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Abstract Buckling of uniformly and not uniformly compressed tower buildings, resting onWinkler type soil,
is investigated. An equivalent beam is introduced, able to capture the essential behavior of the building. It is
a 3D Timoshenko beam, modeled in the framework of a direct approach, whose constitutive law is derived
via a homogenization procedure, which includes the effect of the column prestress. The continuous model
is discretized via finite differences, and a linear bifurcation analysis is carried out by solving an algebraic
eigenvalue problem. Numerical results are shown for sample problems, aimed at detecting the structural
behavior, and illustrating the role of some mechanical parameters. Results supplied by the equivalent beam
model are compared with those derived by finite element analyses, carried out on three-dimensional frames.

Keywords Beam-like structures · Equivalent beammodel · Timoshenko beam ·Homogenization procedure ·
Buckling analysis

1 Introduction

Buckling analysis of tower buildings is usually carried out through finite element analysis on three-dimensional
models, which are typically made of 3D frames and shells elements (see, e.g., [1–3]). This kind of analysis
aims to describe the behavior of the building on two different length scales: (i) the local scale of the single
structural components; (ii) the global scale of the entire structure. However, it calls for numerical solving of
algebraic systems of a large number of degrees of freedom, which is not desirable in a pre-design stage but,
instead, has to be performed during the final step of the design process.

On the other end, periodic systems, such as reticulated and pantographic structures [4–10] or multi-storey
tower buildings, made of several floors, can be modeled through homogenization procedures. A large number
of papers on the topic of homogenization of multi-storey buildings, as beam-like structures, is available in the
literature; the reader is referred to some of them [11–21]. In this context, an equivalent continuous model, able
to capture the essential behavior of the structure, is desirable at the pre-design stage, as well as for assessment
of existing buildings, due to its reduced number of the degrees of freedom and simplicity. But, as counterpart,
an homogenized model is able to retain information only on the global scale of the structure, thus being not
suitable to describe local buckling phenomena, which, instead, occurs on the length scale of the floor.
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Some interesting works of literature have been focused on reduced continuousmodels for buckling analysis
of tower buildings [18,22–24]. Among them, in [22,23] an heuristic approach is proposed for the analysis of
flexural–torsional buckling of multi-store buildings under self-weight. In [18] an equivalent sandwich beam
model is defined for themodal and buckling analyses of buildings. In [24] aTimoshenkobeammodel, embedded
in a 3D space, is introduced for buckling analysis of multi-storey buildings, made by rigid floors connected
by elastic columns, via a suitable homogenization procedure. There, a bifurcation analysis for the case of
uniformly compressed buildings is addressed, and numerical comparisons between the Timoshenko model
and finite element analyses on 3D-frames are carried out, showing the effectiveness of the former model in
describing the relevant behavior of the building.

The present work is an extension of what has been done in [24]. The aim is to analyze the flexural–torsional
buckling behavior of tower buildings, in the presence of both distributed gravitational loads (representative of
self-weight), and tip (point) forces, applied at the top floor. Moreover, the interaction with a soil, modeled as
Winkler elastic springs, is also studied, and its effects on the global buckling of the buildings are evaluated.
To this end, an equivalent 3D Timoshenko beam model is formulated in the framework of a direct approach,
whose constitutive law is derived through a homogenization procedure (see, e.g., [25–30]). The developed
up-scaling method couples the heuristic approaches, which a priori define the equivalent model but do not
relates the micro- and macro-descriptions, and the asymptotic homogenization method, in which the effective
model is derived and the micro- and macro-relations are defined. Indeed, in the present paper, the effective
model, i.e., a Timoshenko beam embedded in a 3D-space, is a priori assumed, and, in conjunction, the tools
of the homogenization are used to explicitly get analytical micro-/macro-relationships in its constitutive law.
The treatment is similar to that followed in [15–17,31], but here the effects of the prestress forces in the
columns are accounted for, thus introducing a geometric effect in the elastic law. All the results, given by the
equivalent continuous model, are compared with those obtained through finite-element analyses carried out
on three-dimensional frames.

The paper is organized as follows. In Sect. 2 the equivalent Timoshenko beam model is formulated. In
Sect. 3 the bifurcation problem is posed, bifurcation parameters are introduced, and a numerical discretization
scheme is defined. In Sect. 4 numerical results, concerning both symmetric and not symmetric buildings,
are presented and discussed. In Sect. 5 some conclusions are drawn. Two appendices, giving details on soil
modeling and on the definition of some linear differential operators, close the paper.

2 Model

A tower building is considered, made of an assembly of equal rigid floors connected by elastic columns, i.e.,
a periodic beam-like structure, as shown in Fig. 1a. The structure has vertical axis āx , and it is subjected

(a) (b)

Fig. 1 Multi-store building on elastic foundation (a) and equivalent Timoshenko beam (b)
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to: (i) a centroidal compressive force F = −F āx acting at the top floor n and, (ii) equal gravitational loads
W j = −W āx applied at the floors j = 1, 2, . . . n. Goal of the analysis is to find the combinations of F
and W (taken as scalar independent bifurcation parameters), which trigger static bifurcation (buckling) of the
structure.

The discrete system (fine model) is modeled, via a continuization procedure, as an equivalent 3D-
Timoshenko beam (rough model), i.e., as an internally unconstrained 1D polar continuum, whose particles
posses 6 degree-of-freedom, three translations and three rotations, as shown in Fig. 1b. The beam axis āx is
taken coincident with the axis which contains the (geometrical) centroids of the floors, although generally
this is not the axis of the elastic centers; two principal inertia axes, āy, āz , complete the orthogonal basis.
The continuous model is endowed with a suitable elastic law which is determined via an energy equivalence
between the fine and rough model [17,24].

