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Abstract Thin linearly elastic Kirchhoff–Love-type circular cylindrical shells of periodically micro-
inhomogeneous structure in circumferential and axial directions (biperiodic shells) are investigated. The aim
of this contribution is to formulate and discuss a new averaged nonasymptotic model for the analysis of
selected stability problems for these shells. This, so-called, general nonasymptotic tolerance model is derived
by applying a certain extended version of the known tolerance modelling procedure. Contrary to the starting
exact shell equations with highly oscillating, noncontinuous and periodic coefficients, governing equations
of the tolerance model have constant coefficients depending also on a cell size. Hence, the model makes it
possible to investigate the effect of a microstructure size on the global shell stability (the length-scale effect).

Keywords Micro-heterogeneous biperiodic cylindrical shells · Extended tolerance modelling · Stability
problems · Length-scale effect

1 Introduction

Thin linearly elastic Kirchhoff–Love-type circular cylindrical shells with a periodically micro-inhomogeneous
structure in circumferential and axial directions (biperiodic shells) are objects of consideration. By periodic
inhomogeneity we shall mean periodically varying thickness and/or periodically varying inertial and elastic
properties of the shell material. We restrict our consideration to those biperiodic cylindrical shells, which are
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Fig. 1 Fragment of the shell reinforced by two families of biperiodically spaced ribbs

composed of a large number of identical elements. Moreover, every such element, called a periodicity cell,
can be treated as a thin shell. Typical examples of such shells are presented in Fig. 1 (stiffened shell).

The mechanical problems of periodic structures (shells, plates, beams) are described by partial differen-
tial equations with periodic, highly oscillating and discontinuous coefficients. Thus, these equations are too
complicated to constitute the basis for investigations of most of the engineering problems. To obtain averaged
equations with constant coefficients, many different approximate modelling methods for structures of this kind
have been formulated. Periodic cylindrical shells (plates) are usually described using homogenized models
derived by means of asymptotic methods. Unfortunately, the asymptotic procedures are usually restricted to
the first approximation, which leads to homogenized models neglecting the effect of a periodicity cell size
(called the length-scale effect) on the overall shell behaviour. The mathematical foundations of this modelling
technique can be found in Bensoussan et al. [3] and Jikov et al. [7]. Applications of the asymptotic homog-
enization procedure to modelling of stationary and nonstationary phenomena for micro-heterogeneous shells
(plates) are presented in a large number of contributions. From the extensive list on this subject we can mention
monographs by Lewiński and Telega [9] and Andrianov et al. [1].

The length-scale effect can be taken into account using the nonasymptotic tolerance averaging technique.
This technique is based on the concept of the tolerance relations related to the accuracy of the performed
measurements or calculations and determined by tolerance parameters. The mathematical foundations of this
modelling technique can be found inWoźniak andWierzbicki [23],Woźniak et al. [22] and Ostrowski [10]. For
periodic structures, governing equations of the tolerance models have constant coefficients dependent also on
a cell size. Some applications of this averaging method to the modelling of mechanical and thermomechanical
problems for various periodic structures are shown in many works. We can mention here monograph by
Tomczyk [12] and papers by Tomczyk and Litawska [16], Tomczyk et al. [13,14], where the length-scale
effect in dynamics and stability of micro-periodic cylindrical shells is investigated; paper by Baron [2], where
stability problems of medium thickness periodic plates are studied; papers by Jędrysiak [5,6], which deal with
stability of thin periodic plates; paper by Tomczyk and Gołąbczak [15], where thermoelasticity problems for
periodic shells are analysed. The extended list of references on this subject can be found in [10,12,22,23].

The tolerance averaging technique was also adopted to formulate mathematical models for the analysis of
various mechanical and thermomechanical problems for functionally graded solids, e.g. for heat conduction in
longitudinally graded hollow cylinder by Ostrowski and Michalak [11], for dynamics of transversally graded
thin cylindrical shells by Tomczyk and Szczerba [17–19], for stability of longitudinally graded thin cylindrical
shells by Tomczyk and Szczerba [20].

