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Abstract The phase-field approach has proven to be a powerful tool for the prediction of crack phenomena.
When it is applied to inelastic materials, it is crucial to adequately account for the coupling between dissipative
mechanisms present in the bulk and fracture. In this contribution, we propose a unified phase-field model for
fracture of viscoelastic materials. The formulation is characterized by the pseudo-energy functional which
consists of free energy and dissipation due to fracture. The free energy includes a contribution which is related
to viscous dissipation that plays an essential role in coupling the phase-field and the viscous internal variables.
The governing equations for the phase-field and the viscous internal variables are deduced in a consistent
thermodynamic manner from the pseudo-energy functional. The resulting model establishes a two-way cou-
pling between crack phase-field and relaxation mechanisms, i.e. viscous internal variables explicitly enter the
evolution of phase-field and vice versa. Depending on the specific choice of the model parameters, it has flex-
ibility in capturing the possible coupled responses, and the approaches of recently published formulations are
obtained as limiting cases. By means of a numerical study of monotonically increasing load, creep and relax-
ation phenomena, rate-dependency of failure in viscoelastic materials is analysed and modelling assumptions
of the present formulation are discussed.

Keywords Phase-field · Fracture · Inelastic material · Viscoelasticity · Dissipation

1 Introduction

Materials which show rate-dependent behaviour are relevant for a large variety of engineering applications, cf.
for instance [1,2]. In order to optimise the design and reduce experimental effort, the computational modelling
and simulation of crack phenomena in rate-dependent materials owe to the dramatically increasing interests.
In particular, an adequate prediction of combined fracture and viscous mechanisms that depend on the time
scale of loading is highly complex.

1.1 The phase-field approach to brittle fracture

For the modelling of crack phenomena, the phase-field approach to fracture has become a well-established
concept. This is mainly due to its capability to predict crack patterns which are not a priori known and to
simulate crack growth without the need for remeshing. Originally, the method bases upon the variational
formulation of quasi-static brittle fracture of Francfort and Marigo [3], who recasted the Griffith criterion [4]
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for crack propagation into an energy minimisation problem. Bourdin et al. [5,6] introduced a regularisation
of the underlying energy functional. The key idea of this approach is a diffuse crack representation, i.e. the
crack surface is described by an auxiliary field variable which continuously varies from the intact to the fully
broken material state. In general, this auxiliary variable is referred to as phase field. In other words, cracks
are no longer seen as sharp discontinuities, but approximated over a finite length scale �c. Furthermore, the
loss of stiffness that comes along with failure is expressed by means of a degradation function depending on
the phase-field. For small �c, the regularised functional �-converges against the sharp formulation [7], i.e. the
fundamental theory of Griffith is recovered. Based upon the diffuse crack representation, phase-field models
of brittle fracture have been proposed which include several advancements and a variety of improvements, see
[8–10] and [11], or [12,13], inter alia. For a detailed review on different formulations for brittle fracture at
small strains, the reader is referred to [14].

1.2 Phase-field models for inelastic materials

Rate-independent material behaviour.More recently, the phase-field approach is extended to materials which
undergo an irreversible deformation before failure. In the literature, different modelling approaches to ductile
fracture are introduced. For a detailed comparison of several formulations in the small strain context, see [15].

A first attempt to describe brittle fracture of elasto-plastic solids is made by Duda et al. [16]. Although
the inelastic permanent deformations are considered, the coupling between plastic deformation and damage is
not taken into account. However, the implementation of such a coupling is crucial if typical crack phenomena
which are experimentally observed in ductile materials shall be reproduced, cf. for instance [17].

For this purpose, a non-energetic ductile fracture driving force based on the accumulated plastic strain is
introduced by Miehe et al. [18,19]. Ambati et al. [17,20] considered an enhanced degradation function which,
in addition to the phase-field variable, depends on plastic deformation. This coupling resulted in a distinct
plastic contribution to the fracture driving force. Yin and Kaliske [21] recently adapted a concept which is
well-established in the phase-fieldmodelling of fatigue, cf. [22–24], to the description of ductile failure. Instead
of defining a fracture driving force related to plastic deformation, the fracture toughness is assumed to decrease
with increase of inelastic deformations. In all these contributions, plastic deformations play an essential role
during the evolution of the phase-field variable. However, the phase-field variable does not explicitly influence
the evolution of inelastic strain.

In several other models of ductile fracture, a total energy functional is considered in which both elastically
stored energy and plastic work, or plastic energy, are assumed to be affected by fracture. In other words,
degradation functions decrease the respective contributions to the energy functional. Consequently, the plas-
tic energy which actually corresponds to the dissipation due to inelastic deformation and possibly includes
hardening terms, naturally becomes part of the fracture driving force which is deduced from the functional.
Alessi et al. [25,26] introduced this approach in the context of gradient damage models. Related phase-field
rate-independent fracture models are proposed in [27,28]. Based on similar considerations, and furthermore,
in order to capture the influence of failure on the evolution of inelastic deformation, a yield condition which
depends on the phase-field is postulated by Borden et al. [29]. To the best of the authors’ knowledge, only
models which can be attributed to this group of formulations establish a two-way coupling between plastic
deformation and failure.

Rate-dependent material behaviour. In recent years, few efforts have been devoted to describe the rate-
dependent material fracture behaviour using the phase-field fracture models.

A phase-field fracturemodel for viscoelastic solids is proposed by Schänzel [19]. Considering a viscoelastic
materialmodel and a phase-field driving force based on a generalised principal stress criterion, fracture response
in rubber polymers is investigated. Furthermore, the viscosity assumed for the evolution of the phase-fieldwhich
originally is solely numerically motivated, cf. [9,10], is understood as a material parameter and identified from
experimental data.

Similar to themodels of fracture in rate-independent materials which are based on energetic considerations,
more recently, some formulations adapted to a rate-dependent response of the bulk were proposed. Shen et al.
[30] presented a phase-field model for viscoelastic solids in the small strain context. Therein, the evolution
equation for the viscous internal variables is assumed a priori and an energy functional which incorporates a
stored viscous free energy is postulated. This term corresponds to a portion of accumulated viscous dissipation
and is degraded in the same manner as equilibrium and non-equilibrium part of the elastic strain energy den-
sity. From the free energy functional, the phase-field equation is deduced by means of a microforce balance.
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Loew et al. [31,32] considered a finite linear viscoelastic material model [33] which does not allow to distin-
guish between the non-equilibrium part of actually stored strain energy and accumulated viscous dissipation.
Accordingly, a viscous contribution to the free energy is defined as the sum of the two quantities and assumed,
as well as the equilibrium part of elastic strain energy, to be degraded in case of fracture. A similar finite linear
viscoelastic material model was investigated by Liu et al. [34]. Yin and Kaliske [35] combined the phase-field
approach to fracture with a model of finite viscoelasticity [36]. Unlike [30] or [31,32], in [35], the effectively
stored strain energy is assumed to promote crack propagation, i.e. a dissipative contribution is not accounted to
the crack driving force. Recently, a similar formulation is adopted by Brighenti et al. [37] based on statistical
mechanics-based equations for the response of the bulk material.

