Skip to main content

Advertisement

Log in

Experimental methods of living cells mechanical loading: review

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

Studying the effects of mechanical loads on living cells provides valuable information about their activity, vitality and intercellular communication. Mechanical stimuli have often a significant impact on cell migration, tissue remodeling and healing and other phenomena. This effects in micro scale affect also tissue structure, its mechanical characteristics and functionality. Special methods are needed to study deformation and biological responses of such small objects as cells. Moreover, in order to keep the cells alive during such tests, it is necessary to ensure appropriate environmental conditions. The methods of loading and examination cells can be categorized into several groups depending on the physical effects used in experiment. This paper provides a systematic review of the methods used in such studies and examples of mathematical modeling the mechanical response of cells to mechanical loads. Such models enable computational simulation of changes in cells and tissues excited by mechanical stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. AGH.: http://home.agh.edu.pl/~kmr/instrukcje/afm.pdf (2019)

  2. Andreaus, U., Colloca, M., Iacoviello, D.: Optimal bone density distributions: numerical analysis of the osteocyte spatial influence in bone remodeling. Comput. Methods Prog. Biomed. Strony 113, 80–91 (2014)

    Article  Google Scholar 

  3. Andreaus, U., Colloca, M., Iacoviello, D. Pignataro.: Optimal-tuning PID control of adaptive materials for structural efficiency. Struct. Multidis. Optimiz. (2011)

  4. Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E. Chu, S.: Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. (1986)

  5. Barazani, B., Warnat, S., Fine, A. Hubbard, T.: MEMS squeezer for the measurement of single cell rupture force, stiffness change, and hysteresis. Journal of Micromechanics and Microengineering (2017)

  6. Basso, N. Heerschie, J. N.: Characteristics of In Vitro Osteoblastic Cell Loading Models. Bone (2002)

  7. Bhattacharjee, N., Urrios, A., Kang, S. Folch, A.: The upcoming 3D-printing revolution in microfluidics. Lab Chip, pp. 1711-1948 (2016)

  8. Capitanio, M., Pavone, F.S.: Single Molecule High-Resolution Measurements with Optical Tweezers. Biophysical Journal, strony, Interrogating Biology with Force. pp. 1293–1303. (2013)

  9. Chen, J., Abdelgawad, M., Yu, L., Shakiba, N., Chien, W.-Y., Lu, Z., Sun, Y.: Electrodeformation for single cell mechanical characterization. J. Micromech. Microeng. (2011)

  10. Corbin, E., Kong, F., Lin, C. T., King, W. Bashir, R.: Biophysical properties of human breast cancer cells measured using silicon MEMS resonators and atomic force microscopy. Lab on a Chip, 839-847 (2015)

  11. Daily, B., Elson, E. L. Zahalak, G. I.: Cell poking: Determination of the Elastic Area Compressibility Modulus of the Erythrocyte Membrane. Biophys. J. (1984)

  12. Dao, M., Lim, C. T. Suresh, S.: Mechanics of the human red blood cell deformed by optical tweezers. Journal of the Mechanics and Physics of Solids (2003)

  13. Davis, C. A., Zambrano, S., Anumolu, P., Allen, A. C., Sonoqui, L. Moreno, M. R.: Device-based in vitro techniques for mechanical stimulation of vascular cells: a review. J. Biomech. Eng. (2015)

  14. Ding, X., Lin, S.-C. S., Kiraly, B., Yue, H., LiSixing, Chiang, I.-K., Huang, T. J.: On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves. PNAS (2012)

  15. Dufrene, Y. F., Evans, E., Engel, A., Helenius, J., Gaub, H. E. Muller, D. J.: Five challenges to bringing single-molecule force spectroscopy into lining cells. Nature Methods (2011)

  16. Ferrier, G.M., McEvoy, A., Evans, C.E., Andrew, J.G.: The effect of cyclic pressure on human monocyte-derived macrophages in vitro, The journal of bone and joint surgery (2000)

  17. Gonzalez-Bermudez, B., Guinea, G.V., Plaza, G.R.: Advances in micropipette aspiration: applications in cell biomechanics, models, and extended studies. Biophys. J. 116, 587–594 (2019)

