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Abstract The paper deals with the effect of different stress-state-dependent damage mechanisms on the onset
of fracture in ductile metals. A continuum damage model is discussed using a strain tensor as an appropriate
damage variable. It takes into account the influence of stress state on the damage condition and on the evolution
equations of damage strains. A fracture condition based on critical damage parameters is developed analyzing
results of a series of new experiments with different biaxially loaded specimens. After the tests, fracture modes
are visualized by scanning electron microscopy. Numerical simulations of the biaxial experiments elucidate
the stress states in critical regions of the specimens which are used to explain formation of different damage
and fracture modes on the micro-level. Analysis of numerically predicted damage strains for different loading
cases leads to a generalized fracture criterion.

Keywords Ductile damage · Fracture criterion · Biaxial experiments · Numerical simulations

1 Introduction

Development of ductile fracture criteria is an important issue for structural integrity and safety requirements.
In various tests, it has been shown that increase in inelastic deformations in ductile metals can lead to fracture.
Many research activities are documented in the literature of the past decades to detect fracture processes in
ductile metals at a wide range of stress states. For example, in the range of high stress triaxialities fracture is
the result of nucleation, growth and coalescence of voids on the micro-level, whereas small positive or negative
stress triaxialities lead to formation and growth of micro-shear-cracks. Combination of these basic damage and
fracture modes on the microscale occur for moderate positive stress triaxialities and for high negative stress
triaxialities no fracture has been observed in experiments with ductile metals. Therefore, detailed experimental
and numerical investigations of these stress-state-dependent failure processes are needed to develop and to
validate accurate fracture models.

Information on stress-state-dependent damage and fracture mechanisms are taken from numerical studies
on the micro-level examining deformation behavior of micro-defect-containing unit cells [6,9,13,14,17,19,
28,37]. Based on these numerical analyses individual behavior of micro-defects in unit cells under wide ranges
of loading conditions have been investigated and the effects of their coalescence resulting in macro-cracks
have been studied in detail. Systematic unit cell studies enable detection of stress-state-dependent damage and
fracture processes which have not been revealed by experiments alone.

On the other hand, extensive experimental programs have been performed to investigate the influence
of different stress states, often with focus on the role of the shear stress on ductile fracture. In particular,
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uniaxial tension tests with unnotched and pre-notched specimens have been performed to analyze stress-state-
dependent inelastic deformation behavior as well as damage and fracturemodes [3,4,9,11,21]. However, based
on correspondingnumerical simulations it has been shown that these testswith uniaxially loaded specimensonly
cover a small range of stress states and, thus, further tests with newly designed specimens have been developed
by different research groups. For example, experiments with butterfly specimens have been discussed [2,22,32]
which are uniaxially loaded in different directions using special experimental equipment and, thus, these tests
are able to cover a wide range of stress triaxialities. Alternatively, two-dimensional experiments with different
biaxially loaded specimens have been developed to investigate stress-state-dependent deformation, damage
and fracture behavior [10,15,16,23]. Corresponding numerical simulations have shown that these specimens
cover a wide range of stress states allowing examination of different damage and fracture processes on the
micro-level.

Furthermore, in the literature [3,20,27,33,36] the accumulated plastic strain to fracture is proposed to
be an adequate measure to predict onset of fracture in a large number of engineering models and its stress
state dependence is investigated by various experiments and numerical simulations. For example, a stress-
triaxiality-dependent fracture strain criterion has been presented [26] based on micro-mechanical analysis
of void growth [31,34] and additional experimental data. This fracture strain equation has been extended
[27] to numerically simulate failure behavior of smooth and differently notched tensile specimens [5]. A
more sophisticated fracture strain criterion [3,33,38] is based on a series of experiments and corresponding
numerical simulations to reveal the effect of stress triaxiality on the onset of fracture. In addition, alternative
engineering fracture strain approaches depending on the stress triaxiality and the Lode parameter have been
discussed [20,36].

