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Abstract Mechanical fatigue tests of unnotched, notched, and bending twin-roll cast AZ31B magnesium
alloy specimens are performed in which strain fields are analyzed with digital image correlation. Clearly,
delimited macroscopic bands of twinned grains (BTGs) in which the compressive strain is significantly higher
compared to the adjacent regions are observed. Conventional fatigue parameters, e.g., the strain amplitude,
exhibited higher values within the BTGs. This findings are confirmed by the fact that for all investigated
specimens the initial macroscopic cracks are observed within the BTGs. Consequently, for the presented
concept of highly strained volume, fatigue parameters are determined from the highly strained regions with
high strain amplitudes. This paper focuses on the application of the effective strain amplitude fatigue parameter
decomposed in an elastic and plastic portion, the Smith-Watson-Topper fatigue parameter and energy-based
fatigue parameters within the concept of highly strained volume. An extended stress–strain hysteresis model
is presented to compute stress–strain hystereses for arbitrary load ratios, required to determine the mentioned
fatigue parameters. The application and evaluation of five different fatigue parameters within the concept of
highly strained volume demonstrates the accurate description of the fatigue life until failure.

Keywords Wroughtmagnesium alloys ·Fatiguemodeling ·Discontinuous strain field ·Uniaxial stress–strain
hysteresis model · Cyclic stress–strain curves

1 Introduction

Innovative materials for lightweight constructions, e.g., in the automotive industry, will become increasingly
important in the future because they can contribute to reduce CO2 emissions [18,22]. Magnesium (Mg) alloys
are counted among these lightweight materials due to their excellent strength-to-weight ratio compared to
conventional steel and aluminum alloys [18]. This work presents an approach for the fatigue modeling of
cyclically loaded structural components made of the wrought AZ31B Mg alloy, as this is an important aspect
in the design of lightweight components.

During the twin-roll cast process ofMg alloys at higher temperature, slip occurs predominantly on the basal
planes, which leads to their alignment parallel to the direction of metal flow [2]. Consequently, a strong basal
texture develops during the production, which means that most of the basal planes {0001} are approximately
parallel to the sheet plane [21,29]. At ambient temperature, tensile stress in the sheet plane direction mainly
activates basal 〈a〉 slip, whereas compressive stress leads to extensive {101̄2} 〈

101̄1
〉
tension twinning [2,5].

As a result of the basal texture and the dominant twin formation under compressive stress in the sheet plane
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directions, clearly delimited macroscopic bands of twinned grains (BTGs) are formed [5,8]. Within these
BTGs, the compressive strain is considerably higher than outside the BTGs, leading to a discontinuous strain
field [9]. In addition, [10] shows that common fatigue parameters such as strain amplitude, Smith–Watson–
Topper or energy-based fatigue parameters, taken from inside BTGs, have higher values, which corresponds
to the observation that the initial macroscopic crack is always within BTGs. Further challenges in fatigue
modeling of basal textured wrought Mg alloys are anisotropic and asymmetric yield strengths, almost ideal
plastic material behavior during twinning and sigmoidal shaped stress–strain hystereses [20,27,31].

In recent years, several works have been published on fatigue modeling, that deal with the complex defor-
mation behavior of Mg alloys [5,19,23,26,27]. All these researches use a total strain energy density fatigue
parameter, first introduced by Ellyin et al. [12]. Each work uses different approaches to determine the positive
elastic strain energy density and achieves a good agreement between the predicted and experimental life for
uniaxial unnotched specimens. Only a few investigations were carried out concerning the fatigue modeling of
notched specimens [8,30,32], bending specimens [7,15,28] and the fatigue behavior under dominant multiax-
ial loading [1,24]. The mentioned researches investigate the influence of stress concentrations, stress gradients
and different types of loading on fatigue life separately from each other and achieve good results in fatigue
modeling for a specific specimen type (uniaxial unnotched specimen, notched specimen, bending specimen,
axial and torsional loaded tubular specimen). Furthermore, the discontinuous strain field (BTGs), important
for fatigue modeling [10], has not been taken into account by the mentioned researches.

To consider all these aspects in one fatiguemodel, Denk et al. [10] introduced the concept of highly strained
volume (CHεV), inspired by the highly stressed volume from the early work of Kuguel [17]. They made in
[10] fatigue tests on unnotched, notched and bending specimens and determined the size of the highly strained
volume and the effective strain amplitude within the highly strained volume to predict the number of cycles to
failure.

This work is an extension to [10], where further fatigue parameters such as the effective strain amplitude
separated into an effective elastic and plastic strain amplitude, the Smith–Watson–Topper fatigue parameter
and energy-based fatigue parameters are used. In addition, an extended stress–strain hysteresis model, based on
Dallmeier et al. [4], is proposed that enables the computation of stress–strain hystereses of arbitrary load ratios
required to calculate the mentioned fatigue parameters. Finally, the different fatigue parameters are evaluated
and compared with each other.

2 Material and experimental procedure

The study for the fatigue tests was conducted with a commercial 3-mm-thick twin-roll cast AZ31B sheet with a
strong basal texture. Detailed information on the microstructure of the tested material is given in [6]. Different
types of unnotched uniaxial specimens, notched uniaxial specimens and unnotched bending specimens were
tested with constant amplitude loading. Figure 1 and Table 1 show and list the geometrical dimensions of the
different used specimens. Additionally, the stress concentration factors Kt of the notched uniaxial specimens
are listed in Table 1. Further details on the specimen manufacturing can be found in [6].

