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Abstract Phenomena treated by non-equilibrium thermodynamics can be very effectively described by ther-
modynamic variational principles. The remarkable advantage of such an approach consists in possibility to
account for an arbitrary number of constraints among state or kinetic variables stemming, e.g., from con-
servation laws or balance equations. As shown in the current paper, the variational principles can provide
original evolution equations for the state variables implicitly respecting the constraints. Moreover, the varia-
tional approach allows formulating the problem directly in discrete state variables and deriving their evolution
equations without the necessity to solve partial differential equations. The variational approach makes it also
possible to use different kinetic variables in formulation of dissipation and dissipation function.

Keywords Variational principles · Thermodynamic extremal principle · Dissipative processes

1 Introduction

Thermodynamic variational principles (later “principles”) are now accepted tools to develop kinetic (evolution)
equations in systems with constraints among the state variables. It should be mentioned that already Lord
Rayleigh [25] set the first steps in 1871 by introduction of a “dissipation function,” for details see Sect. 2.1
of this paper. For sake of completeness, we would like to add that “dissipation potentials” have been used in
mechanics of materials since several decades, for an overview see [4]. However, groundbreaking contributions
were published by Onsager [23] and Ziegler [29] and [30]. With respect to relevant contributions to the
principles, we refer the reader to Hackl and Fischer [15] published in 2008 and to the overview [12] published
in 2014.

From the point of view of applications of the principles, we consider Ziegler’s concept [29,30] as one
of the most successful ones for processes not too far from the equilibrium and obeying the laws of linear
non-equilibrium thermodynamics, see, e.g., the textbooks by de Groot andMazur [6], Callen [3] and Gyarmati
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[14]. Ziegler’s concept maximizes the dissipation with the constraint that the dissipation D as bilinear form of
forces and fluxes is equal to a particular dissipation function Q, a physical quantity, e.g., a quadratic form of
the fluxes (for explanation of the terms see the next section). Generally, this extremal principle, supplemented
by proper conservation laws as well as boundary and contact conditions, leads to a set of partial differential
equations for the evolution of the system, which may be rather difficult to handle even for quite simple systems.
However, material science requires models describing the evolution of the material system only by a limited
number of the most appropriate time dependent state variables. A straightforward way, how one can obtain
the time dependent state variables, has been provided by reformulating Ziegler’s concept in terms of discrete
state variables as shown by Svoboda and Turek [27].

From this time on, this concept has been denominated as the “Thermodynamic Extremal Principle” (TEP).
Since this formulation avoids having towork directly with partial differential equations, the TEP has become an
efficient tool to find kinetic equations for the internal variables in a wide variety of fields. Diverse applications
to thermodynamic problems frommulticomponent diffusion to grain growth have been reported, for references
see, e.g., [12]. However, one aspect has not yet been dealt with in detail in the literature, namely the situation,
when the sets of kinetic variables in the dissipation D and in the dissipation function Q are not the same ones.
Generally, the sets of kinetic variables may be related by functional dependencies, which can be considered
as constraints. The goal of this note is now to show how to implement efficiently such functional relations in
the maximization procedure.

2 System description

2.1 Variables and Gibbs energy

Remark 1:We use the matrix notation with “T” as superscript meaning a transposed matrix.
Remark 2: All quantities are described in the actual configuration with “div” and “grad” and the Laplace
operator Δ as operators there.

First of all, we introduce a representative volume element (RVE) of a multicomponent system. The RVE is
supposed to be a sufficiently small part of the system so that it can be considered as homogeneous but large
enough to allow a statistical approach (see also Sect. 4.2).

To define the thermodynamic material system the following quantities are introduced:

1. the external state variables, collected for sake of easier writing in a vector X,
2. the internal state variables, collected in a vector x,
3. the Gibbs thermodynamic potential G as function G (X, x;p) defined on the RVE with given material

parameters collected in a vector p.