However, the engineering fracture approaches discussed above are only based on consideration of elastic–
plastic behavior leading to fracture and ignore the damage mechanisms occurring in complexly loaded ductile
metals before fracture happens. Therefore, alternative models have been presented using critical values of
scalar damage variables predicting onset of ductile fracture. For example, formulations using critical micro-
defect volume fractions [12,39] or micro-defect area fractions [4,29,30] have been presented to identify onset
of ductile fracture. On the other hand, the stress-state-dependent damage behavior is anisotropic and, thus, a
simple scalar damage variable does not seem to adequately characterize the fracture behavior.

Therefore, a more detailed numerical analysis on the microscale investigating onset of macro-cracking
caused by anisotropic growth and coalescence of micro-defects has been discussed and a fracture criterion
taking into account critical values of damage strain tensors has beenproposed [14]. This criterion is reconsidered
in the present paper and modified based on experimental data from different biaxially loaded specimens.

In the present paper the continuum damage and fracture model is briefly discussed in Sect. 2. In Sect. 3
experimental and numerical results of biaxial tests with different specimens for two ductile metals, the alu-
minum alloy AlCuMg1 and the low carbon steel X5CrNi18-10, are presented. Based on these experimental
and numerical data a fracture criterion for ductile metals is developed in Sect. 4. In Sect. 5 the main aspects of
the paper are summarized.

2 Continuum damage and fracture model

The basic ideas of the thermodynamically consistent continuum damage model [7,8] analyzing anisotropic
damage in ductile metals are briefly presented. The phenomenological framework is based on a kinematic
description of damage caused by stress-state-dependent evolution of micro-defects. The micro-defect volume
fraction

f = dVd
dV

(1)

has been proposed [25] as a continuous damage variable characterizing the current state of damage. It is directly
given by the geometry of micropores where dVd represents the differential volume of the micro-defects and dV
denotes the differential volume of the representative damaged volume element. However, this scalar damage
variable f (Eq. (1)) only models isotropic damage behavior and, therefore, a kinematic concept to describe
anisotropic damage behavior has been proposed [7,13]. The trace of the damage strain tensor

trAda = ln
dV

dV − dVd
= ln(1 − f )−1 (2)



A fracture criterion for ductile metals 1013

is introduced as a function of the void volume fraction f and models the volumetric increase in macroscopic
strains caused by isotropic growth of micro-voids. Since Ada is a macroscopic irreversible strain tensor corre-
sponding to nucleation, growth and coalescence of micro-defects it can be seen as a bridge between the micro-
and the macro-level. In addition, the rate of the macroscopic volumetric damage strain rate tensor

Ḣda
vol = 1

3
(1 − f )−1 ḟ 1 (3)

is introduced corresponding to the rate of growth of micropores. Motivated by the volumetric parts of the
strains (3) and the strain rates (3) caused by isotropic growth of voids on the micro-level (characterized by
the void volume fraction f ) these tensors Ada and Ḣda are generalized in the present framework to model
irreversible kinematic behavior caused by stress-state-dependent evolution of micropores and micro-shear-
cracks leading to anisotropic damage. Thus, the damage strain and strain rate tensors are defined modeling
micro-failure-induced degradation of ductile material properties in a phenomenological macroscopic way.

In the continuum damage model [7,8] the strain rate tensor is additively decomposed into the elastic, Ḣel,

the effective plastic, ˙̄Hpl
, and the damage, Ḣda, parts. Respective constitutive equations have to be formulated

to compute these different strain rate tensors.
Plastic behavior of ductile metals is characterized by the yield condition

f pl
(
Ī1, J̄2, c

) =
√
J̄2 − c

(
1 − a

c
Ī1

)
= 0 , (4)

where Ī1 = trT̄ and J̄2 = 1
2 devT̄ · devT̄ are the first and second deviatoric invariants of the effective Kirchhoff

stress tensor T̄, c is the equivalent stress measure and a denotes the hydrostatic stress coefficient characterizing
the effect of hydrostatic stress on plastic yielding. In addition, the rate of the isochoric plastic strain tensor

˙̄Hpl = γ̇ N̄ (5)

models formation of plastic deformations taking into account the normalized deviatoric stress tensor N̄ =
1√
2 J̄2

devT̄ and the equivalent plastic strain rate measure γ̇ = N̄· ˙̄Hpl
.