The fatigue data for the unnotched uniaxial specimens were gathered strain-controlled with extensometer
strain ratios Rε,ext = 2,−∞, −1,−0, 5. In contrast, the notched uniaxial specimens and unnotched bending
specimens were exclusively stress-controlled tested with the nominal stress ratios Rσ,n = −1,−0, 5 and
Rσ,n = −1, respectively.An anti-buckling device is used to prevent the specimen frombucklingwhen subjected
to compressive stress. The in situ measured strain fields were obtained using the GOMARAMIS™12Mdigital
image correlation (DIC) photogrammetry system.

3 Proposed fatigue model

This section provides the theoretical approach for the concept of highly strained volume (CHεV) in combination
with two effective strain amplitude fatigue parameters, the Smith–Watson–Topper fatigue parameter, and two
energy density fatigue parameters. A uniaxial stress–strain hysteresis model is proposed to compute the stress–
strain data required to determine four of a total of five fatigue parameters.
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(a)
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Fig. 1 Geometries of the different tested specimen types: a unnotched uniaxial specimens, b unnotched bending specimens and
c notched uniaxial specimens for which the dimension are listed in Table 1. The four detail views Ai show the dimensions of the
notch geometries K2, K3, K4, and K5

Table 1 Dimensions for the unnotched uniaxial and unnotched bending specimens as well as the stress concentration factors Kt
for the notched uniaxial specimens

Unnotched uniaxial specimens l1 (mm) l2 (mm) l3 (mm) l4 (mm) R1 (mm)

T 100 6 3 15 25
S 100 15 5 15 25
M 134 12 10 25 25
L 110 30 7 15 25
H 130 60 10 25 25

Notched uniaxial specimens Stress concentration factors Kt

K2 1.86
K3 3.14
K4 4.26
K5 5.48

Unnotched bending specimens l1 (mm) l2 (mm) l3 (mm) l4 (mm) R1 (mm)

B30 110 12 3 15 30
B45 110 12 4.5 15 30
B60 110 12 6 15 30

3.1 The concept of highly strained volume

Figure 2a and b shows the components of the principal strain fields at the lower load level (LLL) ε∗
3(x1, x2)|LLL

and at the upper load level (ULL) ε∗
1(x1, x2)|ULL at half of fatigue life Nf/2 for an unnotched uniaxial specimen.

Note that the principal strains are sorted according to the convention ε∗
1 ≥ ε∗

2 ≥ ε∗
3 and that proportional cyclic

loading is assumed. In the middle part of the specimen, the anti-buckling device covers the strain field.
Caused by the basal texture, the twin formation and the almost ideal plastic material behavior during

twinning, a discontinuous strain field withmacroscopic bands of twinned grains (BTG) is formed [9]. Figure 2a
shows the resulting BTG in which the compressive strain is significantly higher (blue color) compared to the
regions outside the BTG and the BTG is a clearly delimited subdomain. Its volume fraction, related to the
gauge volume, is approximately 0.375. Figure 2b illustrates that even after a subsequent tensile load the BTG
remains in place and shows still a compressive strain.

The investigations revealed that initial macroscopic cracks are always located within the BTG [9], as it
can be seen in the image detail of Fig. 2b. It should be noted that the image detail in Fig. 2b is taken from
this position, but at a later stage. The red stripe indicates a large measured tensile strain, which results from
an opening crack. This finding can be explained with the help of Fig. 3, which shows stress–strain hystereses
(SSH) obtained via DIC at certain strain increments from inside and outside the BTG. The normal strain
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Fig. 2 Principal strain fields ε∗
i j (x1, x2) of an unnotched specimen at half of fatigue life Nf/2 with a extensometer strain amplitude

εa,ext = 0.35% and an extensometer strain ratio Rε,ext = −1 measured with DIC: a principal strain field at the lower load level
ε∗
3(x1, x2)|LLL with the marked BTG, b principal strain field at the upper load level ε∗

1(x1, x2)|ULL with an image detail indicating
that the macroscopic crack starts within the BTG. The image detail is taken from the marked position, but at Nf
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Fig. 3 stress–strain hystereses at half of fatigue life Nf/2 outside and inside the BTG measured incrementally with DIC from the
uniaxial specimen shown in Fig. 2 with the corresponding coordinate system. For the normal strains ε22 outside and inside the
BTG, the mean values of the respective normal strain fields ε22(x1, x2) are calculated

ε22 = ∂u2
∂x2

refer to the coordinate system of Fig. 2, and thus means the normal strain in the x2 direction. Inside
the BTG, the total strain amplitude of the SSH is 17% and the hysteresis area is 70% larger compared to
the SSH outside the BTG. Hence all of the common fatigue parameters like the strain amplitude, the Smith–
Watson–Topper fatigue parameter and an energy density-based fatigue parameter are higher within the BTG.
Since the extensometer strain amplitude εa,ext = 0.35% is small, the stress–strain hystereses in Fig. 3 do not
have distinct sigomidal shapes.

