
Continuum Mech. Thermodyn. (2021) 33:1263–1279
https://doi.org/10.1007/s00161-021-00972-x

ORIGINAL ARTICLE

Elena N. Vilchevskaya · Wolfgang H. Müller

Modeling of orientational polarization within the framework
of extended micropolar theory

Received: 2 October 2020 / Accepted: 7 January 2021 / Published online: 28 January 2021
© The Author(s) 2021

Abstract In this paper the process of polarization of transversally polarizable matter is investigated based on
concepts from micropolar theory. The process is modeled as a structural change of a dielectric material. On
the microscale it is assumed that it consists of rigid dipoles subjected to an external electric field, which leads
to a certain degree of ordering. The ordering is limited, because it is counteracted by thermal motion, which
favors stochastic orientation of the dipoles. An extended balance equation for the microinertia tensor is used
to model these effects. This balance contains a production term. The constitutive equations for this term are
split into two parts, one , which accounts for the orienting effect of the applied external electric field, and
another one, which is used to represent chaotic thermal motion. Two relaxation times are used to characterize
the impact of each term on the temporal development. In addition homogenization techniques are applied in
order to determine the final state of polarization. The traditional homogenization is based on calculating the
average effective length of polarized dipoles. In a non-traditional approach the inertia tensor of the rigid rods
is homogenized. Both methods lead to similar results. The final states of polarization are then compared with
the transient simulation. By doing so it becomes possible to link the relaxation times to the finally observed
state of order, which in terms of the finally obtained polarization is a measurable quantity.

1 Polarization in dielectrics modeled by extended micropolar theory

Extended micropolar theory is capable of modeling structural changes in materials. The orientational polar-
ization of a dielectric can be considered as a structural change and is, therefore, a suitable candidate for this
kind of modeling. The paper is organized as follows. In this section we will present the basic relations of
micropolar theory, first, in general terms, and then, in particular, focus on a discussion of its extension. The
next section will, first, mostly for the benefit of the mechanics community, provide a short recapitulation of the
phenomenon of electric polarization, in particular orientational polarization. Second the equations of extended
micropolar theory will be specialized to the requirement of its modeling. In particular we shall specify the
required production term based on physical grounds. Moreover, Sect. 2 presents homogenization procedures
that allow to capture the final state of polarization. These results can then be linked to the modeling of the
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temporal evolution of polarization obtainable within the framework of extended micropolar theory. The paper
will end with a summary and an outlook into further applications based on the presented results.

1.1 Introductory remarks: Benefits of the concept of the microinertia tensor

Traditionally the microinertia tensor of a continuum particle, J , plays an important role only in context with
its rotational degrees of freedom. In combination with the angular velocity vector, ω, it characterizes the
spin of the continuum element. The details are outlined in Eringen’s theory of micropolar media, see for
example [11]. There it is shown that the microinertia tensor obeys a kinematic constraint in form of a rate
equation, which expresses the possibility of material continuum particles to undergo rigid body rotations.
This feature is captured by means of three rotating rigid directors. Within the framework of this theory the
shape of the microinertia tensor does not change; rather, it can only rotate rigidly. Eringen calls such materials
micropolar media. However, as we shall demonstrate in this paper, describing the particle spin is not the
only use of the microinertia tensor. If generalized, the concept of a changing microinertia can be beneficial
for describing processes in certain materials, for example, electromagnetic ones, such as the development of
electric polarization,whichmay already occur under the absence of an angular velocity. Someother applications
of micropolar theory can be found, for example, in [3,4].

In fact a radical change of the concept of the microinertia tensor has been presented recently in [14]. There
the microinertia tensor is treated as a completely independent field variable for solid and fluid matter alike.
In this formulation closed as well as open systems are allowed. This means that in- and outflux of matter in a
Representative Volume Element (RVE) can be taken into account and the concept of a material particle is not
imperative. Moreover, a structural change due to external forces becomes possible. The microinertia tensor
becomes a fully independent field variable with its own balance requiring additional constitutive quantities.
More specifically, in contrast with the balance ofmass, the balance for themicro-inertia tensor is not conserved.
It contains a production term, χ , which could be specified by following the rules of constitutive theory or be
motivated by physics and intuition, such that fundamental principles are not violated.

In the following subsections it will be demonstrated that this extended theory allows for the modeling of
processes accompanied by a considerable structural change characterized by a changing microinertia within
a representative volume element, such as the development of orientational polarization in matter under the
action of an external electric field, E. In this context the multi-disciplinary aspect of the present formulation
should be stressed. Potentially it can be used fruitfully to synthesize new innovative materials [34], which
combinemechanical and electrical behavior. For example, the use of piezoelectric patches can provide reduction
in vibrations or energy harvesting (see, e.g., [2,12]). Moreover, for a recent thermodynamically consistent
treatment of electro-mechanical problems see [1].

