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Abstract In material modeling, when dealing with diffusion at large deformations, there are usually two
different variants for the diffusion flux: an isotropic law in the current placement and an isotropic law in the
reference placement. The first one causes diffusion behavior, which is independent from the initial shape of the
body, i.e., it causes a deformation-independent behavior. The second one relates the diffusion solely to the initial
shape of the body, which results in a deformation-dependent behavior in the current state. In most of the works
in the literature, one of these two possible formulations is chosen arbitrarily. While the modern description
of diffusion at large deformations mostly evolved in the last two decades, to our best knowledge, there are
no works which discuss or motivate the choice for one of these two versions really in detail. In the present
article, we approach the motivation for the choice of the two different types of diffusion flux formulations. We
illustrate their characteristics and discuss their application under different circumstances. It is important to note
that the deformation dependency which arises from choosing the isotropic reference placement formulation is
quite specific and strongly differs from the actual behavior of many materials. We investigate such a case with
a more individual deformation dependency based on a very simple artificial microstructure. We determine the
properties on the macroscale using representative volume elements within numerical homogenization.

Keywords Diffusion · Finite strain · Inhomogeneous material · Microstructures

1 Introduction

Diffusion is quite important when trying to understand the behavior of materials which are exposed to different
environmental conditions. Typically, gases diffuse into surface zones of machine parts and lead to chemical
aging. In some cases, especially at high temperatures or when dealing with polymer materials, a large defor-
mation framework can be necessary. When modeling a process with an isotropic diffusion law, one has to
choose whether the material is supposed to behave isotropic in the reference placement or isotropic in the
current placement. The diffusion can be deformation dependent or deformation independent as the result of
this choice.

Diffusion or mass transport in the presence of large deformations is mostly known from polymer materials.
Often, this is considered in the context of swelling due to the intrusion of small molecules. For polymeric
solids, Rajagopal [1] created an overview on articles dealing with diffusion at large deformations. A quite
early approach can be found in the work of Durning and Morman [2] in 1993. At the beginning of the century,
further articles dealing with this were published [3–7]. Not all of the authors formulated the diffusion flux
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based on the gradient of the chemical potential, but those who did, used either the isotropic current placement
formulation or the isotropic reference placement formulation. In 2008, a quite well-known or often-cited
article was published by Hong et al. [8] which again approached coupled diffusion and large deformation in a
polymer material, or more specifically in polymeric gels. In contrast to the other works mentioned before, the
authors explicitly motivated the choice of the diffusion flux formulation in their model. They assumed isotropic
and deformation-independent diffusion behavior and implemented this with the isotropic current placement
formulation. This was adopted, e.g., by Zhang et al. [9] and Bouklas and Huang [10].

Other works, e.g., one by Doi [11] on gel dynamics, defined the mass transport based on pressure gradients
(Darcy’s law). However, for the paper at hand, we stick to formulations based on the chemical potential.

In 2010, a very detailed derivation of the equations for mass transport under large deformations was
done byDuda et al. [12]. Theywrote that their purposewas to suit a theorymorewith the original ideas of Gibbs
[13] on heterogeneous substances. They mentioned, e.g., the usage of the gradient of the chemical potential.
Similarly as some aforementioned works, they chose the diffusion law to be isotropic in the current placement.
Other important works were done by the group of Anand [14–16]. In one of their articles [14], they gave a very
detailed derivation of a large deformation diffusion theory using the isotropic reference placement formulation.
They chose this formulation as it directly follows from their derivation without making additional constitutive
assumptions. They also included a comparison with the recent works of Hong et al. [8] and Duda et al. [12].
In two articles [15,16], Anand and colleagues also approached the diffusion and oxidation underlying elastic–
viscoplastic deformations in turbine blades or high-temperature applications in general. Similar to their other
works, in these articles they used an isotropic law in reference placement. The same group also assumed such
a formulation for modeling the swelling of silicon electrodes [17,18]. Later in 2015, in an article [19], they
briefly stated that they adopt the diffusion flux formulation of Hong et al. [8] and Duda et al. [12], while in
previous works, they had preferred the isotropic reference placement formulation.

