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Abstract Starting from a Cosserat-type model for curved rods, we derive analytical expressions for the effec-
tive stiffness coefficients of multilayered composite beamswith an arbitrary number of layers. For this purpose,
we employ the comparison with analytical solutions of some bending, torsion, and extension problems for
three-dimensional beams and rods. The layers of the composite beamconsist of different orthotropic or isotropic
non-homogeneous elastic materials. We apply the obtained general formulas to calculate exact analytical solu-
tions of some beam problems and compare them with corresponding results of numerical simulations. The
numerical study shows a wide range of validity and applicability of the obtained formulas.

Keywords Sandwich beams · Composite rods · Effective stiffness properties · Bending · Torsion · Shear ·
Rigidity

1 Introduction

Modern composites with different polymer, ceramic [6,12,16,26,31,37,40,43,44,46], cement or metal matrix
[13,16,36,41,50] are the most promising kinds of materials used for various branches of innovative industry.
The natural composites have disordered internal structures, whereas novel multiphase materials are designed
to satisfy specific engineering requirements. It means that various artificial structures with different geometries
are produced. In particular, the following internal structures can be distinguish:

– regular structures build-up of uniformly distributed several phases of the composites including porosity
[26,29,42,44] or homogeneously scattered in the matrix nano-particles [16,19,50], particles, short fibers,
whiskers [16], etc.;

– irregular internal structures with random distribution of the second phase [6,31,37,40,46] or reinforcement
[16];

– layered composite (LC) structures manufactured as regular or irregular [16,24,25,34,38];
– functional gradation composites (FGC) having: (1) continuous variation of physical and mechanical prop-
erties [9,18,39,45,48,53] or (2) stepwise shape [24,34,35,38].
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It is obvious that the overall performances described by strength, stiffness, ductility, thermal properties,
wear resistance, and toughness can be substantially improved by tailoring the three-dimensional distribution
of all phases constituting composites, and optimizing the structure parameters. This is important for layered
composite structures, where proper arrangements of sequence of layers made of different components play
a crucial role for enhancement of elastic and plastic properties, interface bonding, and fracture resistance.
The stepwise change of thermo-mechanical properties in the LC can be replaced by FGC with continuous
gradation of composite properties, thus removing the technological problem in the fabrication of perfect
bonding between layers. Both types of LC and FGCwere proposed in order to increase quasi-static and impact
toughness at high strains (see, e.g., [13,27,28]) by the mechanisms as cracks bridging, crack tip plasticity, and
interfacial delamination compared to a homogeneous structures. Both material models play significant roles
for manufacturing multi-layered beams [3–5,33], plates [8,10,20,32] and shells.

The sandwich structures can be composed of numerous sets of materials depending on application. In
aeronautic constructions, we can find the hi-tech constituents like metallic and polymeric foams, nomex hon-
eycombs. The comprehensive review of sandwich structure for aeronautics from 1930s to present time is
presented in [11]. According to present strategy of sustainable development of economy in recent studies,
we can observe the attempts to use natural origin materials [47] and fully recyclable thermoplastic [14]. The
gained fields of applications and the continuous development of sandwich composites prompt the development
of methods of predicting their responses to given mechanical loads. The mathematical tools for sandwiches
behavior predictions should be easy to use and deliver the desired results in the shortest possible time. Gen-
eralization of the analytical model of sandwich structures was presented in [22], where the authors proposed
continuous and symmetrical variation of mechanical properties in thickness direction. They mentioned that
further improvement of their theory is to introduce the thin layers binding the faces and core. Besides the
mechanical loading, the sandwich structures are frequently subjected to thermal loadings. In this respect,
Venkatesan et al. [51] present the methodology to investigate the damage of sandwich structures in cyclic
thermal loadings with employing numerical analyses.

In this paper, we investigate the mechanical behavior of multilayered composite beams using a Cosserat-
typemodel for rods, called the theory of directed curves (see [1,54]). The aimof ourwork is the determination of
the analytical expressions of the effective stiffness coefficients for general composite beams having an arbitrary
number of layers. The model of directed curves has been systematically presented for the first time by Zhilin
in [54,55] and has been extended for porous and thermoelastic rods by Bîrsan and Altenbach [2,3]. Using this
approach, we have investigated the mechanical behavior of sandwich composite beams and of functionally
graded structural elements in [5,33]. In the present paper, we generalize the results obtained previously in
[5,33] to the case of orthotropic composite beams made of n layers. The theoretical results are then verified
by comparison with numerical simulations of various bending and torsion problems for composite beams.

In Sect. 2, we present the theoretical model of directed curves, which will be used for composite elastic
rods. In Sect. 3, we determine the effective stiffness coefficients for orthotropic non-homogeneous rods by
comparing the analytical solutions of bending, torsion, and extension problems for directed curves with the
corresponding results for three-dimensional rods.

In Sect. 4, we generalize the results to the case ofmultilayered composite beamsmade of several orthotropic
non-homogeneous materials and establish analytical expressions for the effective stiffness coefficients. The
general case of sandwich beams with an arbitrary number of layers is treated in Sect. 5. Then, we illustrate
the usefulness and verify the applicability of the obtained formulas by means of several numerical examples,
concerning the bending of cantilever sandwich beams or the three-point bending of composite beams.

Section 7 is concerned with circular sandwich columns made of piecewise homogeneous materials. Apply-
ing the theoretical results, we obtain closed-form expressions for the effective bending, shear, extensional, and
torsion stiffness coefficients. Then, in Sect. 6 we present a parametric study to compare the analytical solutions
with numerical results obtained by the finite element method.

Since we obtain in all considered cases a good agreement between the analytical and numerical results, we
can infer that the proposed theoretical formulas for effective stiffness coefficients are correct, so they can be
successfully applied to characterize the mechanical behavior of general composite beams.

2 The model of directed curves

In this section, we briefly present the model of directed curves, which is a Cosserat-type model for rods and
will be used in our paper. For a complete description of this model, we refer to the works [1–3,54,55].
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We denote by C0 be the reference (initial) configuration of the deformable curve and by s the material
coordinate along C0 . We choose s to be the arclength parameter along C0 . The reference configuration is
determined by the position vector r(s) and the attached three directors di (s). The directors are orthogonal unit
vectors, such that the third director d3(s) coincides with the unit tangent t ≡ r ′(s), while d1 and d2 belong
to the normal plane to the curve C0 .

Let C be the deformed configuration at time t . We denote the position vector by R = R(s, t) and the three
directors by Di = Di (s, t). The third director D3 is no longer tangent to the curve C after deformation and the
cross sections (determined by D1 and D2) are not necessarily normal to the middle curve. This model allows
for transverse shear deformation of the rod, but the deformation of the cross sections is not taken into account.
We shall employ the direct tensor notation and the summation convention over repeated indices. Greek indices
range over the set {1, 2} , while Latin indices take the values {1, 2, 3} . We denote the derivative with respect
to the line coordinate s by a prime, i.e., ( )′ = d

ds .
With these notations, we define the rotation tensor by P(s, t) = Dk(s, t) ⊗ dk(s) and the displacement

vector by u(s, t) = R(s, t) − r(s). In the linear theory of rods, we decompose the rotation tensor as P =
1 + ψ × 1 , where ψ(s, t) is the vector of small rotations. Then, the strain measures for rods are the vector of
extension-shear e and the vector of bending-twisting κ , given by

e = u ′ + t × ψ , κ = ψ ′ . (1)

The equilibrium equations for rods have the following form

N ′ + ρ0F = 0, M ′ + t × N + ρ0L = 0, (2)

where N is the force vector field, M is the moment vector field, ρ0 is the mass density per unit length of
C0 , while F and L are the external body force and moment per unit mass, respectively. To the system of
differential equations (2), we adjoin boundary conditions.