1.2 The balances of micropolar media

The motion and state of micropolar media in spatial description are described by the following coupled system
of differential equations:

• balance of mass,
δρ

δt
= −ρ∇ · v, (1.1)

• balance of momentum,

ρ
δv

δt
= ∇ · σ + ρ f , (1.2)

• balance of spin,

ρ J · δω

δt
= −ρω × J · ω + ∇ · μ + σ× + ρm, (1.3)

• balance of internal energy,

ρ
δu

δt
= σ : (∇ ⊗

v + I × ω
) + μ : ∇ ⊗

ω − ∇ · q + ρr, (1.4)
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where ρ is the field of mass density, v and ω are the linear and angular velocity fields, σ is the non-symmetric
Cauchy stress tensor, f is the specific body force, J is the specific micro-inertia tensor,μ is the non-symmetric
couple stress tensor, (a ⊗ b)× = a × b is the Gibbsian cross, m are specific body couples, u is the specific
internal energy, q is the heat flux, and r is the specific heat supply. By the colon we denote the outer double
scalar product between tensors of second rank, A : B = Ai j Bi j . Moreover,

δ(·)
δt

= d(·)
dt

+ (v − w) · ∇(·) (1.5)

is the substantial derivative of a field quantity, d(·)/dt the total derivative, and w the mapping velocity of the
observational point (see [13]).

It was already indicated that traditional micropolar theory assumes that each material point or “particle”
of a micropolar continuum is phenomenologically equivalent to a rigid body. It can rotate but the state of the
rotational inertia in the principal axes system does not change. In other words the micro-inertia tensor will not
change its form nor shape, see, for example, [9], [32], [19], [11]. Even if a so-called micromorphic medium
is considered, which in principle allows an intrinsic change of micro-inertia (following [8], [11], [10]), many
publications use only the following additional equation for the conservation of inertia (e.g., see [23], [5]),
which is an identity of rigid body kinematics:

δJ
δt

= ω × J − J × ω . (1.6)

Note again that the terms on the right-hand side characterize the change of the inertia tensor,which is exclusively
due to rigid body rotation.

An extension to this approach was suggested in [7], where it was proposed that the microinertia of polar
particles may change as the continuum deforms. This idea was then further elaborated in [14], where it was
clearly stated that the tensor of microinertia should be treated as an independent field. Within that approach a
fixed and open elementary volume V was treated as amicropolar continuum (macro-) region, as it is customarily
done in spatial description. Then its microinertia tensor J (in units of m2) as a property on the continuum
scale is obtained by homogenization as follows. Within the elementary volume V there are i = 1, ..., N
microparticles of mass mi and inertia tensor Ĵ i (in units of kgm2) such that:

m = 1

N

N∑

i=1

mi , J = 1

Nm

N∑

i=1

Ĵ i , (1.7)

where m is the average mass within V . If the linear and angular velocities of the particles are denoted by vi
and ωi , then the specific linear and angular momenta are given by:

v = 1

Nm

N∑

i=1

mivi , J · ω = 1

Nm

N∑

i=1

Ĵ i · ωi ⇒ ω =
(

N∑

i=1

Ĵ i

)−1

·
N∑

i=1

Ĵ i · ωi . (1.8)

The specific linear momentum is nothing else but the translational velocity on the continuum scale. Equation
(1.8)1 simplifies considerably if all the microparticles have the same mass:

v = 1

N

N∑

i=1

vi . (1.9)

This will be the case for the dielectric medium considered in this paper. Moreover, we will also assume that
the inertia tensors of the microparticles are the “same.” This means that the three principal values of the inertia
tensor are the same for each particle, Ĵ j

i = Ĵ j , but its eigensystem vectors e∗
i, j , j = 1, 2, 3 are not, because

the microparticles are randomly oriented. Thus, in such a case we can only say that

Ĵ i = Ĵ 1e∗
i,1

⊗ e∗
i,1 + Ĵ 2e∗

i,2
⊗ e∗

i,2 + Ĵ 3e∗
i,3

⊗ e∗
i,3 ⇒ J �= Ĵ i

m
. (1.10)



1266 E. N. Vilchevskaya, W. H. Müller

Only for a spherical inertia tensor, or if all microparticles are aligned in the same manner, the last relation
would turn into an equality. This also means that in all other cases of “equal” inertia tensors we must conclude
from the last relation in (1.8) that

ω �= 1

N

N∑

i=1

ωi . (1.11)

Because of the movement of the medium, the elementary volume contains different microparticles as time
passes, and the microinertia tensor assigned to the volume will change due to the incoming or outgoing flux of
inertia. However, internal structural transformations are also possible. These can be due to (a) the combination
or fragmentation of the particles during mechanical crushing, to (b) chemical reactions, or to (c) changes of the
anisotropy of the material, for example by applying external electromagnetic fields. Such effects are explained
in greater detail in [22], [21], [20], or [33]. In a nutshell, on the continuum scale all of this can be taken into
account by adding a source or production term, χ , to the right-hand side of Eq. (1.6), which now reads:

δJ
δt

= ω × J − J × ω + χ . (1.12)

On the continuum level this source term must be considered as a new constitutive quantity for which an
additional constitutive equation has to be formulated. The form of the constitutive equation depends on the
problem under consideration and can be a function of many physical quantities. A suitable form for the
modeling of orientational polarization in polarizable matter under the influence of an external electric field
will be discussed in the next section.

Finally it should be emphasized once more that the field of microinertia, i.e., the rotational inertia of the
continuum influences the development of the angular velocity ω. The temporal development is dictated by the
spin balance (1.3), and this is usually the only purpose of J . In this paper it is different: Because of the extended
balance (1.12) J can also be used to characterize structural changes of the micropolar medium, without the
presence of an angular velocity. We proceed to explain this in more detail in the next section.