In summary, the strongly discontinuous strain field and the higher fatigue parameter values within BTGs are
the main motivation for using the CHεV [10]. Figure 4 illustrates the separation of the highly strained region
(HSR) from a general strain field εi j (x1, x2)|LLL at the LLL. Starting with the components of a general strain
tensor εi j (x1, x2)|LLL, the components of the principal strain field ε∗

i j (x1, x2) and the corresponding transfor-
mation matrix a∗

i j (x1, x2)|LLL have to be calculated. Furthermore, the maximum ε∗
1,max|LLL and the minimum

value ε∗
3,min|LLL of the entire principal strain field at the LLL ε∗

i j (x1, x2)|LLL are determined. Subsequently,
the HSR is separated using a threshold strain

εthr|LLL =
{
0.8 ε∗

1,max|LLL, if |ε∗
1,max|LLL| � |ε∗

3,min|LLL|
0.8 ε∗

3,min|LLL, if |ε∗
3,min|LLL| > |ε∗

1,max|LLL| . (1)
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Fig. 4 Procedure for determining the HSR and subsequently the HSRA, based on the measured strain field ε∗
i j (x1, x2) at the

lower and upper load level with DIC of a uniaxial unnotched specimen

Best results for fatiguemodeling are achieved by determining the HSRwith the principal strain field ε∗
i j (x1, x2)

and a threshold value of 0.8 ε∗
1,max|LLL or 0.8 ε∗

3,min|LLL [6]. Further evaluation procedures for the HSR, such
as different threshold values, are described in [6]. All of the strain fields are evaluated at Nf/2 since a stabilized
material behavior is achieved [9]. Figure 3 shows the separated HSR that meets ε∗

i j (x1, x2)|LLL � εthr|LLL,
which predominantly originates from the BTG. For the remaining principal strain field at the upper load level
(ULL) ε∗

i j (x1, x2)|ULL, the same measuring facettes k are used as for the selected HSR.
A high compressive strain does not necessarily cause material failure. In contrast, the strain amplitude has

a significant influence on the fatigue lifetime. Therefore, the effective strain amplitude tensors

ε̃ ∗
i j,a(x1, x2) = 1

2

(
ε̃ ∗

i j (x1, x2)|ULL − ε̃ ∗
i j (x1, x2)|LLL

)
(2)
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are calculated from the separated HSR, whereby effective quantities from the HSR are indicated with (‚̃).
To ensure that the coordinate systems of ε̃ ∗

i j (x1, x2)|ULL and ε̃ ∗
i j (x1, x2)|LLL have the same orientation, a

transformation

ε̃ ∗
i j (x1, x2)|ULL = ε̃kl(x1, x2)|ULL ã ∗

ik(x1, x2)|LLL ã ∗
jl(x1, x2)|LLL (3)

of the components of the effective strain tensor ε̃kl(x1, x2)|ULL is performed and ε̃ ∗
i j (x1, x2)|ULL is used in Eq. 2.

The components of ε̃ ∗
i j (x1, x2)|ULL are not sorted according to the convention ε̃∗

1 |ULL ≥ ε̃∗
2 |ULL ≥ ε̃∗

3 |ULL,
otherwise the wrong components are subtracted in Eq. 2. The highly strained regionwith high strain amplitudes
(HSRA) is separated by defining a threshold strain amplitude

ε̃ ∗
a,thr = 0.7 ε̃ ∗

a,max , (4)

with the maximum effective principal strain amplitude component

ε̃ ∗
a,max = max

[
ε̃ ∗

i j,a(x1, x2)
]

(5)

of the entire strain field. The definition of the threshold strain amplitude ε̃ ∗
a,thr ensures that only those regions

are selected for the HSRA that are not only twinned but also untwinned after load reversal. This was determined
by analyzing strain fields and micrographs [6]. Additionally, good fatigue modeling results were obtained with
a threshold strain amplitude ε̃ ∗

a,thr of 70% of the maximum effective principal strain amplitude component
ε̃ ∗
a,max. Figure 3 shows the HSRA remaining at the end of the calculation algorithm, which is further used to
determine fatigue parameters, such as the highly strained volume Vε.

3.2 Fatigue parameters

Highly strained volume Vε The highly strained volume Vε is determined from theHSRA and the sheet thickness
t . For this purpose, the highly strained area Aε is calculated, which is the sum of the areas Ak for all measuring
facettes k that are included in theHSRA.Bymultiplying the highly strained area Aε and themeasured specimen
thickness t , the highly strained volume Vε is calculated with the equation

Vε =
n∑

k=1

Ak t . (6)

Its size depends on the current load and on the specimen geometry. A large highly strained volume Vε leads
to smaller numbers of cycles to failure Nf and vice versa. By defining Vε as an absolute quantity, geometric
size effects, stress gradients and stress concentrations are considered with the fatigue model CHεV. For the
unnotched specimens, the minimum and maximum measured highly strained volumes are Vε,min = 0.97mm3

and Vε,max = 864mm3, respectively. The notched specimens have values between Vε,min = 0.192mm3

and Vε,max = 20.6mm3 and the values for the bending specimens are between Vε,min = 0.579mm3 and
Vε,max = 9.3mm3.