For elastic composite rods, we can write the constitutive equations in the form

N = ∂(ρ0U)

∂e
, M = ∂(ρ0U)

∂κ
, (3)

where

ρ0U
(
e, κ

) = 1

2
e · A · e + e · B · κ + 1

2
κ · C · κ (4)

is the internal energy function. Here, the second-order tensors A , B and C are constitutive tensors having
the following structure [4]

A = A1d1 ⊗ d1 + A2d2 ⊗ d2 + A3 t ⊗ t + A12(d1 ⊗ d2 + d2 ⊗ d1),
B = B13d1 ⊗ t + B31 t ⊗ d1 + B23d2 ⊗ t + B32 t ⊗ d2 ,

C = C1d1 ⊗ d1 + C2d2 ⊗ d2 + C3 t ⊗ t + C12(d1 ⊗ d2 + d2 ⊗ d1). (5)

The constitutive coefficients Ai , Ci , A12 , C12 , Bα3 and B3α describe the effective stiffness properties of
thin rods.

2.1 Governing equations for straight rods

In what follows, we restrict our attention to the case of straight composite rods, i.e., the case when the reference
curve C0 is a straight line. In this case, the governing equations (1)–(5) can be simplified. Thus, let us choose
theCartesian coordinate frame Ox1x2x3 such that the reference curve C0 is situated on the axis Ox3 (between
the limits x3 = 0, l), while the axis Ox1 and Ox2 are parallel to the vectors d1 and d2 . If we denote by ei the
unit vectors along the axes Oxi , then we have d1 = e1 , d2 = e2 , d3 = e3 = t and s = x3 .

We designate the inertia moments of the cross section by

I1 =
∫

Σ

ρ x22 dx1dx2 , I2 =
∫

Σ

ρ x21 dx1dx2 , (6)
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where Σ denotes the domain occupied by the cross section of the rod in the x1Ox2 plane, while ρ is the mass
density in the three-dimensional rod. Further, we choose the axis Ox1 and Ox2 to coincide with the principal
axes of inertia of the cross section. Hence, we have

〈 ρ x1 〉 = 〈 ρ x2 〉 = 0 and 〈 ρ x1x2 〉 = 0, (7)

where we employ the notation 〈 f 〉 =
∫

Σ

f dx1dx2 for any field f .

In order to write the component forms of the basic equations for composite straight rods, we decompose
the vectors u , ψ , N , M , F and L by the axial direction e3 and the normal plane (e1, e2) as follows

u = u e3 + w, ψ = ψ e3 + e3 × ϑ , N = F e3 + Q,

M = H e3 + e3 × L, F = Fa e3 + Fn, L = La e3 + Ln , (8)

where the vectors w , ϑ , Q , L , Fn and Ln are parallel to the plane (e1, e2). In the relations (8), u
represents the longitudinal displacement, w = wαeα is the vector of transversal displacement, ψ is the
torsion, ϑ ′ = ϑ ′

αeα is the vector of bending deformation, F is the longitudinal force, Q = Qαeα is the
vector of transversal force, H is the torsion moment and L = Lαeα is the vector of bending moment. With
these notations, the relations (3)–(5) yield the following constitutive equations

Q1 = A1(w
′
1−ϑ1) + A12(w

′
2−ϑ2) + B13ψ

′,
Q2 = A12(w

′
1−ϑ1) + A2(w

′
2−ϑ2) + B23ψ

′,
F = A3 u

′ − B31 ϑ ′
2 + B32 ϑ ′

1,

H = C3ψ
′ + B13(w

′
1−ϑ1) + B23(w

′
2−ϑ2),

L1 = C2 ϑ ′
1 − C12 ϑ ′

2 + B32 u
′, L2 = −C12 ϑ ′

1 + C1 ϑ ′
2 − B31 u

′ . (9)

From the above relations, we see that the constitutive coefficients C1 and C2 represent the bending effective
stiffness, C3 characterizes the torsional rigidity, A1 and A2 are the shear effective stiffness coefficients, A3
expresses the extensional effective stiffness, while Bα3 , B3α C12 , A12 are coupling coefficients.

If the material properties of the non-homogeneous rod are independent of the axial coordinate, then the
constitutive coefficients Ai , Ci , A12 , C12 , Bα3 and B3α are constant. In the following sections, we express
these constitutive coefficients in terms of the three-dimensional material constants for composite rods.

3 Non-homogeneous rods: relation to the three-dimensional model

For non-homogeneous rods, let us denote by u∗ = u∗
i ei the displacement vector and by T∗ = t∗i j ei ⊗ e j

the Cauchy stress tensor in the three-dimensional linear theory. The relationship between these fields and the
corresponding quantities defined in the direct approach (see Sect. 2.1) is given by

ρ0wα = 〈 ρ u∗
α 〉 , ρ0u = 〈 ρ u∗

3 〉 , ρ0 = 〈 ρ 〉 ,

ϑ1 = −〈 ρ x1u∗
3 〉

I2
, ϑ2 = −〈 ρ x2u∗

3 〉
I1

, ψ = 〈 ρ(x1u∗
2 − x2u∗

1) 〉
I1 + I2

,

Qα = 〈 t∗3α 〉 , F = 〈 t∗33 〉 , Lα = −〈 xαt
∗
33 〉 , H = 〈 x1t∗32 − x2t

∗
31 〉 . (10)

To determine the effective stiffness coefficients Ai , Ci , A12 , C12 , Bα3 and B3α we compare the solu-
tions of some extension, bending and torsion problems for directed curves with the corresponding results
obtained for three-dimensional rods (see, e.g., [17]). The comparison procedure is described in details in [4].

We assume that the three-dimensional rod is made of an orthotropic non-homogeneous material, charac-
terized by the mass density ρ(x1, x2) and the nine constitutive coefficients ci j (x1, x2). The three-dimensional
constitutive equations for orthotropic materials are

t∗11 = c11e11 + c12e22 + c13e33 , t∗22 = c12e11 + c22e22 + c23e33,

t∗33 = c13e11 + c23e22 + c33e33 , t∗23 = 2c44e23 , t∗31 = 2c55e31 , t∗12 = 2c66e12 , (11)

where ei j = 1
2 (u

∗
i, j + u∗

j,i ) is the strain tensor.
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The solution of the extension-bending-torsion problem for three-dimensional rods is determined in [17,
Sect. 4.1] and is expressed in terms of the solutions to some auxiliary plane strain boundary-value problems.
Namely, let us denote by u(k)

α (x1, x2) the solutions of the plane strain problems Q(k) , respectively, (k =
1, 2, 3), defined by

Q(γ ) : tβα,β + (cα3 xγ ),α = 0 in Σ, tβαnβ = −cα3 xγ nα on ∂Σ,

Q(3) : tβα,β + cα3,α = 0 in Σ, tβαnβ = −cα3 nα on ∂Σ , (12)

where the subscript α = 1, 2 is not summed, while the subscript β = 1, 2 is summed. The vector n = nαeα

is the outward unit normal to ∂Σ . The tensor components tβα which appear in (12) are given by t11 =
c11u1,1 + c12u2,2 , t22 = c12u1,1 + c22u2,2 , and t12 = c66(u1,2 + u2,1).

