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Abstract The paper addresses sensitivity analysis of free torsional vibration frequencies of thin-walled beams
of bisymmetric open cross section made of unidirectional fibre-reinforced laminate. The warping effect and
the axial end load are taken into account. The consideration is based upon the classical theory of thin-walled
beams of non-deformable cross section. The first-order sensitivity variation of the frequencies is derived with
respect to the design variable variations. The beam cross-sectional dimensions and the material properties
are assumed the design variables undergoing variations. The paper includes a numerical example related to
simply supported I-beams and the distributions of sensitivity functions of frequencies along the beam axis.
Accuracy is discussed of the first-order sensitivity analysis in the assessment of frequency changes due to the
fibre volume fraction variable variations, and the effect of axial loads is discussed too.

Keywords Sensitivity analysis · Free torsional vibration frequencies · Thin-walled beams ·
Analytical solution · FEM

1 Introduction

The present-day, thin-walled structures are frequently made of composite materials. The main reason is that
they are becoming progressively stronger, lighter or less expensive, compared to traditional materials such as
steel or aluminium. Hence, a composite material made of a polymer matrix reinforced with fibres (FRP) may
be applied in the branches of civil engineering, ship structures, transportation industry and more.

The fibres are usually glass, carbon, aramid or basalt, and other fibre materials, e.g. paper, wood or asbestos
are also applied. The polymer matrix is usually epoxy, vinyl ester or polyester thermosetting plastic. The
orientation of reinforcing fibres affects strength and resistance to deformation of the polymer (the properties of
composites). Unidirectional, bidirectional or random categories of composites, with respect to fibre alignment,
are possible. Unidirectional composites show the greatest strength of all composites, while load is aligned with
the fibres; in other directions, their strength decreases considerably depending on the matrix material. In the
case of bidirectional composites, ultimate strength is lower than in the case of unidirectional composites, but
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Fig. 1 Geometry of the I-beam and state of displacement

if occurs in two directions; thus, the properties are more uniform in all loading directions. In the case of the
random distribution of fibres, the parameters depend on fibre arrangement; in this case, material has usually
the lowest strength. The strength of the material does not only depend on the orientation of the fibres but also
on density of fibres in the matrix.

Therefore, it is worth to consider the influence of variation of fibre density on the variation of selected static
or geometric parameters, e.g. the critical force, the frequency of free vibrations and others. Such a research
problem generally comes down to determining derivative (variation) of quantities structural behaviour due
to design parameters. Two approaches can be naturally distinguished: the first, variational, considering a
structure as a continuous medium, and the second, discrete, dealing with sensitivity of a discretized structure.
The first approach is applied in the paper. A comprehensive discussion and review of sensitivity analysis and
optimization methods can be found in the publications [1–3,9–11,14,18].

The application of unidirectional fibre-reinforced laminate structures in engineering increases due to their
mechanical and economic advantages [4,5,12,20]. In structural design, the constraints related to frequencies
of free vibrations can be taken into account. If the constraints on frequency are not fulfilled, re-analysis is
necessary to redirect the value in the admissible region. Here, dynamic re-analysis of structures with updated
design variables may be replaced by sensitivity analysis of frequencies. Moreover, the results of sensitivity
analysis lead to the advantageous region the design variable change, determining its necessary variations. The
paper deals with the first-order sensitivity analysis of free torsional vibration frequencies of thin-walled beams
of bisymmetric cross section made of unidirectional fibre-reinforced laminate subjected to axial end loads. The
design variables undergoing variations are cross-sectional dimensions, (excluding cross-sectional height) and
the properties of a laminate material. The beam behaviour is described according to the classical thin-walled
members of non-deformable cross section [21]. Homogenization modelling of a laminate material [19] is
based on the theory of mixtures cells. The first variation of free torsional vibration frequencies with respect to
variations of the design variation is derived by means of variational calculus [6,7,13]. A numerical example
of the paper deals with a simply supported I-beam. Here, fibre volume fraction is assumed the design variable
under investigation. Sensitivity analysis of accuracy is discussed and compared with re-analysis results of the
beam with updated parameters. The paper continues the prior research included in the paper [15].