Furthermore, onset of damage is described by the damage condition

f da = α I1 + β
√
J2 − σ = 0 (6)

where the stress invariants I1 = trT̃ and J2 = 1
2 devT̃ · devT̃ (T̃ is work conjugate to Ḣda and simply related to

the Kirchhoff stress tensor, see [7] for further details) have been used and σ represents the equivalent damage
stress measure. The additional stress-state-dependent parameters α and β are based on different damage and
failure mechanisms and have been identified by numerical investigations on the micro-level [13,17]. The stress
state dependence is here characterized by the stress triaxiality

η = σm

σeq
= I1

3
√
3J2

(7)

with the mean stress σm = I1/3 and the equivalent von Mises stress σeq = √
3J2 as well as with the Lode

parameter

ω = 2T̃2 − T̃1 − T̃3

T̃1 − T̃3
with T̃1 ≥ T̃2 ≥ T̃3 (8)

expressed in terms of the principal components of the Kirchhoff stress T̃1, T̃2 and T̃3.
In addition, the rate of the damage strain tensor

Ḣda = μ̇

(
ᾱ√
3
1 + β̄√

2
N + δ̄M

)
(9)
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predicts the increase in macroscopic strains caused by damage and failure processes on the microscale. In

Eq. (9), μ̇ represents the equivalent damage strain rate, whereas N = 1√
2J2

devT̃ and M = devS̃∥∥
∥devS̃

∥∥
∥
are the

normalized stress-related deviatoric tensors with

devS̃ = devT̃ devT̃ − 2

3
J21 . (10)

The parameters ᾱ, β̄ and δ̄ in Eq. (9) are kinematic parameters which are identified by results of numerical
simulations on the microscale [13,17]. The evolution equation (9) can be seen as an anisotropic generalization
of Eq. (3) because only the first term is the volumetric part of the damage strain rate tensor, whereas the second
and third terms are anisotropic kinematic contributions corresponding to anisotropic growth and coalescence
of micro-defects.

Moreover, critical accumulation of growing micro-defects will lead to macro-cracks and the onset of this
macroscopic fracture process is modeled by the fracture criterion

f fr(Ada, afr) = 0 (11)

expressed in terms of the damage strain tensor Ada taking into account the current amount and orientation
of anisotropic damage and of the fracture threshold afr. This criterion is analyzed in the present paper by
examining results of a number experiments with differently biaxially loaded specimens to propose a function
for ductile metals.

3 Experimental and numerical results

Many experiments with different biaxially loaded specimens and corresponding numerical simulations have
been performed by the group of the corresponding author during the last years [10,15,16,18,23,24]. Some
experimental and numerical results are reconsidered in the present paper and are used to propose a new fracture
criterion. The experiments have been performed in a biaxial test machine containing four individually driven
cylinders loading the specimens in perpendicular axes. After the tests fracture surfaces of the specimens are
analyzed by scanning electron microscopy (SEM) showing different damage and fracture modes depending on
the stress state. In addition, the finite element programANSYS enhanced by a user-defined material subroutine
based on the proposed continuumdamagemodel has been used to numerically simulate the biaxial experiments.
These corresponding analyses deliver information on stress states in critical regions of the specimens where
fracture is expected to occur. It should be noted that different stress states (i.e., combinations of different stress
triaxialities and Lode parameters) are obtained due to different boundary conditions and geometries of the
specimens leading to a widespread database. In addition, the components of the damage strain tensors are
numerically predicted which are used to propose the fracture criterion based on critical damage values and to
identify the corresponding fracture parameters.

With the newly developed geometries of the biaxially loaded specimens [23] it is possible to investigate
different damage and fracture processes depending on the stress state in the material. For example, Fig. 1
shows the ranges of the stress triaxialities η (7) reached by the Z-, X0- and H-specimen for the aluminum alloy
AlCuMg1 and the low carbon steel X5CrNi18-10.