Further, the so-called torsion function ϕ(x1, x2) is determined by the boundary-value problem

(c55 ϕ,1),1 + (c44 ϕ,2),2 = c55,1 x2 − c44,2 x1 in Σ,

c55 ϕ,1 n1 + c44 ϕ,2 n2 = c55 x2 n1 − c44 x1 n2 on ∂Σ. (13)

The functions u(k)
α and ϕ , which are defined as the solutions of the boundary-value problems (12) and (13),

will be used to write the expressions of the effective stiffness coefficients. If we identify the three-dimensional
solution for the extension, bending and torsion of rods presented in [17, Sect. 4.11] with the corresponding
solution for directed curves, then we obtain the following expressions of the effective stiffness coefficients

A3 = 〈 c33 + c13u
(3)
1,1 + c23u

(3)
2,2 〉 , B13 = B23 = 0,

B31 = 〈 x2(c33 + c13u
(3)
1,1 + c23u

(3)
2,2) 〉 , B32 = −〈 x1(c33 + c13u

(3)
1,1 + c23u

(3)
2,2) 〉 ,

C1 = 〈 x2(c33x2 + c13u
(2)
1,1 + c23u

(2)
2,2) 〉, C12 = −〈 x1(c33x2 + c13u

(2)
1,1 + c23u

(2)
2,2)〉,

C2 = 〈 x1(c33x1 + c13u
(1)
1,1 + c23u

(1)
2,2) 〉 , C3 =〈 c44x1(x1+ϕ,2) + c55x2(x2−ϕ,1)〉. (14)

The identification procedure is described in details in [4].
In the next section, we shall generalize the formulas (14) to the case of composite beams made of several

orthotropic materials.

4 General composite beams made of orthotropic materials

Let us consider a general composite beam which is made of n different non-homogeneous orthotropic mate-
rials and occupies in its reference configuration the three-dimensional domain B = {(x1, x2, x3) | (x1, x2) ∈
Σ , x3 ∈ (0, l)} .

The cross section Σ consists of n pairwise disjoint sub-domains S1 ,..., Sn , as shown in Fig. 1a. The
generic cross section Σ may include a number of m ‘layers’ S1 , . . . , Sm and an arbitrary number of
‘inclusions’ Sm+1 , . . . , Sn (with 0 ≤ m ≤ n). Thus, the body B can be decomposed into n domains Bk =
{(x1, x2, x3) | (x1, x2) ∈ Sk , x3 ∈ (0, l)} , such that each body Bk is occupied by a different non-homogeneous
orthotropic material having the axes of orthotropy Oxi and the constitutive coefficients c(k)

i j (x1, x2), k =
1, . . . , n.

We designate by Ck the boundary curve of the domain Sk which does not belong to the cross section
boundary ∂Σ , i.e., Ck = ∂Sk \ ∂Σ (k = 1, ..., n). Let n = nαeα be the unit normal to the curve Ck (see
Fig. 1b). If Ck separates the domains Sl and Sr (with l < r ), then we denote the jump of any field f across
Ck by

[
f
]+
− = f∣∣Sr − f∣∣Sl

.

Assume that the bodies Bk are welded together and there is no separation of material during deformation.
The conditions that the displacement and the stress vector fields are continuous in passing from one material
to another have to be adjoin to the plane strain boundary-value problems (12), (13), in the case of composite
materials. Thus, we consider the extended plane strain boundary-value problems R(1) , R(2) and R(3) given
by

R(γ ) :
⎧
⎨

⎩

tβα, β = −(cα3 xγ ), α in Sk , (γ = 1, 2)
tβαnβ = −cα3 xγ nα on ∂Σ,[
uα

]+
− = 0, nβ

[
tβα + cα3 xγ δαβ

]+
− = 0 on Ck (k = 1, ..., n),
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(a) (b)

Fig. 1 a The cross section of a general composite beams; b The separation curve between the domains Sl and Sr

R(3) :
⎧
⎨

⎩

tβα, β = −cα3, α in Sk (k = 1, ..., n),
tβαnβ = −cα3 nα on ∂Σ,[
uα

]+
− = 0, nβ

[
tβα + cα3 δαβ

]+
− = 0 on Ck (k = 1, ..., n),

(15)

where the subscript α = 1, 2 is not summed. The solutions of the problemsR(s) will be denoted by u(s)
α (x1, x2),

s = 1, 2, 3. The torsion function ϕ(x1, x2) for composite rods is determined from the extended boundary-value
problem

⎧
⎨

⎩

(c55 ϕ,1),1 + (c44 ϕ,2),2 = c55,1 x2 − c44,2 x1 in Sk (k = 1, ..., n),
c55 ϕ,1 n1 + c44 ϕ,2 n2 = c55 x2 n1 − c44 x1 n2 on ∂Σ,[
ϕ
]+
− = 0,

[
c55 ϕ,1 n1 + c44 ϕ,2 n2 − c55 x2 n1 + c44 x1 n2

]+
− = 0 on Ck .

(16)

If we generalize the analysis made in [4, Sect. 6] to the case of n orthotropic materials, then we find the
following expressions for the effective stiffness coefficients in terms of the solutions u(s)

α and ϕ :

A3 =
n∑

k=1

∫

Sk

(
c(k)
33 + c(k)

13 u
(3)
1,1 + c(k)

23 u
(3)
2,2

)
dx1dx2 , A12 = 0,

B31 =
n∑

k=1

∫

Sk
x2

(
c(k)
33 + c(k)

13 u
(3)
1,1 + c(k)

23 u
(3)
2,2

)
dx1dx2 , B13 = 0,

B32 = −
n∑

k=1

∫

Sk
x1

(
c(k)
33 + c(k)

13 u
(3)
1,1 + c(k)

23 u
(3)
2,2

)
dx1dx2 , B23 = 0,

C1 =
n∑

k=1

∫

Sk
x2

(
c(k)
33 x2 + c(k)

13 u
(2)
1,1 + c(k)

23 u
(2)
2,2

)
dx1dx2,

C2 =
n∑

k=1

∫

Sk
x1(c

(k)
33 x1 + c(k)

13 u
(1)
1,1 + c(k)

23 u
(1)
2,2)dx1dx2 ,

C12 = −
n∑

k=1

∫

Sk
x1

(
c(k)
33 x2 + c(k)

13 u
(2)
1,1 + c(k)

23 u
(2)
2,2

)
dx1dx2 ,

C3 =
n∑

k=1

∫

Sk

[
c(k)
44 x1(x1 + ϕ,2) + c(k)

55 x2(x2 − ϕ,1)
]
dx1dx2 , (17)
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and for the transverse shear stiffness we obtain

A1 = κ A(Σ)

〈 x21 〉
( n∑

k=1

∫

Sk
c(k)
55 dx1dx2

)( n∑

k=1

∫

Sk
ρ(k)x21dx1dx2

)( n∑

k=1

∫

Sk
ρ(k)dx1dx2

)−1
,

A2 = κ A(Σ)

〈 x22 〉
( n∑

k=1

∫

Sk
c(k)
44 dx1dx2

)( n∑

k=1

∫

Sk
ρ(k)x22dx1dx2

)( n∑

k=1

∫

Sk
ρ(k)dx1dx2

)−1
. (18)

where κ = π2

12
is the shear correction factor and A(Σ) denotes the area of Σ .