Fatigue parameters representing the load In the following, the used fatigue parameters in combination with the
CHεV are explained. The different measuring facettes k of the HSRA have different effective principal strain
amplitudes ε̃ ∗

a,k . Thus, a mean value is calculated yielding a unique scalar value for the strain amplitude within
the HSRA. Accordingly, the maximum arithmetic mean effective principal strain amplitude is calculated by

˜̄ε ∗
a = max

[
1

n

n∑

k=1

ε̃ ∗
i j,a,k

]

. (7)

Quantities marked with ( ˜̄‚) represent mean effective measured values within the HSR or HSRA. In addition,
the corresponding mean effective strain ratio is calculated by

˜̄Rε =
∑n

k=1 ε̃ ∗
k (x1, x2)|LLL∑n

k=1 ε̃ ∗
k (x1, x2)|ULL (8)
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which describes the actual effective strain ratio within the HSRA. In Eq. (8), the same component is used
for the effective principal strains ε̃ ∗

k (x1, x2)|LLL and ε̃ ∗
k (x1, x2)|ULL, which is derived from the calculation of

the maximum arithmetic mean effective principal strain amplitude ˜̄ε ∗
a in Eq. (7). The mean effective principal

strain amplitude ˜̄ε ∗
a in Eq. (7) is the only investigated fatigue parameter that does not require knowledge of the

stress state.
Another fatigue parameter is the decomposed mean effective principal strain amplitude ˜̄ε ∗

a , represented by

an elastic ˜̄ε ∗,el
a and a plastic ˜̄ε ∗, pl

a portion which is calculated by

˜̄ε ∗
a = ˜̄ε ∗, el

a + ˜̄ε ∗, pl
a = σ̃ ∗

a

E
+ ˜̄ε ∗, pl

a (9)

with the effective principal stress amplitude σ̃ ∗
a and theYoung’smodulus E . Another analyzed fatigue parameter

is the Smith–Watson–Topper fatigue parameter PSWT that takes into account the influence of the effectivemean
principal stress σ̃ ∗

m. It is defined by

PSWT =
√(

σ̃ ∗
m + σ̃ ∗

a

) ˜̄ε ∗
a E , (10)

wherein the mean effective principal strain amplitude ˜̄ε ∗
a is calculated with Eq. (7).

Additionally, the total strain energy density fatigue parameter, introduced in [13], is calculated with

ΔW t = ΔW +el + ΔW pl (11)

and used within this paper. The total strain energy density is defined as the positive elastic strain energy density
ΔW +el and the plastic strain energy density ΔW pl. Among the different calculation methods for the positive
elastic strain energy density [5,16,19,27], the equations

ΔW +el =
⎧
⎨

⎩

σ̃ ∗ 2
max
2E , if σ̃ ∗

min ≤ 0

σ̃ ∗ 2
max −σ̃ ∗ 2

min
2E , if σ̃ ∗

min > 0 ,

(12)

according to [5], are used here. In Eq. 12, σ̃ ∗
max and σ̃ ∗

min are the effective maximum and minimum principal
stress at the upper and lower load level within the HSRA. A variant of the total strain energy density ΔW t for
AZ31B Mg alloy is the total strain energy density with a mean stress sensitivity factor fmss = 0.25 from [5],
resulting in

ΔW t
mss = fmss ΔW +el + ΔW pl , (13)

in which fmss adjusts the influence of the mean stress.
It should be noted that for the fatigue parameter ˜̄ε ∗,el

a + ˜̄ε ∗,pl
a in Eq. (9), PSWT in Eq. (10), ΔW t in Eq.

(11) and ΔW t
mss in Eq. (13) stress–strain hystereses must be determined and therefore the stress state must be

known. It is demonstrated in [9] that the discontinuous strain field illustrated in Fig. 2 cannot be calculated
with current phenomenological material models such as the Cazacu, Plunket and Barlat yield criterion CPB06
[3]. Hence, for that lack of an accurate 2D and 3D material model, a phenomenological uniaxial stress–strain
hysteresis model was developed [4], which is explained in detail in the next section.

3.3 Extended stress–strain hysteresis model

This section describes the phenomenological uniaxial stress–strain hysteresismodel used for calculating fatigue
parameters. Dallmeier et al. published in [4] a basic stress–strain hysteresis model (SSM), which gives accurate
results for a load ratio of Rε = −1. In the following, the most important equations as well as an extension of
the SSM for Rε �= −1 are shown.
Basic stress–strain hysteresis modelConventional functions for nonlinear stress–strain relationship, such as the
Ramberg–Osgood equation, are improper due to the distinct asymmetry between the tensile and compressive
yield strength and the sigmoidal shaped stress–strain curves, mainly caused by twinning and detwinning
[20,25,31]. Therefore, the approach

Δεt(Δσ) = Δεel(Δσ) + Δεpsel(Δσ) + Δεpl(Δσ) (14)
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(a) (b)