Loading of the Z-specimen in 2-direction leads to shear behavior in the central part which can be superim-
posed by loading in direction 1 causing additional tension or compression. With different load ratios the wide
band of stress triaxialities − 0.6 < η < 1.0 has been reached. With the X0-specimen a range of positive stress
triaxialities are possible for tensile loading in direction 2 superimposed by different tensile or compressive
loads in direction 1. With variation of load ratios the stress triaxialities 0.0 < η < 0.8 have been reached.
Loading of the H-specimen in 2-direction leads to shear behavior in the central part which can be superim-
posed by loading in direction 1 causing additional tension or compression. With different load ratios the stress
triaxialities − 0.3 < η < 0.7 have been reached.

The numerically predicted stress states in the notched areas of the specimens are investigated in detail
for selected loading conditions and are compared with pictures of the fracture surfaces taken from SEM.
In particular, for the Z-specimen manufactured from thin sheets of the aluminum alloy AlCuMg1 the stress
triaxiality η and the Lode parameter ω in the center of the specimen are shown in Fig. 2 for the load ratios
F1:F2 = 0:1, F1:F2 = −4:1 and F1:F2 = −8:1, respectively. For F1:F2 = 0:1 in the center of the notch
η = 0.0 and ω = 0.0 are reached (Fig. 2a1) which are typical for shear loading. The corresponding damage
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Fig. 1 Range of stress triaxialities η covered by the Z-specimen (blue), X0-specimen (red) and H-specimen (green) for AlCuMg1
and X5CrNi18-10 (color figure online)
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Fig. 2 a Stress triaxialities η and Lode parameters ω and b SEM pictures of the fracture surfaces for load ratios 1 F1:F2 = 0:1,
2 F1:F2 = − 4:1, 3 F1:F2 = − 8:1 (Z-specimen, aluminum alloy AlCuMg1)

and fracture modes on the micro-level are nucleation of few voids and formation of micro-shear-cracks. This
can be seen in the SEM picture (Fig. 2b1) where few small and slightly sheared voids can be seen which
are superimposed by remarkable micro-shear-effects then leading to shear fracture. Decrease in the stress
triaxiality can be observed for the load ratio F1:F2 = −4:1. In the center of the notch η = − 0.4 and ω = 0.0
are numerically predicted and the distribution of the Lode parameter is less homogeneous, see Fig. 2a2. This
shear-compression loading condition leads to compression and shearing of micropores which can be clearly
seen in Fig. 2b2. In addition, remarkable formation of micro-shear-cracks is also shown in the SEM picture
(Fig. 2b2). This superimposed shear behavior then leads to macroscopic shear cracks. Further increase in
the compressive load in the axis 1 up to F1:F2 = −8:1 leads in the center of the notch to the remarkably
high negative stress triaxiality η = − 0.55 and the corresponding Lode parameter ω = 0.0 (Fig. 2a3). In
this case, the shear mechanisms are superimposed by high compression. Therefore, preexisting micropores
are completely compressed and only shear effects can be seen in the SEM picture (Fig. 2b3). This leads to
additional remarkable opening of a macro-crack perpendicular to the plane fracture surface caused by the
compressed contact between these surfaces during the fracture process.
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Fig. 3 a Stress triaxialities η and Lode parameters ω and b SEM pictures of the fracture surfaces for load ratios 1 F1:F2 = 1:1,
2 F1:F2 = − 0.5:1, 3 F1:F2 = − 1:1 (X0-specimen, aluminum alloy AlCuMg1)