Remark Notice that the relations (17) represent a generalization of equations (14) for the case of several
materials. In the case of piecewise homogeneous composite beams, the formulas (17) for the effective stiffness
properties can be simplified, since the constitutive coefficients ci j are then piecewise constant in Σ .

4.1 Composite beams made of isotropic materials

Let us consider the special case when the composite beams consist of n isotropic materials. If we denote by
λ(k) and μ(k) the Lamé moduli of each constituent material (k = 1, . . . , n), then the constitutive relations (11)
hold with

c(k)
11 = c(k)

22 = c(k)
33 = λ(k) + 2μ(k),

c(k)
12 = c(k)

13 = c(k)
23 = λ(k), c(k)

44 = c(k)
55 = c(k)

66 = μ(k). (19)

Substituting the relations (19) into the equations (15)-(18), we obtain the corresponding expressions of
the effective stiffness coefficients in the isotropic case. For instance, for the torsional rigidity C3 and shear
effective stiffness A1 , A2 we find the formulas

C3 =
n∑

k=1

∫

Sk
μ(k)[x1(x1 + ϕ,2) + x2(x2 − ϕ,1)

]
dx1dx2 ,

Aα = κ A(Σ)

〈 x2α 〉
( n∑

k=1

∫

Sk
μ(k)dx1dx2

)( n∑

k=1

∫

Sk
ρ(k)x2αdx1dx2

)( n∑

k=1

∫

Sk
ρ(k)dx1dx2

)−1
. (20)

These results for composite beams made of isotropic materials have been obtained previously in the paper
[5].

These formulas for the effective stiffness properties of composite beamsmade of several non-homogeneous
materials are very general and are applicable to a variety of problems. The difficulty resides in finding the
solutions to the plane strain boundary-value problems (15) and (16). In some special cases, the boundary-value
problems (15), (16) can be solved analytically and the formulas for the effective stiffness coefficients (17),
(18) can be simplified.

In the case of composite beams made of isotropic materials with constant Poisson ratio ν (the same
constant for all material constituents), the plane strain boundary-value problemsR(s) written in (15) admit the
following simple solutions

u(1)
1 = −1

2
ν(x21 − x22 ) , u(1)

2 = −ν x1x2 , u(2)
1 = −ν x1x2 ,

u(2)
2 = 1

2
ν(x21 − x22 ) , u(3)

1 = −ν x1 , u(3)
2 = −ν x2 . (21)

We mention that the case of non-homogeneous materials with constant Poisson ratio has been investigated
within the classical three-dimensional elasticity theory, e.g., in [21]. Let us denote by E (k)(x1, x2) the Young
modulus of the non-homogeneous material occupying the domain Bk . As mentioned above, the Poisson ratio
is the same for all materials, i.e., we assume that ν(k)(x1, x2) = ν (constant).
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Fig. 2 Cross section of a multilayered beam with n layers

Inserting the relations (19) and (21) into the formulas (17), we obtain in this case the following effective
stiffness coefficients [5]

A3 =
n∑

k=1

∫

Sk
E (k)dx1dx2, A12 = 0, B31 =

n∑

k=1

∫

Sk
x2E

(k)dx1dx2,

B32 = −
n∑

k=1

∫

Sk
x1E

(k)dx1dx2, Bα3 = 0, C1 =
n∑

k=1

∫

Sk
x22 E (k)dx1dx2,

C2 =
n∑

k=1

∫

Sk
x21 E (k)dx1dx2 , C12 = −

n∑

k=1

∫

Sk
x1x2 E

(k)dx1dx2 . (22)

The above relations will be employed in the next sections to determine the effective stiffness properties of
various sandwich beam structures.

5 Multilayered beams

In this section, we investigate the effective stiffness properties of multilayered beams, which are a type of
widely used composite structures.

We consider rectangular beams with n layers made of isotropic and homogeneous materials. The pattern
of the cross section Σ for such composite beams is depicted in Fig. 2. Thus, the cross-sectional domain is

Σ = {
(x1, x2)

∣
∣ x1 ∈ ( − b

2
,
b

2

)
, x2 ∈ (zn, z0)

}
with thickness a = z0 − zn .

Here, b denotes the width of the cross section. The n layers Si (i = 1, . . . , n) occupy the domains

Si = {
(x1, x2)

∣
∣ x1 ∈ ( − b

2
,
b

2

)
, x2 ∈ (zi−1, zi )

}
with thickness ti = zi − zi−1 ,

where z0 > z1 > ... > zn−1 > zn are arbitrary real numbers. We denote by ti the thickness, Gi the shear
modulus, Ei the Young modulus, and ρi the mass density of of the layer Si , and by a = z0 − zn the total
thickness of the beam.

5.1 Torsional rigidity for multilayered beams

Let us derive the expression of the torsional rigidity C3 for such multilayered beams using the general formula
(20)1 . The torsion problem (16) reduces to

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Δϕ = 0 in S1 ∪ S2 ∪ ... ∪ Sn ;
∂ϕ

∂x1
= x2 for x1 = ±b

2
; ∂ϕ

∂x2
= −x1 for x2 = z0, zn ;

[
ϕ
]+
− = 0,

[
G

( ∂ϕ

∂x2
+ x1

)]+
− = 0 for x2 = z1, . . . , zn−1 .

(23)
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The solution of this problem can be written in the form (series expansion)

ϕ(x1, x2) = x1x2 +
∞∑

k=0

(
A(i)
k sinh(m x2) + B(i)

k cosh(m x2)
)
sin(m x1) in Si , (24)

where m = (2k + 1)π

b
, and A(i)

k and B(i)
k are some constants (i = 1, ..., n).

Imposing that the function ϕ(x1, x2) given by (24) satisfies the boundary and continuity conditions on the
surfaces x2 = z0, z1, . . . , zn written in (23)3,4,5, we find the equations

A( j)
k sinh(mz j ) + B( j)

k cosh(mz j ) = A( j+1)
k sinh(mz j ) + B( j+1)

k cosh(mz j ),

Gi
[
A(i)
k cosh(mzi ) + B(i)

k sinh(mzi )
] = Gi+1

[
A(i+1)
k cosh(mzi ) + B(i+1)

k sinh(mzi )
]

+(Gi+1 − Gi ) (−1)k
8 b2

π3(2k + 1)3
, (25)

for any i = 0, 1, . . . , n and j = 1, ..., n − 1. For each fixed integer k , the relations (25) represent a system of
2n linear algebraic equations for the 2n unknowns A(i)

k and B(i)
k (i = 1, ..., n). Thus, the system (25) allows

for the determination of the constants A(i)
k and B(i)

k and the torsion boundary–value problem (23) is solved.
If we introduce now the torsion function (24) into the formula (20)1 , then we find the torsional rigidity for

multilayered beams in the form

C3 = b3

3

( n∑

i=1

Gi ti
)

+ 4
n∑

i=0

[
(Gi+1 − Gi )

∞∑

k=0

(−1)k

m2

(
A(i)
k sinh(mzi ) + B(i)

k cosh(mzi )
)]

, (26)

where A(i)
k and B(i)

k are given by (25). In order to have a compact unified form for the relations (25) and

(26), we have introduced above the additional notation conventions G0 = 0, Gn+1 = 0, A(0)
k = A(1)

k and

B(0)
k = B(1)

k .
The formula (26) is valid for an arbitrary number of layers n. Let us present some special cases and make

connections with previously known results.