While the aforementioned models address a rate-dependent response of the bulk material, Miehe et al.
[18] and later Yin et al. [38] studied a strain rate-dependent resistance against fracture combined with a
rate-independent model of deformation.

1.3 Intent of the present contribution

The aim of the present contribution is to present a unified, thermodynamically consistent phase-field model
for fracture of viscoelastic solids. With the central purpose of describing a two-way coupling between damage
and viscous effects, we introduce an energy functional which consists of the free energy that includes a
contributionwhich is related to viscous dissipation, and the fracture contribution. From the proposed functional,
the governing equations of the phase-field and viscous internal variables are derived in a thermodynamic
consistent manner. Depending on the specific choice of the degradation functions and model parameters,
respectively, the modelling approaches of [30–32] or [35,37] can be retained as limiting cases of the present
model. With this unified formulation at hand, we study the coupling between viscous effects and fracture.

This paper proceeds as follows. In Sect. 2, the proposed phase-fieldmodel of fracture in viscoelasticmaterial
and its thermodynamic consistency proof are illustrated. Furthermore, algorithmic aspects are addressed. In
Sect. 3, the analysis of coupling between viscoelastic material response and fracture by means of numerical
examples is presented. The paper concludes with a short summary and an outlook regarding the future work.

Within this paper, the summation convention applies for tensor quantities. In index notation, partial deriva-
tives are denoted by (◦), j = ∂◦/ ∂x j .

2 Derivation of the unified phase-field model

In this section, the unified phase-field description of fracture in viscoelastic materials is presented. A general
energetic formulation of fracture adapted to viscoelastic materials is presented first. Subsequently, the specific
constitutive assumptions for the bulk are specified and thermodynamic consistency is proven. Finally, governing
equations and algorithmic aspects are provided. Without loss of generality, for the present contribution, we
limit ourselves to the small strain setting and neglect inertia effects.

2.1 The energetic approach to fracture

The hypothesis of Griffith [4] defines the starting point for the phase-field approach to fracture. Dissipation due
to crack growth is referred to as surface energy which is assumed to increase proportionally to newly created
crack surface. In a simplified setting, crack growth is assumed to take place if the strain energy stored in the
material equals the amount of surface energy corresponding to the increase in fracture surface. Following [3],
this fundamental theorem can be reformulated by means of an energy functional

Π =
∫

Ω\Γ
ψ dV +

∫

Γ

Gc dA =: Π sd + Π fr (1)

wherein ψ and Gc denote the density of free energy stored in the material and the fracture toughness, respec-
tively. The two constituents to the functional Π correspond to stored free energy Π sd and dissipation due to
formation of crack surface or surface energy Π fr . The domain under consideration is denoted by Ω ⊂ R

N

and Γ ⊂ R
N−1 is the crack surface. For sake of brevity, terms arising from external loads are omitted.
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(a) (b)

Fig. 1 Crack representation within a domain Ω with boundary ∂ Ω . The originally sharp crack Γ (a) is approximated by means
of the phase-field variable d which describes a smooth transition between the intact (d = 0) and fully broken (d = 1) material
state (b). The diffuse crack can be assigned a characteristic width 2 �c

In order tomake this energetic approach to fracture accessible to numerical implementation, a regularisation
of the functional Π is introduced [5]. For this purpose, a phase-field variable

d : R
N → [0, 1] (2)

which continuously varies from the intact (d = 0) to the fully broken (d = 1) material state is defined. Using
this variable, the crack surface is approximated by means of the functional

Γ�c =
∫

Ω

γ�c dV (3)

with the crack surface density 1

γ�c = 1

4 �c

[
d2 + 4 �2c d,k d,k

]
, (4)

cf. [9], which incorporates the regularisation parameter �c. This parameter defines the characteristic width
of the crack approximated by the phase-field variable d . A part from its geometrical role, it also influences
the critical stress and strain and can be seen as material parameter, cf. [40]. Figure 1 illustrates the concept
of diffuse crack approximation in comparison to the sharp representation. With the diffuse approximation of
crack surface at hand, dissipation due to crack evolution can be expressed as

Π fr
�c

=
∫

Ω

γ�c Gc dV :=
∫

Ω

Φ dV , (5)

wherein Φ is defined as density of fracture dissipation. In order to account for the decrease of free energy due
to evolution of cracks, the degradation function

g : [0, 1] → [0, 1], d �→ g(d) (6)

is defined which has to fulfil the conditions

g(d = 0) = 1 , g(d = 1) = 0 ,
∂g

∂d
≤ 0 ,

∂g

∂d

∣∣∣∣
d=1

= 0 . (7)

Based on the degraded free energy density

Ψ = g(d) ψ , (8)

the regularised functional of free energy is given by

Π sd
�c

=
∫

Ω

Ψ dV , (9)

1 For the crack surface density γ�c , several choices are possible, cf. [39]. Here, the expression typically referred to as AT-2
model is considered.



A unified phase-field model of fracture 1911

and the regularised total energy, or pseudo-energy, functional reads 2

Π�c = Π sd
�c

+ Π fr
�c

=
∫

Ω

Ψ + Φ dV . (10)

In case of linear elasticity, it can be discussed that Π�c γ -converges to Π for �c → 0, see e.g. [41]. For γ�c

according to (4) and a specific choice of the degradation function g(d), an analytical proof of γ -convergence
can be provided, cf. [7].

Generalisation for inelastic material response. In case of an non-elastic response of the bulk material, in the
total energy functional Π�c , an expression for the free energy density Ψ can be considered which adequately
accounts for coupled inelastic deformations. For the description of combined fracture and viscousmechanisms,
the proposed free energy density functional

Ψ = gst(d) ψ st + βvi gvi(d) ψvi =: Ψ st + Ψ vi (11)

consists of two essential constituents: Naturally, the first one is the effectively stored strain energy which,
in case of damage, is decreased by means of the degradation function gst(d). In addition, a free energy
contribution related to accumulated viscous dissipation is assumed. The definition of ψ st and ψvi can take any
form suitable for describing viscoelastic deformations. The specific definition considered in this work is given
in Sect. 2.2. In order to keep the formulation as general as possible, similar to [29] and [30], the parameter
βvi ∈ [0, 1] is introduced as a weight of the contribution related to inelastic deformation. For the viscous term,
the degradation function gvi(d) is prescribed. In contrast to e.g. [30], coincidence of gst(d) and gvi(d) is not a
priori supposed. Therefore, the present formulation enables to account for an influence of damage on energy
storage and dissipative viscous mechanisms, and vice versa, which may be not completely identical.