2 Polarization modeling

2.1 Introductory remarks on polarization

For didactical reasons we recapitulate a few facts from electrical engineering in this section. In this field one
distinguishes between electrically conducting and non-conducting or insulating materials. On a microscopic
scale the former possess freely movable electric charges, for example the electron gas in metals. In case of the
latter charges cannot move around freely. Positive and negative charges must stay together. They are bound
within amolecule or other basic atomic units, for example within a crystal lattice.Materials in which an electric
current cannot flow are also known as dielectrics. In the absence of external electric fields they are electrically
neutral. However, one of their basic properties is the ability to polarize if an external electric field E is applied.
This leads to the creation of surface charges, which on the continuum scale are described by the polarization
vector P . Indeed,

∮
∂V P · n dA allows to compute that charge, provided the field P is known.

The question arises how the polarization can be measured, at least in principle, since a direct measurement
of charges, in particular surface charges, is difficult. A simple school experiment can be used. Consider a
plate capacitor, which is first charged by a battery, so that the plates of surface A at a distance d are loaded
with the electric charges ±Q. The battery is then detached and replaced by a voltmeter. If there is vacuum in
between the plates, the voltmeter will show a voltage Uvac, say. If we now place a dielectric body in between
this voltage decreases down to Upol < Uvac. The stronger the decrease, the more surface charges are created,
and the stronger the polarization P will be. In order to quantify the effect in terms of a material constant, let
us assume for simplicity that the dielectric material between the plates is isotropic and the polarization vector
can be described by a linear constitutive equation of the type:

P = ε0χE, (2.1)

where ε0 = 8.854 × 10−12 As
Vm is the electric field constant and χ > 0 is the dielectric susceptibility, which

in this simple case is a material-dependent, dimensionless constant. In fact, application of the static Maxwell
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Fig. 1 Polarization types adapted after [16]

equations to the case of the plate capacitor described above yields:

Upol = Qd

ε0(1 + χ)A
. (2.2)

The combination εr = 1+ χ is also known as relative permittivity, which is also dimensionless. It is equal to
one for the case of vacuum. Then Eq. (2.2) allows to determine εr or χ if the the two voltages before and after
filling the vacuum are measured:

χ = Uvac

Upol
− 1. (2.3)

Note that if the dielectric is anisotropic and if the electric field is not too high, the dielectric suscep-
tibility constant can simply be replaced by a constant second rank dielectric susceptibility tensor, χ . For
large electric fields the dielectric susceptibility is a nonlinear function of the electric field, χ(E), which
is sometimes expressed in a power series. Moreover, analogously to viscoelasticity, which makes use of a
frequency-dependent complex shear modulus during harmonic loading, it becomes necessary to introduce
a frequency-dependent and complex valued dielectric susceptibility when harmonically alternating electric
fields are applied.

It should be emphasized that wemade these remarks just to illustrate the measurement principle. In practice
(frequency dependent) susceptibilities and relative permittivities are measured dynamically, for example, by
using microwave waveguide systems, see [35].

Figure 1 presents cartoons of the various polarization mechanisms encountered in materials on the
microscale.

Inset (a) refers to electronic polarization. Due to the electric field the positive charge of the atomic nucleus
and the negative charge of the surrounding electron cloud are shifted with respect to each other so that an
atomic dipole results. If the field is removed, the electron cloud and the nucleus move reversibly into their
old position. The atom is electrically neutral and no longer a dipole. It is a very weak effect in (more or less
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isolated) atoms or ions with spherical symmetry. It can be a strong effect in, e.g., covalently bonded materials,
such as Silicon, Germanium or diamond [17,24].

Inset (b) illustrates ionic polarization. It emerges due to a shift in the positive and negative ion centers of
gravity. A typical example are sodium chloride crystals [31].

Inset (c) illustrates orientational polarization, which will be modeled in this paper. It results from field
stimulated orientation of atomistic aggregates that already carry a dipole moment before the external electric
field is switched on. It is pertinent to polar liquids, but it can also be observed in solid polar organic substances.
In this case, the polarization is usually not caused by the rotation of the molecule itself, but of the polar
radicals present within it in relation to the molecule. In this context hydrochloric acid or water should be
mentioned, because the charge distributions in these molecules are skewed so that a net permanent dipole
moment arises. Moreover, in cellulose, the polarity is explained by the presence of OH and oxygen hydroxyl
groups. In addition, crystals with a molecular lattice and weak van der Waals bonds can also orientate larger
particles. A typical engineering example of materials that show orientational polarization are electrets [16].

Finally inset (d) presents spatial (or space) charge polarization. It is observed in dielectrics with a het-
erogeneous interlayer structure. Hence, it occurs when there is an accumulation of charge at an interface
between two materials or between two regions within a material because of the external field. This can occur
in compound dielectrics, or when there are two electrodes connected to a dielectric material [30].