In addition, for the aluminum alloy AlCuMg1 the X0-specimen has been analyzed for different loading
conditions.The stress triaxialityη and theLodeparameterω for the load ratio F1:F2 = 1:1are shown inFig. 3a1.
In the center of the notched part the stress triaxiality reaches η = 0.83 and the corresponding Lode parameter
is ω = − 0.5, both with inhomogeneous distributions in the notch area. The high stress triaxiality in the center
leads to nucleation and growth of voids on the microscale. The SEM picture (Fig. 3b1) shows remarkable large
voids which grew during the loading process as well as smaller micropores which nucleated later caused by
the large strains occurring in this critical part of the specimen. In addition, dimples on the fracture surface can
be seen in the SEM picture which are typical for fracture modes for high tensile loading conditions. The load
ratio F1:F2 = − 0.5:1 leads to shear-tension behavior. The corresponding stress parameters are η = 0.2 and
ω = − 0.2 with more homogeneous distributions over the notch area (Fig. 3a2). In this case, on the micro-level
nucleation of voids as well as formation of micro-shear-cracks takes place. During the loading process the
voids grow and are sheared leading to elliptical pores shown in the SEM picture (Fig. 3b2). In addition, the
micro-shear cracks grow causing shear fracture mechanisms leading to plane fracture surfaces. For the load
ratio F1:F2 = −1:1 shear behavior occurs with micro-shear-cracks and few sheared voids in the notches of
the X0-specimen. Figure 3a3 shows the stress triaxiality η = 0.0 and the Lode parameter ω = 0.0 in the
center of the notch and very homogeneous distribution over the notch area. For this stress state nucleation
and growth of few voids superimposed by remarkable formation of micro-shear-cracks is predicted leading to
shear fracture in the notches of the specimen. This behavior is illustrated in the corresponding SEM picture
showing remarkable micro-shear-crack behavior, see Fig. 3b3.

Furthermore, H-specimens have been manufactured from the aluminum alloy sheets and have been tested
under different loading conditions. For the load ratio F1:F2 = 1:0 the stress triaxiality reaches η = 0.71 in
the center of the notch and the corresponding Lode parameter is ω = − 0.5, see Fig. 4a1. This tensile loading
leads to predominant nucleation and growth of voids, whereas formation of micro-shear-cracks is marginal.
In the neighborhood of large micropores additional smaller voids can be seen in the SEM picture (Fig. 4b1)
which nucleated later during the loading process. The fracture mode is characterized by dimples on the fracture
surface which are typical for fracture under high stress triaxialities. Combination of shear and tensile behavior
occurs in the notch of the specimen for the load ratio F1:F2 = 1:1. As can be seen in Fig. 4a2 this leads to
the stress parameters η = 0.3 and ω = − 0.5 in the center of the notch. For these moderate stress triaxialities
combination of growth of voids and formation of micro-shear-cracks is predicted. The corresponding SEM
picture shows small sheared voids combinedwithmicro-shear-cracks leading to shear fracturemode (Fig. 4b2).
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Fig. 4 a Stress triaxialities η and Lode parameters ω and b SEM pictures of the fracture surfaces for load ratios 1 F1:F2 = 1:0,
2 F1:F2 = 1:1, 3 F1:F2 = − 1:1 (H-specimen, aluminum alloy AlCuMg1)
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Fig. 5 a Stress triaxialities η and Lode parameters ω and b SEM pictures of the fracture surfaces for load ratios 1 F1:F2 = 1:1,
2 F1:F2 = 0.5:1, 3 F1:F2 = − 0.5:1 (X0-specimen, steel X5CrNi18-10)

For the load ratio F1:F2 = −1:1 shear behavior with superimposed compression appears in the notches of
the H-specimen leading to the stress triaxiality η = − 0.27 and the Lode parameter ω = 0.3 in its center, as
shown in Fig. 4a3. In the corresponding SEM picture only few small compressed and sheared voids are visible
and predominant micro-shear-cracks are shown in Fig. 4b3 leading again to shear fracture mode.
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Fig. 6 a Stress triaxialities η and Lode parameters ω and b SEM pictures of the fracture surfaces for load ratios 1 F1:F2 = 1:0,
2 F1:F2 = 1:1, 3 F1:F2 = − 0.5:1 (H-specimen, steel X5CrNi18-10)