The free energy density contribution Ψ vi in (11), related to viscous dissipation, can be interpreted as fol-
lows. Firstly, mechanical energy can be released due to the relaxation mechanisms present in the viscoelastic
material, where an amount of strain energy which has been set free can convert into heat, i.e. lead to an increase
in temperature. As experimental evidence has shown that resistance against failure of many rate-dependent
materials decreases with temperature, see e.g. [42,43], viscous dissipation can be assumed to promote fracture.
By means of proposedΨ vi, the formulation enables to capture this effect, although the thermomechanical cou-
pling is not explicitly modelled. Secondly, micro-mechanical mechanisms which lead to viscous dissipation
can directly diminish the amount of strain energy that has to be stored in the material so that crack propagation
can take place. Consider, for example, rubbery polymers under tensile loading. Viscous dissipation can be
attributed to relaxation, i.e. reorientation and disentanglement of chain segments. These mechanisms go along
with a redistribution of loading from entangled to crosslinked polymer chains, as discussed in [19]. As a result,
in case of fracture, crosslinked chains are broken, essentially. The amount of strain energy necessary for crack
propagation thus is lowered compared to the case where no viscous dissipation has taken place, cf. [42] for
experimental results.

Choice of the degradation functions. In the literature, the quadratic degradation function

g(d) = (1 − k) (1 − d)2 + k, (12)

in which a small residual k is included in order to enhance numerical stability, is adopted frequently, cf.
for instance [5,9,27,30]. Nevertheless, several alternatives were proposed. In order to obtain a more brittle
response, quartic and cubic expressions were introduced by [44] and [45]. With the same objective, [46]
suggested an exponential function and [35,38] studied a sinusoidal expression. The functions of [45] and [46]
as well as the expressions proposed by [47,48] and [49] are parametric, i.e. they include additional parameters
which can be fitted to the physical behaviour of the material under consideration. The present formulation for
the free energy allows to apply this concept for both the actually energy storage and dissipative mechanisms
by means of gst(d) and gvi(d), separately.

Within the scope of this contribution, we focus on the development of the phase-field formulation rather
than modelling the response of a particular material. To that end, herein, the quadratic function defined in (12)
is considered for gst(d). In Sect. 3, regarding gvi(d), we study two limiting cases. Firstly, gvi(d) = gst(d) is

2 It has to be noted that in line with e.g. [9,28], dissipation due to evolution of crack surface is not assumed to contribute to
the free energy Ψ , yet included as a distinct contribution to the regularised total energy functional Π�c .
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Fig. 2 Generalised Maxwell model

assumed, wherein an identical influence of damage on energy storage and dissipative mechanisms is supposed.
Secondly, assuming that the nature of relaxation mechanisms remains unaffected even if damage compromises
the stiffness of the material, gvi = 1 = const. is set. 3

2.2 Constitutive modelling of the bulk response

For the viscoelastic behaviour of the bulk material, a generalised Maxwell model, as depicted in Fig. 2, is
adopted.
Kinematic assumptions. For the response of viscoelastic materials, often significant differences between vol-
umetric and isochoric deformation are observed, cf. [50]. Accordingly, the strain tensor

εi j = 1

2

(
ui, j + u j,i

)
(13)

is additively decomposed into the volumetric

volεi j = εpp

3
δi j (14)

and isochoric parts

ei j = εi j − volεi j . (15)

Furthermore, for each non-equilibrium branch m ∈ [1, n] of the generalised Maxwell element, the strain is
split into a viscous portion mαi j = vol

m αi j + mai j and an elastic fraction. Descriptively, volm αi j and mai j can be
interpreted as the strain of the dampers depicted in Fig. 2, while volεi j − vol

m αi j and ei j − mai j correspond to
the strain of the spring in the respective non-equilibrium branch.

Elastic strain energy density. The strain energy density Ψ st which is stored in the material is additively
decomposed as

Ψ st = gst(d)
[
ψ st,eq (

εi j
) + ψ st,ov (

εi j , mαpq
)]

(16)

where the equilibrium part is

ψ st,eq (
εi j

) = volψ st,eq (
εpp

) + isoψ st,eq (
ei j

)
(17)

and the non-equilibrium or over-stress contribution reads

ψ st,ov (
εi j , mαpq

) =
∑
m

mψ st,ov (
εi j , mαpq

)

=
∑
m

[vol
m ψ st,ov (

εi i , mα j j
) + iso

m ψ st,ov (
ei j , mapq

)] (18)

3 For a more detailed discussion of the assumption gvi = 1 = const. from a physical point of view, see Sect. 3.1.
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with either contribution additively decomposed into a volumetric and isochoric fraction. 4 For both the equi-
librium and non-equilibrium part, linear elasticity is assumed. Accordingly, the respective terms are given
by

volψ st,eq = 1

2
K eq εi i ε j j ,

isoψ st,eq = μeq ei j ei j , (19)

vol
m ψ st,ov = 1

2 (m)K
ov (

εi i − (m)α j j
) (

εpp − (m)αqq
)

and

iso
m ψ st,ov = (m)μ

ov (
ei j − (m)ai j

) (
ei j − (m)ai j

)
(20)

with K eq, mK ov > 0 and μeq, mμov > 0 denoting the corresponding compression and shear moduli, respec-
tively. 5 Note that in the above definitions, the summation convention does not apply for the index m.

Free energy contribution related to viscous dissipation. Similar to Ψ st, the dissipative contribution is decom-
posed into the volumetric and isochoric part

Ψ vi = βvi gvi(d)
∑
m

[vol
m ψvi (m α̇i i ) + iso

m ψvi (
mȧi j

)]
. (21)

Assuming constant viscosities vol
m η, iso

m η > 0, we define

vol
m ψvi = vol

(m)η

t∫

0

d (m)αi i

d τ

d (m)α j j

d τ
dτ and

iso
m ψvi = iso

(m)η

t∫

0

d (m)ai j
d τ

d (m)ai j
d τ

dτ .

(22)

The viscous termψvi can be interpreted in analogous manner to the virtually undamaged strain energy density
ψ st: Descriptively, it can be understood as the viscous dissipation which would have been accumulated over
time in the absence of damage.

2.3 Thermodynamic consistency

In order to prove that the proposed model is conform to the second law of thermodynamics, the density of
dissipation power

ḋ= σi j ε̇i j − Ψ̇ (23)

is considered which corresponds to the difference between external stress power and rate of free energy. The
Clausius–Duhem inequality

ḋ≥ 0 (24)

4 Note that within the scope of this publication, the degradation function gst(d) is assumed to degenerate the entire strain
energy density ψ st. In other words, we herein do not account for crack closure effects under compressive loading. Furthermore,
a possible contribution to ψ st due to compression can enter the fracture driving force. As we focus on simple tension-dominated
loading in Sect. 3, this simplification is admissible. However, for more complicated load cases, it can be important to define a
compression-like portion of ψ st which remains unaffected by fracture, cf. the propositions of [9,11,46].