We would like to mention the definition of internal variables and their appearance in the dissipation D
worked out in detail in the seminal paper by Coleman and Gurtin [5] 50 years ago. The term “dissipative
structures” was explained by Maugin [20]. Recently this author published also an according very interesting
overview (a “saga”) [21].

2.2 Dissipation and dissipation function

According to standard continuum thermodynamics, see e.g. [5], the dissipation D per RVE follows, with X
assumed as fixed, from the well established relation

D = −∂G

∂x
· ẋ = f · ẋ, (1)

where the vector −∂G/∂x is denoted as collection of the thermodynamic forces f and ẋ as collection of the
thermodynamic fluxes.We use the term “collection,” since a thermodynamic force can be a scalar or a vectorial
quantity. With respect to the terms thermodynamic “forces” and “fluxes,” we refer to Onsager [23] and the
book by Baluffi et al. [2]. The dissipation D may be considered as a pure mathematical construct, of course,
stemming from the physical entity G.

Therefore, to reflect the internal mechanisms of dissipation, the dissipation function Q is introduced which,
in a rather general form, is a function Q (X, x, ẋ; p̃)with given material parameters, collected in vector p̃ (note
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that p and p̃ need not to be identical). In many practical cases, however, Q depends on a set {K} of kinetic
variables, whose members do not appear as components of the vector ẋ. The reader may think of diffusion,
where the concentrations (or molar fractions) of the components are internal state variables x and, therefore,
their rates appear in D. However, Q includes the set of fluxes jk of the components (counting index k) and not
the vector ẋ. Therefore, let us separate the internal variables in primary ones, xp (with Mp members) whose
rates ẋp appear also in Q and secondary ones, xs (with Ms members), whose rates ẋs do appear only in D
but not in Q. The set of kinetic variables {K} consists of Mw scalar members collected in a vector w and a
subset {W} with MW vector members Wk (k is the index; think, e.g., on the a/m fluxes). Then Q follows as
Q

(
X, x, ẋp, {K} ; p̃)

. Since both, D and Q, describe the dissipation process, they must be equal, i.e.,

D
(
X, x; ẋp, ẋs;p

) = f · ẋ = Q
(
X, x, ẋp; {K} ; p̃)

. (2)

The TEP in its original form, see, e.g., [12], involving the same kinetic variables ẋ in both, D and Q, states that
the dissipation obtains a maximum subjected to the constraint, Eq. (2). The according Lagrangian L follows
as

L = D − λ (Q − D) (3)

with λ being a Lagrange multiplier. Maximizing of L with respect to the kinetic variables ẋ provides a relation
between the thermodynamic forces f and the kinetic variables ẋ as

f =
(

Q

(∂Q/∂ ẋ) · ẋ
)

∂Q

∂ ẋ
. (4)

It should be noted again that Q as dissipation function goes back to Lord Rayleigh [25]. Furthermore,
it may be of interest that Onsager [23] introduced a dissipation potential φ (X, x, ẋ; q) with given material
parameters, collected in a vector q, for the thermodynamic forces as

1

T
f = ∂φ

∂ ẋ
(5)

with T as the temperature.

3 The thermodynamic extremal principle (TEP) and constraints

3.1 Dissipation and constraints

The dissipation D, Eq. (2), can be reformulated as

D = fp · ẋp + fs · ẋs, (6)

with

fp = − ∂G

∂xp
, fs = − ∂G

∂xs
. (7)

The dissipation Dsystem of the total system follows as

Dsystem =
∫

Vsystem
D dV =

∫

Vsystem

(
fp · ẋp + fs · ẋs

)
dV . (8)

In many cases, a functional relation exists between ẋs and ẋp and the set {K} in the form

ẋs = A · ẋp + B · w + C · div ({W}) (9)

with the following definitions:

1. A is a given matrix Ai j with Ms rows and Mp colums;
2. B is a given matrix Bi j with Ms rows and Mw colums;
3. C is a given matrix Ci j with Ms rows and MW colums;
4. {W} represents a set with MW vectorsWk ;
5. div ({W}) represents a vector with MW elements div (Wk).
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Finally, C · div ({W}) represents a vector c with the elements ci =
MW∑

k=1

Cik div (Wk) , i = 1, . . . , Ms.