Fig. 5 Explanation of the: a material parameters used to calculate the elastic Δεel(Δσ) (orange curve), plastic Δεpl(Δσ) (red
curve) and pseudoelastic Δεpsel(Δσ) (blue curve) strain increment for the calculation of the measured stress–strain hysteresis
(black curve), b composition of the elastic strain increment Δεel(Δσ), the plastic strain increment Δεpl(Δσ) (red curve) and the
pseudoelastic strain increment Δεpsel(Δσ) (blue curve) using the example of an envelop stress–strain hysteresis with two inner
hystereses. [4]

describes the total strain increment Δεt(Δσ), which consists of an elastic Δεel(Δσ), a pseudoelastic
Δεpsel(Δσ) and a plastic strain increment Δεpl(Δσ) as illustrated in Fig. 5a and b. The measured mean
effective strain values of the HSRA at the upper ˜̄ε|ULL and lower load levels ˜̄ε|LLL are used as input values for
the hysteresis model. The elastic strain increment as a function of the stress increment Δσ is

Δεel(Δσ) = Δσ

E
. (15)

For the plastic deformation, caused by twinning and de-twinning, the equation

Δεpl(Δσ) = [U (Δσ) − U (Δσ = 0)] T mpl (16)

is given, where the coefficient T describes twice the amount of the plastic strain at the inflection point of
Δεpl(Δσ) (Fig. 5a) and the memory factor mpl which ensure material memory [4]. The substituent U (Δσ) is

U (Δσ) = 1

2

[
tanh

[
Δσ − |σrp| + aup/down σtw

S
aup/down

]
+ 1

]
(17)

and gives the stress–strain curve its sigmoidal shape through the tanh function. In Eq. (17), σrp is the stress at
the reversal point at the beginning of the current stress–strain branch, σtw is the stress and S the slope at the
inflection point of Δεpl(Δσ). For the factor aup,down, a distinction must be made between the following two
cases

aup/down =
{

1
2

[
tanh

[
Δσ−|σrp|+σtw

S

]
+ 1

]
, if Δεt > 0

1, if Δεt < 0 ,
(18)

in which Δεt > 0 indicates an ascending stress–strain branch and Δεt < 0 a descending stress–strain branch.
The pseudoelastic portion is defined as

Δεpsel(Δσ) = ln

[
expΔσ−σP,up/down/50MPa +1

exp−σP,up/down/50MPa +1

]

P mpsel (19)

with the slope P of the pseudoelastic strain increment Δεpsel(Δσ), the pseudoelastic cutoff stress σP,up/down

for ascending and descending stress–strain reversals and the memory factor mpsel. The material parameters E ,
T , σtw, S, P , σP,up and σP,down are illustrated in Fig. 5a. The used material parameter values within this work
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Table 2 Material parameters used for the phenomenological stress–strain hysteresis model for 3-mm-thick twin-roll cast AZ31B
sheet metal

Material parameter Value Material parameter Value

E 44200 MPa P 0.0015
T 0.06 σP,up 155 MPa
σtw −160 MPa σP,down 165 MPa
S 40 MPa Rr 0.3

−3 −2 −1 0 1 2 3

normal strain ε22,ext − εm (%)
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a) Rε,extenso = −1

Rε,extenso = 0
Rε,extenso = ±∞
Rε,extenso = 2

Fig. 6 Cyclic stress–strain curves (CSSCs) for the extensometer strain ratios Rε,ext = −1, 2, ± ∞ and 0 with the mean strain
εm being subtracted from the normal strain ε22,ext

are listed in Table 2. The memory factors mpl and mpsel ensure closed hysteresis loops and are determinable
after the first hysteresis branch has been calculated. Thus, the additional parameter

Rr = 1 − mpsel

1 − mpl (20)

applies for the first branch and defines how much strain is achieved by Δεpl(Δσ) and Δεpsel(Δσ). The
definition and the computation of the memory factors mpl and mpsel as well as a detailed description of the
basic SSM can be found in [4].

Extended stress–strain hysteresis model for arbitrary load ratios As shown in Fig. 3, the effective strain ratio
R̃ε within the BTG differs significantly from the controlled extensometer strain ratio Rε,ext. Consequently, an
extension for the basic SSM is necessary to calculate hystereses for arbitrary load ratios. For this purpose, the
cyclic stress–strain curves (CSSCs) for strain ratios Rε,ext = 2,±∞ and 0 are determined experimentally with
3-mm-thick wrought AZ31B uniaxial specimens and included into the SSM additionally to the CSSC for the
strain ratio Rε,ext = −1. The CSSCs result from the maximum and minimum stress–strain values measured
at the upper and lower load levels of the cyclically stable stress–strain hystereses at Nf/2. Figure 6 illustrates
the determined CSSCs for the different strain ratios, wherein the extensometer strain ε22,ext is shifted by the
mean strain εm in order to compare them more easily.

To minimize the experimental effort, only four strain ratios are determined. However, any strain ratio can
occur in the BTG. Thus, the CSSCs are interpolated using a weighting coefficient WR for arbitrary strain ratios.
The value range of the weighting coefficient is 0 ≤ WR ≤ 1, in which the weighting coefficient is 0 for the
first adjacent cyclic stress–strain curve CSSC1 and 1 for the second adjacent cyclic stress–strain curve CSSC2.
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In between, it is determined for the different strain ratio ranges Rε as follows

WR =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

( ˜̄ε|ULL − ˜̄ε|LLL
/

2)

| ˜̄ε|LLL/2| , 2 < Rε < +∞ (21)

˜̄ε|ULL
| ˜̄ε|LLL| , −∞ < Rε < −1 (22)

˜̄ε|ULL − |˜̄ε|LLL|
| ˜̄ε|ULL| , −1 < Rε < 0 . (23)

As an example, if the strain ratio is Rε = 3, the value lies between the strain ratios Rε = 2 and Rε = ±∞
for which the CSSCs are measured experimentally. The first adjacent cyclic stress–strain curve CSSC1 would
thus be the one with the strain ratio Rε = 2 and the second adjacent cyclic stress–strain curve CSSC2 the one
with the strain ratio Rε = ±∞. In this case, the weighting coefficient WR can be calculated with Eq. (21).