Moreover, the damage and failure behavior of the X0-specimen taken from ductile steel X5CrNi18-10 has
been examined in the experimental program. Figure 5a1 shows the stress triaxiality and the Lode parameter in
the notch area and in the center they reach η = 0.68 and ω = − 0.4 for the load ratio F1:F2 = 1:1. This leads
to nucleation and growth of micropores and at the end of the load step remarkably large voids in the fracture
surface visualized by SEM, see Fig. 5b1. In addition, dimples can be seen which are typical for fracture under
high stress triaxialities. For the load ratio F1:F2 = 0.5:1 smaller stress parameters are numerically predicted
and in the center of the notch they reach η = 0.60 and ω = − 0.7, see Fig. 5a2. On the fracture surface again
many voids can be seen which nucleated and grew during the loading process. In the SEM picture (Fig. 5b2)
these voids are slightly sheared and the fracture mode is again characterized by dimples. The stress parameters
for the load ratio F1:F2 = − 0.5:1 are shown in Fig. 5a3 with values in the center of the notch of η = 0.15 and
ω = − 0.4. This leads to shear-tension effects which can be seen in Fig. 5b3: voids grow and are sheared during
the loading process in combination with some micro-shear-cracks leading to shear fracture with superimposed
dimples.

In addition, the H-specimens of steel X5CrNi18-10 have been tested under different loading conditions.
For the load ratio F1:F2 = 1:0 the numerically predicted stress parameters are η = 0.68 and ω = − 0.4 in the
center of the notch, see Fig. 6a1. This tensile loading behavior leads to similar failure mechanisms as shown
for the X0-specimen with F1:F2 = 1:1 (Fig. 5b1) with remarkable growth of voids and formation of dimples
on the fracture surface as can be seen in the SEM pictures shown in Fig. 6b1. The load ratio F1:F2 = 1:1 leads
to the stress triaxiality η = 0.3 and the Lode parameter ω = − 0.7 in the center of the notch (Fig. 6a2). For this
stress state simultaneous growth of voids and formation of micro-shear-cracks is predicted. During loading of
the specimens the voids are superimposed by shear processes leading to elliptical pores on the micro-level.
Thus, in the corresponding SEM picture in Fig. 6b2 small sheared voids as well as micro-shear-cracks can be
seen. For the alternative load ratio F1:F2 = − 0.5:1 the stress parameters are η = 0.0 and ω = 0.2 in the
center of the notch, see Fig. 6a3. This leads to nucleation and slight growth of voids which are compressed and
sheared during the loading path leading to elliptical micropores. As shown in the SEM picture (Fig. 6b3) the
fracture surface is nearly plane due to coalescence of micro-shear-cracks with few craters around the voids.

4 Fracture criterion for ductile metals

Based on the continuum damage model the numerical analysis of the biaxial experiments delivers damage
quantities which can be used to formulate an appropriate fracture criterion. Following the basic ideas of
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Fig. 7 Invariants of the damage strain tensor versus stress triaxiality

formulation of yield conditions or damage criteria [1,35] the fracture criterion (11) is expressed in terms of
the invariants of the damage strain tensor:

f fr(Ada, afr) = α̃ I da1 + β̃

√
J da2 − afr = 0 (12)

with the first and second deviatoric invariants of the damage strain tensor, I da1 = trAda and J da2 =
1
2 devA

da · devAda, and the stress-state-dependent parameters α̃ and β̃. Thus, these invariants are determined in
critical points of all investigated specimens and the results for both materials are shown in Fig. 7. For negative
and small positive stress triaxialities the first invariant I da1 = 0 is numerically predicted. This indicates that
there is no volumetric damage strain. This agrees well with the pictures from SEM where no growth of voids
and only formation of micro-shear-cracks has been observed for these stress states. On the other hand, with
increasing stress triaxiality a remarkable increase in I da1 > 0 is shown in Fig. 7a. This also corresponds to
the observation from SEM pictures where growth of voids was the predominant failure mechanism leading to
increase in volumetric damage strains with increasing stress triaxiality. The second deviatoric invariant J da2
corresponds to damage strains caused by isochoric change in shape of micro-defects. As can be seen in Fig. 7b
it is small for negative stress triaxialities where only micro-shear-cracks and few sheared micropores have been
shown in the pictures of SEM. With increasing stress triaxiality the invariant J da2 also remarkably increases.
This corresponds to the change in shape of the voids from spherical to elliptical ones which can be also seen in
the respective SEM pictures. It can be concluded that the numerically predicted invariants of the macroscopic
damage strain tensor nicely corresponds to the damage and fracture processes on the micro-level visualized
by SEM.