Taking into account the above definitions and inserting of Eq. (9) into the integrand on the r.s. of Eq. (8)
yield

D = fp · ẋp + fs · ẋs = (
fp + AT · fs

) · ẋp + (
BT · fs

) · w +
Ms∑

i=1

fs,i

MW∑

k=1

Cik div (Wk) . (10)

If we introduce the vector f̃s = CT · fs and integrate the last term on the r.s. of Eq. (10)2 over the total volume
Vsystem and apply the Gauss theorem (assuming thatWk · n = 0 with n being the normal to ∂Vsystem), then we
can reformulate (10)2 with f̃p = fp + AT · fs as

D = fp · ẋp + fs · ẋs = f̃p · ẋp +
(
BT · fs

)
· w −

MW∑

k=1

grad
(
f̃s,k

)
· Wk . (11)

We define now fw = BT · fs and fW,k = −grad
(
f̃s,k

)
and can formulate D as

D = f̃p · ẋp + fw · w +
MW∑

k=1

fW,k · Wk . (12)

For sake of easier writing, we denominate the rates as ξ̇ = {ẋp,w,Wk} (k = 1, . . . , MW), so that we can
formulate D, Eq. (2), as D = D̃

(
X, x, ξ̇ ; p

)
and Q = Q̃

(
X, x, ξ̇ ; p̃

)
. Furthermore, the thermodynamic

forces are denoted as

fξ = ∂ D̃

∂ ξ̇
= {f̃p, fw, fW,1, . . . , fW,MW}. (13)

Finally, we can rewrite Eq. (2) as

D̃
(
X, x, ξ̇ ; p) = Q̃

(
X, x, ξ̇ ; p̃)

. (14)

3.2 The TEP in modified form

The modification of D to D̃ as above allows applying the TEP in its original form given by Eqs. (2) and (3),
which will be replaced now by Eq. (14) and the modified Lagrangian

L̃ = D̃ − λ
(
Q̃ − D̃

)
. (15)

Maximizing of L̃ with respect to the kinetic variables ξ̇ provides a relation between the thermodynamic forces
fξ and the rates of the kinetic variables ξ̇ as

fξ =
⎛

⎝ Q̃
(
∂ Q̃/∂ ξ̇

)
· ξ̇

⎞

⎠ ∂ Q̃

∂ ξ̇
. (16)

Since one needs finally the evolution equations for ξ̇ , it is necessary to invert Eq. (16). If Q is supposed as a
homogeneous function in ξ̇ of order l, yielding ∂ Q̃/∂ ξ̇ · ξ̇ = l Q̃, it follows

fξ = 1

l

∂ Q̃

∂ ξ̇
. (17)
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If Q̃ is a quadratic function in ξ̇ , which means l = 2, having the form Q̃ = ξ̇ · U (X, x) · ξ̇ with U being a
positive-definite symmetric matrix involving material and structural parameters, then this yields

ξ̇ = U−1 · fξ . (18)

No problem from the mathematical point of view does occur, if the order of homogeneity l is unequal to 2 but
equal for all processes. If this is not the case, we refer to the papers by Hackl et al. [16,17] and the recent paper
by Goddard [13] referring to the necessity of introducing a dissipation potential for some distinct problems.

4 Application of the TEP to local and non-local diffusion

One of the most relevant processes in the evolution of material systems is the diffusion process. Let us
consider a multicomponent system consisting of M components with the site fractions yk, k = 1, . . . , M . To
each component a diffusive flux jk is assigned. The diffusion is vacancy-mediated (as it is the case, when K
substitutional and (M − K ) interstitial components are diffusing). The vacancies occupy a site fraction y0 and
diffuse with a flux j0. Let us assume that K ≤ M substitutional components diffuse. As outlined in detail in
Svoboda et al. [26] Sects. 2.1 and 2.2 two basic identities exist: one for the site fractions and the other for the
fluxes. Both identities lead to two constraints, namely

y0 = 1 −
K∑

k=1

yk, j0 = −
K∑

k=1

jk . (19)

Note, that constraint Eq. (19)1 can directly be inserted into the Gibbs energy G, since the yk are internal
variables. Furthermore, constraint Eq. (19)2 can also directly be inserted into the dissipation function Q as
“classical” function of the squares of the fluxes.