It should be mentioned that the mean effective strains at the upper and lower load levels ˜̄ε|ULL and ˜̄ε|LLL,
used in Eqs. (21), (22) and (23), are known from the experimentally measured strain fields. The associated
maximum and minimum stresses σmax and σmin are then determined with the extended SSM. Accordingly, the
maximum stress for the SSH can be calculated with

σmax = (1 − WR) σmax|CSSC1 + WR σmax|CSSC2 (24)

and the minimum stress for the SSH with

σmin = (1 − WR) σmin|CSSC1 + WR σmin|CSSC2 . (25)

Model verification To verify the extended SSM, stress–strain hystereses within the BTGs are experimentally
determined for four uniaxial specimens and compared with the numerically calculated stress–strain hystereses,
which is illustrated in Fig. 7. For the experiment, the strain field is measured with DIC and the mean effective
normal strain ˜̄ε22 within the HSR is determined. The normal stress σ22 is calculated by dividing the measured
force by themeasured specimen cross-sectional area. According to Fig. 7a and b, themeasured and numerically
simulated stress–strain hystereses are in good agreement with each other. To evaluate the extended SSM
quantitatively, the ratios between the experimentally measured and numerically calculated maximum stresses
σmax, stress amplitudes σa, elastic ΔW +el and plastic strain energy densities ΔW pl are calculated. These

results, for different mean effective strain ratios ˜̄Rε, are listed in Table 3.
The results show that the simulated maximum stresses and stress amplitudes have a maximum deviation

of 7% from the experimental values. Furthermore, the ratios of the positive elastic strain energy density
ΔW +el|exp/ΔW +el|sim are acceptable with a maximum deviation of 15%. The largest deviations are obtained
for the plastic strain energy density ratios ΔW pl|exp/ΔW pl|sim, with a maximum deviation of 28.9%.

4 Results and discussion

In this section, the CHεV is applied to the uniaxial unnotched, uniaxial notched and the bending specimens.
Additionally, the CHεV is applied to each specimen type separately. For all shown results, the HSR and HSRA
are evaluated with the criteria according to Eqs. (1) and Eq.4). The fatigue parameters ˜̄ε ∗

a , ˜̄ε ∗,el
a + ˜̄ε ∗,pl

a , PSWT,
ΔW t and ΔW t

mss are calculated with Eqs. (7), (9), (10), (11) and (13). Fatigue parameters, where the stress
state is required, have been determined using the extended SSM.
Application of the concept of highly strained volume From the experiments, the numbers of cycles to failure
Nf , the highly strained volumes Vε and the various fatigue parameters ˜̄ε ∗

a , ˜̄ε ∗,el
a + ˜̄ε ∗,pl

a , PSWT, ΔW t and
ΔW t

mss are plotted in three-dimensional graphs with logarithmic scale in Figs. 8, 9, 10 and 11 . In addition
to the 3D Vε-Nf fatigue diagrams, Figs. 8, 9, 10 and 11 show 2D projection views of the fatigue parameters
vs. number of cycles to failure Nf for each fatigue parameter. The different specimens (unnotched, notched,
bending specimen) are assigned by different markers. The experimental data is approximated with the double
power functions

[˜̄ε ∗
a , PSWT, ΔW t, ΔW t

mss](Nf , Vε) = C1 N d1
f

(
Vε

mm3

)d2
(26)



Fatigue modeling for wrought magnesium structures 45

−0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4
normal strain ˜̄ε22 (%)

−100

0

100

200

no
rm

al
st
re
ss

σ
2
2
(M

P
a)

˜̄Rε =13

˜̄εa = 0.42

˜̄Rε =-1.5

˜̄εa = 0.55experiment
simulation

(a)

(b)

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6
normal strain ˜̄ε22 (%)

−100

0

100

200

no
rm

al
st
re
ss

σ
2
2
(M

P
a)

˜̄Rε =-0.82
˜̄εa = 0.66

˜̄Rε =-1.3

˜̄εa = 0.49experiment
simulation

Fig. 7 Comparison between the measured and simulated stress–strain hystereses in the HSR with the mean effective strain ratios:

a ˜̄Rε = 13 and ˜̄Rε = −1.5, b ˜̄Rε = −1.3 and ˜̄Rε = −0.82

Table 3 Verification of experimentally determined and simulated hystereses with the ratios of the experimentally and simulated
maximum stresses σmax, stress amplitudes σa, positive elastic ΔW +el and plastic strain energy densitiesΔW pl for different mean

effective strain ratios ˜̄Rε

˜̄Rε (-) ˜̄ε (%)
σmax|exp
σmax|sim (-)

σa |exp
σa |sim (-)