2 First variation of free torsional vibration

Consider free torsional vibrations of an axially loaded thin-walled I-beam of bisymmetric cross section made
of unidirectional fibre-reinforced laminate presented in Fig. 1. It is well known that the flexural and torsional
vibrations for these kinds of cross sections are independent [21]. The torsional vibrations are described accord-
ing to the classical theory of thin-walled beams of non-deformable cross section [21]. The analysis is focused on
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the single natural frequencies. The Cartesian coordinate system shown in Fig. 1 defines the z-axis representing
the beam longitudinal axis and x- and y-axes representing cross-sectional symmetry axes.

The model of laminate material behaviour after homogenization procedure based on the theory of mixtures
cells is represented by the following relations:

m = mm(1 − f ) + mf f

El = Em(1 − f ) + Ef f

Et = Em
Em(1 − √

f ) + Ef
√

f

Em[1 − √
f (1 − √

f )] + Ef
√

f (1 − √
f )

G = Gm
Gm

√
f (1 − √

f ) + Gf [1 − √
f (1 − √

f )]
Gm

√
f + Gf(1 − √

f )

v = vm(1 − √
f ) + vf

√
f , (1)

where El , Et—Young’s moduli in longitudinal and transverse directions, Em, Ef—Young’s moduli of matrix
and fibres, G—homogenized shear modulus, v—Poisson’s ratio in longitudinal direction, vm, vf—Poisson’s
ratios of matrix and fibres, and f—fibre volume fraction, m—homogenized mass density, mm, mf—mass
density of matrix and fibre.

In the plane stress case, the modified elastic modulus Dl in longitudinal direction is assumed in the form
[19]

Dl = El

1 − Et
El

v2
. (2)

The total potential energy of the beam length L subjected to the axial end loads P covers the warping stress
energy (first term), the free torsion energy (second term) and the potential energy of the end axial loads (last
term) [17]:

V = 1

2

∫ L

0

(
Dl Jωθ ′′2 + GJdθ

′2 − Pr20 θ ′2)dz, (3)

where θ—rotation of a cross section, Jω—warping moment of inertia of a cross section, Jd—free torsion
moment of inertia, r20 = J0/A—square of radius of gyration, J0—radial moment of inertia, A—cross section
area, (…)′=d(…)/dz and (…)′′—first and second derivatives with respect to axial coordinate z.

Kinetic energy T of a homogeneous beam of mass density m is

T = 1

2
m

∫ L

0

(
J0θ̇

2 + Jωθ̇ ′2)dz. (4)

Here, the upper dot represents time derivative. (For more details, see [17,22] and [16].)
The harmonic torsional vibration of the beam can be written as

θ(z, t) = φ(z) sin θ t, (5)

where φ(z)—mode of torsional vibration, and θ—frequency of free torsional vibration.
The sum of potential and kinetic energy parts for a conservative system is constant; thus, applying Eq. (5)

in (4) and (3) it is easy to prove that the maximum values of both energy components should be equal:

Vmax = Tmax, (6)

where Vmax—maximum total potential energy and Tmax—maximum kinetic energy corresponding to the
vibration mode. The equivalence relation of these energies expressed in the vibration mode φ(z) may be
written as

∫ L

0

[
Dl Jωφ′′2 + GJdφ

′2 − Pr20φ′2 − ω2m
(
J0φ

2 + Jωφ′2)]
dz = 0. (7)
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The Euler necessary condition for stationary total energy represented by the left-hand side of Eq. (7) leads to
the differential equation:

(
Dl Jωφ′′)′′ +

[(
Pr20 − GJd + ω2mJω

)
φ′]′ − ω2mJ0φ = 0 (8)

together with boundary conditions at the both beam ends

{(
Dl Jωφ′′)′ +

(
Pr20 − GJd + ω2mJω

)
φ′}δφ

∣∣∣
L

0
= 0

or
(
Dl Jωφ′′)δφ′

∣∣∣
L

0
= 0. (9)