The rate, with which the vacancies are generated or annihilated, is denoted as α, 0 ≤ |α| ≤ ∞, with α = 0
for no generation or annihilation and with |α| ⇒ ∞ for ideal generation or annihilation. The mass balance,
also treated in Svoboda et al. [26], is expressed for the site fractions as

ẏk = −ykα − Ω̄div jk, k = 1, . . . , M. (20)

The quantity Ω̄ is the molar volume of one mole of lattice sites and depends, therefore, on the individual site
fractions yk, k = 1, . . . , M . The mass balance activates now a third set of constraints, which will be dealt with
below.

Going back to Fick’s work from 1855 one needs a constitutive law for the fluxes jk , k = 1, . . . , M .
Therefore, the TEP is employed to derive such a constitutive (or evolution) law, see again Svoboda et al. [26],
Sect. 4 there, and the rather recent paper by Fischer et al. [11].

4.1 Local diffusion

This is the standard case for a deterministic situation, where no stochastic processes are considered. We
concentrate only on constraints Eq. (20). The dissipation D, see Eq. (1), has as kinetic variables the ẏk and
α. The dissipation function Q, see Eq. (2), has as kinetic variables the fluxes jk and α. Note that we avoid
the rate of a diffusion-induced creep strain for sake of an easier formulation. The dissipation D (denoted now
as D̃) is calculated according to Eqs. (9) to (12) by assigning the actual quantities to the symbols in general
Eqs. (11) and (12). The flux ẋp consists of only one member ẋp = α, xs corresponds to the vector y with
yT = (y1, y2, . . . , yM ) and ẋs to ẏ. With the notation of Eqs. (9, 10) we have A degenerating to a (1x1 matrix)
with the only element −1, w = 0,C = −Ω̄ I (I is the unity matrix) and Wk = jk with k = 1, . . . , M and
MW = Ms = M . Then we find with Eq. (12)

D̃ = ( fα − fs · y) α +
M∑

k=1

(
grad

(
Ω̄ fs,k

)) · jk . (21)
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4.2 Non-local diffusion

Non-local concepts in continuum mechanics are already dealt with since the pioneering work of Mindlin on
non-local plate theory, more than half a century ago, see, e.g., Mindlin’s Collected Works in [18]. A general
view on non-local continuumfieldswas published by Eringen [9]. Here, it shall bementioned that discrepancies
have been detected between the Eringen model in differential and integral form, see, e.g., recent paper [10].
The rather popular gradient approach was related to the non-local field theory by Aifantis [1]. Locally varying
material properties as the elastic moduli have motivated to introduce non-local theoretical concepts, see, e.g.,
recent contributions [7,22]. With respect to an extremal principle recent paper [24] concerning the Principle
of Minimum of Potential Energy of an elastic system shall be mentioned. Particularly of increasing relevance
are computational algorithms for non-local diffusion, together with constraints as, e.g., volume constraints,
taking into account stochastic processes (as jumping of atoms or Brownian motion). Here we refer to papers
by Du et al. [8] and Tian et al. [28] and Lehoucq and Rowe [19] concerning the analysis and approximation of
non-local diffusion problems.