ΔW+el|exp
ΔW+el|sim (-)

ΔW pl|exp
ΔW pl|sim (-)

13 0.42 1.04 1.02 1.07 0.711
−1.3 0.49 1.07 1.01 1.15 0.872
−1.5 0.55 1.03 1.00 1.05 0.729
−0.82 0.66 0.97 0.95 0.95 1.03

and

[˜̄ε ∗,el
a + ˜̄ε ∗,pl

a ](Nf , Vε) = C1 N d1
f

(
Vε

mm3

)d2
+ C2 N d3

f

(
Vε

mm3

)d4
, (27)

wherein the coefficients C1, C2 and the exponents d1, ..., d4 denote material parameters which are used to
fit the equations. It should be noted that for the different fatigue parameters the regression coefficients and
exponents have different values and units. Finally, the regressions of Eqs. (26) and (27) lead to regression
planes for the fatigue parameters ˜̄ε ∗

a , PSWT, ΔW t and ΔW t
mss and to a regression surface for the fatigue

parameter ˜̄ε ∗,el
a + ˜̄ε ∗,pl

a , plotted with green color in Figs. 8, 9, 10 and 11. All material parameters for the
different fatigue parameters are listed in Table 4. For the nonlinear regression, MATLAB® and its iterative
reweighted least-squares algorithm [11,14] is used to determine the material coefficients and exponents.
Verification of the concept of highly strained volume for different fatigue parameters To verify how accurate
the nonlinear regression represents the experimental data for the individual fatigue parameters, the coefficient
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Fig. 8 3D and 2D Vε-Nf fatigue diagrams including the results from the fatigue tests of the unnotched, notched and bending
specimen, the regression planes (green color) and the 2x error bounds (red color). For the fatigue diagrams the fatigue parameters:
(a) mean effective principal strain amplitude ˜̄ε ∗

a and (b) Smith-Watson-Topper PSWT are used

of determination r2 is calculated. Table 5 lists the coefficient of determination r2 for the regression surfaces
of the different fatigue parameters shown in Figs. 8, 9 and 10.

The best regression is obtained for the fatigue parameter ˜̄ε ∗,el
a + ˜̄ε ∗,pl

a (Fig. 9) with a coefficient of determi-
nation of r2 = 0.86 corresponding to a high value, proofing good accuracy. Moreover, the fatigue parameters
˜̄ε ∗
a and PSWT, plotted in Fig. 8a and b, achieves good accuracy for regression. Table 3 shows that the maxi-
mum stress σmax computed with the extended SSM provides accurate results, which is the basis for the good
correlation between the regression and the experimental data of both fatigue parameters. The fatigue param-
eters ΔW t and ΔW t

mss reveal with r2 = 0.82 (Table 5) the largest discrepancy. As discussed in Sect. 3.3,
the computation of the plastic strain energy density ΔW pl results in larger deviations, leading to smaller r2

values. The use of strain energy density fatigue parameters for fatigue modeling thus requires a more accurate
computation of stress–strain hystereses. A further reason for the deviation could be the calculation approach
of the positive elastic strain energy density ΔW +el, which considers the mean stress. Roostaei et al. states
in [27] that wrought Mg alloys show positive mean stress even during fully reversed strain-controlled tests
with strain ratio Rε = −1. By using their calculation approach of ΔW +el, they improve their fatigue model
especially for the load ratio R = 0.5. Since the fatigue tests, presented in this paper, were performed at load
ratios R = 2, −∞, -1 and -0.5, only small positive mean values result. Thus, the influence of the different
calculation approaches for ΔW +el is considered to be small.

The red surfaces in Figs. 8, 9, and 10 represent the 2-times error bounds with respect to the Nf -axis. It can
be seen that most experimental data lies between the two two-time error bounds. This demonstrates that the
CHεV is well suited for fatigue modeling of wrought Mg alloys, even with different specimen types including
stress concentrations, stress gradients, different sizes and different load types.
Verification of the concept of highly strained volume for specific specimen types This paragraph examines the
individual influences of the different specimen types. For this purpose the CHεV is applied separately to the
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Fig. 10 3D and 2D Vε-Nf fatigue diagrams including the results from the fatigue tests of the unnotched, notched and bending
specimen, the regression planes (green color) and the 2x error bounds (red color). For the fatigue diagrams, the fatigue parameters:
(a) total strain energy density ΔW t and (b) total strain energy density with mean stress sensitivity ΔW t

mss are used
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Fig. 11 Verification of the CHεV for the fatigue tests of the: a notched specimens (r2 = 0.88), b unnotched specimens (r2 = 0.89)
and c bending specimens (r2 = 0.98). For all of the 3D and 2D Vε-Nf fatigue diagrams, the fatigue parameter mean effective
principal strain amplitude decomposed in elastic and plastic part ˜̄ε ∗,el

a + ˜̄ε ∗,pl
a is used

Table 4 Values for the material parameters for the fatigue parameters, determined with a nonlinear regression analysis which
contains all specimen types