Remarks 1. In the case of beams with 2 layers (n = 2), the system of equations (25) has only 4 equations
and it can be solved explicitly to find the constants A(1)

k , A(2)
k , B(1)

k and B(2)
k . Then, inserting these values

in the formula (26) we obtain the torsional rigidity

C3 = b3

3

[(
G1t1 + G2t2

) − 192 b

π5

∞∑

k=0

D(k)

(2k + 1)5

]
, with

D(k) =
(
G1 sinh(mt1) cosh(mt2)+G2 sinh(mt2) cosh(mt1)

)−1 ×
×

[
(G2

1+G2
2) cosh(mt1) cosh(mt2) − G2

1 cosh(mt2)−G2
2 cosh(mt1)

+G1G2
(
cosh(mt1)+cosh(mt2)−coshm(t1−t2)−1

)]
, (27)

where we denote by m = (2k+1)π
b and t1 , t2 are the thicknesses of the two layers. The expression (27)

coincides with the result obtained previously in [17, p. 318].
2. In the case of beams with three layers (n = 3), the torsion function ϕ(x1, x2) is determined by the

relation (24) and the system (25), which has 6 equations. We mention that the same torsion function for
three-layered beams has been obtained previously in [7, Sect. 81]. This special case can describe sandwich
beams with dissimilar faces, see [5, Sect. 6]. Then, from relation (26) with n = 3 we get the torsional
rigidity expression for non-symmetrical sandwich beams.

3. We can generalize the above results concerning the torsional rigidity of multilayered beams to the case of
orthotropic materials. Indeed, in this purpose we have to solve the boundary-value problem (16) and use
the torsional rigidity formula (17)10 for orthotropic beams. The analysis is similar, except for a greater
mathematical complexity.
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5.2 Effective bending and extensional stiffnesses

Notice that the middle plane of the layer Sk is characterized by the equation x2 = mk , where we denote
mk = zk+zk−1

2 (k = 1, ..., n). To compute the effective bending stiffness coefficients, we assume that the
Poisson ratio ν is the same for all materials and employ the relations (22). By a simple integration in (22), we
find

A3 = b
n∑

k=1

tk Ek , C2 = b3

12

n∑

k=1

tk Ek , C12 = 0, B32 = 0,

C1 = b

3

n∑

k=1

(
z3k−1 − z3k

)
Ek , B31 = b

2

n∑

k=1

(
z2k−1 − z2k

)
Ek . (28)

Let us denote by (E I )eq the equivalent flexural rigidity, which is defined by

(E I )eq = C1 − B2
31

A3
. (29)

Inserting (28) into (29) and performing some mathematical calculations, we obtain the expression of the
equivalent flexural rigidity for multilayered beams in the form

(E I )eq = b
[ n∑

k=1

t3k Ek

12
+

( n∑

k=1

tk Ek

)−1 ∑

1≤k<l≤n

tk Ek · tl El · (mk − ml)
2
]
. (30)

Notice that the difference (mk − ml) appearing in (30) is given by

mk − ml = tk
2

+ tk+1 + ... + tl−1 + tl
2

,

and represents the distance between the middle planes of the layers Sk and Sl . We remark that the relation
(30) represents a generalization of the formula for flexural rigidity of non-symmetrical sandwich beams given
in [52, p. 53].

5.3 Effective shear stiffness of multilayered beams

Let us consider first the case of n-layered beams with a symmetrical arrangement of layers. According to the
abovenotations (seeFig. 2), the separation plane between the layers Sk and Sk+1 is characterized by the equation
x2 = zk . Due to the symmetry, we have z0 = −zn = a

2 and ρk = ρn+1−k , tk = tn+1−k , zk = −zn−k , for
any k = 1, ..., n.

We employ the exact formula for the effective shear stiffness coefficient A2 for general composite beams,
which has been presented in [4, f. (23)]. If we write this formula for the case of multilayered beams, then we
obtain the expression

A2 = k
ab

z30 − z3n

( n∑

i=1

tiGi

)
·

n∑

i=1

(
z3i−1 − z3i

)
ρi

( n∑

i=1

tiρi
)

+
n−1∑

i=1

(ρi − ρi+1)zi F
(π zi

a

)
, (31)

where F(x) is the function defined on the interval
( − π

2 , π
2

)
by

F(x) = cos x

x
ln

(1 + sin x

cos x

)
for x �= 0, F(0) = 1. (32)
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Consider now the general casewhen the arrangement of then layers is not necessarily symmetric.According
to (7), the position of the axis Ox1 is determined by the condition 〈 ρ x2 〉 = 0, which can be written as
n∑

k=1

ρk(z
2
k−1 − z2k) = 0, or equivalently

n∑

k=1

ρk tk (zk−1 + zk) = 0, (33)

since we have

zk−1 − zk = tk , k = 1, ..., n. (34)

We can solve the equations (33), (34) as a system of (n + 1) linear algebraic equations for the unknowns z0,
z1,..., zn . Thus, we find the values zi in terms of the thicknesses of the layers tk in the following form

zi =
( n∑

k=1

tk ρk dik
)

·
( n∑

k=1

tkρk
)−1

, i = 0, 1, ..., n, (35)

where we have denoted by dik the distances

dik = zi − mk = − tk
2

+ (t1 + t2 + ... + tk) − (t1 + t2 + ... + ti ). (36)

We notice that |dik | represents the distance between the middle plane of the layer Sk and the separation
plane of layers Si and Si+1. We extend the formula (31) also in the case of non-symmetrical beams, with the
specification that the coordinates zi are determined by (35).

To resume, the effective shear stiffness coefficient A2 for multilayered beams is given by the relations (31)
and (35).

Remarks 1. In the case of three-layered beams (n = 3), the relations (31), (35) reduce to the formula presented
in [5, f. (55)], where the coordinates z0, z1, z2, and z3 have been explicitly determined.

2. If we employ the (approximate) formula (20)2 to evaluate the effective shear stiffness A2 , then we obtain
the simplified version of the relation (31) in the form

A2 = k
ab

z30 − z3n

( n∑

i=1

tiGi

)
·
[ n∑

i=1

(
z3i−1 − z3i

)
ρi

]
·
( n∑

i=1

tiρi
)−1

, (37)

where the coordinates zi are expressed in terms of the thicknesses ti through equations (35), (36). In the
case of sandwich beams with dissimilar faces (n = 3), the relation (37) reduces to the result obtained in
[5, f. (57)].

5.4 Bending of cantilever three-layered beam

Let us consider the particular case of a three-layered beam (n = 3), i.e., we investigate sandwich beams with
dissimilar faces. In this case, we denote by c the thickness of the core layer and by Ec the Young modulus of
the core material. Also, we designate by f1 , f2 the thicknesses of the two faces and by E f1 , E f2 the Young
moduli, respectively. Let d = c + f1+ f2

2 be the distance between the middle axis of the faces, see Fig. 3a.
With these notations, the relation (29) for n = 3 reduces to the following formula for the equivalent flexural

rigidity of sandwich beams with dissimilar faces

(E I )eq = b
[ f 31 E f1

12
+ f 32 E f2

12
+ c3Ec

12

+ f1E f1 · f2E f2 · cEc

f1E f1 + f2E f2 + cEc

( d2

cEc
+ ( f1 + c)2

4 f2E f2
+ ( f2 + c)2

4 f1E f1

)]
. (38)
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(b)(a)
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Fig. 3 a Cross section of a sandwich beam with dissimilar faces; b Cantilever beam with uniform distributed load q

The relation (38) is equivalent to the formula for flexural rigidity of non-symmetrical sandwich beams given
by Zenkert [52, p. 53]. We mention that the effective stiffness coefficients for sandwich beams with dissimilar
faces have been determined previously in [5, Sect. 6].