It should be noted that the measurable dielectric constant is usually the result of several microprocesses
that differ in the way and time at which a stationary state is reached. In particular, a distinction must be made
between deformation (elastic) and thermal (relaxation) polarization. Elastic polarization relates to the rotation
of molecules with constant dipoles relative to the equilibrium position under the influence of an external
electric field. Dipole-elastic polarization is characteristic of those types of polar dielectrics in which the dipole
moments of molecules cannot change their orientation significantly, but only oscillate with a small amplitude
relative to the equilibrium position. In this case, the dipolesmust be sufficiently rigidly coupled so that an elastic
restoring force arises when the direction of orientation changes. This type of polarization is characteristic of
liquid crystals and pyroelectrics. We shall not take elastic polarization into account in the model we are about
to present and leave this to future work.

Thermal polarization is observed in dielectrics that contain weakly bound polar molecules that can move
randomly during thermal motion. An external electric field leads to some order in the particle orientation,
but, in general, thermal motion prevents the creation of a totally ordered orientation of all dipoles. Only at
extremely low temperatures all the dipoles may be be aligned along the lines of force. Thus, only a partial
orientation of the electric dipoles occurs under the influence of the field, i.e., depending on the strength of the
electric field the dipoles tend to align toward it more or less but not completely (see Fig. 2, top right). We will
now look into this in more detail.

2.2 The microscopic and the continuum viewpoint

The pictures in Fig. 2 relate to our model and show an RVE of matter capable of orientational polarization.
The picture on the top left illustrates the situation before an external electric field was applied. We assume that
on the microscopic or atomistic scale the material consists of rigid rods with positive and negative charges q
at their ends, such that the dipole moment of one rod is given by p = q l , where the length vector l points from
the negative to the positive head. The dipoles are chaotically oriented. Therefore, the total dipole moment on a
continuum scale is zero.We also refer to it as the averaged or homogenized polarization vector of the ensemble
of rods within the RVE, 〈 p〉. In the literature this quantity is sometimes also referred to as micropolarization.
When multiplied by the continuum field of particle density n(x, t) = N/V we obtain the aforementioned local
polarization vector P = n〈 p〉.

Moreover, note that due to the requirement of isotropy before the electrical field acts, the microinertia
tensor, J , which is also a continuum quantity, must be a spherical tensor, see Fig. 2, bottom left, which unlike
P is not zero.

Under the influence of an external electric field, E = En, the polarized microparticles, i.e., the rigid rods,
tend to align in the direction n of that field, in order to reduce the electrostatic energy of the material: Fig. 2,
top right, n being the unit vector in electric field direction. Then the substance will carry a dipole moment on
the continuum scale, which is no longer equal to zero, and which coincides with the direction of the electric
field vector, 〈 p〉 = 〈p〉n �= 0. Moreover, the microinertia tensor will change from spherical to transversal
anisotropy in the direction of n, as indicated in Fig. 2, bottom right.
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Fig. 2 Structural changes and their corresponding averaged properties

The idea is to model the time development of homogenized polarization, 〈 p〉 = q〈l〉(t), through the time
development of the microinertia, 〈J〉 = 〈J〉(t), which will be used to compute a homogenized dipole length,
〈l〉 = 〈l〉(t). In order to capture this time development the kinetic equation (1.12) may serve. Of course, for
its integration the production term needs to be specified, so that it mimics thermal polarization. These issues
will be clarified in the next subsection by presenting a suitable mathematical framework.

2.3 Compilation of relevant inertia tensor expressions and homogenization

Recall from dynamic textbooks the inertia tensor with respect to the center of gravity per unit mass for a rigid
rod of length l oriented in e∗

3-direction of its normalized eigenbase e∗
i , i = 1, 2, 3:

J r = l2

12

(
e∗
1

⊗ e∗
1 + e∗

2
⊗ e∗

2

)
. (2.4)

For future calculations we decompose this expression into a spherical and into a deviatoric part:

J r = J r,sp + J r,dev , J r,sp = l2

18
I , J r,dev = l2

36

(
I − 3e∗

3
⊗ e∗

3

)
. (2.5)

Clearly this is an expression related to the microscopic scenario. It holds for each microparticle shown in Fig.
2, top left. However, it can also be used to characterize the situations on the continuum level shown on the
bottom right of that figure. The key to this is homogenization by averaging over the particle population. For
this purpose we introduce the so-called probability density for transversal anisotropy, P(ξ, ϑ) as follows (see
[15], Section 5.3.5 for variations in the equation in the case of a semi-sphere):

P(ξ, ϑ) = 1

2π

( (
1 + ξ2

)
exp (−ξϑ) − 1

2
exp (−ξπ)

)
, 0 ≤ ϑ ≤ π, (2.6)

ξ is the so-called positive scatter parameter. Two limit cases are important: ξ = 0, which characterizes fully
random alignment of the rods, and ξ = ∞, where all rods are perfectly aligned in the direction n of the external
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Fig. 3 Probability density function for ξ = 0.01 (blue), ξ = 0.1 (red), ξ = 1 (green), ξ = 10 (magenta)

electric field. 0 ≤ ϑ ≤ π is the polar angle of the unit sphere 	. The probability density is normalized with
respected to integration over 	, 0 ≤ ϕ ≤ 2π being the azimuthal angle:

∫

	

P(ξ, ϑ) sin ϑdϑdϕ = 1, (2.7)

as can be demonstrated easily by using computer algebra programs. It is illustrated for different choices of ξ
in Fig. 3. The case ξ = 0 corresponds to a constant value of P , such that all direction ϑ are equally possible.
However, even for relatively small positive values of ξ = 0 one departs from this case and runs into transversal
anisotropy, which favors small values of ϑ .