5 In the literature, the volumetric response often is assumed to be purely elastic, see for instance the constitutive assumptions
in [30,35]. However, experimentally investigating filled elastomers, Ilseng et al. [51] have observed a significant hysteresis loop
in the stress–volume ratio curve. This effect has been assumed to arise from viscous effects. In order to keep our formulation as
general as possible, we include both volumetric and isochoric contributions to the non-equilibrium part of strain energy.
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demands a locally non-negative dissipation power. Inserting the above definition ofΨ , Eq. (11), this constraint
expands to

[
σi j − gst(d)

∂ ψ st

∂ εi j

]
ε̇i j

−
[
∂ gst
∂ d

ψ st + βvi
∂ gvi
∂ d

ψvi
]
ḋ

︸ ︷︷ ︸
ḋ
fr

−
∑
(m)

{[
gst(d)

∂ ψ st,ov

∂ (m)αi i
+ βvi gvi(d) vol(m)η (m)α̇i i

]
(m)α̇ j j

}

︸ ︷︷ ︸
volḋ

vi

−
∑
(m)

{[
gst(d)

∂ ψ st,ov

∂ (m)ai j
+ βvi gvi(d) iso(m)η (m)ȧi j

]
(m)ȧi j

}

︸ ︷︷ ︸
isoḋ

vi

≥ 0 ,

(25)

wherein ḋ
fr
and volḋ

vi
, isoḋ

vi
correspond the density of dissipation power due to crack evolution and viscous

mechanisms, respectively. Standard arguments [52,53] lead to the definition of stress

σi j = gst(d)

[
∂ ψ st,eq

∂ εi j
+ ∂ ψ st,ov

∂ εi j

]

=: gst(d)
[
0σ

eq
i j + 0σ ov

i j

] (26)

and the residual inequalities

ḋ
fr = −

[
∂ gst
∂ d

ψ st + βvi
∂ gvi
∂ d

ψvi
]
ḋ ≥ 0 , (27)

volḋ
vi = −

[
gst(d)

∂ ψ st,ov

∂ (m)αi i
+ βvi gvi(d) vol(m)η (m)α̇i i

]
(m)α̇ j j ≥ 0 ∀ m , (28)

isoḋ
vi = −

[
gst(d)

∂ ψ st,ov

∂ (m)ai j
+ βvi gvi(d) iso(m)η (m)ȧi j

]
(m)ȧi j ≥ 0 ∀ m . (29)

As the elastic constants as well as βvi are defined to be positive, and both ψ st and ψvi are quadratic, together
with (7)3,

−
[
∂ gst
∂ d

ψ st + βvi
∂ gvi
∂ d

ψvi
]

≥ 0 (30)

holds, i.e. the thermodynamic conjugate to the phase-field variable is non-negative. Accordingly, constraint
(27) reduces to

ḋ ≥ 0 , (31)

i.e. irreversibility of damage. In Sect. 2.5, the fulfilment of this constraint will be addressed.

Evolution of viscous strain. With (28) and (29), the evolution equations for the viscous internal variables are
obtained from

gvi(d) vol(m)η (m)α̇i i = −gst(d)
∂ ψ st,ov

∂ mαi i
, (32)
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gvi(d) iso(m)η (m)ȧi j = −gst(d)
∂ ψ st,ov

∂ mai j
. (33)

Note that, with 0
ms

ov
i j = 0

mσ ov
i j − 0

mσ ov
pp/3 δi j ,

− ∂ ψ st,ov

∂ mαi i
= 1

3
0
mσ ov

i i and − ∂ ψ st,ov

∂ mai j
= 0

ms
ov
i j , (34)

i.e. evolution of viscous strain is essentially related to the over-stress in the corresponding non-equilibrium
branch. In the absence of damage, i.e. gst(d = 0) = gvi(d = 0) = 1, the equations resemble the classical
linear-elastic assumption η α̇ = σ ov.

Inserting the above definitions, the residual inequalities (28) and (29) read

(1 − βvi) gvi
vol
(m)η (m)α̇i i (m)α̇ j j ≥ 0 and (35)

(1 − βvi) gvi
iso
(m)η (m)ȧi j (m)ȧi j ≥ 0 (36)

which is fulfilled for arbitrary (m)α̇i j due to (6)1 and vol
m η, isom η > 0 if βvi ∈ [0, 1].

Remark on the definition of Ψ vi. With the above constitutive equations at hand, a short remark on coherency
between the viscous contribution to free energy density Ψ vi and the time integral of stress power Dvi in
the damper elements of the non-equilibrium branches of the generalised Maxwell model is given, cf. Fig. 2.
Classically, the damper elements are assumed to account for inelastic mechanisms and Dvi is referred to
as density of accumulated viscous dissipation. Considering, exemplary, the volumetric response of a single
non-equilibrium branch m on time t , the former reads

vol
m Ψ vi = βvi gvi [d(t)] vol

m ψvi(t) = βvi gvi [d(t)] vol
(m)η

t∫

0

d (m)αi i

d τ

d (m)α j j

d τ
dτ (37)

while the latter is given by

vol
m Dvi =

t∫

0

vol
(m)σ

ov
i j (τ )

d (m)αi j

d τ
dτ = vol

(m)η

t∫

0

gvi [d(τ )]
d (m)αi i

d τ

d (m)α j j

d τ
dτ (38)

where vol
m σ ov

i j = 0
mσ ov

pp/3 δi j denotes the volumetric over stress contribution. Note that for Ψ vi(t), degradation
upon time t is assumed, while the permanently degraded over stress enters accumulated viscous dissipation
vol
m Dvi. Applying the mean value theorem, volm Dvi can be rewritten as

vol
m Dvi = vol

(m)η gvi
[
d(t̃)

] t∫

0

d (m)αi i

d τ

d (m)α j j

d τ
dτ (39)

with t̃ ∈ [0, t]. From (7) and (31), it follows

gvi [d(t)] ≤ gvi
[
d(t̃)

]
(40)

which leads, together with βvi ∈ [0, 1], to
vol
m Ψ vi(t) ≤ vol

m Dvi(t) ∀ t . (41)

Descriptively, Ψ vi recovers a certain fraction of accumulated viscous dissipation. The fact that for Ψ vi(t), in
contrast to vol

m Dvi, degradation is prescribed not before current time t , does not lead to an overestimation of
the respective fraction of volm Dvi.
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Table 1 Governing differential equations for the present model: Balance of linear momentum (a), phase-field equation (b) and
evolution equations for the viscous internal variables (c), (d). Without loss of generality, volume forces are neglected in (a). In
(c) and (d), the relaxation times vol

m T and iso
m T , respectively, are introduced

σi j,i = 0 (a)
∂ gst
∂ d ψ st + βvi

∂ gvi
∂ d ψvi + Gc

[
1

2 �c
d − 2 �cd,kk

]
= −ηf ḋ (b)

gvi(d) (m)α̇i i = gst(d) 1
vol
(m)

T

(
εi i − (m)α j j

)
with vol

m T =
vol
(m)

η

(m)
K ov (c)

gvi(d) (m)ȧi j = gst(d) 2
iso
(m)

T

(
ei j − (m)ai j

)
with iso

m T =
iso
(m)

η

(m)
μov (d)

2.4 Governing equations

The evolution of the phase-field variable is deduced from the total energy functional Π�c by means of the
variational derivative

δ Π�c

δ d
= −ηf ḋ with d,k nk

∣∣
∂ Ω

, (42)

where ηf is introduced as a kinetic fracture parameter for purely numerical purposes, i.e. for enhancing the
stability of the solution scheme, cf. [27,54]. The constant ηf is chosen such small that its influence on the
simulation results vanishes which is verified by means of a comparative study of different values. 6 Inserting
the definition of Ψ (11) into Π�c , (42)1 takes the form

∂ gst
∂ d

ψ st + βvi
∂ gvi
∂ d

ψvi + Gc

[
1

2 �c
d − 2 �cd,kk

]
= −ηf ḋ (43)

from which it becomes clear that, depending on the specific choice of βvi and gvi, fracture is driven by stored
strain energy and the free energy contribution related to a portion of accumulated viscous dissipation. Note that
for gvi(d) = gst(d), the phase-field equation resembles the formulation of [30], while the assumptions on the
fracture driving force of [31] and [35] are preserved for gvi(d) = gst(d) and βvi = 1 or βvi = 0, respectively.
The governing differential equations of the proposed model are summarised in Table 1.