In the tolerance modelling technique the crucial role plays the concept of slowly varying functions, cf.
[10,22,23]. They are functions which can be treated as constant on a cell. Moreover, the products of their
derivatives in periodicity directions and characteristic length dimension of the cell are treated as negligibly
small. A certain extended version of the tolerance modelling technique has been proposed by Tomczyk and
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Woźniak [21]. This version is based on a new notion of weakly slowly varying functions which is an extension
of the classical concept of slowly varying functions.

The main aim of this contribution is to formulate and discuss a new mathematical averaged general
tolerance model for the analysis of selected stability problems for the biperiodic cylindrical shells under
consideration. This model makes it possible to investigate stationary stability and dynamic stability as well
as parametric vibrations. Contrary to the starting exact equations of the shell stability with periodic, highly
oscillating and discontinuous coefficients, governing equations of the proposed averaged model have constant
coefficients depending also on a cell length dimensions. In order to derive this model we shall apply the
extended tolerance modelling procedure [21]. Similarities and differences between the general tolerance
model proposed here and the corresponding known standard tolerance model formulated by Tomczyk [12]
and derived by applying the more restrictive concept of slowly varying function will be discussed. Moreover,
a certain asymptotic model will be presented.

It has to be emphasized that the general tolerance model of stability problems for thin linearly elastic
Kirchhoff–Love-type circular cylindrical shells having a periodically micro-inhomogeneous structure in the
circumferential direction and a constant structure in the axial direction (uniperiodic shells), which is proposed
by Tomczyk et al. [13], cannot be applied to the analysis of stability problems for biperiodic shells considered
here.

2 Formulation of the problem: starting equations

We assume that x1 and x2 are coordinates parametrizing the shell midsurface M in circumferential and axial
directions, respectively.We denote x ≡ (x1, x2) ∈ Ω ≡ (0, L1)×(0, L2), where L1, L2 are length dimensions
of M, cf. Fig. 1. Let O x̄1 x̄2 x̄3 stand for a Cartesian orthogonal coordinate system in the physical space E3

and denote x̄ ≡ (x̄1, x̄2, x̄3). Let us introduce the orthonormal parametric representation of the underformed
cylindrical shell midsurface M by means of M ≡ {

x̄ ∈ R3 : x̄ = r̄
(
x1, x2

)
,
(
x1, x2

) ∈ Ω
}
, where r̄(·) is

the smooth invertible function such that ∂ r̄/∂x1 · ∂ r̄/∂x2 = 0, ∂ r̄/∂x1 · ∂ r̄/∂x1 = 1, ∂ r̄/∂x2 · ∂ r̄/∂x2 = 1.
Note that derivative ∂ r̄/∂xα , α = 1, 2, should be understood as differentiation of each component of r̄ ∈ E3,
i.e. ∂ r̄/∂xα = [∂ r̄1/∂xα, ∂ r̄2/∂xα, ∂ r̄3/∂xα].

Throughout the paper, indices α, β, . . . run over 1, 2 and are related to midsurface parameters x1, x2,
summation convention holds. Partial differentiation related to xα is represented by ∂α , ∂α = ∂/∂xα . Moreover,
it is denoted ∂α...δ ≡ ∂α . . . ∂δ . Let aαβ and aαβ stand for the covariant and contravariant midsurface first
metric tensors, respectively. Denote by bαβ the covariant midsurface second metric tensor. Under orthonormal
parametrization introduced on M , aαβ = aαβ are unit tensors, and components of tensor bαβ are: b22 = b12 =
b21 = 0, b11 = −r−1. We denote t ∈ I = [t0, t1] as the time coordinate. Let d(x), r stand for the shell
thickness and the midsurface curvature radius, respectively.

The basic cell � and an arbitrary cell �(x) with the centre at point x ∈ Ω� are defined by means of:
� ≡ [−λ1/2, λ1/2] × [−λ2/2, λ2/2], �(x) ≡ x + � , Ω� ≡ {x ∈ Ω : �(x) ⊂ Ω}, where λ1and λ2 are the
period lengths of the shell structure, respectively, in x1- and x2-directions. The diameter λ ≡ √

(λ1)2 + (λ2)2

of�, called the microstructure length parameter, is assumed to satisfy conditions: λ/ sup d(x) >> 1 for every
x ∈ Ω , λ/r << 1 and λ/min(L1, L2) << 1.