The beam is assumed to be free at the top end B and elastically restrained at the lower end A by an
extensional spring of stiffness kx and by rotational springs of stiffnesses ky, kz, kyz . This systemof springsmust
be meant as equivalent to a homogeneous Winkler soil, applying vertical elastic forces to a rigid foundation.
The expressions of the constants are defined in the Appendix A.

Elastic versus rigid soils

A preliminary discussion on the effects of the soil elasticity on the mechanical behavior of the tower building
is addressed. This is carried out via an order-of-magnitude analysis of the equivalent system elastic energy,
when (i) the beam is clamped or (ii) it is elastically restrained by a rotational spring. A uniformly distributed
horizontal load is considered, of linear density p, acting in the āy-direction without eccentricity with respect
the centroidal vertical axis x .

Bending moment and shear force at the abscissa s read:

Ty (s) = p (� − s) ,

Mz (s) = 1

2
p (� − s)2 .

(1)

The corresponding complementary elastic energies, Uc andUel , which are referred to clamped and elastically
restrained beams, respectively, are:

Uc = 1

2
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(2)

where MzA := Mz (0), and, moreover,GA, E I are the shear and bending stiffnesses of the equivalent column,
k is the stiffness of the rotational spring, respectively.

The energy ratio r := Uel/Uc reads:

r = 1 + 15 E I GA �

k
(
20 E I + 3GA �2

) = 1 + O
(
E I

k�

)
, (3)

where, in the second equality, GA�2 = O (E I ) has been taken, meaning that the shear strain is not negligible.
Moreover, for a building having a square floor of side b, equal columns of height h and axial stiffness E Ac, it
is (see Appendices A and B) E I = O (

E Acb2
)
, k = O (

ksb4
)
, ks being the soil elastic constant. Therefore:

r = 1 + O
(

E Ac

ksb2�

)
= 1 + O

(
E

ksh

Ac

b2
h

�

)
. (4)
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In real applications, the ratio E/ (ksh) = O (
104

)
, when the soil is soft and steel columns are considered, and

Ac/b2 = O (
10−4

)
. Since � = n h, it follows:

r = 1 + O
(
1

n

)
. (5)

It is concluded that, the differences between the energies of an elastically restrained and of a clamped beam can
be significant only when n is small. In other words, when tall buildings are considered, r → 1 andUel → Uc,
i.e., the soil can be modeled as rigid. Numerical results, presented in the following sections, shed light on these
aspects, also on a quantitative side.

Precritical state

The Timoshenko beam is referred to a material abscissa s ∈ [0, �], � := n h being the total beam length and
h the inter-floor height. By uniformly spreading the point loads W on the inter-floor, the following forces are
considered for the equivalent beam:

– uniformly distributed forces p (s) = − p̊ āx , in the field [0, �], with p̊ = W
h = const;

– a force P = −P̊ āx , applied at the tip B, with P̊ := F + 1
2W .

All these forces are applied to the beam axis āx , and therefore they induce a (linearly variable) compressive
stress:

N̊ (s) := −P̊ − p̊ (� − s) . (6)

Due the eccentricity of the elastic center with respect the centroid, the beam undergoes bending, in addition to
extension in the precritical state. However, as customary in linear bifurcation analysis, any precritical strain is
neglected, so that the configuration of the beam at the bifurcation is confused with the straight and unstretched
natural configuration.

Kinematics

The configuration variables of the beam are the displacement vector u = u (s) āx + v (s) āy + w (s) āz and
the rotation tensor R (s). This latter leads the reference basis B̄ := (

āx , āy, āz
)
, attached to the cross section,

to the current basis B (s) := (
ax (s) , ay (s) , az (s)

) = R (s)
(
āx , āy, āz

)
. Its representation on B̄ is:

R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

cos
(
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)
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(
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)
cos (θz) cos (θx ) sin

(
θy

)
cos (θz)

− cos (θx ) sin (θz) + sin (θx ) sin (θz)

cos
(
θy

)
sin (θz) sin (θx ) sin

(
θy

)
sin (θz) cos (θx ) sin

(
θy

)
sin (θz)

+ cos (θx ) cos (θz) − sin (θx ) cos (θz)

− sin
(
θy

)
sin (θx ) cos

(
θy

)
cos (θx ) cos

(
θy

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (7)

where θx , θy, θz are three elementary rotations of the cross section (see, e.g., [5]); the dependency on s of the
rotation angles is omitted for the sake of brevity. By linearizing kinematics around the trivial configuration, it
follows:

R �
⎡
⎣ 1 −θz θy

θz 1 −θx
−θy θx 1

⎤
⎦ . (8)

The following exact strain–displacement relationships are adopted [5,32–36]:

e := RT (
āx + u′) − āx ,

k := axial
[
RTR′] ,

(9)
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where e = ε (s) āx +γy (s) āy +γz (s) āz is the strain vector, k = κx (s) āx +κy (s) āy +κz (s) āz the curvature
vector and a dash denotes differentiation with respect to s. By linearizing the strains, it follows:

ε = u′,
γy = v′ − θz,

γz = w′ + θy,

κx = θ ′
x ,

κy = θ ′
y,

κz = θ ′
z .

(10)

The (geometric) boundary conditions at the lower end A require:

vA = wA = θx A = 0. (11)

Balance equations

The exact balance equations for the beam (with no couples applied) are:

t′ + p = 0,

m′ + (
āx + u′) × t = 0,

(12)

where t = N (s) āx + Ty (s) āy + Tz (s) āz is the stress-force, m = Mx (s) āx + Mx (s) āy + Mz (s) āz the
stress-couple and p := − p̊ (s) āx the external distributed force. By projecting these equations onto the current
basis, it follows:

N ′ − κzTy + κyTz + px = 0,

T ′
y + κz N − κx Tz + py = 0,

T ′
z − κy N + κx Ty + pz = 0,

M ′
x − κzMy + κyMz − γzTy + γyTz = 0,

M ′
y + κzMx − κx Mz + γz N − (1 + ε) Tz = 0,

M ′
z − κyMx + κx My − γy N + (1 + ε) Ty = 0,

(13)

where pα = p ·aα = − p̊ āx ·Rāα (α = x, y, z) are the components of p in B. Using the linear approximation
for R (i.e., Eq (8)), it is px � − p̊, py � p̊ θz, pz � − p̊ θy .