We will use it now for homogenization. In the first place we want to calculate the average length vector
〈l∞〉 of the ensemble shown in Fig. 2, top right. The index ∞ is supposed to indicate that this is the effective,
homogenized length after sufficient time has passed since the electric field was switched on. The directed
length of an arbitrary rigid rod is given by l = le∗

3. However, the unit vector e∗
3 is now arbitrarily oriented

in space. In order to emphasize this point we assign e∗
3 → N , N being an arbitrarily oriented unit vector. To

make this even more obvious we recall the representation of the unit vector N in spherical coordinates,

N = cosϕ sin ϑe1 + sin ϕ sin ϑe2 + cosϑe3, (2.8)

where ϕ and ϑ can vary as indicated before, so that all directions in space are addressed by points on the unit
sphere. The vector N is spanned with respect to a special Cartesian base ei , i = 1, 2, 3 located in the center
of the RVEs shown in Fig. 2, such that the vector e3 is oriented in the direction of the external electric field, n.
Hence we write e3 = n, and e1 and e2 are arbitrarily oriented perpendicularly to it within the corresponding
plane of isotropy. Then 〈l∞〉 can be calculated by averaging as follows:

〈l∞〉 =
∫

	

P(ξ, ϑ)ld	 = l

π∫

ϑ=0

2π∫

ϕ=0

P(ξ, ϑ)N(ϑ, ϕ) sin ϑdϑdϕ = (1 + ξ2) (1 − exp(−ξπ))

4 + ξ2
ln, (2.9)

d	 being the surface element of the unit sphere. Clearly within the plane of isotropy no average length
contribution must arise. Everything points in the direction of transversal anisotropy, n. Note that for the case
of perfect disorder ξ = 0 we obtain zero effective length, as expected. Moreover, for perfect alignment ξ = ∞
the homogenization yields 〈l∞〉 = ln as could have also be expected.We can use (2.9) to compute the effective
final dipole moment on the continuum scale from 〈 p∞〉 = q〈l∞〉. However, note once more that all these
homogenizations characterize only the final state. The temporal development of how to get from the initially
isotropic to the non-isotropic state cannot be analyzed within this approach.

Next we homogenize the inertia tensor (2.5) of partially aligned rods within the RVE. To this end we assign
e∗
3 → N and carry out various integrations by using computer algebra programs. The final result reads:

〈J∞〉 =
∫

	

P(ξ, ϑ)J rd	 = 〈J sp∞〉 + 〈Jdev∞ 〉, (2.10)
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Fig. 4 Dependence of the normalized dipole moment from length homogenization (blue line) and from microinertia (red line) on
the scattering parameter

with an average spherical and an average deviatoric part,

〈J sp∞〉 = l2

18
I , 〈Jdev∞ 〉 = l̄(ξ)2

36
(I − 3n ⊗ n) , l̄(ξ) = √

f (ξ)l , f (ξ) = ξ2 (1 + exp(−ξπ))

9 + ξ2
. (2.11)

Obviously the deviatoric part vanishes for a chaotic arrangement of the rods, ξ = 0 and it turns into Jdev0 =
l2/36 (I − 3n ⊗ n) if all the rods are aligned. It should be emphasized that by its very construction 〈J∞〉 is
the microinertia tensor on the continuum scale, however, after a very long time, so that there was ample of
opportunity for the rods to arrange and find an equilibrium between the two concurring forces, the electric
field, that wants them to align, and the disorientation effect due to a temperature different from absolute zero.
We may refer to this by writing 〈J∞〉 ≡ J(t → ∞).

We are now in a position to compare two homogenized lengths, first, 〈l∞〉 from Eq. (2.9) and, second, l̄(ξ)
from Eq. (2.11)3 as a function of the scattering parameter. The result is shown in Fig. 4. It is fair to say that the
difference between the two approaches is small. The average length predicted by the microinertia approach is
slightly less.

Moreover, we can compare the final result (2.11) with the microinertia tensor of a spheroidal ellipsoid with
minor axes a∞ = b in e∗

1 and e
∗
2 directions, respectively, and the major axes c∞ in e∗

3 ≡ n direction. It is given
by:

J se = J se,sp + J se,dev (2.12)

with spherical and deviatoric parts,

J se,sp = 2

15
(2a2∞ + c2∞)I , J se,dev = 1

15
(c2∞ − a2∞) (I − 3n ⊗ n) . (2.13)

By comparison of both expressions we conclude that

a2∞ = 5

36
l2

(
1 − f (ξ)

)
, c2∞ = 5

36
l2

(
1 + 2 f (ξ)

)
. (2.14)

The ∞ signs indicate that we consider the situation after a long time. In the absence of an E-field, i.e., for
total chaos, we find a∞ = c∞, and for complete orientation a∞ = 0, c∞ = √

5/12l, as it should be. The latter
result had been obtained before in [21] in context with the concept of an equivalent rod length. On first glance
it is surprising that c∞ = l/2 does not hold. This is because in an ellipsoid in contrast with the rod the mass
must be considered as not evenly spread along the main axis.