Setting z ≡ (z1, z2) ∈ [−λ1/2, λ1/2] × [−λ2/2, λ2/2], we assume that the cell � has two symmetry
axes: for z1 = 0 and z2 = 0. It is also assumed that inside the cell not only the geometrical but also elastic and
inertial properties of the shell are described by symmetric (i.e. even) functions of z.

Denote by uα = uα(x, t), w = w(x, t), x ∈ Ω , t ∈ I , the shell displacements in directions tangent and
normal to M , respectively. Elastic properties of the shell are described by shell stiffness tensors Dαβγ δ(x),

Bαβγ δ(x). Let μ(x) stand for a shell mass density per midsurface unit area. We denote by N
αβ

(t) the time-
dependent compressive membrane forces.

The considerations will be based on the well-known linear Kirchhoff–Love second-order theory of thin
elastic shells, cf. Brush and Almroth [4], Kaliski [8], governed by the following dynamic equilibrium equations

∂β

(
Dαβγ δ∂δuγ

) + r−1∂β

(
Dαβ11w

) − μaαβ üβ = 0,
r−1Dαβ11∂βuα + ∂αβ

(
Bαβγ δ∂γ δw

) + r−2D1111w + N̄αβ∂αβ w + μẅ = 0.
(1)

For periodic shells, coefficients Dαβγ δ(x), Bαβγ δ(x), μ(x) in Eq. (1) are periodic, highly oscillating and
noncontinuous functions in x. That is why, in the most cases it is impossible to obtain the exact analytical
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solutions to initial/boundary value problems for equations (1) and also numerical problems for these equations
are ill conditioned. Applying the extended tolerance modelling technique proposed in [21] to Eq. (1), we will
derive the averaged general tolerance model for the analysis of stationary and dynamic stability problems for
the biperiodic shells considered here. Governing equations of this model have constant coefficients depending
also on a microstructure size.

To make this paper self-consisted, in the subsequent section we shall outline the main concepts and the
fundamental assumptions of the extended tolerance modelling procedure, which in the general form are given
in [10,21–23].

3 Concepts and assumptions of the extended tolerance modelling technique

The fundamental concepts of the tolerance modelling approach under consideration are those of two tolerance
relations between points and real numbers determined by tolerance parameters, weakly slowly varying func-
tions, tolerance-periodic functions, fluctuating shape functions and the averaging operation. Some of them
are recalled below.

Let F be a function defined in Ω̄ ≡ [0, L1] × [0, L2], which is continuous, bounded and differentiable in
Ω̄ together with its gradients up to the Rth order. Nonnegative integer R is assumed to be specified in every
problem under consideration. Let δ ≡ (λ, δ0, δ1, . . . , δR) be the set of tolerance parameters. The first of them
represents the distances between points in Ω̄ . The second one and the kth one, k = 1, 2, . . . , R, are related,
respectively, to the absolute differences between the values of function F(·) and its gradient ∂kαF(·), α = 1, 2,
in points x, y belonging to Ω̄ such that |x − y| ≤ λ. A function F(·) is said to be weakly slowly varying of the
Rth kind with respect to cell � and tolerance parameters δ, F ∈ WSV R

δ (Ω, �), if and only if the following
condition holds

(∀(x, y) ∈ Ω2)

[
(x

λ≈ y) ⇒ F(x)
δ0≈ F(y) and ∂kαF(x)

δk≈ ∂kαF(y), k = 1, 2, . . . , R, α = 1, 2

]
, (2)

where symbols
λ≈ and

δ0≈ (or
δk≈) denote tolerance relations between points and real numbers, respectively.

Roughly speaking, the weakly slowly varying function can be treated (together with its gradients up to the
Rth order) as constant on an arbitrary cell. Note that the main difference between the weakly slowly varying
and the well-known slowly varying functions occurring in the classical tolerance modelling is that the products
of derivatives of weakly slowly varying functions and microstructure length parameter λ are not negligibly
small.

An essentially bounded and weakly differentiable function ϕ defined in Ω̄ ≡ [0, L1] × [0, L2] is called
tolerance-periodic of the Rth kind with respect to cell � and tolerance parameters δ, ϕ ∈ T PR

δ (Ω, �), if it
can be treated (together with its gradients up to the Rth order) as periodic on an arbitrary cell.