To obtain incremental balance equations, the stresses are expressed as:

N = N̊ + Ñ , Ty = T̃y, Tz = T̃z, Mx = M̃x , My = M̃y, Mz = M̃z, (14)

in which N̊ is the (known) prestress and the tilde denotes an incremental quantity. By substituting these
positions in Eq (13), accounting for the precritical equilibrium N̊ ′ − p̊ = 0 and the linear strain–displacement
relationships (10), and finally linearizing in the incremental quantities, the following equations are obtained:

Ñ ′ = 0,

T̃ ′
y +

(
N̊θz

)′ = 0,

T̃ ′
z −

(
N̊θy

)′ = 0,

M̃ ′
x = 0,

M̃ ′
y + N̊

(
w′ + θy

) − T̃z = 0,

M̃ ′
z − N̊

(
v′ − θz

) + T̃y = 0,

(15)
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At the free end B a force P = −P̊ āx is applied; the boundary conditions therefore are: tB = P, mB = 0. By
projecting onto the current basis:

NB = Px , TyB = Py, TzB = Pz,

MxB = 0, MyB = 0, MzB = 0,
(16)

where Pα = P ·aα = −P̊ āx ·Rāα (α = x, y, z) are the components of P in B (�). By using linear kinematics,
the boundary condition in the precritical state N̊ (�) = −P̊ , and linearizing in the incremental quantities, the
boundary conditions at B become:

ÑB = 0, T̃yB = P̊θzB, T̃zB = −P̊θyB,

M̃xB = 0, M̃yB = 0, M̃zB = 0.
(17)

Equilibrium at the lower end A requires −tA = Fel , −mA = Cel , with Fel , Cel the foundation elastic
reactions. By using linear kinematics for the rotations, it is Fel = −kxuAāx , Cel = (−kyθyA + kyzθzA

)
āy +(−kzθzA + kyzθyA

)
āz , see the Appendix A. Projection onto the current basis leads to:

− NA = Fel
x , −MyA = Cel

y , −MzA = Cel
z , (18)

where, at first order, Fel
x � −kxuA, Cel

y � −kyθyA + kyzθzA, Cel
z � −kzθzA + kyzθyA. In incremental form,

the boundary conditions read:

ÑA = kxuA, M̃yA = kyθyA − kyzθzA, M̃zA = kzθzA − kyzθyA, (19)

in which uA should bemeant as the incremental displacement with respect the precritical displacement, namely
ů A = N̊A/kx that is not taken into account in the present analysis. When the soil is rigid (i.e., kx , ky, kz, kyz
tend to infinity), then Eq. (19) must be replaced by uA = θyA = θzA = 0.

A virtual work approach

It is worth noticing that the equilibrium problem (15), (17) and (19) can alternatively be derived by the virtual
work principle, directly expressed in terms of incremental quantities, namely:

�∫

0

(
Ñδε + T̃yδγy + T̃zδγz + M̃xδκx + M̃yδκy + M̃zδκz

)
ds +

�∫

0

N̊δε(2)ds

+ kxuAδuA + (
kyθyA − kyzθzA

)
δθyA + (

kzθzA − kyzθyA
)
δθzA = 0, ∀ (

δu, δv, δw, δθx , δθy, δθz
)
,

(20)

in which the first integral represents the internal virtual work of the incremental stresses, the second integral the
second-order virtual work of the prestress, and the boundary terms the virtual work of the soil elastic reactions.
Here, δε, δγy, . . . , δκz are related to δu, δv, . . . , δθz via the linear strain–displacement relationships (10), while
δε(2) is the first variation of the second-order part of the exact unit-extension ε := āx · (

RT
(
āx + u′) − āx

)
;

when this is Taylor-expanded, it reads:

ε(2) := −1

2

(
θ2y + θ2z

)
+ θzv

′ − θyw
′. (21)

By performing standard steps of variational calculus and accounting for the geometric boundary conditions
(11), the equilibrium equations and mechanical boundary conditions are recovered.
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Elastic law

A linear hyper-elastic law is assumed, linking incremental stresses to strains, in which, however, the elastic
constants depend on the prestress, namely:

σ̃ = C
(
N̊

)
ε, (22)

where σ̃ :=
(
Ñ , T̄y, T̃z, M̃x , M̃y, M̄z

)T
and ε := (

ε, γy, γz, κx , κy, κz
)T . Since N̊ is small with respect

the axial stiffness, the elastic matrix can be expanded in series, as C
(
N̊

)
= C (0) + ∂C(0)

∂ N̊
N̊ + . . ., and the

series truncated at first order. Therefore:

σ̃ =
(
C0 + N̊ Ĉ

)
ε, (23)

in which C0 is the elastic matrix at the natural state, and Ĉ its first derivative at the origin with respect the
prestress.

It is important to remark that the geometric effects, induced by the precritical stresses, affect the equivalent
model both in the equilibrium equations (15) and (17), and in the constitutive law (23). While the former
contribution is expected, since always appears in classical buckling problems, the latter is not common from
a modeling point of view, and its effects deserve to be explored. Similar circumstance occurs in the classical
model of the compressed Vlasov thin-walled beam; there, the geometric torsional stiffness emerges from a
3D fiber micro-model, which has necessarily to be included in the constitutive law, when a direct 1D model is
formulated.