The solution of Eq. (8) leads to free torsional vibration frequencies and eigenmodes.
It should be noted that the differential equation (8) is valid for a beam of bisymmetric variable cross section

excluding its height.
Let us consider a perturbation ds of an arbitrary design variable s. The dimensions of the cross section and

the material properties are assumed design variables. In order to derive the first variation of the square of the
natural frequency with respect to the variation ds, the first variation of the functional (7) is computed

∫ L

0

{(
Dl Jω

)
,s φ′′2 +

[(
GJd

)
,s −(

Pr20
)
,s −(

ω2mJω
)
,s

]
φ′2 + . . .

−(
ω2mJ0

)
,s φ2

}
δsdz + . . .

−2
∫ L

0

[
Dl Jωφ′′δφ′′,s +(

GJd − Pr20 − ω2mJω
)
φ′δφ′,s + . . .

−ω2mJ0φφ,s

]
dsdz, (10)

where (. . .),s—first partial derivative of (. . .)with respect to the design variable s. The latter integral in Eq. (10)
expresses the virtual work of the internal forces on arbitrary virtual displacements, due to the virtual work
theorem it equals zero. The last two terms in the first integral can be rewritten as

(ω2mJω),s δs = mJω(ω2),s δs + ω2(mJω),s δs = . . .

= mJωδ(ω2) + ω2(mJω),s δs

(ω2mJ0),s δs = mJ0(ω
2),s δs + ω2(mJ0),s δs = . . .

= mJ0δ(ω
2) + ω2(mJ0),s δs. (11)

Substituting Eq. (11) into the integral (10), the variation of the square frequency reads

δ
(
ω2) =

∫ L
0

⎧
⎪⎨

⎪⎩

(Dl Jω),s φ′′2 + . . .

+
[
(GJd),s −(Pr20 ),s −ω2(mJω),s

]
φ′2 + . . .

−ω2(mJ0),s φ2

⎫
⎪⎬

⎪⎭
δsdz

∫ L
0 m

(
J0φ2 + Jωφ′2)dz

(12)

or

δ(ω2) =
∫ L

0
F(z)δs(z)dz. (13)

The integrated function F(z) represents variation of square frequency of torsional vibrations due to a variation
of the design variable δs(z) in the cross section z. Distribution of the function F(z) can be stated analytically
or numerically by means of the finite element method.
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Table 1 Material properties for matrix, fibres and composite for f = 5, 50 and 95%

Matrix
(Polyester)

Fibres
(Boron)

Composite for
f = 5%

Composite for
f = 50%

Composite for
f = 95%

LD TD LD TD LD TD

Mass density
(kg/m3)

mm = 1380 mf = 2450 m = 1433 m = 1915 m = 2396

Young’s modulus
(GPa)

Em = 2.50 Ef = 420 El = 23.34 Et = 3.20 El = 211.25 Et = 8.36 El = 399.12 Et = 79.94
Dl = 23.67 Dl = 212.01 Dl = 403.71

Kirchhoff’s modulus
(GPa)

Gm = 1.20 Gf = 170 G = 1.28 G = 3.20 G = 36.35

Poisson’s ratio (-) vm = 0.33 vf = 0.20 v = 0.30 v = 0.24 v = 0.20

Table 2 Geometrical characteristics of the I-section (L = 3 m, b = 0.1 m, h = 0.2 m, t0 = 0.003 m) (Fig. 1)