Let f be a function defined in Ω̄ ≡ [0, L1] × [0, L2], which is integrable and bounded in every cell �(x),
x ∈ Ω�. The averaging operation of f (·) is defined by

〈 f 〉(x) ≡ 1

|�|
∫

�(x)

f (z)dz, x ∈ Ω�. (3)

It should be noted that if f is a �-periodic function, then 〈 f 〉 is constant, but if f is a tolerance-periodic
function, then 〈 f 〉(x) is a slowly varying function with respect to x.

Let h be λ-periodic, highly oscillating and continuous function in Ω̄ having continuous gradients ∂kh, k =
1, . . . , R − 1, and continuous or a piecewise continuous bounded gradient ∂ Rh. Function h(·) will be called
the fluctuation shape function of the Rth kind, h ∈ FSR(Ω, �), if it satisfies conditions: h ∈ O(λR), ∂kαh ∈
O(λR−k), k = 1, 2, . . . , R, α = 1, 2, 〈μh〉 = 0, where μ is a shell mass density.

The tolerance modelling under consideration is based on three assumptions. The first of them is termed
the tolerance averaging approximation. The second one is called the micro–macro-decomposition. The third
one is termed the residual orthogonality assumption.

Let f be an arbitrary integrable and periodic or tolerance-periodic function defined in Ω̄ , and let F ∈
WSV 1

δ (Ω, �). The tolerance averaging approximation has the form
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〈 f F〉(x) = 〈 f 〉(x)F(x) + O(δ),

〈 f ∂kαF〉(x) = 〈 f 〉(x) ∂kαF(x) + O(δ), k = 1, . . . , R, α = 1, 2. (4)

In the course of modelling, terms O(δ) are neglected.
The second fundamental assumption, called the micro–macro-decomposition, states that the displacement

fields occurring in the starting equations under consideration can be decomposed intomacroscopic and micro-
scopic parts. The macroscopic part is represented by unknown averaged displacements being weakly slowly
varying functions in periodicity directions. The microscopic part is described by the known highly oscillating
periodic fluctuation shape functionsmultiplied by unknown displacement fluctuation amplitudesweakly slowly
varying with respect to x. Note that in the classical tolerance approach, the weakly slowly varying functions
are replaced by the slowly varying functions.

The third fundamental assumption, called the residual orthogonality assumption, states that for micro–
macro decomposition mentioned above, the governing equations of the exact shell theory under consideration
do not hold, i.e. there exist residual fields which have to satisfy certain orthogonality conditions.

4 General tolerance model

4.1 Modelling procedure

In the problem discussed here, the micro–macro-decomposition of displacements uα = uα(x, t) ∈
T P1

δ (Ω, �), w = w(x, t) ∈ T P2
δ (Ω, �), x ∈ Ω , t ∈ I , being unknowns of Eq. (1), is assumed in the

form

uα(x, t) = u0α(x, t) + h(x)Uα(x, t),

w(x, t) = w0(x, t) + g(x)W (x, t), (5)

where u0α, Uα, w0, W are weakly slowly varying functions with respect to argument x ∈ Ω , i.e.

u0α, Uα ∈ WSV 1
δ (Ω, �), w0, W ∈ WSV 2

δ (Ω, �). (6)

Macrodisplacements u0α, w0 as well as displacement fluctuation amplitudes Uα,W are the new unknowns.
Fluctuation shape functions h(·) ∈ FS1(Ω, �), g(·) ∈ FS2(Ω, �) are the known, λ-periodic, continuous

and highly oscillating functions. They have to satisfy conditions: h ∈ O(λ), λ∂αh ∈ O(λ), g ∈ O(λ2),
λ∂αg ∈ O(λ2), λ2∂αβg ∈ O(λ2), 〈μ h〉 = 〈μ g〉 = 0, where μ(·) is a shell mass density. In the special case
μ = const, the fluctuations shape functions satisfy conditions 〈 h〉 = 〈 g〉 = 0. Taking into account that inside
the cell the geometrical, elastic and inertial properties of the periodic shell under consideration are described
by symmetric (i.e. even) functions of argument z ∈ �(x), we assume that h(·) is either even or odd function
of z. The same restriction is imposed on function g(·).