Another work that includes the isotropic current placement version was done by Drozdov [20] on the
swelling of pH-responsive cationic gels. In more recent works by other authors, the isotropic reference place-
ment formulation can be found in a formulation on the swelling of rubber [21] and on the oxidation of silicon
carbide fibers [22]. In a work on polyelectric gels [23], both formulations were shown in the theory; how-
ever, in the application part of the article, the isotropic reference placement formulation was implemented.
Another recent isotropic current placement formulation was used for electro-chemo-mechanical modeling of
ion transport [24].

The decision for a specific formulation of the diffusion flux often plays a comparatively small role in the
cited works. Most authors do not motivate their choice. Even nowadays, it does not seem to be completely
clear which formulation is the more appropriate one for specific applications.

While the cited works mostly used the isotropic diffusion flux formulations just as a small part of their
application-oriented models, there are also works which focus on the investigation of the deformation depen-
dency of the diffusion or mass transport. In one example, Masoud and Alexeev [25] determined the effective
anisotropic diffusion properties for deformed polymer networks. In another example, Markert approached
deformed high-porosity polyurethane foams [26].

In this present article, we compare the current placement formulation and the reference placement formu-
lation in detail and point out the consequences from choosing one instead of the other. Based on this, we assign
these formulations to different types of diffusion mechanisms like the movement of atoms in a crystal lattice
or the movement of particles in between molecule chains. Furthermore, the choice for the reference placement
formulation leads to a specific deformation-dependent diffusion behavior. We compare this with a complete
different deformation dependency which directly arises from a microstructure. For this, we perform numerical
homogenization for the diffusion flux within the finite element method (FEM).

2 Basics for diffusion under large deformations

In the following subsections, we introduce basic quantities like the diffusion flux or the chemical potential.
Additionally, we briefly describe diffusion mechanisms and the deformation kinematics used in this article.

2.1 Diffusion mechanisms

Large deformations do not influence all diffusion mechanisms in the same way. In this section, we want to
briefly introduce some specific cases which we later discuss in the presence of large deformations. On the
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Fig. 1 Foreign atoms in a crystal lattice (left), atoms in between molecule chains (middle), material with two phases (right)

left-hand side in Fig. 1, we illustrate an impurity as a substitutional atom in a crystal lattice as well as a much
smaller interstitial atom. The diffusion of both impurity atoms is based on changing places in the crystal lattice.
This plays a role for impurities which can influence the properties of, e.g., steel [27]. In the middle drawing,
the single atoms (representing also small gas molecules) can move quite freely within long molecule chains
which need to be bypassed. One example is diffusing oxygen in polymers, which results in chemical reactions
as a part of aging processes. This leads to embrittlement and changed properties in general [28]. The third
drawing illustrates a material with two solid phases which can provide different properties for a diffusing gas.
The phase distribution determines the effective behavior on a larger scale.

2.2 Deformation

Weuse a typical continuummechanics notation. It contains the symbolBR for a body in the reference placement.
In the current placement, it is B which, in contrast to BR , can change over time. The deformation gradient
is F = Grad(x) = ∂x

∂X . Here, x are spatial coordinates, while X denote material coordinates. The capital letter
in the gradient operator indicates the usage of partial derivatives w.r.t. material coordinates, i.e., using the
Lagrangian description. Lower case letters, i.e., grad(. . . ), include partial derivatives w.r.t. spatial coordinates,
using the Eulerian description. The same holds for divergence operators. To reduce the amount of indices,
mostly capital letters are used for reference placement and lower case letters for current placement. This also
holds for volume increments which are related via dv = det(F)dV . In some cases, the distinction is pointed
out by the index ‘R’. In the whole paper, an orthonormal basis is used with {e1, e2, e3} in the Euclidean
space. Since we solely apply homogeneous deformation fields and, additionally, here, we are not interested in
stress analysis, the balances of linear and angular momentum and a specific mechanical material law are not
introduced.