To apply the above theoretical results, let us consider the bending of a cantilever sandwich beam with
dissimilar faces under the action of a uniformly distributed load q in the transverse direction Ox2 as shown
in Fig. 3b. We solve this bending problem using our model and compare the solution with the results obtained
by numerical simulations.

Using the model of directed curves presented in Sect. 2, the relevant equilibrium equations are

Q ′
2 + q = 0, L ′

2 + Q2 = 0, F ′ = 0. (39)

Then, the constitutive equations (9) reduce to

Q2 = A2(w
′
2 − ϑ2), L2 = C1ϑ

′
2 − B31u

′, F = A3u
′ − B31ϑ

′
2, (40)

where w2 is the transverse displacement in Ox2 direction, ϑ2 is the rotation of cross section, and u is the
longitudinal displacement. The boundary conditions for the cantilever beam are

w2 = 0, ϑ2 = 0, u = 0 for x3 = 0,

Q2 = 0, L2 = 0, F = 0 for x3 = l, (41)

Solving the boundary-value problem for ordinary differential equations (39)-(41), we obtain the deflection
function

w2(x3) = q

(E I )eq

[ x43
24

− l
x33
6

+
( l2

2
− (E I )eq

A2

) x23
2

+ (E I )eq
A2

l x3
]
. (42)

Therefore, the maximum deflection D = w2(l) has the value

D = ql2

2

( 1

A2
+ l2

4(E I )eq

)
. (43)

Let us compare the theoretical prediction (43) with the results obtained by a finite element analysis of this
problem using the software ABAQUS.

We consider three-layered beams with the following dimensions: length l = 1 m, width b = 50 mm,
and thicknesses of layers f1 = 5 mm, f2 = 10 mm, c = 35 mm. We analyze three types of such beams,
made of the following materials: aluminum–copper–steel, aluminum–foam–steel, and epoxy–foam–polyester,
respectively. The material properties {E, ρ} for each layer of these beams are given in Table 1, together with
the values of the applied load q .

We denote by DFEM the maximum deflection of the beam obtained by the finite element method. On the
other hand, we designate by Dexact the theoretical value of the maximum deflection (43) when the effective
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Table 1 Comparison of numerical and analytical results for bending of cantilever three-layered beams

Beam 3-layered Material E (GPa) ρ ( Kg
m3 ) Load q ( kNm ) DFEM (mm) Dexact (mm) Dapprox (mm) Error Δ (%)

Layer 1 Aluminum 70 2300
Core Copper 100 8900 1 2.225 2.228 2.230 0.135
Layer 2 Steel 205 7850
Layer 1 Aluminum 70 2300
Core Foam 7 40 5 16.235 16.027 15.912 −1.298
Layer 2 Steel 205 7850
Layer 1 Epoxy 3.79 1060
Core Foam 0.17 200 0.2 18.75 18.29 18.263 −2.515
Layer 2 Polyester 4.73 1150

P

�
�

��
D

l

P

l
x1

x3O

δ

(b)(a)

Fig. 4 a Three-point bending of a beam; b Cantilever beam with concentrated end force P

shear stiffness A2 is expressed by the exact formula (31), while Dapprox denotes the maximum deflection (43)
when A2 is given by the approximate expression (37). The relative errors

Δ = DFEM − Dexact

min
(
DFEM ; Dexact

) · 100

are computed for the three types of composite beams considered here and the comparison of numerical and
theoretical results is presented in Table 1. Thus, we remark that even the approximate analytical solution
Dapprox gives accurate results, so that it can be successfully used in many situations.

The good agreement between these solutions represents a validation of our theoretical results concerning
the effective stiffness properties of non-symmetrical sandwich beams.

5.5 Three-point bending of multilayered beams

Let us consider now the three-point bending of multilayered beams and compare our theoretical results with
numerical simulations. The three-point bending problem consists in a beam with simply supported ends,
subjected to a central load P , as depicted in Fig. 4a.

The analytical solution of this three-point bending problem is not difficult to calculate using the direct
approach of rods. We find that the maximum deflection D of the beam is given by the well-known formula
[15,52]

D = P l

4

( l2

12C1
+ 1

A2

)
, (44)

where the effective bending stiffness C1 is given by (28)5 . In the relation (44), the effective shear stiffness
A2 for multilayered beams is calculated either with the exact formula (31), (35), or with the approximate
equation (37). This theoretical prediction of the maximum deflection D will be compared with numerical
results obtained by finite elements method in the next section.
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6 Numerical study and comparison with theoretical results

Let us compare the theoretical results for bendingof sandwichbeamspresented inSect. 5with the corresponding
numerical solutions obtained by a finite element analysis.

6.1 Methods

In this numerical study, we consider sandwich beams with rectangular cross section. We use the finite element
method to compute the deflections of sandwich structures and compare them to identical deflections obtained
analytically. All analytical computations were performed by using MathCAD software. The analytical values
of deflections DA of bended rectangular beams were computed by using formulas (28) and (29) with n = 5
layers, to obtain flexural rigidity. To compute shear rigidity, the formulas (31) and (32) were used. In case of
bended sandwiches with rectangular cross sections, the values of shear coefficient factor k were computed by
the simplified Voigt method [30]:

kv = Gr

GV
, with Gr =

(
5∑

i=1

ti
Gi h

)−1

, GV = 1

h

( 5∑

i=1

Gi ti
)
. (45)

The results taken for comparisons were the displacements of beams in the most characteristic points. For
instance, in case of cantilever beam we consider its free end, while in three point bending case we take the
middle span. The relative error between results obtained by using displacements obtained analytically DA ,
and numerically DN is expressed as follows:

Δ = DN − DA

min(DA, DN )
· 100.

The deflections computed numerically were obtained by using ABAQUS finite element method environ-
ment. The beams with rectangular cross section were modeled as two-dimensional by using S4 (4-node doubly
curved general-purpose shell, finite membrane strains) elements. Each of considered layers was divided into
minimum 4 element in thickness direction. The length of finite elements was adjusted to keep aspect ratio
smaller than 4.

The end loading in cantilever beam case was divided into six equal concentrated forces. They are applied
along the end edge of beam at points separating individual layers. The boundary conditions in case of cantilever
beam were realized by locking all of the available degrees of freedom of the fixed end edge. In case of three-
point bending, the boundary conditions were applied in another way. The ending edge has been made rigid by
using MPC constraints. The displacements in three directions are locked for MPC control point. The same is
true of how the loadings are applied for three-point bending model. The beam was partitioned into two parts.
The partition boundary line situated in middle span of the beam was made rigid by MPC constraint, and the
applied loading in the concentrated force was applied in MPC control point.

6.2 Materials

In this study, we have considered sandwich beams which consist of the two relatively rigid dissimilar faces
and lightweight core between them. The faces are stuck to the core by using some kind of glue. The exemplary
sandwich with these structure is presented in Fig. 5.

The considered sandwich structure can be presented as a 5-layer cross section as shown in Fig. 6. The
particular materials are represented by the modulus of elasticity E with index corresponding to the layer
number. In most of cases, the set of layers is symmetric. However, in special cases of constructions it is
desirable to use different faces thicknesses or make them from different materials. Therefore, in this study we
consider the non-symmetrical sandwich cross section in which the top skin is thicker than the bottom skin.