Identification of the elastic constants

The task is now how to identify the coefficients of the two 6 × 6 symmetric elastic matrices C0, Ĉ , in order
for the rough model captures at the best extent the mechanical behavior of the fine model. The problem has
been addressed in [17] for non-prestressed buildings, and in [24] for uniformly compressed buildings. The
results of this latter paper can be directly applied to the problem at hand, due to the fact the self-weight of the
building is applied just at the floors, so that the prestress of columns is stepwise constant. The procedure is,
therefore, only sketched here, while the reader is referred to [24] for additional details.

The identification of the elastic constants is based on a continuization procedure which preserves the elastic
energy. It is carried out via the following steps.

1. A segment of beam of length h, equal to the interfloor height, is considered to undergo an uniform state of
strain ε; consistently with the assumed constitutive law (23), the elastic energy of the rough model is:

Ur = h
1

2
εT

(
C0 + N̊ Ĉ

)
ε. (24)

2. The relative displacements of the two cross sections bounding the segment are found by integration of the
linear strain–displacement relationships (10), i.e.,

⎛
⎜⎜⎜⎜⎜⎝

uG
vG
wG
θx
θy
θz

⎞
⎟⎟⎟⎟⎟⎠

=

⎡
⎢⎢⎢⎢⎢⎢⎣

h 0 0 0 0 0

0 h 0 0 0 h2
2

0 0 h 0 − h2
2 0

0 0 0 h 0 0
0 0 0 0 h 0
0 0 0 0 0 h

⎤
⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎝

ε
γy
γz
κx
κy
κz

⎞
⎟⎟⎟⎟⎟⎠

or uG = Bε, (25)

where an index G remembers that translations are referred to the centroid.
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3. Such displacements are assigned to the upper floor of a cell of the fine model, made of two adjacent floors
connected by N elastic columns, modeled as microscopic Timoshenko beams, whose principal inertia axes
are aligned with the basis B̄. The elastic energy stored by the fine model, is evaluated as:

U f =
N∑
i=1

1

2
uTi

(
K 0

i + N̊i K̂ i

)
ui , (26)

where: ui are the six displacements of the head of the i-th column, related to the displacements (25) by
linear kinematic relationships:

⎛
⎜⎜⎜⎜⎜⎝

ui
vi
wi
θxi
θyi
θzi

⎞
⎟⎟⎟⎟⎟⎠

=

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0 zi −yi
0 1 0 −zi 0 0
0 0 1 yi 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎝

uG
vG
wG
θx
θy
θz

⎞
⎟⎟⎟⎟⎟⎠

or ui = AiuG, (27)

in which yi , zi are the coordinates of the head of the column; N̊i := ηi N̊ is the prestress of the i-th column
(with ηi a nondimensional quota), determined by ignoring small bending moments, which are due to the
eccentricity existing between the centroid of the floor and the elastic center of the columns; K 0

i is the elastic
stiffness matrix of the i-th column, and K̂ i is its geometric stiffness matrix. By using Eqs. (25) and (27),
it is also:

U f = BT

(
N∑
i=1

1

2
AT
i

(
K 0

i + ηi N̊ K̂ i

)
Ai

)
Bε. (28)

4. By requiring that the two energies, (24) and (28), are equal for any ε, the desired elastic matrices for the
rough model are finally found:

C0 = 1

h
BT

(
N∑
i=1

AT
i K

0
i Ai

)
B, Ĉ = 1

h
BT

(
N∑
i=1

ηi AT
i K̂ i Ai

)
B. (29)

Their explicit expressions are reported in the Appendix B.

It should be remarked from the procedure illustrated, that the dependence on prestress of the constitutive law
for the macro-beam is captured by accounting for the geometric effects affecting the micro-beams.

The cell critical load

Since the elastic matrix C
(
N̊

)
:= C0 + N̊ Ĉ depends on prestress, it can become singular for some N̊ . The

occurrence of this situation entails buckling of the single cell. The smallest value of the compressive force
P = −N̊ which causes the phenomenon will be referred to as the cell critical load P�

c . It is the smallest root
of the algebraic equation:

det
[
C0 − P�

c Ĉ
]

= 0. (30)

3 The bifurcation problem

The bifurcation problem is now recast in matrix form, and strategy solutions discussed.
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Matrix formulation

The elastic problem is governed by the field equations (10), (15) and (23), with the boundary conditions (11),
(19) and (17). They can be rewritten in matrix form, both in the field:

ε = u′ + �u,

σ̃ ′ − �T σ̃ −
(
N̊�u

)′ + N̊
(
�T u′ + �u

)
= 0,

σ̃ =
(
C0 + N̊ Ĉ

)
ε,

(31)

and at the boundary:

AuuA = 0,
Aσ σ̃ A = K s Aσ uA,

σ̃ B = N̊B�uB .

(32)

Here: u := (
u, v, w, θx , θy, θz

)T is the displacement column vector; �, �, as Au, Aσ , are Boolean matrices:

� :=

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 0 0 −1
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

, � :=

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦

,

Au :=
⎡
⎣0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

⎤
⎦ , Aσ :=

⎡
⎣ 1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤
⎦ ,

(33)

and K s is the soil stiffness matrix:

K s :=
⎡
⎣ kx 0 0

0 ky −kyz
0 −kyz kz

⎤
⎦ . (34)

By expressing equilibrium in terms of displacements, the elastic problem is governed by the following set
of ordinary differential equations:

D2

(
N̊

)
u′′ + D1

(
N̊ , N̊ ′) u′ + D0

(
N̊ , N̊ ′) u = 0, (35)

with the boundary conditions:

AuuA = 0,

BH1

(
N̊H

)
u′
H + BH0

(
N̊H

)
uH = 0, H = A, B.