2.3 Conservation of mass

A substance in the domain B has the massM and the mass density ρ. The temporal change of the mass, Ṁ =
dM
dt , is equal to the change of the integral of ρ over B. This change is nonzero for nonzero mass fluxes h
leaving or entering the domain over its boundary ∂B,

Ṁ = d

dt

(∫
B

ρ dv

)
= −

∫
∂B

h · da. (1)

Typically, a positive flux h quantifies mass leaving the domain, which, here, results in the minus sign for the
case of a surface increment vector da which points outward.M is proportional to the amount of substanceN
(i.e., the number of atoms or molecules divided by the Avogadro’s number). The mass density ρ and the mass
flux h are proportional to the molar concentration c and the molar flux j, respectively. Since they all share the
molar mass as the proportionality factor, we can divide Eq. (1) by it and get

Ṅ = d

dt

(∫
B
c dv

)
= −

∫
∂B

j · da. (2)

The time derivative of the integral term is

d

dt

(∫
B
c dv

)
=

∫
BR

ċ det(F) + c ˙det(F) dV =
∫
B
ċ + c div(ẋ) dv. (3)
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The overline is used to clarify that the dot is applied to thewhole expression det(F). In Eq. (3), we first converted
the domain to the reference placement having a volume which is not time dependent. Then, the product rule is
applied and the conversion is reversed. Applying the divergence theorem to the right-hand side in Eq. (2) and
combining it with the concentration terms of Eq. (3) give

∫
B
ċ + c div(ẋ) dv = −

∫
B
div(j) dv. (4)

In reference placement, there is no need for conversion of the volume and no product rule needs to be applied.
We get

∫
BR

Ċ dV = −
∫
BR

Div(J) dV . (5)

Later, we need a local version of Eq. (4). We can write

ċ + c div(ẋ) = − div(j) (6)

which simplifies for the equilibrium state to

div(j) = 0. (7)

2.4 Chemical potential and diffusion flux

The chemical potential μ can be derived from an energy imbalance [29],
∫
BR

ψ̇R − P · Ḟ − μĊ + Grad(μ) · J dV ≤ 0. (8)

For convenience, we use the reference placement with the Helmholtz free energy density ψR and the first
Piola–Kirchhoff stress tensor P. Applying the chain rule on ψR which depends on F and C , then rearranging
terms yields

∫
BR

(
∂ψR

∂F
− P

)
· Ḟ −

(
∂ψR

∂C
− μ

)
Ċ + Grad(μ) · J dV ≤ 0. (9)

For arbitrary Ḟ and Ċ , we can deduce relations for the stress tensor and for the chemical potential. From the
latter one, we get

μ = ∂ψR

∂C
. (10)

Based on the remaining third term in Eq. (9), the diffusion flux can be related to the gradient of the chemical
potential in the specific form [29,30]

J = −MGrad(μ). (11)

The second-order tensor M is usually called mobility tensor. To satisfy the inequality, it must be positive
semi-definite. Local differences of the chemical potentials in neighboring points drive the diffusion. Vectorial
fluxes can be transformed with [31]

J = det(F)F−1j. (12)

Based on this, for the third term in Eq. (9), we can perform the transformation
∫
BR

Grad(μ) · J dV =
∫
BR

(
grad(μ)F

)
·
(
det(F)F−1j

)
dV
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=
∫
B
grad(μ) · j dv, (13)

to analogously arrive at the relation for the current placement flux

j = −m grad(μ) (14)

with another second-ordermobility tensorm. For chemical potentialswhich solely depend on the concentration,
we get

j = −m
∂μ

∂x
= −m

∂μ

∂c

∂c

∂x
= −d grad(c) with d = ∂μ

∂c
m, (15)

J = −M
∂μ

∂X
= −M

∂μ

∂C

∂C

∂X
= −DGrad(C) with D = ∂μ

∂C
M (16)

using the chain rule. In this article, we also use the diffusion coefficient tensorsd andD. Note that couplings like
concentration-dependent elastic properties or concentration-dependent volume changes can lead to additional
variables in μ which then generate additional gradient terms.