2.5 Algorithmic aspects

Weak forms of the governing equations. For the derivation of the weak forms of balance of linear momentum
and phase-field equation, the test functions δ u j ∈ Wu and δ c ∈ Wc are defined with

Wu := {
δ u j ∈ H

1(Ω)
∣∣ δ u j = 0 ∀ x j ∈ ∂ Ωu j

}
and

Wc :=
{
δ c ∈ H

1(Ω)

∣∣∣ δ c = 0 ∀ x irrBCj

}
.

(44)

Therein, H
1 is the Sobolev space of functions possessing square integrable derivatives and Ωu j denotes the

part of the boundary where the displacement ū j is prescribed, cf. [55]. Then, (a) and (b) from Table 1 are
multiplied by δ u j and δ c, respectively. Integration by parts and making use of the divergence theorem yields

∫

Ω

σi j δ ui, j dV −
∫

∂ Ωt j

t̄ jδ u j dA = 0 , (45)

6 As it is outlined below, we adopt a staggered solution strategy. Due to the robustness of this solution scheme, the viscous
regularisation of crack growth by means of ηf > 0 has indeed revealed advantageous for the simulation of creep failure, only.
Accordingly, ηf = 0 is considered for the most simulations presented in Sect. 3.
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∫

Ω

(
∂ gst
∂ d

ψ st + βvi
∂ gvi
∂ d

ψvi + Gc

2 �c
d

)
δ c − 2 Gc �c d,k δ c,k dV

+
∫

∂ Ω

Gc 2 �c d,k nk︸ ︷︷ ︸
= 0, cf. (42)

δ c dA = 0 (46)

where t̄ j denotes the traction vector given on ∂ Ωt j with ∂ Ωt j ∪ ∂ Ωu j = ∂ Ω and ∂ Ωt j ∩ ∂ Ωu j = ∅, and
nk is the outward-pointing unit normal vector on ∂Ω . Time discrete forms of (46) and the evolution equations
(c) and (d) from Table 1 are obtained by approximating the respective rates using an Euler backward scheme.
For spatial discretization, Galerkin’s method is applied. Then, the discretized equations are implemented into
a standard finite element framework.

Irreversibility of fracture. In order to guarantee irreversibility of fracture, we follow the approach of [10,56]
and apply Dirichlet boundary conditions to the phase-field on all nodes

x irrBCj ∈ {
x j ∈ Ω

∣∣ ∃ τ ∈ [0, t] : d(x j , τ ) ≥ dcrit
}

(47)

where the phase-field variable has reached a critical value dcrit:

d(x irrBCj )
!=1 ∀ x irrBCj . (48)

Alternatively, in line with [9], one may introduce a history variable which comprises the maximum of virtually
undamaged fracture driving force which has occurred and consider a phase-field equation which is altered
accordingly. In contrast to the former approach for crack irreversibility, the latter enables to fulfil constraint
(31) exactly, see [9]. However, it has the important disadvantage that it leads to an overestimation of crack
surface, cf. [41]. Therefore, we adopt (48) and set dcrit = 0.97 unless stated differently.

Staggered solution strategy. Due to its robustness, the staggered solution strategy widely spread in the context
of phase-field modelling, cf. [9,14], is adapted. For every increment, initially, the phase-field variable is frozen
and the update of the displacement field is determined from the balance of linear momentum. Subsequently,
the evolution of phase-field is evaluated assuming constant displacements. In order to avoid inaccuracy of the
numerically determined solution due the decoupled approach, multiple staggered iterations are performed at
each increment and a convergence criterion for the staggered scheme is established based on the maximum
change of the nodal degrees of freedom. The time step is adaptively controlled by means of a heuristic method.

3 Numerical examples

In this section, numerical examples are presented in order to analyse the fundamental principles of the present
model and to discuss the consequences of different modelling assumptions. Firstly, the local response of the
material is studied with a focus on the coupling between viscous mechanisms and damage. Subsequently,
crack propagation within a domain where stress localisation is triggered by a preexisting notch is considered.
While the presented examples can serve for qualitative verification and a better understanding of the coupling
between fracture and rate-dependent response of the bulk material, the comparison with experimental results
goes beyond the scope of this publication.

For all the numerical simulations, a two-dimensional setting is considered. Plane-strain conditions are
assumed. Unless stated differently, the kinetic fracture parameter ηf is set to zero, i.e. no viscous regularisation
of crack growth is considered.

3.1 Local response of the material under monotonic loading

In order to study the local material response, a homogeneous domain of unit size under tension is inves-
tigated. Displacement boundary conditions are applied as depicted in Fig. 3 which leads to spatially constant
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Fig. 3 Simulation setup for the investigation of the local material response

Fig. 4 Influence of the viscous contribution to the fracture driving force on the rate-dependent local response of the material.
Stress–strain curves for gvi(d) = gst(d) and βvi = 0 (solid lines) or βvi = 1 (dash-dotted). For ε̇ = 1 s−1 and ε̇ = 10−6 s−1, Ψ vi

vanishes. Accordingly, the respective curves for βvi = 0 and βvi = 1 coincide

field variables within the domain under consideration. For different choices of gvi and βvi, respectively, and
different loading rates, the response of the material is compared.

In order to facilitate discussion, a generalised Maxwell model with only one non-equilibrium branch is
considered. Identical relaxation times vol

1 T = iso
1 T = 1 s are assumed and K eq = 1K ov = 175kN/mm2,

μeq = 1μ
ov = 80.77kN/mm2, Gc = 2.7N/mm, �c = 0.5mm, k = 10−5 are defined. Various strain rates

ε̇ ∈ [10−8, 10] s−1 are investigated. In what follows, the scalars σ , ε and α denote the normal components of
the respective tensor quantities in the direction of external load.

Influence of viscous dissipation on damage.With the goal to investigate the influence of the viscous contribution
to the fracture driving force, we set gvi = gst and compare the two limiting cases βvi ∈ {0 ; 1}. For a
representative selection of strain rates ε̇, the corresponding stress–strain curves are depicted in Fig. 4.