Summarizing we may say that homogenization allowed us to analyze the final stage of the development of
the microinertia. We now turn to the modeling of its temporal development.
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2.4 The continuum model for the microinertia tensor

Note that the spherical part of the microinertia tensor cannot change in time, because the microparticles in
the representative volume are rigid. Hence, temporal development of anisotropy is only characterized by the
deviatoric part of themicroinertia tensor, Jdev.Consequently, the production termmust bedeviatoric,χ = χdev,
and be expressed in terms of deviators of microinertia. Hence, by using the nomenclature established in context
with Eq. (2.11) we have

J = J sp + Jdev , J sp = J0I , J0 = l2

18
= const. ≡ 2

15

(
2a2(t) + c2(t)

)
, (2.15)

and the balance (1.12) for the inertia tensor reduces to

d Jdev

dt
= χdev, (2.16)

where

Jdev = 1

15

(
c2(t) − a2(t)

)
(I − 3n ⊗ n) . (2.17)

a(t) is the semiaxis of the spheroidal ellipsoid in the plane of isotropy, c(t) is the semiaxis of the spheroid in
the direction of the external field, n. They are time dependent as indicated.

The disappearance of the linear and angular velocity parts in Eq. (1.12) is worth a comment. First note
that the translational velocity v must be zero. To prove this we argue as follows: The body force is given by
the resulting Coulomb force within the RVE of volume V , namely ρ f = N(q++q−)E/V . However, it vanishes
because q− = −q+. Moreover, the medium is quasi “dust.” Hence the stress tensor σ vanishes. Therefore, by
virtue of Eq. (1.2) we must conclude that v = 0. On the other hand and with this in mind, if we now look at Eq.
(1.9), we must conclude that all the velocities vi of the elementary particles are erratic and remain so during
the polarization process. This is also understandable, because the Coulomb force on each of the micro-dipoles
is also zero. Their centers will not be accelerated in the direction of the field E and, hence, no macroscopic
velocity v will result.

Second, similar to the stress tensor, σ , there will be no couple stress tensor μ in Eq. (1.3). There are also
no volume couples on the macrolevel, because they result from the vector product ρm = P × E. However,
both P and E align with n, so that the vector product vanishes. To put it differently: We would expect the
dipole macroparticle to rotate only if is misaligned with respect to the electric field, so that a moment couple
is created. But this is not the case in our arrangement.

Nevertheless, this still leaves the term −ω × J · ω in Eq. (1.3), and in it obviously only the deviatoric part
Jdev might contribute to a temporal development of the angular velocity ω:

J · dω
dt

= −ω × Jdev · ω. (2.18)

This equation is identically satisfied and does not lead to internal contradictions, if for the physical reasons
presented above ω = 0 is set. Unlike the case of the microvelocities vi we cannot support this conjecture
from Eq. (1.8) where the angular momenta of the microparticles were averaged. Indeed, we can represent the
angular velocity ωi of a microparticle in the eigensystem of its inertia tensor, ωi = ωi, j e∗

i, j . Then according
to Eqns. (2.4), (1.8) and (1.10) we find:

ω =
(

NI −
N∑

i=1

e∗
i,3

⊗ e∗
i,3

)−1

·
N∑

i=1

(
ωi − ωi,3e∗

i,3

)
. (2.19)

However, each microdipole will be subjected to a non-vanishing moment because of the applied electric field
so that its angular velocity ωi will develop in time in contrast with its translational velocity vi .

The production χdev is additively split into two contributions, one to account for the effect of the external
field, called χ E , and one to account for the impact of temperature, called χT , as follows:

Thermal polarization occurs rather slowly. In a constant external field equilibrium is established after some
time τp, which is known as the relaxation time of the polarization process. That is, a steady state during
thermal polarization occurs when the external influence is compensated by internal thermal movement. Thus,
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Fig. 5 Change of the source term χE vs. t/τT for τT/τE=0.0001 (blue), 0.1 (red), 1 (green), 10 (magenta)

the production term consists of a part that corresponds to the alignment of all microparticles in the direction
of the external field without thermal movement,

χ E (t) = 1

τE (E)

(
Jdev∞ − Jdev(t)

)
, (2.20)

where Jdev∞ = l2/36 (I − 3n ⊗ n) is the deviator of the microinertia that would be obtained if the electric field is
infinitely strong and all microparticles would be forcefully aligned, cp., Eq. (2.11)2 for ξ → ∞. Jdev(t) will
strive toward this value but never quite reach it. τE is a (positive) relaxation time decreasing with increasing
E0 and characteristic of the intensity of the external effect, in agreement with experimental evidence. All of
this indicates that the production χ E has the character of a source, i.e., it is always positive.

The second part of the production characterizes the thermal movement,

χT (t) = − 1

τT (T )
Jdev(t), (2.21)

where τT is the time it takes for the material to return to an isotropic state due to temperature when the external
field is turned off. The smaller the τT -value, the faster the complete disorientation of the microparticles. Since
the disorientation of particles is associated with thermal motion, τT should be a decreasing function with
temperature. Note that the production χT is actually a sink term, since it is always less or at most equal to 0,
i.e., essentially negative.