3 Different formulations of isotropy

Both formulations, Eqs. (11) and (14), can imply the same material behavior. The difference results from the
choice ofm andM. To clarify this, we discuss the isotropic case for both fluxes. Using the scalar mobilities m
and M besides the identity tensor 1, we can write

m = m1 → j = −m grad(μ) (17)

M = M1 → J = −M Grad(μ). (18)

WeuseEq. (12) for a pullbackof theflux j and for a push-forwardof the reference placementfluxJ.Additionally,
we use Grad(. . . ) = FT grad(. . . ) and the inverse version of this and get

j = −m grad(μ) → J = det(F)F−1j

= −m det(F)
(
FTF

)−1

︸ ︷︷ ︸
=:M̃

Grad(μ), (19)

J = −M Grad(μ) → j = 1

det(F)
FJ

= − M

det(F)
FFT

︸ ︷︷ ︸
=:m̃

grad(μ). (20)

New possibly anisotropic mobility tensors m̃ and M̃ emerge. They correlate with the inverse of the right
Cauchy–Green tensor, C−1 = (FTF)−1 and the left Cauchy–Green tensor, b = FFT .

The outcome of equations (11) and (14) is as follows. The Eulerian formulation is based on the gradient
using spatial points. The Lagrangian formulation is based on gradients using points which are fixed on the
material. The choice for either Eq. (17) or Eq. (18) can cause deformation dependencies. In the following, we
investigate the consequences of this choice in detail to establish a basis to clearly differentiate these effects
from another effect which includes deformation dependencies as well.

With respect to Fig. 2, we consider two hexahedral blocks: One has its shape due to a deformation (block
‘B’) and the other one is undeformed, but has the same hexahedral shape (block ‘C’). For simplicity, the
deformation is homogeneous and isochoric. Both blocks are exposed to a gas.

The crucial difference in the two formulations is that when using Eq. (17), both the blocks ‘B’ and ‘C’
develop the same gas concentration profiles. The formulation results in deformation-independent behavior.
At a specific distance from the surface, we have the same concentration value in ‘B’ and ‘C’, cf. the red
point in Fig. 2. The point is approximately at 25% of the long edge length. When we now would remove the
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A B C

Fig. 2 Illustration of different deformed and undeformed blocks with equidistant vertical dashed lines for orientation. The red
circles illustrate deformation-independent diffusion behavior, and the blue crosses illustrate deformation-dependent diffusion
behavior

deformation (which gives block ‘A’) after the diffusion process, the red point would still be at 25% of the cube
edge, but the absolute distance would be smaller.

Using Eq. (18), in contrast, will generate a different concentration profile for the deformed block ‘B’. It is
not the same as in block ‘C’ anymore. The red points do not apply here; instead, we use the blue crosses. The
behavior is deformation dependent. The concentration profile is completely based on the initial shape ‘A’, even
though we still compare ‘B’ and ‘C’. A particle which travels a distance of length L/2 from the right edge of
block ‘C’ would have made double the distance in block ‘B’. This is because a particle, which would travel a
distance of length L/2 in the initial geometry ‘A’, would reach the material coordinate located at 50% of the
edge length of the cube. This coordinate corresponds to 50% of the long edge in ‘B’.

These differences result directly from the choice, either of isotropic mobility in the current placement or
of isotropic mobility in the reference placement.

4 Assigning the formulations to different material types

In this section, we relate the current placement formulation and the reference placement formulation to different
material types or to different diffusion mechanisms, respectively.

For all following considerations, we choose a body on the macroscale. First, we assume a crystalline metal
or ceramic material and exemplify the diffusion behavior using a lattice of atoms like it is illustrated in Fig. 1 on
the left. An elastic deformation changes the distances between the lattice points. Imagine the cube ‘A’ in Fig. 2
consisting of such a lattice of atoms and an atom travels from one side of the cube to the other side of the cube.
For this, a specific amount of lattice point swaps is needed.When the same ion travels from one side to the other
side in the elastically deformed body ‘B’, the amount of lattice point swaps does not change. The lattice points
behave similar like material coordinates. It seems natural that the proper macroscopic continuum description
of this diffusion process is Eq. (18). This holds for both the substitutional lattice diffusion and the interstitial
lattice diffusion. Note that possible changes in the swapping mechanism due to a higher distance between
centers of adjacent lattice points are ignored. However, any deviations from the simplified consideration can
be covered either in the free energy functionψR , or in a possibly anisotropic mobility tensorM using the more
general Eq. (11) rather than Eq. (18).