(36)

In the previous equations, matrices D and B linearly depend on prestress and, possibly, on its gradient,
according to:

D2

(
N̊

)
:= D0

2 + N̊ D̂2,

Di

(
N̊ , N̊ ′) := D0

i + N̊ D̂i + N̊ ′ Ďi , i = 0, 1,

BH j

(
N̊H

)
:= B0

H j + N̊H B̂H j , j = 0, 1, H = A, B,

(37)
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where the following positions hold, in the field:

D0
2 := C0, D̂2 := Ĉ,

D0
1 := C0� − �TC0, D̂1 := Ĉ� − �T Ĉ + �T − �, Ď1 := Ĉ,

D0
0 := −�TC0�, D̂0 := −�T Ĉ� + �, Ď0 := Ĉ� − �,

(38)

and at the boundary:

B0
A1 := AσC0, B̂A1 := Aσ Ĉ,

B0
A0 := AσC0� − K s Aσ , B̂A0 := Aσ Ĉ�,

B0
B1 := C0, B̂B1 := Ĉ,

B0
B0 := C0�, B̂B0 := Ĉ� − �.

(39)

It is observed that, while the matrix D2

(
N̊

)
is symmetric, the matrices D1

(
N̊ , N̊ ′

)
and D0

(
N̊ , N̊ ′

)
calls

for the following discussion: (a) in the case in which N̊ ′ = 0 (i.e., the self-weight is absent), D1

(
N̊ , 0

)
is

skew-symmetric and D0

(
N̊ , 0

)
is symmetric; (b) if N̊ ′ �= 0 (self-weigh does exist), then D1

(
N̊ , N̊ ′

)
and

D0

(
N̊ , N̊ ′

)
are neither symmetric nor skew-symmetric. In spite of this occurrence, it is easy to check that the

differential equations (35) (as well the boundary conditions (36)) are self-adjoint, since the following Green
Identity holds:

�∫

0

vT
(
D2u′′ + D1u′ + D0u

)
ds =

�∫

0

uT
(
D2v

′′ + D1v
′ + D0v

)
ds + boundary conditions, (40)

consistently with the conservative nature of forces and constitutive law.

Bifurcation parameters

The boundary value problem (35), (36) depends on two bifurcation parameters, the tip force F and the floor
self-weight W . It is convenient to introduce two nondimensional load parameters μ, ν such that F = μP�

c ,
W = νP�

c /
( 1
2 + �

h

)
, with P�

c the critical load of a single cell. Accordingly, from Eq (6):

N̊ (s) := − (μ + ν f (s)) P�
c , f (s) := 1 − 2 s

h + 2 �
, (41)

so that the boundary value problem reads:
(
D0
2 − (μ + ν f (s)) D̂

�

2

)
u′′ +

(
D0
1 − (μ + ν f (s)) D̂

�

1 − ν f ′ (s) Ď�

1

)
u′

+
(
D0
0 − (μ + ν f (s)) D̂

�

0 − ν f ′ (s) Ď�

0

)
u = 0,

AuuA = 0,(
B0

H1 − (μ + ν f (sH )) B̂
�

H1

)
u′
H +

(
B0

H0 − (μ + ν f (sH )) B̂
�

H0

)
uH = 0, H = A, B,

(42)

where the following positions hold:

D̂
�

i := P�
c D̂i , i = 0, 1, 2,

Ď
�

i := P�
c Ďi , i = 0, 1,

B̂
�

H j := P�
c B̂H j , j = 0, 1.

(43)
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The combinations (μ, ν) = (μc, νc) for which the boundary value problem (42) admits nontrivial solutions,
identify states of incipient instability for the beam. For any given ratio ρ := μ/ν, the pair (μc, νc) of smallest

modulus min
ρ=const

(√
μ2 + ν2

)
= √

μ2
c + ν2c will be denoted as the critical load combination. As an algorithmic

strategy, a set of values of ρ is chosen, and, for each of them, the bifurcation parameters are proportionally
increased from zero, until the condition of static bifurcation (a zero eigenvalue) is encountered first. The
collection of the critical states (μc, νc) for different ρ values is a geometrical locus on the (μ, ν)-plane, which
is the boundary of the stability domain of the beam.

Finite difference solution

Since the boundary value problem (42) has variable coefficients, it cannot be solved in closed form. An
exception occurs when self-weight is not present, for which a closed form exists, determined in [24] for the
case of rigid soil, and easily adaptable to the case of elastic soil, at hand. Here, addressing the more general
case of self-weight, the problem is attacked by the finite difference method.

Accordingly, the domain [0, �] is divided in L elements and L + 1 nodes of coordinates si =
iΔ (i = 0, 1, . . . , L), with � := �/L . Two dummy nodes −1, L + 1 are added, of coordinates s−1 = −Δ
and sL+1 = (L + 1)�. By using central finite differences, the derivatives are approximated as follows:

ui = u (si ) ,

u′
i = ui+1 − ui−1

2�
,

u′′
i = ui+1 − 2ui + ui−1

�2 .

(44)

Hence, the boundary value problem (42) is transformed as follows into an algebraic problem1:

Auu0 = 0,(
B0

A1 − (μ + ν f0) B̂
�

A1

) u1 − u−1

2�
+

(
B0

A0 − (μ + ν f0) B̂
�

A0

)
u0 = 0,

(
D0
2 − (μ + ν fi ) D̂

�

2

) ui+1 − 2ui + ui−1

�2 +
(
D0
1 − (μ + ν fi ) D̂

�

1 − ν f ′
i Ď

�

1

) ui+1 − ui−1

2�

+
(
D0
0 − (μ + ν fi ) D̂

�

0 − ν f ′
i Ď

�

0

)
ui = 0, i = 0, . . . , L ,

(
B0

B1 − (μ + ν fL) B̂
�

B1

) uL+1 − uL−1

2�
+

(
B0

B0 − (μ + ν fL) B̂
�

B0

)
uL = 0,

(46)

where fi := f (si ), f ′
i := f ′ (si ). Equations can be recast in the form:

(
K0 − μKμ − νKν

)
u = 0, (47)

where u = (u−1, u0, · · · , uL , uL+1)
T , K0 is the elastic matrix and Kμ, Kν are geometric stiffness matrices,

all of dimension 6 (L + 3) × 6 (L + 3). By letting ν = ρμ for chosen ρ’s, Eq (47) is an eigenvalue problem,
in non-standard form, for the eigenvalue μ. The smallest positive value μc is the critical load, associated with
νc = ρμc.