We substitute the right-hand sides of (5) into (1). For decomposition (5), governing equation (1) does not
hold, i.e. there exist residual fields defined by

pα ≡ ∂β

(
Dαβγ δ∂δ

(
u0γ + hUγ

))
+ r−1∂β

(
Dαβ11 (

w0 + gW
))

−μaαβ
(
ü0β + hÜβ

)
,

p ≡ r−1Dαβ11∂β

(
u0α + hUα

) + ∂αβ

(
Bαβγ δ∂γ δ(w

0 + gW )
)

+r−2D1111(w0 + gW ) + N̄αβ∂αβ (w0 + gW ) + μ(ẅ0 + gẄ ). (7)

Following [21], we introduce the residual orthogonality assumption which states that residual fields (7) have
to satisfy the following orthogonality conditions

〈pα〉 = 0, 〈pαh〉 = 0, 〈p〉 = 0, 〈pg〉 = 0, (8)

for almost every x ∈ Ω and every t ∈ I . Averaging operation 〈·〉 on cell � is defined by (3).
Conditions (8), on the basis of tolerance averaging approximation (4) lead to the system of averaged

equations for unknowns u0α, w0,Uα,W being weakly slowly varying functions in periodicity directions. Under
extra approximation 1 + λ/r ≈ 1, this system can be written in the form of:



658 B. Tomczyk et al.

• the constitutive equations

Nαβ = 〈Dαβγ δ〉∂δu
0
γ + r−1〈Dαβ11〉w0 + 〈Dαβγ δ∂δh〉Uγ + 〈Dαβγ δh〉 ∂δUγ ,

Mαβ = 〈Bαβγ δ〉∂γ δw
0 + 〈Bαβγ δ∂γ δg〉W + 2〈Bαβγ δ∂δg〉 ∂γ W + 〈Bαβγ δg〉 ∂γ δW,

Hβ = 〈∂αh Dαβγ δ〉∂δu
0
γ − 〈h Dαβγ δ〉 ∂αδu

0
γ + 〈Dαβγ δ∂αh ∂δh〉Uγ

−〈Dαβγ δ(h)2〉 ∂αδUγ + r−1〈∂αhD
αβ11〉w0,

G = 〈∂γ δg Bαβγ δ〉 ∂αβw0 − 2〈∂δg Bαβγ δ〉 ∂αβγ w0

+〈g Bαβγ δ〉 ∂αβγ δw
0 + 〈∂αβgB

αβγ δ∂γ δg〉W + (2〈∂γ δg Bαβγ δg〉
−4〈∂γ gB

αβγ δ∂δg〉) ∂αβW + 〈(g)2Bαβγ δ 〉 ∂αβγ δW, (9)

• the dynamic equilibrium equations

∂βN
αβ − 〈μ〉aαβ ü0β = 0,

∂αβM
αβ + r−1N 11 + N̄αβ(t)

[
∂αβw0 + 〈g〉 ∂αβW

]
+ 〈μ〉ẅ0 = 0,

〈μ (h)2〉 aαβ Üα + Hβ = 0,

〈μ (g)2 〉 Ẅ + G − N̄αβ(t)〈∂αg ∂βg〉W
+N̄αβ(t)

[
〈(g)2〉 ∂αβW + 〈g〉 ∂αβw0

]
= 0. (10)

In Eqs. (9), (10) the singly and doubly underlined terms depend on a cell size λ.
Equations (9), (10) together with micro–macro-decomposition (5) and physical reliability conditions (6)

constitute the general tolerance model of selected stability problems for the micro-heterogeneous biperiodic
shells under consideration. This model makes it possible to analyse stationary stability and dynamic stability
as well as parametric vibrations.

5 Discussion of results

The characteristic features of the derived general tolerance model are:

• In contrast to exact stability shell equations (1) with periodic, discontinuous and highly oscillating coef-
ficients, general tolerance model equations (9), (10) proposed here have constant coefficients. Moreover,
some of them depend on a period length λ (underlined terms). Hence, the tolerance model makes it possible
to describe the effect of a microstructure size on the global stability shell behaviour.

• Unknown macrodisplacements u0α, w0 and fluctuation amplitudes Uα,W of the general tolerance model
equations must be weakly slowly varying functions in periodicity directions. This requirement can be
verified only a posteriori, and it determines the range of the physical applicability of the model.