Regardless of the choice of βvi, the overall rate-dependency of thematerial response coincides qualitatively.
As in classical viscoelasticity, for very high strain rates, the stress–strain curves converge against the upper
elastic limit corresponding to the instantaneous moduli
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Fig. 5 Rate-dependency of the local material response. Accumulated viscous dissipation Dvi for gvi(d) = gst(d) and βvi = 0.
The curves for both ε̇ = 1 s−1 and ε̇ = 10−6s−1 approximately coincide with the axis of abscissae. For gvi(d) = gst(d) and
βvi = 1 as well as for gvi = 1, qualitatively similar curves are obtained which are not depicted

(a) (b)

Fig. 6 Rate dependency of the local material response. Free energy� in case gvi(d) = gst(d) for βvi = 0, i.e. Ψ vi = 0, (a—solid
lines) and βvi = 1 (b—dash-dotted lines)

K inst = K eq +
∑
m

mK
ov and μinst = μeq +

∑
m

mμov ,

respectively. For low ε̇, the material response likewise approaches the lower elastic limit where the contribution
of the non-equilibrium branches to the resistance of the material vanishes, i.e.

K |ε̇→0 = K eq and μ|ε̇→0 = μeq .

It becomes clear from Fig. 5, almost no viscous dissipation takes places until failure for very large as well as for
very low strain rates. Accordingly, for both βvi = 0 and βvi = 1, there is no notable viscous contribution Ψ vi

to the free energy. Independent of βvi, in the limiting cases, the respective stress–strain curves thus coincide.
For intermediate strain rates, the critical stress continuously increases with ε̇, whereas the critical value of

strain decreases. This phenomenon arises from the fact that the effective stiffness of the viscoelastic material
under consideration is the higher, the larger the rate of strain. Accordingly, the amount of energy stored in the
material at a certain level of deformation is more significant the higher ε̇. In contrast, the maximum amount
of free energy density which can be stored remains constant, cf. Fig. 6.

When there is a notable amount of viscous dissipation, i.e. at intermediate strain rates, the viscous contribu-
tion to the crack driving force leads to lower critical values of both stress and strain compared to the case where
only elastically stored energy is assumed to promote fracture. For the material parameters under consideration,
the influence of βvi is not prominent. Regarding the critical stress, the relative difference between the respective
values for βvi = 0 and βvi = 1 does not exceed 20 % forany ε̇.
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Fig. 7 Local response of the material for different degradation functions gvi decreasing the viscous contribution to the free energy.
Stress–strain curves for gvi(d) = gst(d) and βvi = 0 (solid lines) or gvi = 1 = const. (dashed). For ε̇ = 1 s−1 and ε̇ = 10−6s−1,
Ψ vi vanishes. Accordingly, the respective curves for gvi = gst and gvi = 1 = const. coincide

As the parameter βvi does not explicitly enter the evolution equations of the viscous internal variables, the
dependency of α on ε is unaffected by the choice of βvi. Exemplary, an α-ε curve is depicted in Fig. 8a for an
intermediate strain rate and βvi = 0.

Comparison of assumptions for the degradation function gvi. For the purpose of studying the influence of
different assumptions for the degradation of the viscous contribution to the free energy, the two limiting cases
gvi = gst with βvi = 0 and gvi = 1 = const. are compared. Figure 7 depicts the respective stress–strain
curves. Regarding the overall rate-dependency of the material response, the above statements remain valid.
For intermediate ε̇, compared to gvi = gst with βvi = 0, the choice of gvi = 1 leads to slightly higher values
of critical stress. This effect can be understood by analysing the evolution of the viscous internal variable α.
To this end, α-ε and d-ε curves are depicted in Fig. 8 for either gvi and a representative, intermediate ε̇. For
gvi = gst, the phase-field eliminates from the evolution of viscous strain. Accordingly, the α-ε curves resemble
the shape which would have been obtained in classical linear viscoelasticity. The assumption gvi = gst thus
can be seen as analogy to the hypothesis of strain equivalence which can be made within the framework of
classical continuum damage models, cf. [57]. In contrast, for gvi = 1, the increase in viscous strain α slows
down with growth of the crack phase-field variable. In what follows, this effect is discussed by means of the
evolution equation for the viscous strain. Exemplary, the volumetric response is considered. For gvi = 1, (c)
in Table 1 takes the form

m α̇i i = gst(d)
1

vol
(m)T

(
εi i − (m)α j j

)
. (49)

It is evident that damage leads to an increase of the effective relaxation timewhich can be defined as volm T/gst(d).
From a physical point of view, gvi = 1 corresponds to the assumption that the nature of the viscous mecha-
nisms remains unaffected by fracture. For gvi = 1, the activation energy of the underlying viscous relaxation
processes is not supposed to decrease with damage whereas the stiffness of the material or the elastically stored
energy degrade. Therefore, in this case, the characteristic time scale associated with the viscous or relaxation
mechanisms is assumed to increase with damage.

In particular, when compared to the overall rate-dependency, the influence of the choice of gvi on the
response of the material has revealed to be rather small. Nevertheless, from a physical point of view, an a
priori assumption of identical degradation functions gvi = gst may not always be straightforward. A thorough
analysis which takes the specific behaviour of different materials into account can give further insight. This,
however, goes beyond the scope of the present study.
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(a) (b)

Fig. 8 Local response of the material for different degradation functions gvi decreasing the viscous contribution to the free
energy. Evolution of phase-field variable d (red) and viscous strain α (solid blue) for gvi(d) = gst(d) and βvi = 0 (a) or
gvi = 1 = const. (b). The blue dotted line marks the evolution of ε

(a) (b)

Fig. 9 Boundary conditions applied for investigation of the local material response under constant external loading: Stress–time
function applied for the investigation of creep (a) and strain–time function applied in order to study relaxation (b)

3.2 Local response of the material under temporally constant strain or stress

For viscoelasticmaterials, in addition tomonotonically increasing loading, it is of considerable interest to study
a temporally constant load as creep phenomena can occur or stress may reduce due to relaxation. Therefore,
in the following, the evolution of the local response of the material when a certain level of stress or strain,
respectively, is held constant is investigated. In order to account for the rate-dependency of the response,
different strain or stress rates are considered during loading stage.

Creep phenomena. In order to study creep phenomena, different stress rates σ̇ are applied until a certain level
of stress σ ref is reached which is then held constant, see Fig. 9a. Various values of maximum stress σ ref ∈
[0.2, 0.3] kN/mm2 and stress rates σ̇ ∈ [

10−5, 10
]
kN/mm2/s have been investigated. As a representative

example, the response for σ ref = 0.25kN/mm2 is depicted in Fig. 10 for gvi = gst, and βvi ∈ {0, 1}. In order
to enhance the stability of the solution scheme when it comes to creep failure, ηf = 10−9kNs/mm2 is set.