The integration of Eq. (2.16) with the initial condition Jdev = 0 yields the temporal development of the
inertia tensor:

J(t) = J0I + J∞
[
1 − exp

(
− t

τp

)]
(I − 3n ⊗ n) , J∞ = l2

36

τT

τE + τT
, τp = τEτT

τE + τT
. (2.22)

In here J∞ denotes the limit value of the moment of inertia for t → ∞. Note that the stationary value of
(2.22) for t → ∞ does not coincide with the moment of inertia of the microparticle (2.5). The difference is
the factor τT

τE+τT
. This makes sense because not all of the dipoles are aligned in the n-direction due to thermal

motion. Thus, this quantity characterizes the equilibrium distribution of dipoles over orientations. In fact by
comparison with (2.11) we must conclude that:

τT

τE + τT
≡ f (ξ) = ξ2 (1 + exp(−ξπ))

9 + ξ2
. (2.23)

Consider the first limit case, which is ξ = 0, i.e., total disorder of the particles. Then the right hand side of
(2.23) is equal to zero. Consequently, τT → 0 and the thermal sink term, χT , creating chaos will dominate.
The second case, total alignment, results for ξ → ∞. Then the right-hand side of (2.23) is equal to one, which
is achieved for τE → 0. Then the influence of the E-field related source term, χ E , is dominant.

Figure 5 illustrates the behavior of the factor in front of the normalized source term (2.20), i.e., essentially
the component e1 · χ E · e1 (e1 ⊥ n) vs. normalized time t/τT . Recall that if τT/τE << 1, then the source term



1274 E. N. Vilchevskaya, W. H. Müller

Fig. 6 Change of the sink term χT vs. t/τT for τT/τE=0.0001 (blue), 0.1 (red), 1 (green), 10 (magenta)

should be small, because the chaotic effect of temperature will overcome the ordering imposed by the electric
field. This is demonstrated by the blue and red lines. More mathematically speaking, we find that if τT/τE → 0
then 2χE τT/J0 → 0, i.e., temperature dominance, and if τT/τE → ∞, then 2χE τT/J0 → 1, i.e., electric field
dominance.

Figure 6 illustrates the behavior of the analogous factor in front of the normalized sink term (2.21) vs.
normalized time t/τE . Again recall that if τT/τE << 1, then the absolute value of the sink term should be
large, because the chaotic effect of temperature will overcome the ordering imposed by the electric field. This
is demonstrated by the blue and red lines. Moreover, we find that if τT/τE → 0 then 2χT τE/J0 → −1, i.e.,
temperature dominance, and if τT/τE → ∞, then 2χE τE/J0 → 1, i.e., electric field dominance.

It should also be noted that by comparison of the result shown in (2.22) with (2.15)3 and (2.17) we find
for the semi-axes:

a(t)2 = 5

36
l2

[
1 − τT

τE + τT

(
1 − exp

(
−τE + τT

τEτT
t

))]
,

c(t)2 = 5

36
l2

[
1 + 2

τT

τE + τT

(
1 − exp

(
−τE + τT

τEτT
t

))]
.

(2.24)

We conclude that:

a2∞ = 5

36
l2

τE

τE + τT
, c2∞ = 5

36
l2

τE + 3τT
τE + τT

. (2.25)

This result is consistent with Eqs. (2.14) and (2.23). Also in the case of temperature supremacy τT/τE → 0 it
follows that a∞ = c∞, in other words isotropy.

The deviator of the time-developing microinertia (2.22) can also be written in the form:

J(t)dev = l̄τ (t)2

36
(I − 3n ⊗ n) , (2.26)

where an effective length l̄τ (t) was defined:

l̄τ (t) =
√

τT

τE + τT

[
1 − exp

(
−τE + τT

τEτT
t

)]
l. (2.27)

Obviously we obtain for very long times:

l̄τ (∞) =
√

τT

τE + τT
l, (2.28)

and this result is consistent with (2.11)3,4 and (2.23). The stationary length is plotted in Fig. 7. Clearly, for
dominant thermal disorder (τT << τE ) the effective length goes to zero and chaos prevails, whereas with a
strong electric field (τE << τT ) saturation can be reached. It is curious to note that the average length is not
equal to 0.5 for τE = τT but rather to the square root of it. Mathematically speaking this is due to the equation
of length identification (2.27). The microinertia itself favors the square.
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Fig. 7 Stationary average length lτ (∞) as a function of τT/τE

2.5 Alternating electric field and dispersion

It was emphasized in context with Eq. (2.20) that the relaxation time τE depends on the electric field E. More
specifically it decreases with increasing electric field. So far τE was treated as a constant. If we now wish to
study the impact of an electric field alternating in magnitude but not changing its direction in space on the
development of the microinertia tensor and therefore on the development of polarization, consequently, we
have to allow that τE changes with time. Let us write:

τE (t) = τ 0E

cos2(ωt)
, (2.29)

where τ 0E is a true constant. Because of the square we do not repolarize, however, the ordering effect of the
electric field will not be optimal at all times. The cosine function was chosen for pure convenience. It is a
smooth function and leads to no problems during the numerical integration. Then the thermal production shown
in Eq. (2.21) will take over even more and has additional opportunity to reestablish chaos. Consequently, the
effective length l̄τ and thus the molecular polarization will fluctuate more or less heavily depending on the
chosen frequency ω. Such a dependence on frequency is known as dispersion. Moreover, between the applied
alternating electric field and the varying polarization there may also be a phase shift.