• The number and form of boundary/initial conditions for the basic unknowns of the tolerance model are the
same as in the classical shell theory governed by equations (1).

• Decomposition (5) and hence also governing equations (9), (10) of the general tolerancemodel are uniquely
determined by the given a priori highly oscillating periodic fluctuations shape functions h(·) ∈ FS1(Ω, �),
h ∈ O(λ), g(·) ∈ FS2(Ω, �), g ∈ O(λ2), which represent oscillations of displacement fields inside a
cell. These functions can be obtained as exact or approximate solutions to certain periodic eigenvalue cell
problems, cf. [12]. These functions can also be regarded as the shape functions resulting from the periodic
discretization of the cell using, for example, the finite element method. The choice of these functions can
be also based on the experience or intuition of the researcher.

• Neglecting in (9), (10) the underlined terms, we obtained the asymptotic model of the shells under con-
sideration. This model is not able to describe the length-scale effect on the overall shell stability being
independent of the cell size. It is necessary to observe that equations (10)3,4 for the fluctuation amplitudes
are linear algebraic equations now.
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• Neglecting the doubly underlined terms in (9) and (10) we obtain constitutive relations and dynamic
equilibrium equations of the known standard tolerance model of biperiodic shells under consideration
proposed by Tomczyk [12]. This standardmodelwas derived under assumption that the unknown functions
u0α, w0,Uα, W in decomposition (5) are slowly varying. We recall that the slowly varying functions are a
subclass of the weakly slowly varying functions. The main difference between the weakly slowly varying
and the well-known slowly varying functions is that the products of derivatives of weakly slowly varying
functions and microstructure length parameter λ are not negligibly small. From comparison of both the
general and the standard tolerance models it follows that the general model equations contain a bigger
number of terms depending on the microstructure size than the standard model equations. Thus, we can
conclude that the general model proposed in the contribution allows us to investigate the length-scale effect
in more detail. However, this conclusion must be confirmed by numerical results. It can be observed that
within the framework of the general model, unknown fluctuation amplitudes Uα,W are governed by a
system of partial differential equations (10)3,4, whereas within the framework of the standard model these
unknowns are governed by a system of ordinary differential equations involving only time derivatives.
Hence, there are no extra boundary conditions for unknowns Uα, W of the standard model.

• For a homogeneous shell with a constant thickness, Dαβγ δ(x), Bαβγ δ(x), μ(x) are constant, and because
〈μh〉 = 〈μg〉 = 0,weobtain 〈h〉 = 〈g〉 = 0, andhence 〈∂αh〉 = 〈∂αg〉 = 〈∂αβg〉 = 0. In this case equations
(10)1,2 reduce to the well-known shell equations of motion for averaged displacements u0α(x, t), w0(x, t),
(x, t) ∈ Ω × I . Independently, for fluctuation amplitudes Uα(x, t), W (x, t), (x, t) ∈ Ω × I , we arrive at
the system of equations, which under homogeneous initial conditions for Uα , W has only trivial solution
Uα = W = 0. Hence, from decomposition (5) it follows that uα = u0α, w = w0. It means that equations
(9), (10) reduce to starting equations (1).

• After neglecting in (10) the stability terms, we obtain the general tolerance model, which makes it possible
to investigate only dynamic problems for the micro-heterogeneous biperiodic shells under consideration.
This model was formulated by Tomczyk and Litawska [16].

6 Final remarks

The tolerance modelling technique based on the notion of the weakly slowly varying function, cf. Tomczyk
and Woźniak [21], is proposed as a tool to derive a new mathematical nonasymptotic averaged model for the
analysis of selected stability problems for thin linearly elastic cylindrical shells with micro-periodic structure
in circumferential and axial directions. Contrary to “exact” shell equations (1) with highly oscillating, non-
continuous and periodic coefficients, tolerance model equations (9), (10) have constant coefficients depending
also on a cell size. Hence, this model makes it possible to describe the effect of a length scale on the global
shell stability.

Some applications of the new general tolerance model proposed here to the analysis of stability problems
for cylindrical shells with two-directional micro-periodic structure will be shown in the forthcoming papers.
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22. Woźniak, C., et al. (eds.):MathematicalModelling andAnalysis in ContinuumMechanics ofMicrostructuredMedia. Silesian
University of Technology Press, Gliwice (2010)
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