A (m2) (2b + h)t0 0.0012

r0 (m)
√

J0
A = 1

2

√
2b3+6bh2+h3

6b+3h 0.0842

Jω (m6) 1
24b

3h2t0 5.0 10−9

Jd (m4) 1
3 (2b + h)t30 3.6 10−9

J0 (m4) 1
12 (2b3 + 6bh2 + h3) 8.5 10−6

3 Numerical examples

Consider a simply supported thin-walled I-beam of constant cross section made of unidirectional fibre-
reinforced laminate, shown in Fig. 1. Material and geometric parameters of the cross section are shown
in Tables 1 and 2. The squares of free torsional vibration frequencies result from the differential equation (13),
substituting the vibration mode fulfilling simply supported system boundary conditions:

φn(z) = B sin
(nπ

L
z
)

(14)

ω2 =
Dl Jω

(
nπ
L

)2 + GJd − Pr20

m
[
Jω + J0

(
L
nπ

)2] . (15)

The fibre volume fraction arbitrary variable along the column axis is assumed to be the parameter undergoing
variation s = f . Thus, the sensitivity function of the square free torsional vibration frequency arrives at

Fω2, f =
[
Dl, f Jωφ′′2 + (

G, f Jd − ω2m, f Jω
)
φ′2 − ω2m, f J0φ2

]

∫ L
0 m

(
J0φ2 + Jωφ′2)dz

. (16)

The analytical solutions are compared with the FEM numerical results. Numerical analysis is conducted by
means of ABAQUS software [8]. The idea of the FEMmodels is presented in Fig. 2. The I-beams are modelled
by shell elements—S4R (0.01× 0.01 m2), i.e. 40 elements along an entire cross section. The total number of
elements in all models is equal to 12,000. The material is modelled by a lamina-type procedure available in
ABAQUS [8]. Numerical analysis is performed in two steps. In the first step static, general analysis is carried
out; the next, second step covers frequency analysis. In both steps, nonlinear effect of large deformations and
displacements is taken into account. The values of material parameters are shown in Table 1. The I-beams are
regarded as members without load or under axial compression or tension load P due to different load values:
P = −5 kN (tension) or 5kN (compression), in the case of the analytical solution ranging from −50 to 50kN.

The results of analytical and numerical analyses are shown in Table 3 and in Figs. 3, 4, 5, 6 and 7. Table 3
compares two solutions of square free vibration frequency, i.e. the analytical solution (15) proposed in the paper
with the FEM solution for three different axial loads. Figures 3, 4 and 5 show sensitivity functions of square
free vibration frequency (16) with regard to fibre volume fraction parameter f along the I-beam axis in the case
of axial tensile and compressive end loads and without a load, considering two different numbers of half-waves
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Fig. 2 Geometry of a 3D FEM model (boundary conditions, load) and its investigated torsional vibration mode
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Fig. 3 Sensitivity functions of square free torsional vibration frequency related to the fibre volume fraction parameter f (from 5
to 95%) along the I-beam axis, the axial end loads P = −50, 0, 50 kN, the number of half-waves a n = 1 and b n = 2



Sensitivity analysis of free torsional vibration frequencies 1353

Table 3 Square free torsional vibration frequencyω2 for n = 1 and f = 5, 50, 95% (L = 3 m, b = 0.1 m, h = 0.2 m, t0 = 0.003
m) (Fig. 1)

f = 5%
(PFEM

cr = 6 kN)
f = 50%
(PFEM

cr = 22 kN)
f = 95%
(PFEM

cr = 139 kN)

Analytical
approach
(15) (rad/s)2

FEM
(rad/s)2

Diff.% Analytical
approach
(15) (rad/s)2

FEM
(rad/s)2

Diff.% Analytical
approach
(15) (rad/s)2

FEM
(rad/s)2

Diff.%

P = 5 kN
(Compressive load)

8900.1 8423.3 5.4 76,552.0 70,395.0 8.0 123,856.0 120,319.0 2.9

P = 0 kN 12,085.5 11,590.0 4.1 78,936.5a 72,765.5 7.8 125,762.0 122,214.0 2.8
P = −5 kN
(Tensile load)