4 Numerical results

Numerical results, concerning buckling of different buildings taken as case studies, are presented and discussed.
Aimed at investigating the effectiveness of the equivalent Timoshenko beam, results are compared with those
obtained by benchmark finite-element analyses (FEA), in which the buildings are modeled as 3D-frames.

1 It should be remarked that, when the rigid soil is considered, i.e., the beam is clamped at A, the first two equations (46) must
be replaced by:

u0 = 0 (45)

the dummy node −1 suppressed, and the third of (46) has to be evaluated in the interval i = 1, . . . , L .
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(a) (b)

Fig. 2 Case studies: a bi-symmetric column layout; b asymmetric column layout

Table 1 Cross sections properties

A Iy Iz J Ay Az[
m2

] [
m4

] [
m4

] [
m4

] [
m2

] [
m2

]

Type i 1.06 × 10−2 6.301 × 10−5 1.728 × 10−4 5.852 × 10−7 2.456 × 10−3 7 × 10−3

Type ii 1.53 × 10−2 8.554 × 10−5 4.326 × 10−4 1.47 × 10−6 4.29 × 10−3 9.5 × 10−3

Buildings with the columns’ layouts displayed in Fig. 2 are considered, having the same arrangement, but
with the individual columns having different geometric characteristics. The case studies are:

– case study I (Fig. 2a), concerning a bi-symmetric layout;
– case study II (Fig. 2b), concerning an asymmetric layout;

the columns’ I-shape cross sections are defined as: type i (black in Fig. 2) or type ii (red in Fig. 2), whose
geometrical properties are reported in Table 1. The inter-floor height is taken as h = 4m, but the number of
floors n is considered as a variable parameter.

The considered material for both types of column is steel, having Young modulus E = 2 × 108 kN/m2

and shear modulus G = 7.69×107 kN/m2. The elasto-geometric characteristics of the Timoshenko beam are
reported in Table 2 for each case study. Finally, the Winkler’s soil elastic constant is taken as ks = 30 × 103

kN/m3,which corresponds to a compact clay. By considering a square foundation of side 16m,whose principal
inertia axes are aligned with those of the generic floor, it follows that (see Appendix B) kx = 7.68×106 kN/m,
ky = kz = 163.84× 106 kNm, kyz = 0. In the following numerical simulations, the equivalent model domain
has been discretized with 200 elements, according to the finite-difference scheme, described in Sect. 3.

Buckling of buildings under tip load

Buckling induced by a tip load, in the symmetric case study I, is first addressed. The influence of the number
of floors, with or without soil elasticity, is investigated. The equivalent model has been used for this purposes,
by solving the finite-difference discretized problem (47). Results of this analysis are displayed in Fig. 3. It is
seen that the critical buckling load multiplier μ decreases with the number of floors n, in a pattern similar to
the well-known one of the Timoshenko beam. The elastic soil (light blue curve in the figure), slightly modifies
the behavior of a clamped (rigid soil) building, as predicted by the order-of-magnitude analysis developed in
Sect. 2.

In the same Fig. 3, three different number of floors (green dots labeled with numbers 1, 2, 3, corresponding
to n = 10, 50, 100, respectively) are selected, to compare the equivalent model solution with that furnished
by finite-element discretization on a fine model. Comparison is shown in Fig. 4 in terms of displacement
components of the critical mode of the three buildings of different height. It is seen that the continuous curves,
representing the Timoshenko equivalent model in the clamped (black lines) and elastic soil (light blue lines)
cases, are almost superimposed on the dots and circles, which instead represent the correspondent FE solutions.
In all the cases, the critical mode is an ‘Euler-type’ flexural mode, occurring in the weaker plane of inertia, and
its shape is found to be independent on the number of floors. Only when the number of floors is sufficiently
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Table 2 Elasto-geometric coefficients of the Timoshenko beam model for the case study I and II

Case I Case II

D [kN/m] 9.42 × 106 9.89 × 106

Sy [kN/m] 1.226 × 105 1.383 × 105

Sz [kN/m] 4.048 × 104 4.214 × 104

C [kN × m] 4.502 × 106 5.143 × 106

By [kN × m] 2.921 × 108 3.081 × 108

Bz [kN × m] 2.922 × 108 3.224 × 108

Byz [kN × m] 0 1.88 × 107

yS [m] 0 −0.315
zS [m] 0 −0.568
yE [m] 0 −0.380
zE [m] 0 −0.238
Ĉ22 [−] 1.131 1.128
Ĉ24 [m] 0 −0.018
Ĉ26 [m] 2 2
Ĉ33 [−] 1.193 1.193
Ĉ34 [m] 0 0
Ĉ35 [m] −2 −2
Ĉ44

[
m2

]
72.301 73.934

Ĉ55
[
m2

]
5.333 5.333

Ĉ66
[
m2

]
5.333 5.333

Fig. 3 Critical load multiplier μ vs number of floors, for the case study I. Clamped case in continuous black line, elastically
restrained case in light blue line. Green dots: selected number of floors for comparison with FE solution (colour figure online)

small, i.e., n = 10, some appreciable difference between clamped and elastic soil cases is detected, as it is
predicted by the order-of-magnitude analysis. Finally, the percentage error on the critical load multiplier of
the equivalent model, when compared with that of FE solution, is about 1% (results not reported here).