From Fig. 10, it becomes clear that for σ ref = 0.25kN/mm2, in the absence of a viscous contribution
to the fracture driving force, i.e. for βvi = 0, the response does qualitatively coincide for all stress rates σ̇ .
Regardless of the rate of stress during the loading stage (t < 0), with creep time t , strain converges towards an
identical, finite equilibrium level. Generally, the strain at the end of the loading stage, ε(t = 0), increases with
σ̇ . However, very low rates σ̇ � 10−3kN/mm2/s correspond to almost quasi-static application of load, i.e.
the lower purely elastic limit case, while for σ̇ � 10−3kN/mm2/s, during the loading stage, the upper purely
elastic limit is reached for which the increase in strain due to creep, ε(t → ∞)− ε(t = 0), becomes maximal.
Increase in strain due to creep goes alongwith a growth of strain energy densityΨ st and the phase-field variable
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(c) Free energy Ψ

(b) Phase-field d

(a) Strain ε

Fig. 10 Local response of the material under creep loading: Stress prescribed increases with different rates σ̇ while t < 0 and is
then held at constant value σ ref, see Fig. 9a. Evolution of strain ε (a), fracture phase-field d (b) and free energy Ψ (c) with creep
time t for σ ref = 0.25kN/mm2 and gvi = gst with βvi = 0 (solid lines) or βvi = 1 (dash-dotted)
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(a) (b)

Fig. 11 Local response of the material—stress relaxation. Strain prescribed increases with different rates ε̇ while t < 0 and is
then held at constant value εref = 0.002, see Fig. 9b. Evolution of stress σ (a) and fracture phase-field d (b) with relaxation time t
for gvi = gst with βvi = 0 (solid lines) or βvi = 1 (dash-dotted). For ε̇ ∈ {10−6, 1} s−1, the solid and dash-dotted curves coincide

d rises accordingly. As, in case βvi = 0, the maximum amount of free energy Ψ |t→∞ = Ψ st,eq
∣∣
t→∞ is not

sufficient, it does not come to creep failure for any stress rate σ̇ when σ ref = 0.25kN/mm2. However, for
larger σ ref, creep failure can also be predicted in the absence of a viscous fracture driving force contribution
which is not depicted here. Since, for βvi = 0, the maximum value of fracture driving force only depends on
σ ref, failure then occurs for all rates σ̇ . In that case, the time which elapses until it comes to failure increases
with σ̇ as the critical amount of strain energy is reached the earlier the smaller σ̇ , cf. Fig. 10c.

In contrast to βvi = 0, when a viscous contribution to the fracture driving force is assumed, e.g. βvi = 1,
both σ ref and σ̇ influence if it comes to creep failure, as Ψ vi decisively depends on σ̇ . In particular, for an
identical maximum stress σ ref prescribed, it is possible to predict failure for higher σ̇ , only: The material
response is identical for any βvi in case of the lower elastic limit case, i.e. for σ̇ → 0, and βvi > 0 only
leads to a slender increase in the equilibrium strain with respect to βvi for small, finite σ̇ , since there is almost
no viscous dissipation for small rates. In contrast, for higher σ̇ , there are more considerable values of Ψ vi.
Accordingly, in the latter case,Ψ vi can essentially trigger creep failure, e.g. for σ̇ ≥ 0.05kN/mm2/s in Fig. 10.
As Ψ vi is the greater the higher σ̇ , in contrast to βvi = 0, for βvi = 1, the time which elapses until failure is the
smaller the higher σ̇ . If a critical value of free energyΨ is reached, it suddenly comes to failure. From Fig. 10c,
it can be seen that the critical amount of Ψ is identical for any σ̇ and coincides with the value obtained for
monotonically increasing load, cf. Fig. 6. It is obvious that there are smaller σ ref which are not depicted here,
where failure can not be observed for any finite σ̇ or assumption on the coupling since they do not go along
with a sufficiently large amount of Ψ .

Unlike the assumption on βvi, the choice of the degradation functions does only quantitatively influence
the material behaviour which can be predicted. If, for example, in case of βvi = 0, viscosity is not assumed to
be degraded, i.e. gvi = 1, this can lead to an increase of the time which elapses until it comes to creep failure
with respect to gvi = gst, since for gvi = 1, the effective relaxation time grows with the phase-field variable,
cf. Eq. (49).

Stress relaxation. With the goal to demonstrate the capability of the present model to adequately account
for relaxation phenomena, different strain rates ε̇ are applied until a certain level of strain εref is reached
which is then held constant, see Fig. 9b. Various values of maximum strain εref ∈ [0.001, 0.004] and rates
ε̇ ∈ [

10−8, 10
]
s−1 have been investigated. As a representative example, the response for εref = 0.002 is

depicted in Fig. 11 for gvi = gst, and βvi ∈ {0, 1}. In order to exactly fulfil constraint (31) within the scope of
this analysis of the local response, the history variable 7

H= max
τ∈[0,t]

[
ψ st(τ ) + βvi ψ

vi(τ )
]

(50)

is considered instead of irreversibility constraint (48).

7 From the definition of volψvi and isoψvi in Eq. (22), it directly follows that ψvi is monotonically increasing. However, an
increase in damage could be predicted for decreasing stress if only ψ st would be incorporated into H.
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(a) (b)

Fig. 12 SENT benchmark. Setup (a) and crack pattern (red—d = 0, blue—d = 1) obtained as result of all the simulations (b)

Independent of the strain rate or the assumption on the fracture driving force, when strain is held constant,
stress relaxes towards a certain equilibrium level while the fracture phase-field remains constant. Since the
amount of damage which has been reached at t = 0, i.e. when relaxation begins, depends on both ε̇ and βvi,
the equilibrium stress σ |t→∞ changes accordingly. As there is almost no viscous dissipation while ε increases
for very high or very small ε̇ and free energy Ψ does not increase when stress relaxes, σ |t→∞ becomes
independent of βvi for ε̇ → 0 and ε̇ → ∞. For gvi = 1, qualitatively identical results are obtained. Compared
to the reference gvi = gst for βvi = 0, if gvi = 1 is adopted, a slight increase in effective relaxation time with
phase-field is stated, cf. Eq. (49). 8

3.3 Heterogeneous case: SENT benchmark

As a representative example for the response of non-homogeneous structure, we follow [8,28,31,38], inter
alia, and consider the single edge notched tension test (SENT), i.e. a notched specimen under tensile loading.
For the geometry and the displacement boundary conditions which are prescribed, see Fig. 12a. In contrast to
the previous section, we adopt the material parameters Eeq = 0.327 N/mm2, νeq = mνov = 0.4,

mE
ov = [0.4; 0.224; 0.154; 0.113; 0.091; 0.054; 0.03] N/mm2 ,

vol
m T = iso

m T =
[
10−1; 1; 10; 102; 103; 104; 105

]
s

with K = E/(3 (1 − 2 ν)) and μ = E/(2 (1 + ν)) from [58] and set Gc = 10−3N/mm, �c = 0.04mm,
k = 10−4. For optimal computational efficiency, Isogeometric analysis combined with adaptive refinement is
employed, see [59], guaranteeing a characteristic element size h < �c/4 in the vicinity of the crack. For βvi
and gvi, the same limiting cases are investigated as in the previous section.