Often, when modeling metals at large deformations, the elastic contribution is quite small and most of the
deformation can be referred to plastic deformations.We thus now assume that an elastic deformation of a metal
is sufficiently small and does not change the diffusion behavior significantly and focus on an additional large
plastic deformation. In crystal plasticity, the crystal structure changes due to dislocation glides, dislocation
climbs or other mechanisms [31]. However, as an example, having a strongly deformed, but mostly stress-
free body implies that the crystal structure has been rearranged. In such a plastically deformed case, for a
traveling atom, a larger distance would mean the need of more lattice point swaps. In this case, the distance
in the current shape of the body controls the diffusion behavior. The initial shape and thus the deformation
are not relevant. The other flux definition, i.e., Eq. (17), seems to be the better choice. Again, any deviations
from this simplified consideration can be covered in the free energy function ψR , or in a possibly anisotropic
current placement mobility tensor m with Eq. (14) rather than Eq. (17). This refers to, e.g., newly emerged
crystal defects or microcracks. The influence of microcracks in terms of a macroscopic damage variable on
the diffusion behavior was investigated in several works [32,33].
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Now, referring to the middle drawing of Fig. 1, for a second consideration, we leave the topic of crystal
lattices to focus on free atoms or molecules moving in a medium which is occupied by obstacles. As an
example, these obstacles can be long polymer chains. Here, the movement of the diffusing particles is not
restricted in a way like in the crystal structure. For a particle which is moving through the voids and gaps of
such an amorphous structure, an elastic deformation of the structure simply changes the distance which it has
to travel to cross the whole block. Like in the plastic deformed crystal lattice, the current placement type of
the diffusion flux seems to be the logical choice, i.e., Eq. (17). Deviations from the simplification, i.e., when
expecting an influence of the rearranged molecule chains on the effective diffusion behavior, once again, can
be covered in the mobility tensor m or in the free energy function ψR . Particularly, when dealing with larger
diffusing molecules in polymer materials, the process can be more complex. Just to mention one mechanism, a
deformation can enable the movement of a molecule by opening up new space between molecule chains [34].

5 Comparison of deformation dependencies

In this section, we first quantify the deformation dependency which arises from choosing the isotropic refer-
ence placement formulation. In the second part of this section, we calculate a different type of deformation
dependency which originates from the deformation of a microstructure. The same exemplary deformation
gradient is used for both considerations.

5.1 Isotropic reference placement formulation

Using Eq. (20) and rewriting the expression in terms of the gradient of the concentration, cf. Eq. (15), we get

j = − M

det(F)
FFT grad(μ) = − M

det(F)

∂μ

∂c
FFT

︸ ︷︷ ︸
=:d̃

grad(c) (21)

where d̃ is a diffusion coefficient tensor in current placement. It includes the deformation dependency which
arises from choosing the isotropic reference placement formulation as the material law. We use a deformation
which we illustrate in Fig. 2. For the orthonormal basis, the coefficient matrix of the corresponding deformation
gradient is

Fi j =

⎡
⎢⎢⎣
2 0 0

0 1√
2

0

0 0 1√
2

⎤
⎥⎥⎦ . (22)

The coefficient matrix of d̃ then is

d̃i j = M
∂μ

∂c

⎡
⎢⎣
4 0 0

0 1
2 0

0 0 1
2

⎤
⎥⎦ . (23)

Without specifying M and ∂μ
∂c , we can observe that d̃11 = 8 d̃22 = 8 d̃33 which implies a strong anisotropy in

the current state. However, this deformation dependency is very specific since it is fully determined by the push
forward in Eq. (20). The anisotropy then is the same for all materials. In the following section, we investigate
a case of a more individual deformation dependency which is significantly different.