15,270.9 14,756.0 3.4 81,321.0 75,135.0 7.6 127,667.0 124,108.0 2.8

aThe ω2
0 value
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Fig. 4 Sensitivity functions of square free torsional vibration frequency related to the axial ends load P , the fibre volume fraction
parameters a f = 5%, b 50% and c 95% along the I-beam axis, number of the half-waves n = 1

n = 1 and 2. Furthermore, Fig. 6 shows relative values of sensitivity functions of square free torsional vibration
frequency, related to the axial end load P regarding different fibre volume fraction parameters a) f = 5%, b)
f = 50%, c) f = 95% along the I-beam axis due to a number of half-waves n = 1. Figure 7 show the main
solutions, i.e. first-order sensitivity analysis compared with the FEM based due to a relative values of square
free torsional vibration frequency function of the I-beam under axial loads depending on the fibre volume
fraction parameters, regarding number of the half-waves n = 1.

The numerical analysis carried out indicates high convergence of the results of analytical and numerical
approaches. The differences between solutions remain at an average level of 10%.

Furthermore, it should be indicated that:

– the square free torsional vibration frequency increases with the fibre volume rise in a composite material;
it decreases while the fibre volume fraction in the material is reduced (see Table 3),
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Fig. 6 Sensitivity functions of square free torsional vibration frequency relative to ω2
0 (at P = 0, f = 50%: ω2

0 = 78, 936.5
(rad/s)2, see Table 3) (15) with regard to axial ends load P , the fibre volume fraction parameters a f = 5%, b f = 50%, c
f = 95% along the I-beam axis number of half-waves n =1



Sensitivity analysis of free torsional vibration frequencies 1355

(a)

P=5 kN

FEM solution
Sensitivity analysis

1.0

2.0

0.0

0.5

1.5

5 50 9520 8045 55
[%]f

2

2
0

Compressive load

(b)

P=0 kN

FEM solution
Sensitivity analysis

1.0

2.0

0.0

0.5

1.5

5 50 9520 8045 55
[%]f

2

2
0

(c)

1.0

2.0

0.0

0.5

1.5

2

2
0

P=-5 kN
Tensile load

5 50 9520 8045 55
[%]f

FEM solution
Sensitivity analysis

Fig. 7 First-order sensitivity analysis solution compared with the FEM numerical result of square free torsional vibration fre-
quencies, relative to ω2

0 (at P = 0, f = 50%: ω2
0=78,936.5 (rad/s)2, see Table 3) (15) of an I-beam a under axial compressive

load P = 5 kN b without any axial load, c under tensile load P = −5 kN, with regard to fibre volume fraction parameters, the
number of half-waves n = 1

– the difference between analytical and numerical solutions is directly proportional to the homogeneity extent
of the composite material, i.e. in the case of a highly homogeneous material the differences are smaller;
oppositely, while material is more heterogeneous the differences are greater (Table 3),

– the influence of compressive or tensile forces on the square free torsional vibration frequency is negligible,
as shown in the results presented in Figs. 3 and 7,

– the numerical analysis indicates that square free torsional vibration frequency with regard to fibre volume
is weakly nonlinear; thus, the first-order sensitivity analysis (linear solution) is a suitable approximation
(with an accuracy of 10–15%) of the solution, ranging from 20 to 80% of the fibre volume fraction (Fig. 7).
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4 Conclusions

The paper deals with the first-order sensitivity analysis of the square free torsional vibration with regard to
the fibre volume. Analytical solution of the problem is investigated and compared with the FEM solution. The
first-order sensitivity analysis proves a sufficient approximation of the numerical FEM solution. The proposed
analytical solution based on classical theory of thin-walled beams of non-deformable cross sections, taking
into account the warping effect, showed its validity in the analysis of such a kind of structures. The differences
between compared solutions, the FEM solution and a linear approach to the sensitivity analysis are acceptable
from an engineering point of view, remaining at an average level of 10%. Finally, it should be emphasized that
the proposed simplified solution based on the sensitivity analysis seems a useful tool in the optimal design or
the analysis of beams with variable cross sections and mechanical properties of the beam material.
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