The adhesive layer in many cases form a separate layer that significantly affects the effective mechanical
properties of the composite. In case of coremade of cellularmaterials, i.e., polyurethane foams, some part of the
cross section can be penetrated by adhesive agent. The region with filled pores will response to applied loading
according to the mixture law. These region is called “interfacial layer” and should be analyzed as a separate
material. This fact is frequently omitted in the literature, which leads to mismatch between the predictions
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Fig. 5 Structure of sandwich composite

Fig. 6 Cross section of considered sandwich beam

of sandwich response to applied mechanical loadings and reality. As mentioned above, the materials are
represented by their Young modulus E . The computations are performed in form of parametric studies. The
range of parametric studies was assumed from 24 GPa [Fiber Glas Epoxy Composite] to 205 GPa [Steel] for
the faces materials. For the core materials, we consider the range from 15 to 1000 MPa, which cover the most
frequently used materials from light foams to strong metallic honeycombs. The interfaces were considered
from weak materials (15 MPa) to extremely stiff (100 GPa) in order to obtain comprehensive results.

Remark In many problems dealing with sandwich structures, the zigzag effects are to be taken into account.
For instance, in [49] the authors have shown that zigzag effects are important for thick sandwich beams, by
calculating examples in which the beam length to thickness ratio equals 5. In our numerical examples, we
assume that the cross section of the beam is rigid (no zigzag effects), since we consider slender beams with
length to thickness ratio equal to 300mm

10 mm = 30. Moreover, the bending is performed in conditions of two stiff
plates at the ends. Therefore, we neglect zigzag effects and we employ the Timoshenko beam theory in our
numerical calculations.

6.3 Results and discussion

In this subsection, we consider that the two faces of the sandwich beam are made of the same material.

6.3.1 Shear correction coefficient impact

In common sandwich beams, the ratio between elastic properties of skin to core exceeds 100. Therefore,
shear correction factor suitable for homogenous beams should be corrected. It is easy to show the range of
applicability for the relation k = π2/12 by a parametric study. Fig. 7 presents dependence of relative error Δ
between numerical and analytical results for cantilever beams with different ratios between elastic properties
of skin and core Eface/Ecore . We have denoted by Δk-num the difference between the analytical results using
constant k = π2/12 and numerical results obtained by using ABAQUS finite element method environment.
By Δv-num, we have designated the difference between analytical results with variable k obtained by Voigt
method (45). The green line ΔV-K visualizes in Fig. 7 the difference between results obtained analytically
with constant and variable shear coefficient factor k. It is clearly visible that in considered case the value
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Fig. 7 Dependence of relative error on sandwich non-homogeneity in case constant shear correction factor k = π2/12

Fig. 8 Dependence of maximum deflection of cantilever beams on interface thickness, interface stiffness, and sandwich face
material

of the relative error Δ increases proportionally to mismatch in elastic properties of sandwich constituents.
Assumption of k = π2/12 starts to generate high differences between analytical and numerical results when
the ratio Eface/Ecore exceeds 200. The value of Δ exceeds 35% when Eface/Ecore is equal to 1024. Thus, the
use of the Voigt method (45) is the best choice for our computations.

6.3.2 Interface impact

We assumed the total beam thickness equal to 10 mm, and length 300 mm. Top skin thickness is t1 = 1 mm.
Bottom skin thickness t5 is equal to 1.5 mm. The interfaces thicknesses t2 and t4 are various, assumed 0.1
mm, 0.2 mm, and 0.5 mm. Core thickness in all considered cases is the rest of the sandwich thickness. We
have considered 3 cases of skin material: 1. Fiber Glas Epoxy Composite [FGEC] E1 = E5 = 24 GPa; 2.
Aluminum E1 = E5 = 70 GPa; and 3. Steel E1 = E5 = 205 GPa. The core was assumed as polyurethane
foam with E3 = 15 MPa. The interface has various stiffness from 24 GPa to 11 MPa. For simplification, the
same Poisson ratio ν = 0.3 was assumed for all considered materials. The results of the conducted analyses
for cantilever beams are presented in Fig. 8.

As expected, the maximum deflections of considered beams are strongly dependent on face material.
Derived results indicate that in case of weak material used as interfacial layer the effective bending stiffness of
beam is independent on its thickness. Between E3 equal to 15 MPa to approximately 100 MPa deflections of
beams are visibly dependent on interface material. This range is very important for sandwich designers, due
to the fact that it covers many kinds of adhesive agents used in the industry. The stiffness of sandwiches made
of metallic faces is independent on interface properties when its modulus of elasticity exceeds 100 MPa, while
this layer has significant impact on effective bending stiffness of sandwich beam. In case of FGEC visible
increasing rigidity of beams above 100 000 MPa is obvious, because this effect concerns situation in which
the interface material is stiffer than the skin.

The dependence of relative error between results obtained analytically and numerically for cantilever beams
with end concentrated load P = 3 N is presented in Fig. 9. The same results for three point bending case with
load P = 3.5 N are presented in Fig. 10.
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Fig. 9 Dependence of relative error Δ on interface and skin elastic properties for cantilever beams

Fig. 10 Dependence of relative error Δ on interface and skin elastic properties for three-point bending

The obtained results for cantilever beams indicate that the convergence of numerical and analytical results
mainly depends on the skin stiffness. In case of soft skins made of FGEC, the relative error increases when
the interface stiffness exceeds the skin stiffness. For the three-point bending case, the relations are more
complicated. The differences smaller than 10 % for all the considered cases, which concern the most popular
materials in the industry, show the correctness of the assumptions made.

6.4 Three layer sandwich with dissimilar faces

In the second case, a parametric study was conducted to observe the relative error in case when the top and
bottom skins are made of different materials. The study was performed with a constant material [FGEC] for the
top skin, while the bottom skin is made of various materials, represented by the modulus of elasticity E . The
Young modulus of the bottom skin varies from the value equal to core material up to the highest value common
in real beams 205 GPa (Steel). The assumed values are 15 MPa, 2.5 GPa, 5 GPa, 12 GPa, 24 GPa, 50 GPa, 100
GPa, and 205 GPa. The omitting of interface was realized by assuming equal values for E2, E3, and E4 . The
calculations were repeated for several core materials, the highest considered values are related to aluminum
honeycomb, and the middle value for honeycombs made of nomex. The results derived for cantilever beams
are presented in Fig. 11.

The relative errorΔ increases as the stiffness of core decreases. Themaximal difference between numerical
and analytical results are derived for sandwich beams with core made of weak polyurethane foam. The same
results for three point bending case are presented in Fig. 12.

The dependence of Δ on the bottom skin rigidity is nonlinear in both considered cases. For faces made of
soft materials, the value of Δ is strongly sensitive. The obtained curves become horizontal when the modulus
of elasticity for the bottom skin exceeds twice the modulus of elasticity of top skin. It is especially visible
in case of cantilever (see. Fig. 11). Above the value of E5 = 100 GPa, the relative error could be treated as
independent on bottom skin rigidity. For the three-point bending case, the dependence ofΔ on the bottom skin
rigidity is more complicated, but the value of relative error does not exceed 9% for all of considered cases. The
shear correction factors for particular cases in analytical calculations were obtained by using the simplified
Voigt method.
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Fig. 11 The relative error for cantilever beams with dissimilar faces

Fig. 12 The relative error for beams with dissimilar faces in case of three-point bending

2R2 2R1 O
x1

x2

(ρc , Ec , νc)

(ρf , Ef , νf )

Fig. 13 Cross section of a circular sandwich column

7 Piecewise homogeneous sandwich columns

The piecewise homogeneous circular columns are other sandwich structures which are widely used in practice
(see, e.g., [15]). For these types of composite beams, we can compute the effective stiffness coefficients by
applying the general relations (17) and (18).