We offer a problem solution concept for non-local diffusion by an efficient application of the TEP with
constraints. For sake of demonstrating the concept in an easy as possible way we consider the case of diffusion
of only one interstitial element with the site fraction y, to which a chemical potential μ = μ (y) is assigned,
and the activity of vacancies represented by their generation/annihilation rate α [since α is involved in the site
fraction balance of y, see Eq. (19)1]. Furthermore, the following (simplifying) assumptions are applied:

1. the molar volume Ω̄ is assumed as constant quantity in space and time;
2. the role of the stress state is considered as negligible; consequently, diffusion-induced creep is not activated;
3. the volumeofRVE, denoted as dV , is as a constant quantity; therefore, thematerial derivative d(dV )/dt = 0

or, in other words, div v = 0 with v being the material velocity vector;
4. the quantity y and the chemical potential μ (see below) are replaced by

ẏ ⇒ (1 − θ) ẏ + θ ˙̄y = ˙̃y, μ ⇒ (1 − θ) μ + θμ̄ = μ̃. (22)

The quantities ȳ and μ̄ are the non-local averages of the local quantities y and μ resp., e.g., over the RVE.
Furthermore, a time-independent switcher θ is introduced 0 ≤ θ ≤ 1,which allows investigating the interaction
of a pure deterministic behavior (ẏ, μ, local) and pure stochastic behavior ( ˙̄y, μ̄, non-local).A short introduction
to the definition of a non-local quantity is presented in the “Appendix”.

The dissipation D follows with Eq. (22) as

D = −μ ˙̃y = −μ
(
(1 − θ) ẏ + θ ˙̄y) . (23)

The dissipation function Q writes as
Q = j2/A + Kα2 (24)

with A as a given mobility coefficient and K as a given bulk viscosity; for details see [26], Sects. 4 and 5 there.
As constraint the balance for the site fraction y is expressed in ỹ and writes with Eq. (20)

˙̃y + ỹα + Ω̄ div j = 0, (25)

and with Eq. (22) as
(1 − θ) ẏ + θ ˙̄y + [(1 − θ) y + θ ȳ]α + Ω̄ div j = 0. (26)

The TEP is formulated for the system with Eqs. (23–26) as

L =
∫

Vsystem

[
D − λ (D − Q) + 2 η

( ˙̃y + ỹα + Ω̄ div j
)]

dV . (27)

Now two Lagrange multipliers, namely the constants λ and η, appear. Before calculating the Lagrange param-
eters, it is useful to apply the “duality condition” [Eq. (47) in the “Appendix”] to the expressions μ ˙̄y in D and
η ˙̄y in the constraint in Eq. (27), which can be replaced by μ̄ẏ and η̄ ẏ, resp. Furthermore, the Gauss theorem
allows replacing η div j by −grad η · j in Eq. (27), since we assume a closed system with a zero normal
projection of j at the surface. These both steps allow to rewrite L , Eq. (27), as

L = − (1 − λ)

∫

Vsystem
μ̃ẏ dV + λ

∫

Vsystem

(
j2/A + Kα2) dV + 2

∫

Vsystem

(
η̃ ẏ + η ỹα − Ω̄ grad η · j) dV . (28)
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We perform variations with respect to ẏ, j and α yielding

ad ẏ: − (1 − λ) μ̃ + 2η̃ = 0, (29)

ad α: λKα + η ỹ = λKα + η̃y = 0, (30)

ad j: λ j/A − Ω̄ grad η = 0. (31)

After multiplication of Eq. (29) by ẏ, of Eq. (30) by α and (31) by j, integration over the system and keeping
in mind D = Q, see Eqs. (23, 24), one finds λ = −1 and from

ad (29): η̃ = μ̃, (32)

ad (30): α = η ỹ/K , (33)

ad (31): j = −AΩ̄ grad η. (34)

Obviously, j depends on the Lagrange parameter η, see Eq. (34), which is related to the chemical potential μ
with the non-local relation Eq. (32), η̃ = μ̃.