Fatigue parameter C1 C2 d1 d2 d3 d4

˜̄ε ∗
a 2.57% – −0.188 −0.0120 – –

PSWT 665 MPa – −0.149 −0,0150 – –
ΔW t 17.4MJm−3 – −0.420 −0.0238 – –
ΔW t

mss 16.2MJm−3 – −0.369 −0.0286 – –
˜̄ε ∗,el
a + ˜̄ε ∗,pl

a 0.914% 2.24% −0.114 −0.0175 −0.308 0.00578
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Table 5 Coefficients of determination r2 for different fatigue parameters evaluated from the nonlinear regression analysis which
contains all specimen types

˜̄ε ∗
a PSWT ΔW t ΔW t

mss
˜̄ε ∗,el
a + ˜̄ε ∗,pl

a

r2 0.85 0.85 0.82 0.82 0.86

Table 6 Values for the material parameters from the nonlinear regression Eq. (27) for the unnotched, notched, and bending
specimen, determined with fatigue parameter ˜̄ε ∗,el

a + ˜̄ε ∗,pl
a

Specimen type C1 (%) C2 (%) d1 d2 d3 d4

Unnotched specimens 2.15 2.38 −0.209 −0.0304 −0.308 − 0.00787
Notched specimens 0.755 2.19 −0.0906 −0.0336 −0.312 0.0488
Bending specimens 1.09 5.27 −0.118 −0.0742 −0.381 − 0.122

Table 7 Coefficients of determination r2 for the different specimen types, evaluated with the fatigue parameter ˜̄ε ∗,el
a + ˜̄ε ∗,pl

a

Unnotched specimens Notched specimens Bending specimens

r2 0.89 0.88 0.98

fatigue tests of the unnotched, notched, and bending specimens. The verification of the CHεV including all
specimen types showed that the fatigue parameter ˜̄ε ∗,el

a + ˜̄ε ∗,pl
a achieved the best regression. Therefore, only

the fatigue parameter ˜̄ε ∗,el
a + ˜̄ε ∗,pl

a is used for subsequent fatigue modeling.
Figure 11a–c shows the Vε-Nf fatigue diagrams containing the experimental data of the fatigue tests of the

unnotched, notched and bending specimens, respectively. The regression analysis is carried out on the basis of
Eq. (27), with Table 6 listing the determined material coefficients and exponents for the respective specimen
types.

Table 7 shows the coefficients of determination r2 of the regression analyses of the unnotched, notched
and bending specimens, where the smallest value is obtained for notched specimens with r2 = 0.88. It was
found in [8] that the BTGs that form at notches are relatively small and narrow, which brings the strain field
measurement with DIC to its resolution limits. Thus, higher measuring uncertainties cause the slightly lower
r2 value for notched specimens. The best result is obtained for the bending specimens with a coefficient of
determination of r2 = 0.98. Figure 11c shows that the values for the highly strained volumes Vε of the bending
specimens cover a smaller range than, e.g., those of the unnotched specimens. The limited variance for this
case of the measurement points can be a reason for the good regression. In summary, only small improvements
in regressions are achieved for the unnotched and notched specimens by applying the CHεV to only one
specific specimen type rather than combining all specimen types in one model. This shows that the CHεV
can estimate the lifetime almost as accurately using different specimen types in one model as applying it to a
specific specimen type.

5 Conclusions

A method for fatigue modeling of basal textured AZ31B wrought alloy structures is presented, taking into
account stress concentrations, stress gradients, different sizes, different types of loading and macroscopic
bands of twinned grains (BTGs). The compressive strain in the BTGs is significantly larger compared to the
adjacent regions outside the BTGs. Within the BTGs, all investigated fatigue parameters are higher compared
to the adjacent regions, which is consistent with the observation that first macroscopic cracks are observed
within the BTGs for all specimens. Due to the fact that failure always occurs within the BTGs, only the highly
strained regions with high strain amplitudes (HSRA) are considered using the concept of highly strained
volume (CHεV).

The main results of this work are summarized in the following items:

• Five fatigue parameters ˜̄ε ∗
a , ˜̄ε ∗,el

a + ˜̄ε ∗,pl
a , PSWT, ΔW t and ΔW t

mss are determined exclusively from the
HSRA and evaluated with the CHεV.
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• For the fatigue parameters ˜̄ε ∗,el
a + ˜̄ε ∗,pl

a , PSWT,ΔW t andΔW t
mss stress–strain hystereses must be modeled.

Therefore, a stress–strain hysteresis model (SSM) is presented that computes stress–strain hystereses for
arbitrary load ratios. Comparisons between experimentally measured and modeled stress–strain hystereses
show good agreement.

• In total, the CHεV is applied and evaluated including 30 unnotched, 34 notched and 12 bending specimens
using the five fatigue parameters ˜̄ε ∗

a , ˜̄ε ∗,el
a + ˜̄ε ∗,pl

a , PSWT,ΔW t andΔW t
mss. The best regression is achieved

for the fatigue parameter ˜̄ε ∗,el
a + ˜̄ε ∗,pl

a with a coefficient of determination r2 = 0.86, demonstrating the
aptitude of the CHεV for fatigue modeling of wrought Mg alloys.

• Considering only one specific specimen type in the fatigue model yields only slightly better regressions
for the unnotched and notched specimens. The best regression is obtained for the bending specimens with
a coefficient of determination of r2 = 0.98. One reason for the good regression can be the limited variance
of the highly strained volumes Vε of the 12 tested bending specimens.
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