Let us consider a circular sandwich column made of two different homogeneous isotropic materials: the
core characterized by the material parameters νc , Ec , ρc , Gc , and the face with material parameters ν f ,
E f , ρ f , G f . We consider the general case in which the Poisson ratios of the face and core materials are not
necessarily equal: ν f �= νc . The cross-sectional domain Σ of the beam is represented in Fig. 13, where R1
is the radius of the core and R2 the radius of the whole circular beam.

The plane strain problems (15) (with coefficients (19)) for piecewise homogeneous materials have been
investigated previously using the method of functions of a complex variable in [23], and the solutions u(k)

α
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for circular domains have been determined (k = 1, 2, 3). If we insert them into the general formulas (17), we
obtain the following effective bending stiffness and extensional stiffness

C1 = C2 = π

4

[
EcR

4
1 + E f (R

4
2 − R4

1)
] − π(νc − ν f )

2(R4
2 − R4

1)R
4
1

2
[
αc R4

1 + βc R4
2 + α f (R4

2 − R4
1)

] ,

A3 = π
[
EcR

2
1 + E f (R

2
2 − R2

1)
] − 4π(νc − ν f )

2(R2
2 − R2

1)R
2
1

(αc − βc)R2
1 + 2βc R2

2 + (α f − β f )(R2
2 − R2

1)
, (46)

as well as B3α = 0 , C12 = 0. Here, we have introduced the notations

αc = 3 − 4νc
2Gc

, α f = 3 − 4ν f

2G f
, βc = 1

2Gc
, β f = 1

2G f
.

To estimate the effective torsional rigidity, we observe that the torsion problem (16) admits in our case the
solution ϕ = 0, so that the formula (17)10 yields

C3 = π

2

[
GcR

4
1 + G f (R

4
2 − R4

1)
]
. (47)

In view of the relations (18), the effective shear stiffness is given by

A1 = A2 = κ π

[
GcR2

1 + G f (R2
2 − R2

1)
] [

ρc R4
1 + ρ f (R4

2 − R4
1)

]

R2
2

[
ρc R2

1 + ρ f (R2
2 − R2

1)
] . (48)

Thus, the expressions for all the effective stiffness coefficients have been determined for piecewise homoge-
neous circular sandwich columns.

Using the same method, we can determine the effective stiffness properties for sandwich columns which
consists of functionally graded materials, see [5, Sect. 7].

7.1 Bending of cantilever piecewise homogeneous beams by end loads

Consider a cantilever piecewise homogeneous circular column subject to a concentrated end force P acting
in the transversal direction, see Fig. 4b. For the maximum deflection δ , the analytical solution predicts the
following value

δA = P l
( l2

3C2
+ 1

A1

)
, (49)

where the effective bending stiffness C2 and the effective shear stiffness A1 are given by the relations (46)1
and (48). This formula will be used for comparison with numerical results in Sect. 7.3.

7.2 Torsion of piecewise homogeneous clamped sandwich columns

Consider a piecewise homogeneous circular sandwich column subjected to torsion by the torque (twisting
moment) M acting at one end of the beam, while the other end is clamped.

Denote by ψ the angle of twist at the loaded end of the beam. The analytical solution of the problem
predicts the following value

ψA = M l

C3
, (50)

where the torsional rigidity C3 is determined by (47).
In order to compare the theoretical solution ψA with the numerical solution obtained by the finite element

analysis, we calculate the angle of twist ψFEM in terms of the three-dimensional displacements u∗
α using the

relation (10)6 .
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Fig. 14 Relation of relative error to face modulus of elasticity in bending loading conditions, in the case ν f = νc

Fig. 15 Relation of relative error to face modulus of elasticity in bending loading conditions, in the case ν f �= νc

7.3 Comparison with numerical results

Let us compare the above theoretical results for bending and torsion of circular sandwich columns with the
corresponding numerical solutions obtained by a finite element analysis.

In case of circular sandwiches, the deflections were computed from equation (49) by means of formulas
(46) and (48). Torsional angles and the angle ψ of circular rods were determined with help of formula (50)
with (47). For sandwiches with circular cross sections, the value of k was assumed π2/12.

The numerical results were obtained in ABAQUS environment where the sandwich columns with circular
cross sections were modeled as three-dimensional by using C3D8 finite elements (8-node linear brick).

7.3.1 Bending

The circular sandwich beam subjected to bending was considered on the example of a cantilever beam with
concentrated end load. The dimensions of the cross section were assumed R1 = 14 mm and R2 = 15 mm.
The beam length was equal to 300 mm, like in previous cases. In this case, the convergence of the analytical
and numerical results was checked for various skin and core materials. The derived results in this parametric
study are presented in Figs. 14 and 15.

The curves presented in Fig. 14 indicate that the differences between numerical and analytical values of
beam deflections are smaller than 1.5% in the entire spectrum of considered cases. Regardless of the core
material type, the values of relative error depend nonlinearly on the face modulus of elasticity until they reach
the point where it stabilizes. This point is dependent on the core material stiffness. When the core material
becomes weaker, the stabilization point moves to the left.

7.3.2 Torsion

The sandwich circular beam with the same dimensions like in previous case was subjected to torsional load
by a moment equal to 5 Nm. The results of comparisons of analytical and numerical results are presented in
Fig. 16.
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Fig. 16 Dependence of relative error on face modulus of elasticity in torsion loading conditions

We remark that the dependence of Δ on Eface has similar patterns as the one derived for bending, but there
is one significant difference: after the stabilization point, the relative error does not dependent on the core
material.

8 Conclusions

In order to characterize the mechanical behavior of multilayered beams, we have determined the effective
stiffness properties of composite beams with n layers, made of orthotropic or isotropic materials. Thus, the
general formulas for the effective stiffness coefficients of orthotropic composite beams are given by the relations
(17) and (18).

In the case of multilayered beams made of isotropic materials, we obtain by particularization the analytical
expressions of the torsional rigidity (26), effective bending and extensional stiffnesses (28), and shear stiffness
(31) or (37). These values have been compared with previously known theoretical results in Sects. 5.1, 5.2,
and 5.3. The comparison of analytical solutions with numerical results for some beam bending problems is
presented in Sects. 5.4, 6.3, and 6.4.

For circular sandwich columns made of piecewise homogeneous materials, the expressions of the effective
stiffness coefficients are given by (46)–(48). Using these values, we have deduced the analytical beam-like
solutions the bending and torsion of clamped beams and compared them with numerical results in Sect. 7.3.

The good agreement between the theoretical and numerical results for the considered mechanical problems
represents a validation of our analytical formulas for the effective stiffness properties ofmultilayered composite
beams. The range of validity of these formulas is quite large, as it was shown in the numerical study presented
in Sect. 6.

In a future work, we intend to continue our approach to describe more complex material behavior, such
as micromechanical models with separation of fibers and matrix material. Thus, for a composite beam like in
Fig. 1, the inner parts of the cross section can represent fibers of a fiber reinforced beam, which would rotate
using the Cosserat model with micro-rotations. To obtain numerical examples in this case, it is necessary to
introduce an interface or discontinuity at fiber/matrix contact to make the rotation of fibers with respect to the
surrounding matrix possible.
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