5.2 Artificial microstructure

In the drawing on the right-hand side in Fig. 1, we show a material consisting of two different solid phases
on the microscale. Imagine that on an even smaller scale, each of these two phases behaves like it consists of
long molecule chains (middle drawing in Fig. 1). Based on our previous argumentations, the diffusion process
of a gas which is moving in these two phases is thus assumed to be deformation independent, i.e., we use the
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Fig. 3 Comparison of a deformed specimen ‘2’ and an undeformed specimen ‘3’ with the same shape. The circles indicate detail
views of an artificial microstructure which is deformed in ‘2’ and undeformed in ‘3’. In ‘2b’ and ‘3b’, representative volume
elements are shown. The microstructure is based on a red phase and a white phase

isotropic current placement formulation for both. Evenwith this foundation, the effectivemacroscopic material
properties can still be deformation dependent due to changes on the microscale when one phase allows faster
diffusion than the other one. This is similar to shapes like voids and tunnels which open up or close. In the
following, we investigate such a case by using a simple artificial microstructure.

In Fig. 3, we show three different blocks. Imagine a big sample of a material with an underlyingmicrostruc-
ture and the block ‘1’ and the block ‘3’ are cut out of this. The block ‘2’ is achieved by a deformation of block ‘1’
and has the same outer geometric shape as ‘3’. The artificial microstructure is indicated by the red and the
white regions in the detail views. Since only one is deformed, the microstructures look different. In this generic
example, we assume that both the deformation on the macroscale and the deformation on the microscale are
homogeneous. Furthermore, the white phase represents a material which provides an increased diffusivity
compared to the rest of the block. Even though these regions with increased diffusivity are solid material,
figuratively, we label them as ‘tunnel’. The low-diffusivity red region is labeled as ‘bulk’. We use

j = −k grad(c) (24)

as the flux in each phase. It is based on Eq. (15) with an isotropic diffusion coefficient tensor d = k1. The scalar
diffusion coefficient k determines the diffusivity for the tunnel material or for the bulk material, depending on
the coordinate x. For our quite arbitrary case, we use the relation ktunnel = 10 kbulk.

In Fig. 3, we also illustrate a representative volume element (RVE) for each of the blocks ‘2’ and ‘3’ and
label them as ‘2b’ and ‘3b’. To compare the fluxes inside the RVEs, in the following paragraphs, we solve the
partial differential equation Eq. (7) numerically. We insert Eq. (24) and get

0 = div(j) = − div(k grad(c)). (25)

For periodic boundary conditions [35], we can write

c(x + L) = c(x) + grad(c) L (26)

j(x + L) = −j(x), (27)

where the vectorial quantityL represents the length of periodicity. The quantity grad(c) is an effective gradient
which we apply on the RVEs. Multiplying this with L yields a concentration change from one face to the
opposite face. The minus in Eq. (27) results from the orientation of the surface normals which usually point
outward.

To compute a numerical solution of the problemwith FEM, we use the software FEAP [36]. For qualitative
rather than quantitative results, we choose a quite rough discretization with 64 × 64 × 64 hexahedral linear
elements in a uniform mesh. The material distribution is defined on the integration-point level [37–39], rather
than by fitting the element boundaries to thematerial boundaries. This engages easy implementation, especially
for rounded corners which we used to replace any sharp corners inside the RVE to avoid flux singularities.

In Fig. 4, we plot the resulting vectorial fluxes for different effective concentration gradients along the
RVEs. For the gradients in this illustration, we choose the negative e1-direction and the negative e2-direction,
each with a positive scalar value α. We omit a plot for the negative e2-direction for ‘3b’, as in this case, due to
symmetry, the results would be just a rotated version of the shown one. For ‘2b’, we consider both directions.
Having a look at the plot on the left-hand side in Fig. 4, we can observe that along the main diffusion direction,
three segments, i.e., ‘I’, ‘II’ and ‘III’, emerge. The first one and the third one characteristically consist of a
slender region which has a high diffusivity in between a low-diffusivity area and thus localizes huge diffusion
fluxes. In segment two, the magnitudes of the diffusion fluxes are smaller, but arranged over a larger part of
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Fig. 4 Transparent material interfaces within uniform spatial distribution of diffusion flux vectors, colored and scaled with
respect to their magnitude value. Shown are the effective concentration gradient in negative e1-direction for RVE ‘2b’ (left) and
the effective concentration gradient in negative e2-direction for both RVE ‘2b’ (middle) and RVE ‘3b’ (right). A second one for
‘3b’ is dropped due to symmetry

the cross section. The transition of the diffusion flux distributions from segment to segment is smooth. We also
have such segments in the other diffusion direction, i.e., in the middle plot of Fig. 4. Here, in contrast, these
segments are small, while the transitions are more dominant. Compared to the other two plots, the segments
in the ‘3b’ RVE on the right-hand side appear to be developed moderately, i.e., less than on the left-hand side
plot and more than on the middle plot. When using effective diffusion properties to represent the diffusion
behavior in the RVEs, we can observe an analogous order. In the following, we quantify these properties by
performing homogenization.