Monotonically increasing load. Similar to the local response, amonotonically increasing external displacement
is investigated first. A large variety of displacement rates u̇ ∈ [10−8, 10] mm/s is considered.

The same considerations observed in the previous example apply here as well. Independent of the choice
of βvi or gvi, qualitatively coinciding simulation results are obtained. In each case, straight crack growth from
the tip of the notch towards the upper edge of the domain is predicted when a certain amount of load is reached,
see Fig. 12b. The corresponding force–displacement curves are depicted in Figs. 13 and 14, respectively.

For high displacement rates u̇, all the curves converge against the upper elastic limit. For very low u̇, the
response of the structure likewise approaches the lower limiting case where the non-equilibrium branches
do not contribute to the resistance. However, crack propagation leads to finite strain rates even for u̇ → 0.
Therefore, in contrast to the stress–strain curves depicted in Figs. 4 and 7, a slight difference is stated between
the F- curves for different βvi and gvi, respectively, even if the rate of the external load approaches zero.

8 It should be noted that in case of βvi > 0 assumedwhen gvi �= gst, for the study of relaxation phenomena, amore sophisticated
approach for irreversibility of fracture would have to be considered. Nevertheless, for the analysis of the limiting cases gvi = 1
or βvi = 0 for any gst, the history variable introduced in Eq. (50) is sufficient.
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Fig. 13 SENT—monotonically increasing load. Force–displacement curves for gvi(d) = gst(d) and βvi = 0 (solid lines) or
βvi = 1 (dash-dotted). Since the upper elastic limit is approached for very high u̇, the blue solid and dash-dotted curves do almost
coincide

Fig. 14 SENT—monotonically increasing load. Force–displacement curves for gvi(d) = gst(d) and βvi = 0 (solid lines) and
for gvi(d) = 1 (dashed). Since the upper elastic limit is approached for very high u̇, the blue solid and dashed curves do almost
coincide

For intermediate displacement rates, the critical force level continuously grows with u̇, whereas the dis-
placement at failure decreases. As it has been outlined in the previous section, this effect is explained as
follows. The effective stiffness of the viscoelastic material under consideration increases with the rate of
strain. In contrast, the amount of fracture driving force necessary for crack growth remains constant.

The significant increase in displacement at failure with decreasing rate of external load can be interpreted
as a kind of brittle-to-ductile transition: For the lower elastic limit case, the maximum displacement is more
than twice as high as for the upper.

Similar to its influence on the local response of the material, for gvi = gst, the viscous contribution to the
crack driving force, i.e. the assumption of βvi = 1, leads to a lower level of both critical force and displacement
compared to βvi = 0, see Fig. 13. In particular for intermediate u̇, its influence is clearly noticeable. In contrast,
the definition of gvi = 1, compared with gvi = gst and βvi = 0, leads to a slightly higher critical force level,
see Fig. 14. However, for the specific material parameters under consideration, the differences between the
response of the notched structure predicted for various modelling assumptions reveal to be not too pronounced.
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(a) (b)

(c) (d)

Fig. 15 SENT—creep. Force prescribed increases with different rates Ḟ while t < 0 and is then held at constant value F ref, cf.
Fig. 9a. Displacement response for F ref = 0.0113 kN (a, b) and F ref = 0.012 kN (c, d) for the limiting cases gvi = gst with
βvi = 0 (solid lines) or βvi = 1 (dash-dotted) and gvi = 1 (dashed). In (b), solid and dashed lines do almost coincide

Creep. In order to study creep phenomena, different force rates Ḟ are applied in horizontal direction upon
the right edge of domain until a certain level of froce F ref is reached which is then held constant, cf. Fig. 9a.
To enhance the stability of the solution scheme when it comes to creep failure, ηf = 10−7kNs/mm2 is set.
Various values of maximum force F ref ∈ [0.2, 0.3] kN/mm2 and rates Ḟ ∈ [

10−10, 10
]

kN/s have been
investigated. As representative examples, the displacement responses of the specimen are depicted in Fig. 15
for F ref ∈ {0.0113, 0.012} kN and the same three limiting cases which have been considered above.

Depending on the maximum force F ref prescribed, the simulation results can be divided into three groups.
Firstly, for low F ref, there is an increase in displacement with creep time towards an identical equilibrium value
for all Ḟ and assumptions on the coupling. This increase does not go along with crack propagation. In that
case, almost no difference is stated between the results for gvi = gst with βvi = 0 and gvi = 1. Secondly, for
intermediate F ref, this phenomenon is observed in absence of a dissipative fracture driving force contribution,
only. In contrast, βvi > 0 can trigger creep failure for sufficiently large Ḟ , see Fig. 15a, b. Then, in terms of
crack path, the result is similar to the case of strictly monotonically increasing external load. Thirdly, for high
F ref, failure is observed for any assumption on the coupling between viscous mechanisms and fracture, see
Fig. 15c, d. For small Ḟ , in this case, failure can also occur while force is still increasing (t < 0), whereas for
higher Ḟ , crack propagation does not start before a sufficiently large amount of creep time t > 0 has passed.
Viscous fracture driving force then can lead to an earlier occurrence of failure. In contrast, the assumption of a
non-degraded viscosity can effect a notably larger amount of time which has to elapse until it comes to crack
propagation compared to gvi = gst for βvi = 0.
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The present numerical study demonstrates that in case of creep loads, varied assumptions on the coupling
between viscous mechanisms and fracture can lead to significant differences between the predicted responses.
From the comparison to experimental data, it remains to be verified which choice for the fracture driving or
the degradation functions, respectively, may be most appropriate.

4 Conclusion and outlook

A unified phase-field model of fracture in viscoelastic materials is presented which enables a two-way coupling
between viscous mechanisms and crack growth. For this purpose, a pseudo-energy functional is introduced
which consists of the free energy and the dissipation due to crack evolution, and a contribution to the free
energy that is related to viscous dissipation is defined. From the energy functional, the differential equations
governing the response of the material are deduced in a thermodynamically consistent manner. The approaches
of recently published models [30,31,35] are obtained as limiting cases.

Bymeans of numerical examples, the consequences of differentmodelling assumptions on the localmaterial
response as well as on failure of a notched domain are discussed. Especially in case of strictly monotonically
increasing external load, predictions are qualitatively similar and the overall rate dependency of failure is
captured for all model variants, whereas quantitative differences arise, for instance regarding the critical load
level. In contrast, in case of creep, the simulation result can decisively depend on the assumption made for
the fracture driving force: A viscous contribution can essentially trigger failure which is not predicted for the
same load level if only strain energy is assumed to drive fracture. Furthermore, in the latter case, occurrence
of failure does only depend on the maximum value of force, whereas in the former, a possible influence of the
rate during the application of load can also be taken into account.

Further work will focus on the comparison of model predictions and experimental data. In addition, an
extension to the framework of finite viscoelasticity, cf. [36], is subject of current research. In that case, larger
derivations away from the thermodynamic equilibrium path can be captured, possibly leading to a more
pronounced influence of coupling between viscous dissipation and fracture.
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