Buckling of buildings under uniformly distributed load

The buckling of the same building defined in case study I, but under only distributed loads, is studied here.
Results of the analysis are displayed in Fig. 5 in terms of the nondimensional normal force at ground, ν =
−N̊ (0)/P�

c (remember Eq. (41)), for different number of floors. It is seen that, below a threshold number of
floors, the critical normal force remains constant, equal to the critical load of the cell. However, when this
floor number is exceeded, the critical force at the ground decreases with increasing n. This circumstance is
explained by the nature of the critical mode, which is (i) localized at the bottom of the building, when n is
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(a) (b)

(c) (d)

(e) (f)

Fig. 4 Critical mode in the case study I, under tip force, for different number of floors, namely: a, b n = 10; c, d n = 50; (e), (f)
n = 100. Rigid soil in black; elastic soil in light blue. Continuous lines: Timoshenko model; dots and circles: FE solution (colour
figure online)
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Fig. 5 Nondimensional ground normal force ν versus number of floors, for the case study I. Clamped case in continuous black
line, elastically restrained case in light blue line. Green dots: selected number of floors for comparison with FE solution (colour
figure online)

small, and (ii) is of global type, when n is large. Also in this case, the effect of the elastic soil (light blue curve
in the figure) slightly changes the behavior of clamped buildings (rigid soil).

The local or global character of the critical mode is illustrated in Fig. 6, for buildings of different height
(marked with green dots and numbers 1, 2 and 3 in Fig. 5, having n = 10, 50, 100 floors, respectively). The
critical mode is: (i) localized when n = 10; (ii) global, of ‘Timoshenko-type,’ when n = 50; and, (iii) of global,
of ‘Euler-type,’ when n = 100. In general, an excellent agreement between the equivalent beam and the FEM
model is found, in except for the case of localized mode and elastic soil, where a significant difference is
found. However, the description of localized modes is out of the goal of this paper, since the equivalent model
is developed to describe global and not local phenomena. Finally, the percentage error on the critical load
multiplier of the equivalent model, compared to that of the FE solution, is less than 3% (results not reported
here).

Buckling of buildings under combined tip and uniformly distributed loads

The combined effect of the two loads, lumped and distributed, is now investigated, for the two case studies, I
and II, and different number of floors (n = 10, 50, 100, labeled as 1, 2, 3, respectively).

Results for case-I are shown in Fig. 7, where the interaction domain, μ vs ν, is displayed for the three
different buildings. In this figure, the black lines are referred to clamped equivalent Timoshenko beam, while
the light-blue lines are relevant to the same beam, but elastically restrained. Each curve represents the boundary
of stability domain, i.e., the locus of the critical parameters (μ, ν) which entails incipient instability of the
building. States of load represented by points of the plane which are on the left of each locus (denoted with
S for the case 1 in the figure), are stable; the other states are unstable (denoted with U for the case 1 in the
figure).

In Fig. 8, the analysis for the case study II, with n = 20, rigid soil, and with a state of load characterized by
the ratio ν/μ = 0.287, is illustrated. The results of this model are in excellent agreement with those of the FEM
analyses, both in terms of critical mode and (see Fig. 8) in terms of magnitude of critical load multiplier. It is
important to remark that in this case, due to the asymmetry in the column layout, all displacement components
of the critical mode are nonzero, entailing a flexural–torsional behavior of the building.

5 Conclusions

The buckling behavior of tower buildings, uniformly and not uniformly compressed, has been addressed in
this paper. To this end an equivalent Timoshenko beam model, embedded in a three-dimensional space, and
accounting for the geometric effect of compression, has been formulated in the framework of up-scaling
methods. Homogenization has been carried out coupling heuristic approaches and asymptotic homogenization
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(a) (b)

(c) (d)

(e) (f)

Fig. 6 Critical mode in the case study I, under uniformly distributed load, for different number of floors, namely: a, b n = 10; c,
d n = 50; e, f n = 100. Rigid soil in black; elastic soil in light blue. Continuous lines: Timoshenko model; dots and circles: FE
solution
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Fig. 7 Interaction domains of the two bifurcation parameters for the case study I and for n = 10 (curves 1), n = 50 (curves 2),
n = 100 (curves 3). Clamped case in continuous black line, elastically restrained case in light blue line

(a) (b) (c)

(d) (e) (f)

Fig. 8 Critical mode in the case study II, under combined tip and distributed loads. For Timoshenko model: clamped case in
continuous black line. For FE solution: black dots

methods. All the results, given by the equivalent continuous model, have been compared with those obtained
through finite-element analyses carried out on three-dimensional frames. The bifurcation analysis of the equiv-
alent model, governed by a boundary value problem with variable coefficients, has been performed through
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a numerical discretization, grounded on the finite difference method, also accounting for the interaction with
a Winkler-type soil, and for both symmetric and asymmetric layout of the columns of the tower building. An
order-of-magnitude analysis has been carried out to predict the influence of the soil in changing the elastic
behavior of the building. The following conclusions can be drawn.

1. The geometric effect of the prestress affects both equilibriumand constitutive equations of the 1Dequivalent
model. The second aspect models microscopic effects which could not be accounted for on themacroscopic
scale.

2. In the case of tip load, the shape of buckling mode is of ‘Euler-type,’ and it does not change with the
number of floors.

3. In the case of uniformly distributed load, the buckling mode, has a ‘Local-’ or a ‘Timoshenko-’ and
‘Euler-type’ buckling shape, as the floor number increases.

4. In general, soil does not change, both qualitatively nor qualitatively, the buckling behavior of tower build-
ings, as predicted by the order-of-magnitude analysis. In particular, some significant quantitative effects
can be recognized in the buckling mode only when the number of floors is sufficiently small.

5. Flexural–torsional buckling modes have been detected when the columns layout is not symmetric.
6. The model permits to account for combined actions of tip and uniformly distributed loads; it supplies

interaction domains, useful for design purposes.
7. A very good agreement between the critical loads and modes of the equivalent beam, with respect to

benchmark solutions, obtained via finite-element analyses has been found, when the buckling mode has
global character.