Using the invariants shown in Fig. 7 the parameters of the fracture criterion (12) are identified. In the
present investigation, the fracture mode parameters α̃ and β̃ in Eq. (12) are taken to be stress-state-dependent
functions, whereas the fracture threshold afr is assumed to be a material constant. For the aluminum alloy the
experiment with the Z-specimen loaded by F1:F2 = −4:1 is chosen as the reference test where the invariants
of the damage strain tensor are I da1 = 0 and

√
J da2 = 0.01. In this point the fracture mode parameters are taken

to be α̃(η = − 0.3;ω = 0.0) = 0.0 and β̃(η = − 0.3;ω = 0.0) = 1.0 which leads to the constant fracture
threshold aAlfr = 0.01 for the aluminum alloy AlCuMg1. With this chosen material constant the parameters α̃

and β̃ are determined considering the critical damage strain quantities predicted for all experiments, see Fig. 8.
Based on the available test results only dependence of the parameters on the stress triaxiality could be found
out and the additional dependence on the Lode parameter could not be determined. As can be seen in Fig. 8 the
chosen parameters α̃ and β̃ fit the values for both materials and, thus, the stress triaxiality dependent functions

α̃(η) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 for η ≤ 0.13
2.05 η − 0.2665 for 0.13 < η ≤ 0.32
4.29 η − 0.6737 for 0.32 < η ≤ 0.43
− 5.6821 η + 3.6143 for 0.43 < η ≤ 0.63
− 0.01η + 0.06925 for η > 0.63

(13)



1020 M. Brünig et al.

(a)
[-]

X5CrNi18-10
AlCuMg1

[-]

X5CrNi18-10
AlCuMg1

-0.5

(b)

~

~

~ -function-function

[-]~

0.5 1.5 2.5

0.5

1

1.5

2

[-]
-0.5 0.5 1.5 2.5

2

1

3

4

5

Fig. 8 Stress-state-dependent functions α̃ and β̃ versus stress triaxiality

and

β̃(η) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

η + 1.53 for η ≤ − 0.14
5 η + 2.13 for − 0.14 < η ≤ 0.07
38 η + 0.15 for 0.07 < η ≤ 0.13
− 21.05 η + 7.236 for 0.13 < η ≤ 0.33
− 1.852 η + 1.0926 for 0.33 < η ≤ 0.59
0 for η > 0.59

(14)

seem to be valid for a wide class of ductile metals. Based on these functions the fracture threshold for the steel
X5CrNi18-10 is identified to be aStfr = 0.006.

5 Conclusions

A fracture criterion for ductile metals has been proposed. It takes into account invariants of the damage strain
tensor as well as stress-state-dependent fracture mode parameters. The criterion is based on a series of biaxial
experiments performed with different specimens and corresponding numerical simulations. In critical regions
of the specimens the stress states as well as components of the damage strain tensors are determined and
pictures of the fracture surfaces taken from scanning electron microscopy are shown revealing different stress-
state-dependent damage and failure modes. Based on these data the fracture criterion is formulated in terms of
the first and second deviatoric invariants of the damage strain tensor as well as of stress-triaxiality-dependent
fracture mode parameters, whereas the fracture threshold is taken to be a material constant which is identified
for both investigated ductile materials, the aluminum alloy AlCuMg1 and the low carbon steel X5CrNi18-10.

The proposed fracture criterion is validated for two different ductile metals and its applicability for other
ductile materials should be examined in further studies. In addition, more experimental data for other stress
states are desired to analyze the possible additional dependence of the parameters on the Lode parameter.
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