If Eq. (2.29) is used in context with (2.20) and (2.21), the differential equation (2.16) can numerically be
solved: Fig. 8 shows the effective length as a function of normalized time for τT/τ 0E =0.1 (top left), 1.0 (top
right), 5.0 (bottom left), 10.0 (bottom right) for four choices of normalized frequency ω/τT=0 (blue), 1 (red),
2 (green), and 5 (magenta). Of course, just numerical solutions of the differential equation (2.16) are possible
in the alternating case. The following is observed:

• The smaller τT/τ 0E , the smaller the effective polarization lτ , because then the thermal effect prevails (resulting
in smaller values of τT ) or the electric field is too weak (resulting in larger values of τE ).

• The undulating polarization curves stay below the blue one for the non-alternating electric field. In other
words, the thermal effect is more effective.

• The larger the frequency of the ω of the alternating electric field, the closer the effective polarization comes
to the one when the electric field does not alternate: The temperature has less time to take effect and
dispersion is strongly visible. However, even at very high frequencies the effective polarization does not
quite reach the one for a non-alternating field.

The effect of dispersion is further analyzed in Fig. 9. The curve and corresponding dots are for τT/τ 0E = 0.2
(red), 0.5 (green), 1.0 (blue), 2.0 (black), and 10.0 (magenta). Note that:

• Increasing ωτT from zero results in an initially steep decline followed by an increase that finally leads to
saturation.

• The higher the τT/τ 0E , the smaller the difference between the value for polarization at ωτT = 0 and the
saturation level. The particles have time to adjust. However, the average length of the non-transient case is
never fully reached.

• The dispersion effect becomes more pronounced if τT/τ 0E is increased.
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Fig. 9 Effective polarization lτ as a function of normalized frequency of the electric field (see text)

3 Conclusions and outlook

In this paper the following were achieved:

• The importance ofmicropolarmedia for studying electric phenomena, such as polarizationwas emphasized,
because they allow modeling materials with an internal structure.

• The phenomenon of dielectric polarization was discussed in terms of micromodels. In particular the micro-
phenomenon of orientational polarization was linked to the continuum level from a new viewpoint, namely
to an extended version of micropolar theory.

• The process of developing orientational polarization was analyzed by introducing two production terms
in the extended balance of microinertia, one for the chaotic effect of temperature and one for the ordering
effect of the electric field.

• The final stage of polarization obtained from the microinertia model was compared to results obtained
from homogenization both traditionally by calculating the effective length of oriented rigid dipoles and
non-traditionally by calculating their average inertia tensor.

It is fair to say that the homogenization technique applied to orientational polarization in this paper captures
the essential physics features of this process in a novel way, but it seems rather crude when compared to
more sophisticated methods, for example the ones described in [18]. The authors of that paper focus on the
electromagnetic side of the problems; in other words, they consider polarization and magnetization in terms of
Maxwell’s equations. The applications of their techniques to the mechanical viewpoint of extended micropolar
media should be subject of further studies.

Further research in the field of extended micropolar theory will surely include a similar investigation of
the magnetic susceptibility. Both will potentially lead to an investigation of cross-property connections as
follows. Note that the classical approaches, which are based on averaging according to 〈p〉 = q〈l〉, allow
only the polarization of the material to be estimated. In contrast with that the approach proposed in this work,
associated with a change in the tensor of inertia at the macrolevel, makes it possible to establish relationships
between various physical and mechanical processes. In particular the reorientation of microparticles from a
chaotic to an ordered state transforms an initially isotropic heterogeneousmaterial into a transversally isotropic
one, which, in turn, leads to a change in the effective elastic, or conductive (electro, heat, diffusion) properties
of the material.

In the future our research might also be helpful for modeling structural transitions in nematic crystals.
Surely, the interaction between the microparticles in such materials will be more complicated than the dust
type of interaction that was assumed in our present work. Nevertheless, the orientational transitions under
the action of electro-magnetic fields are similar to ours, as can be seen in a recent publication, where such
modeling was attempted numerically [29]. If such coupled problems of nematic crystals are studied, it will also
become necessary to reconsider the balance of internal energy (1.4) to account for effects of electro-magnetic
dissipation (Joule heating).

Also a remark should be made regarding the attempts of researchers to include elastic effects to dielectrics.
As it was mentioned so far we did not study truly coupled interaction between all field equations. Instead we
specialized to “dust,” which led to a balance of spin that was identically satisfied. The foundations of a more
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sophisticated electro-micropolar theory were laid very early in a seminal paper by Dixon and Eringen [6]. The
methods explained in there now need to be used in the extended version of micropolar media. In particular it
will be worthwhile to address the question as to whether the idea of higher electric moments (quadropoles)
are in some way equivalent or go beyond to our idea of a dynamic microinertia following its own balance.

In the same context it should also be asked as towhether the concept ofmicromorphic continua is equivalent
or goes beyond our concept of amicroinertiamodeling structural change.A starting point could be a comparison
with results from [25–27], and [28]. To begin with it will become necessary to discuss the differences between
the microinertia tensor of micromorphic continua and our microinertia for rigid body points. Then the striking
mathematical similarity between the former and the quadropole tensor must be examined and, finally, the
question must be answered as to whether the production of our microinertia describing structural change can
be linked to the additional freedom of deformation inherent to micromorphic continua.
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