8. Remarkably, a lower computational effort in managing the equivalent one-dimensional beam model has
been experienced, with respect to refined frame models of buildings in a three-dimensional space.
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A Stiffnesses of the springs representative of the soil

In order to evaluated the elastic stiffness representative of the behavior of the foundation, it is assumed that the
centroid of the ground floor, is coincident with that of the foundation, i.e., A ≡ G. Moreover, the foundation
is modeled as a rigid body, for which the transverse displacement of a generic point P on it, reads:

u = uA − θzA y + θyAz, (48)

uA, θzA, θyA, being the displacements of the centroid of the ground floor. The elastic (and uniformly distributed
on the foundation) reaction of the linear soil is assumed to be directed towards axis āx , whose magnitude σx
is:

σx = −ks u, (49)

ks being the Winkler’s soil elastic constant.
The resultant actions (forces and moments) on the foundation, therefore, read:

Fel
x =

∫
A

σx d A = −kxuA,

Cel
y =

∫
A

σx z d A = −kyθyA + kyzθzA,

Cel
z = −

∫
A

σx y d A = kyzθyA − kzθzA,

(50)

http://creativecommons.org/licenses/by/4.0/
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where, Fel
x is the magnitude of the elastic vertical force andCel

y , Cel
z are the magnitudes of the elastic moments

of axes y and z, respectively2. Moreover, the following definitions of the elastic coefficients of the springs, are
introduced:

kx = ks A f ,

ky = ks

∫
A f

z2 d A = ks Iy,

kz = ks

∫
A f

y2 d A = ks Iz,

kyz = ks

∫
A f

yz d A = ks Iyz,

(51)

A f , Iy , Iz , and Iyz being the area and the moments of inertia of the foundation, respectively.

B Expressions of the elastic matrices

Elastic matrices, appearing in Eqs. (28) and (29), read:

K0
i =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Di 0 0 0 0 0

Siy 0 0 0 − hSiy
2

Siz 0 hSiz
2 0

Ci 0 0
αiy+4
αiy+1 Biy 0

SYM αi z+4
αi z+1 Biz

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

K̂i =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
2(5αi z+3)
5h(αi z+1)2

0 0 0
5α2

i z−1

10(αi z+1)2

2(5αiy+3)

5h(αiy+1)
2 0

1−5α2
iy

10(αiy+1)
2 0

0 0 0

h
4−5(αiy−1)αiy
30(αiy+1)

2 0

SYM h 4−5(αi z−1)αi z
30(αi z+1)2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

C0 := h

⎛
⎜⎜⎜⎜⎜⎝

D 0 0 0 D zE − D yE
Sy 0 − Sy zS 0 0

Sz Sz yS 0 0
C 0 0

By − Byz
SYM Bz

⎞
⎟⎟⎟⎟⎟⎠

,

Ĉ :=

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
Ĉ22 0 Ĉ24 0 Ĉ26

Ĉ33 Ĉ34 Ĉ35 0
Ĉ44 0 0

Ĉ55 0
SYM Ĉ66

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(52)

2 It is important to remark that, if the axes y and z are principal of inertia for the foundation, the flexural coupling governed by
kyz is zero.
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where the following elastic coefficients for the generic i-th column are introduced:

Di = E Ai

h
, Siy = 12E Iiz

(1 + αi z) h3
, Biy = E Iiy

h
,

Ci = GJi
h

, Siz = 12E Iiy(
1 + αiy

)
h3

, Biz = E Iiz
h

,

(53)

in which the flexural-to-shear stiffness ratios appear:

αi z := 12E Iiz
GAiyh2

, αiy := 12E Iiy
GAizh2

. (54)

Moreover, the elastic coefficients for the coarse model reads:

D :=
N∑
i=1

Di , yE := 1

D

N∑
i=1

Di yi , zE := 1

D

N∑
i=1

Di zi , Sy :=
N∑
i=1

Siy ,

Sz :=
N∑
i=1

Siz, yS := 1

Sz

N∑
i=1

Siz yi , zS := 1

Sy

N∑
i=1

Siy zi , C :=
N∑
i=1

Ci + Siz y
2
i + Siy z

2
i ,

By :=
N∑
i=1

Biy + Di z
2
i , Bz :=

N∑
i=1

Biz + Di y
2
i , Byz :=

N∑
i=1

Di yi zi , βiy := 6 + 10 αi z

5 (1 + αi z) 2
,

βi z := 6 + 10 αiy

5
(
1 + αiy

)
2
, Ĉ22 :=

N∑
i=1

βiyηi , Ĉ24 := −
N∑
i=1

βiyηi zi , Ĉ26 := h/2,

Ĉ33 =
N∑
i=1

βi zηi , Ĉ34 :=
N∑
i=1

βi zηi yi , Ĉ35 := −Ĉ26, Ĉ44 :=
N∑
i=1

ηi

(
βi z y

2
i + βiy z

2
i

)
,

Ĉ55 := h2/3, Ĉ66 := Ĉ55, ηi := Di

(
ûG − θ̂z yi + θ̂y zi

)
.

(55)

where the following coefficients, representing the displacements of the centroid of the cell’s rigid floor, when
a normal unitary vertical load is applied on it, are defined:

ûG := B2
yz − B̂y B̂z

D
[
B2
yz − B̂y B̂z + D

(
B̂y y2E − 2Byz yE zE + B̂zz2E

)] ,

θ̂y := B̂zzE − Byz yE

B2
yz − B̂y B̂z + D

(
B̂y y2E − 2Byz yE zE + B̂z z2E

) ,

θ̂z := ByzzE − B̂y yE

B2
yz − B̂y B̂z + D

(
B̂y y2E − 2Byz yE zE + B̂z z2E

) .

(56)

Moreover:

B̂y :=
N∑
i=1

Di z
2
i , B̂z :=

N∑
i=1

Di y
2
i , (57)

are the bending stiffnesses of the beam-like structure, with the column flexural stiffnesses ignored.
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