Following a basic numerical homogenization procedure for vectorial fluxes [35], we can write the equation

j = −d grad(c) (28)

which includes the effective flux j and the effective diffusion coefficient tensor d besides the already introduced
effective gradient. After performing an FEM simulation, we can calculate j by volume averaging the flux field.
Using different effective gradients then allows to determine d for a specific RVE with Eq. (28). For this, we
use the gradients αe1, αe2, αe3 and combinations like α(e1 + e2). For α, we use 1 mol

μm4 which is concentration
per length scale. Due to linearity, a ten times bigger gradient would lead to a ten times bigger flux which then
gives the same d. The edge lengths of the cube ‘3b’ are 1 μm. The deformed edge lengths, i.e., those of ‘2b’,
are 2 μm and 0.707 μm according to Eq. (22).

The resulting coefficient matrices for our chosen basis are

d
2b
i j ≈ ktunnel

⎡
⎣0.496 0 0

0 0.412 0
0 0 0.412

⎤
⎦ (29)

and

d
3b
i j ≈ ktunnel

⎡
⎣0.426 0 0

0 0.426 0
0 0 0.426

⎤
⎦ . (30)

Note that other relations than ktunnel = 10 kbulk will give different results. With respect to Eq. (29), we can
observe that the diffusion flux coefficient tensor for the specific deformed microstructure in ’2b’ of Fig. 3 is

clearly anisotropic with d
2b
11 = 1.2 d

2b
22 = 1.2 d

2b
33. In Eq. (30), we can observe an isotropic structure.
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The deformation dependency, which results here from themicrostructure, has a completely different degree
compared to the one, which is implied by the isotropic reference placement formulation in Sect. 5.1 which has
the huge anisotropy d̃11 = 8 d̃22 = 8 d̃33.

We only performed this procedure for one specific deformation gradient. Others can be used to determine

the tensor d
2b

as a function of F. Then, d
2b

can be inserted in Eq. (15) to use the specific behavior in a
macroscale computation.

6 Conclusion

As described in “Introduction”, the current literature on diffusion at large deformations lacks in detailed
motivations for choosing a specific diffusion flux formulation. Often one is interested in a simple and thus
isotropic material law. For this, however, usually one has to choose between an isotropic current placement
formulation or an isotropic reference placement formulation. In a deformed body, the latter one leads to a
specific deformation dependency which is entirely determined by a push forward of the material law. The
other one gives deformation-independent behavior. We discussed these two formulations and related them to
different diffusion mechanisms under large elastic deformations. We think that for metals or ceramics, or more
specifically, in the presence of lattice diffusion, the isotropic reference placement is the appropriate choice under
large deformations. However, the elastic deformation is usually quite small in comparison with possible plastic
deformations, e.g., in metals. For such cases with small elastic deformations and large plastic deformations, the
isotropic current placement formulation can be more appropriate. Based on our considerations, we also state
that this formulation is reasonable for the diffusion of particles in amorphous structures which coincides with
the choice of Hong et al. [8]. However, these isotropic formulations are simplifications, and thus, sometimes,
adjustments in the free energy function and in the mobility are necessary, which can lead to anisotropic
formulations. This can involve a deformation dependency which is individual and thus usually different from
the one which arises from choosing the isotropic reference placement formulation. We used an exemplary
deformation gradient to compare these kinds of deformation dependencies. In our example, themore individual
one originated from an underlying simple artificial microstructure. For this, we homogenized the diffusion
properties using RVEs. The resulting properties differ strongly from the properties, which result from the
isotropic reference placement formulation.
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