    Article  ADS  Google Scholar 

  18. Gosse, C., Croquette, V.: Czerwiec). Micromanipulation and Force Measurement at the Molecular Level. Biopfysical Journal, Magnetic Tweezers (2002)

    Google Scholar 

  19. Gourier, C., Jegou, A., Husson, J. Pincet, F.: A Nanospring Named Erythrocyte. The Biomembrane Force Probe. Cellular and Molecular Bioengineering, strony 263-275 (2008)

  20. Guck, J., Ananthakrishnan, R., Mahmood, H., Cunningham, C., Kas, J.: Sierpień). A novel laser tool to micromanipulate cells. Biophys. J., Opt. Stretcher (2001)

  21. Guck, J., Ananthakrishnan, R., Moon, T. J., Cunningham, C. C. Kas, J.: Optical deformability of soft biological dielectrics. Phys. Rev. Lett. (2000)

  22. Hochmuth, R. M.: Micropipette aspiration of living cells. J. Biomech. (33) (2000)

  23. Howard, J.: Mechanics of motor proteins and the cytoskeleton. Sinauer (2001)

  24. Jones, P. H., Marago, O. M. Volpe, G.: Optical tweezers: principles and Applications. Pobrano z lokalizacji http://opticaltweezers.org (2019)

  25. Instruments, J.P.K.: Determining the elastic modulus of biological samples using atomic force microscopy. JPK Instruments, Berlin (2019)

    Google Scholar 

  26. Ju, L., Chen, Y., Li, K., Yuan, Z., Liu, B., Jackson, S. P. Zhu, C.: Dual Biomembrane Force Probe enables single-cell mechanical analysis of signal crosstalk between multiple molecular species. 2017: Nature Scientific Reports

  27. Kim, D.-H., Haake, A., Sun, Y., Neild, A., Ihm, J.-E., Dual, J., Nelson, B.: High-Throughput Cell Manipulation Using Ultrasound Fields. Proceedings of the 26th Annual International Conference of the IEEE EMBS. San Francisco (2004)

  28. Kocemba, I.: Mikrosystemy Lab-on-a-Chip. Lab Story (2019)

  29. Li, Y.-J., Yang, Y.-N., Zhang, H.-J., Xue, C.-D., Zeng, D.-P., Cao, T. Qin, K.-R.: A microfluidic micropipette aspiration device to study single-cell mechanics inspired by the principle of wheatstone bridge. Micromachines, 10 (2019)

  30. McConnaughey, W. B. Petersen, N. O. Cell poker: An apparatus for stress-strain measurements on living cells. Rev. Sci. Instruments (1980)

  31. Nawaz, S., Sanchez, P., Bodensiek, K., Li, S., Simos, M., Schaap, I.: October). Cell visco-elasticity measured with AFM and optical trapping at sub-micrometer deformations, Plos One (2012)

  32. Neuman, K. C. Nagy, A.: Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nature Methods, strony pp. 491-505 (2008)

  33. Polacheck, W., Li, R., Uzel, S. Kamm, R.: Microfluidic platforms for mechanobiology. Lab Chip, pages 2252-2267 (2013)

  34. Potier, E., Noailly, J. Ito, K. Directing bone marrow-derived stromal cell function with mechanics. J. Biomech. strony pp. 807-817 (2010)

  35. Puig de Morales, M., Grabulosa, M., Alcatraz, J., Mullol, J., Maksym, G., Fredberg, J. Navajas, D.: Measurement of cell microrheology by magnetic twisting cytometry with frequency domain demodulation. J. Appl. Phys. (2001)

  36. Rajagopal, V., Holmes, W. R. Vee Sin Lee, P. Computational modeling of single-cell mechanics and cytoskeletal mechanobiology. WIREs Systems Biology and Medicine, 10 (2018)

  37. Rodahl, M., Hook, F., Krozer, A., Brzezinski, P. Kasemo, B.: Quartz crystal microbalance setup for frequency and G-factor rneasurements in gaseous and liquid environments. Rev. Sci. Instruments (1995)