If θ = 0, which refers to a pure local problem, then immediately the established equation

j = −AΩ̄ gradμ (35)

appears.
However, if θ �= 0, one has to extract η from η̃ together with η̃ = μ̃. To separate η from η̃ we can use the

relation
η = β0η̄ + β2Δη̄ + h.o.t., (36)

derived in the “Appendix”, see Eq. (45). The coefficients β0 and β2 are given also in the “Appendix”, see Eqs.
(44) and (46), respectively. Then Eq. (32), with the assumption of a known function μ̃ = (1 − θ) μ + θμ̄,
allows formulating a partial differential equation based on Eq. (36) as

β2 (1 − θ)Δη̄ + (β0 + (1 − β0) θ) η̄ = μ̃. (37)

The solution of Eq. (37), together with the appropriate boundary condition, see Eqs. (49) or (50) in the
“Appendix”, gives η̄ from which η is obtained by applying Eq. (36). This closes the formulation.

5 Conclusion

The “Thermodynamic Extremal Principle” (TEP), based on Ziegler’s work, can be formulated in the frame
of linear thermodynamics as a maximization problem with only one constraint equating the dissipation in the
system (bilinear form in fluxes and forces) and the dissipation function (quadratic form in fluxes accounting
for material properties like diffusivities and interface mobilities). This concept of the TEP can also be used in
a straightforward way, if some further constraints, e.g., as balance or conservation equations meeting specific
mechanisms etc., exist. The respective procedure is outlined in this paper. Then the TEP provides in the current
form original constitutive laws implicitly respecting the constraints.Moreover, the TEP allows treating systems
for which the dissipation and the dissipation function are expressed in different kinetic variables coupled by
linear relations representing further constraints. A proper redefinition of the kinetic variables may significantly
reduce the number of kinetic variables and constraints and provide the most effective description of the system.
One should keep inmind that the redefinition does not influence the dissipation and thus also the systemkinetics.
The developed concept is demonstrated on an example for local and non-local multicomponent diffusion.
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Appendix

Let us define the non-local average of a field f on a domain with radius a as

f̄ (r) =
∫

Vsystem
ga(r̄ − r) f (r̄) dV̄ , (38)

the integral kernel being of the form

ga(r) = 1

an
g(|r|/a), (39)

where n is the dimension of Vsystem. The shape function g is supposed to have the properties
∫

Vsystem
g(r) dV = 1, g′(0) = 0, lim

r→∞ g(r) = 0, (40)

the simplest example being given as

g(r) = 1

Bn

{
1 for r ≤ 1
0 for r > 1 , (41)

where Bn is the volume of the unit ball of dimension n.
If a is small in comparison to the diameter of Vsystem, then Eq. (38) can be inverted. Fourier-transformation

of Eq. (38) gives
ˆ̄f (s) = (2π)n/2 ĝ(a|s|) f̂ (s). (42)

Solving Eq. (42) for f̂ (s) and calculating its Taylor-expansion with respect to a yields

f̂ (s) = ˆ̄f (s)
[
β0 − k

2
a2|s|2 + h.o.t.

]
, (43)

where we have made use of g′(0) = 0.
The parameters in Eq. (43) are

β0 = 1

(2π)n/2 ĝ(0)
, k = ĝ′′(0)

(2π)n/2 ĝ(0)2
. (44)

Finally, back-transformation of Eq. (44) gives

f (r) = β0 f̄ (r) + β2Δ f̄ (r) + h.o.t., (45)

where

β2 = k

2
a2. (46)

Moreover, we would like to remark that in the limit a → 0 we have the duality condition
∫

Vsystem
f̄1 f2 dV =

∫

Vsystem
f1 f̄2 dV . (47)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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This holds in either case, whether f̄ is defined via Eq. (38) or Eq. (45). In the first case, Eq. (47) follows from
a substitution of variables, since contributions from the boundary of Vsystem vanish in the limit. The second
case follows applying Green’s formula

∫

Vsystem
[ f1 Δ f2 − Δ f1 f2] dV =

∫

∂Vsystem
[ f1 (n · ∇ f2) − (n · ∇ f1) f2] dS, (48)

provided, that both f1 and f2 satisfy on ∂Vsystem the Dirichlet boundary conditions

f = 0, (49)

or the the Neumann boundary conditions
n · ∇ f = 0. (50)
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