give Eqs. (51).

Numerical solution
Although we refer to Eqs. (45) as the analytical solution of the IBVP in Eqs. (42)–(44), it seems worth

noticing that they are not exact solutions since we neglected infinitesimals of order lower than ν−1 in deriving
Eq. (60). The small-time approximation is surely logical in very fast phenomena (as the pulse propagation at
hand), but a priori the orders of infinitesimals which may be neglected are not known.

To be sure that the approximation we used does not significantly affect Eqs. (45), we also perform a
comparison with a numerical solution. In Fig. 8, we show how effective is the approximation used to obtain
the analytical expression for the temperature field in Eq. (45a) (which is fundamentally the real benchmark in
the present approach). In particular therein the solid (blue) curve refers to Eq. (45a), whereas the dotted (red)
curve has been obtained by inverting numerically the exact Laplace transform of the temperature field

L[T] = T•

ν
e− �

Kn x (64)

through the modified Tzou series [40]

F (x, t) ≈ e4.7

t

⎧⎨
⎩
1

2
L[F]

(
x,

4.7

t

)
+ Re

⎡
⎣ M∑

j=1

(−1) j L[F]
(
x,

4.7 + i jπ
t

)
sinc

(
jπ

M

)⎤⎦
⎫⎬
⎭ (65)
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Fig. 8 T versus x: (approximate) analytical solution (solid line) in comparison with (exact) numerical solution (dotted line). Data
caption: t = 0.5; α = β = 1; T• = 1; Kn = 1

forM = 500, with � given by Eq. (56).
The very good agreement between the two solutions in Fig. 8 (obtained also for data captions different from

those used in that figure) ensures that the aforementioned approximation plays no relevant role in Eqs. (45).
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