  38. Rodriguez, M., McGarry, P., Sniadecki, N.: Experimental and modeling approaches. Appl. Mech. Rev. Rev. Cell Mech. (2013)

  39. Saitakis, M. Gizeli, E.: Acoustic sensors as a biophysical tool for probing cell attachment and cell/surface interactions. Cellular and Molecular Life Sci pp. 357-371 (2012)

  40. Scuor, N., Gallina, P., Panchawagh, H. V., Mahajan, R., Sbaizero, O. Sergo, V.: Design of a novel MEMS platform for the biaxial stimulation of living cells. Biomed Microdevices, pp. 239-246 (2006)

  41. Shi, J., Ahmed, D., Mao, X., Lin, S.-C. S., Lawit, A. Huang, T. J.: Acoustic tweezers/ patterning cells and microparticles using standing surface acoustic waves (SSAW). Lab on a Chip (2009)

  42. Singh, A., Suri, S., Lee, T., Chilton, J. M., Cooke, M. T., Chen, W., . . . Garcia, A. J.: Adhesion strength–based, label-free isolation of human pluripotent stem cells. Nature Methods (2013)

  43. Szwast, M., Suchecka, T. Piątkiewicz, W.: Mathematical Model For Biological Cell Deformation In a Cylindrical Pore. Chem. Process Eng. 33 (3); (2012)

  44. Takahashi, K., Toshikazu, K., Arai, Y., Kitajima, I., Takigawa, M., Imanishi, J. Hirasawa, Y.: Hydrostatic pressure induces expression of interleukin 6 and tumour necrosis factor mRNAs in a chondrocyte-like cell line. Ann Rheum Dis, pp. 231-236 (1988)

  45. Tan, J., Tien, J., Pirone, D., Gray, D., Bhadriraju, K. Chen, C.: Cells lying on a bed of microneedles: an approach to isolate mechanical force. PNAS (2003)

  46. Tanase, M., Biais, N. Sheetz, M.: Magnetic tweezers in cell biology. Methods in Cell Biol. (2007)

  47. Thoumine, O., Ott, A., Cardoso, O. Meister, J.-J.: Microplates: a new tool for manipulation and mechanical perturbation of individual cells. J. Biochem. Biophys. Methods (1998)

  48. Tin, S. J., Li, Q. Lin, C. T.:Manipulation and isolation of single cells and nuclei. Methods in cell Biol., pp. 78-96 (2010)

  49. Torzilli, P. A., Grigiene, R., Huang, C., Friedman, S. M., Doty, S. B., Boskey, A. L. Lust, G.: Characterization of cartilage metabolic response to static and dynamic stress using a mechanical explant test system. J. Biomech., strony pp. 1-9 (1997)

  50. Tymchenko, N., Nileback, E., Voinova, M., Gold, J., Kasemo, B. Svedhem, S.: Reversible changes in cell morphology due to cytoskeletal rearrangements measured in real-time by QCM-D. Biointerphases (2012)

  51. Voinova, M. V., Rodahl, M., Jonson, M. Kasemo, B.: Viscoelastic acoustic response of layered polymer films at fluid-solid interfaces: Continuum Mech. Approach. Physica Scripta, pp. 391-396 (1999)

  52. Wang, N., Butler, J. Ingber, D.: Mechanotransduction across the cell surface and through the cytoskeleton. Science (1993)

  53. Yang, Y., Qu, X., Luo, Y., Yang, A.: Optical. Electronic Materials and Applications, Chongqing, China (2011)

    Google Scholar 

  54. Yu, H. Marshall, D.: Microfluidics for single cell analysis. Current Opinion in Biotechnol. (2012)

  55. Zhang, H. Liu, K.-K.: Optical tweezers for single cells. Interface, pp. 671-690 (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz Lekszycki.

Additional information

Communicated by Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Branecka, N., Lekszycki, T. Experimental methods of living cells mechanical loading: review. Continuum Mech. Thermodyn. 35, 1165–1183 (2023). https://doi.org/10.1007/s00161-022-01099-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-022-01099-3

Keywords

Navigation